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Effects of ion dynamics along the background magnetic field have been added to an advanced fluid

model which has been developed, tested, and successfully used in transport code applications

during the last decades. Introducing electrostatic ð/Þ and electromagnetic ðwÞ potentials, a system

of two coupled second order differential equations in these potentials is derived. The mode solution

is interpreted as a coupling between an Ion Temperature Gradient (ITG) mode and an ion motion

driven acoustic wave. The mode may be stabilized by electromagnetic effects and by minimizing

the ITG parameter gið¼ Ln

LTi
). Interestingly, the addition of kinetic Landau resonance effects may

enhance the gi stabilization. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4928374]

I. INTRODUCTION

For the control of instabilities and transport in fusion

devices, the study of low frequency perturbations is an im-

portant task. Specifically, the interest in instabilities driven

by inhomogeneous temperature profiles has been strong dur-

ing the last decades along with the installation of auxiliary

heating equipment in a number of experimental plants.

Lately, gyrokinetic transport codes and advanced fluid

modelling of drift wave turbulence have been successful in

explaining experimental results.1–9 Although a kinetic

description of the plasma is more detailed than a fluid

description, the latter may give simpler and more explicit

results.10–24 Also the access of computing power is in gen-

eral not crucial with fluid codes. They normally may be run

for times longer than the transport time scale contrary to ki-

netic codes. This is one of the reasons for the wide use of the

advanced fluid transport model in Refs. 1 and 5. This is also

a motive for the physics explored in this paper, although

electromagnetic gyrokinetic and gyrofluid models also allow

this type of investigations.

For toroidal plasmas, the applicability of fluid models

has been a problem due to the magnetic curvature drift reso-

nance at x � xD, where xD is the magnetic drift frequency.

This resonance has made it difficult to evaluate the kinetic

integral analytically without expanding in xD

x . In this paper, a

fluid model for ions is used which is valid also in the regime

xD > x. A basic presentation of the model is given in

Ref. 1. It includes all the curvature effects in the continuity

and energy equations, and an important role is played by the

ion diamagnetic heat flow which is used in the energy equa-

tion to close the fluid hierarchy.1,2,4,5 The model is basically

reactive (i.e., collisionless) and has been successfully used to

study effects such as electron trapping and impurities on

mode structure and particle and energy transport and

confinement.11–13,18–25

In the original version of the model, the phase velocity

of the drift modes along the background magnetic field is

assumed to be much larger than the ion thermal velocity.

The ion dynamics in this direction may then be neglected

which simplifies the analytical treatment. This is based on

the assumption jxj > xti, where xti is the ion transit fre-

quency. A complication in the description of drift mode tur-

bulence is, however, that the phase velocities of the turbulent

perturbations may be comparable to the thermal velocities in

the plasma. In this work, the parallel ion dynamics (paral-

lel¼ along the background magnetic field) has been added in

the full model (i.e., including full electromagnetic effects).

Results are presented both with and without kinetic Landau

resonances taken into account.

In Ref. 11, our model has been compared with an adia-

batic ExB convection model and with a model where dissipa-

tive wave-particle resonances are taken into account by

adding gyro-Landau contributions26–28 to the heat flow in the

energy equation. Electromagnetic effects are, however,

neglected in this paper. In Ref. 29, the local model (i.e.,

excluding parallel dynamics) with added drift kinetic

resonances has been compared with a gyrokinetic model. A

qualitative agreement was found. In Ref. 30, the model has

also been compared with an electromagnetic local kinetic

model, and in Ref. 31 the model has been used to study zonal

flow generation. Also here, results from the models were in

good qualitative agreement. More recently, the gyrofluid

model TGLF32,33 was developed where trapped particles and

short wavelength electron modes are taken into account.

Concerning dissipative wave-particle resonances, an interest-

ing question is to what extent nonlinear effects in velocity

space may drive the particles away from resonance and thus

decrease the motivation for adding gyro-Landau contribu-

tions in the fluid hierarchy.

