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Introduction Linear sensitivity scans

» Materials of plasma facing components at JET changed from carbon
to metallic — beryllium and tungsten’.

> So-called ITER-like wall, similar to wall envisioned at ITER.

» Differences in plasma operations such as higher gas puffing rate to
mitigate W accumulation in ILW discharges affect global
confinement? — worse for baseline H-mode ILW discharges?.

» Deterioration due to lower edge (pedestal) temperatures.

» This also changes NBI heat deposition so changed core energy
confinement also observed with smaller 7, similar ;..

» Need to understand differences in core confinement.

Discharge parameters

» Database of matched CW-ILW
discharges created at JET.

> Similar plasma current, toroidal
magnetic field, applied NBI power,
average electron density, safety factor,
and triangularity.

> Input profiles taken from TRANSP#?
runs and smoothed in time (1 s) and
space.

> Geometry parameters extracted from
EFIT® reconstructions.

Figure 1: Time evolution of two matched dis-
charges
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Table 1: Discharge dimensionless parameters at p = 0.5. Collision frequency calculated as v, = wIn Ae*n.R/(23/*T?). Q. in
krads™!, T, in keV, n, in 10 /m?

GENE simulations setup

» |ITG/TE mode turbulence studied in two pairs of discharges using
GENE’ at mid radius.

» Simulations include finite 5-effects, collisions, impurities, realistic
(Miller) geometry, gyrokinetic treatment of all species.

Linear R/L; scan

» All four discharges ITG
dominated.

» Scaling in ion temperature o
gradient performed because ¢ °*
of measurement - afo
uncertainties. ool A R -
> |LW discharges more » a »

(2) Growth rate (b) Frequency
Figure 2: Linear R/ Ly, scans for the four discharges at k,ps = 0.3.

unstable at same R/Ly,
with slightly lower ITG
threshold.
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Figure 5: Growth rate change at £,p;, = 0.3

0.00 | | | |
00 01 02 03 04 05 06 07 08

kyp
(b) 74313
Figure 3: Scaling of eigenvalue spec- Figure 4: Scaling of eigenvalue spec-

tra with 3 tra with R/ Ly,

» Linear sensitivity scans performed, investigating relative change in
growthrate for a number of parameters.

> Relative change in plasma 3, aygp, R/ L7 and s serve to
destabilize the ILW discharges.

> Change in collisionality and 7;/7, stabilize ILW discharges.

Nonlinear results
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» Stiffness of ILW discharges S ERENE R
larger than CW discharges. i M 5 o R O
> Follow linear trends, larger SRR - S S S
fluxes for the ILW discharges. s i
> Core 7. similar while 7¢ R z:z;t«,m
shorter for ILW discharges. S [ e
> Experimental heat fluxes lower “%[ = =" | o Thee
at high R/L., more realistic RS e s e wo s e w0 s w0 g0 s w0 s

results with rotational effects.

Figure 6: Heat fluxes, normal- Figure 7: Energy confinement

ized units times

Conclusions

» Core confinement affected by changes in key plasma parameters
due to degradation of edge pedestal.

> Expect core confinement to improve if pedestal recovered.
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