The analytical treatment is shown to give two coupled

differential equations in the electrostatic (U) and electromag-

netic (W) potentials, each equation being of second order. In

the electrostatic limit, the system is reduced to one second

order equation which is also the case when parallel ion

dynamics is neglected. The generalized model is used to

study mode structure and stability with focus on the Ion
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Temperature Gradient (ITG) mode in toroidal (Tokamak) ge-

ometry. The ballooning mode formalism34 is applied and a

shooting code has been developed, where U and W are shot

simultaneously. Approximations in the (linearised) basic

equations are avoided and no assumptions are made a priori
about, e.g., strong ballooning (h¼ 0) or structure (Gauss,

harmonic) of the mode in ballooning space. Kinetic wave-

particle resonances are taken into account by adding Landau

contributions to the heat flow according to Refs. 26–28. In

this contribution, however, a semilocal mode approxima-

tion10,35 has been used in order to avoid a system of equa-

tions higher than second order.

It is shown that the parallel ion motion removes

the characteristic ITG mode sharp b stabilization12,13

(b¼ plasma pressure/magnetic field pressure) and reduces

the growth rate. It is also shown that the parallel motion

relaxes and shifts the sharp magnetic drift resonance in the

ballooning structure of the electrostatic potential U. The gi

dependence of the mode (gi ¼ Ln

LT
) shows that marginal stabil-

ity is shifted upwards when ion transit effects are present.

The trend is seen in Ref. 11, although finite b effects are

absent there. With our choice of parameters (similar to the

Cyclone DIII-D case36), the acoustic mode (not being sensi-

tive to gi) weakens the pure gi mode. Similar to this one, it is

driven by the compressibility accomplished by curvature

(�n / 1
R). As was the case for the b dependence, we find a

strong ballooning and magnetic resonance in the electrostatic

potential in the absence of ion transit effects. This is relaxed

to a substantially weaker ballooning and resonance when

parallel dynamics is taken into account. Interestingly, the

signatures of the strong ballooning and resonance do not

show in the electromagnetic potential due to the basically

electrostatic character of the mode. Toroidicity, i.e., the mag-

netic field curvature (/ 1
R) inherent in the �n parameter

(�n ¼ 2Ln

R ), stabilizes the pure gi mode at large values. With

parallel ion dynamics, the stabilization is enhanced and the

growth rate is reduced by influence of the acoustic mode.

Accounting for kinetic Landau resonances in the model

interestingly enhances the gi stabilization but does not signif-

icantly change the results of the b and �n dependencies.

Altogether, it is shown that the interaction between the

ion acoustic and ITG modes enables modes with reduced

(real) frequencies and growth rates and which depend on the

magnetic curvature (/ 1
R).

The paper starts with a derivation of the two coupled

differential equations in U and W. It is followed by a presen-

tation of numerical results where comparisons with the case

without parallel ion dynamics are made. Dependencies of the

eigenfrequency (x) on the electromagnetic (b), ITG (gi), and

toroidicity (�n) parameters are shown together with the mode

structure in the ballooning mode representation. A summary

finally concludes the paper.

II. FORMULATION

We consider a tokamak equilibrium with Shafranov

shifted circular magnetic surfaces and a perturbation of the

form expðjk? � x? þ jkk � xk � jxtÞ, where kk and k? are

directed parallel and perpendicular to the background mag-

netic field B0, respectively. Omitting the parallel magnetic

perturbation (the compressional Alfv�en mode), we adopt the

following representation for the perturbed electric and mag-

netic fields:

E ¼ �r/�
@Ak
@t

; (1)

B ¼ B? ¼ r � Ak; (2)

where / is the scalar potential, and Ak is the parallel vector

potential.

A. Electron model

From the parallel momentum equation for the electrons

neglecting electron inertia, we obtain

kk
dne

n0

¼ kk/� x� x�eð ÞAk
� � e

Te
; (3)

where dne is the electron density perturbation, x�e ¼ k? � v�e
is the electron diamagnetic frequency, and v�e ¼ �Te

ek�rn0

en0B0

the electron diamagnetic drift velocity (with only density

gradient included). Assuming isothermal electrons, i.e., a

large parallel electron heat conductivity, we have rkTe ¼ 0,

where rk is taken along the total magnetic field (i.e., back-

ground plus perturbed field). This gives the electron tempera-

ture perturbation

kk
dTe

Te
¼ gex�e

eAk
Te

; (4)

where ge ¼
Lne

LTe
is the ratio between the characteristic scale

lengths of density and electron temperature. From the elec-

tron continuity equation, we get

x
dne

n0

¼ x�e � xDeð Þ
e/
Te
þ xDe

dPe

Pe
� 1

n0e
kkJke; (5)

where the terms on the right hand side represent from left to

right, the divergence of the E� B current comprising the

E� B convection of the background density and the com-

pressibility of the E� B drift, the divergence of the diamag-

netic current, and the divergence of the parallel electron

current. We note that the curved inhomogeneous background

magnetic field in a fluid model gives rise to magnetic drift

terms vD ¼ 2T
ek�rB0

qB2
0

and corresponding drift frequencies

xD ¼ k? � vD, although vD is not a fluid drift. With dPe

Pe

¼ dne

n0
þ dTe

Te
and substituting the expressions for dne

n0
and dTe

Te
,

we can express the electron current in terms of the potentials

/ and Ak as

kkJke ¼ n0e

�
x�e � xð Þ/þ x� x�eð Þ x� xDeð Þ½

þ gex�exDe�
Ak
kk

�
e

Te
: (6)
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B. Ion model

The equation of motion for the ions along the magnetic

field is

mi
@

@t
þ v�iT � r

� �
vki ¼ qi �rk/�

@Ak
@t

� �
þ qi v�i � Bð Þk

�
rkpi

n0

�
r � �pið Þk

n0

; (7)

where v�iT ¼ v�ið1þ giÞ and �pi is the stress tensor. Keeping

there only the gyroviscous components (Braginskii Eqs. (20)

and (21)), the diamagnetic convection term on the left hand

side is cancelled by an identical contribution in r � �pið Þk.
We then obtain the parallel ion velocity1

vki ¼
v2

thi

x
kk/� x� x�iTð ÞAk
� � e

Ti
þ kk

dPi

Pi

� �
; (8)

where v2
thi ¼ Ti

mi
(ion thermal velocity), x�iT ¼ x�ið1þ giÞ,

and Jki ¼ qin0vki ¼ en0vki. We note that vki goes to zero if
vthi

x=kk
� 1 (ion thermal velocity much smaller than the parallel

phase velocity). From the ion continuity equation, we obtain

x
dni

no
¼ xDi � x�ið Þ

e/
Ti
þ xDi

dPi

Pi

� k2q2
i x� x�iTð Þ

e/
Ti
þ 1

noe
kkJki; (9)

where x�i ¼ � x�e
s and xDi ¼ � xDe

s are the ion diamagnetic

and magnetic drift frequencies, respectively (s ¼ Te

Ti
). In this

equation, the FLR (Finite Larmor Radius) term is due to the

polarization and stress tensor drifts, while the others have the

same origin as in the electron continuity equation.

We now apply the ion energy equation and close the

fluid hierarchy by using the diamagnetic heat flow for the

heat flow vector (for details, see Ref. 1). Thus

3

2
ni

@

@t
þ vi � r

� �
Ti þ pir � vi ¼ �r � qi; (10)

where vi ¼ E�B0

B2
0

þ v?i þ vki and r � qi ¼ � 5
2

niv�i � rTi

þ 5
2

nivDi � rTi (Braginskii—qi diamagnetic heat flow). If

r � vi ¼ � 1
ni
ð@ni

@t þ vi � rniÞ is substituted from the ion conti-

nuity equation, we obtain after linearisation

dTi

Ti
¼

2

3
x

dni

ni
þ x�i

2

3
� gi

� �
e/
Ti

x� 5

3
xDi

; (11)

where the gi term on the right hand side represents the E� B

convection of the background temperature, and the 5
3

term in

the denominator represents compressibility of the diamag-

netic heat flow due to the magnetic field curvature. The rest

of the terms (with coefficients 2/3) originate from substitu-

tion of r � vi from the ion continuity equation.

Substituting dTi

Ti
in (8) and (9), we may express dni

ni
in

terms of the potentials / and Ak. For convenience, we intro-

duce the notation M ¼ v2
thi

x accounting for the finite ion mass

and R ¼ k2q2
i ðx� x�iTÞ accounting for the finite ion Larmor

radius. From (9), we then get (after substitution of Jki from

(8))

dni

ni
¼

xDi þ k2
kM

� 	
1þ

2

3
x�i � gix�i

x�
5

3
xDi

0
BB@

1
CCA� x�i � R

2
664

3
775 e/

Ti
� kkM x� x�iTð Þ

eAk
Ti

x� xDi þ k2
kM

� 	
1þ

2

3
x

x�
5

3
xDi

0
BB@

1
CCA

: (12)

We here have to have in mind that kk is a derivation operator

along the magnetic field and that xD (but not x�) as well as all

perturbations have a variation in this direction. If parallel ion

motion is neglected (i.e., M¼ 0), we recover Eqs. (10)–(13) in

Ref. 10 identically, the ion density response then being expressed

in terms of the electrostatic potential / only. Electromagnetic

effects, accounted for by the Ak dependence, then enter via the

quasineutrality condition and via the Ampere law.

C. Quasineutrality

An equation in / and Ak can now be derived by using

quasineutrality with dni

ni
¼ dne

ne
¼ ð/� x�x�e

kk
AkÞ e

Tis
. Taking the

/-terms to the left hand side, we then obtain

x
s
þx�iþR� xDiþk2

kM
� 	 1

s
þ1þ

2

3

x
s
þ2

3
x�i�gix�i

x�5

3
xDi

0
BB@

1
CCA

2
664

3
775e/

Ti

¼ x�xDi 1þ
2

3
x

x�5

3
xDi

0
BB@

1
CCA

2
664

3
775x�x�e

s

eAk
kkTi

�k2
kM 1þ

2

3
x

x�5

3
xDi

0
BB@

1
CCAx�x�e

s
þx�x�iT

2
664

3
775eAk

kkTi
; (13)

where the M-terms represent the parallel ion velocity.
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D. Ampere’s law in parallel direction

From (8) and dTi from (11), we obtain the parallel ion

current density

Jki¼ en0M

"
kk/� x�x�iTð ÞAk

 � e

Ti
þkk

 
1þ

2

3
x

x�5

3
xDi

!
dni

n0

þ
kk

x�5

3
xDi

2

3
x�i�gix�i

� �
e/
Ti

#
: (14)

Applying now Ampere’s law for the parallel direction using

(6) for Jke and operating with kk on both sides, we have

r2
?Ak ¼ �l0ðJke þ JkiÞ; (15)

kkk
2Ak ¼ l0n0e

�
x�e � xð Þ/þ ½ x� x�eð Þ x� xDeð Þ

þ gex�exDe�
Ak
kk

�
e

Te
þ kkl0Jki: (16)

Substituting (14) and dni

ni
¼ dne

ne
¼ ð/� x�x�e

kk
AkÞ e

Te
and

rearranging terms, we get

x�e � x
s

þ k2
kM 1þ 1

s
þ

2

3

x
s
þ 2

3
x�i � gix�i

x� 5

3
xDi

0
BB@

1
CCA

2
664

3
775 e/

Ti

¼
kkk

2kk
en0l0

Ak
kk
� x� x�eð Þ x� xDeð Þ þ gex�exDe½ �

eAk
kksTi

þ k2
kM 1þ

2

3
x

x� 5

3
xDi

0
BB@

1
CCAx� x�e

s
þ x� x�iT

2
664

3
775 eAk

kkTi
;

(17)

where again (as in (13)) the M-terms represent the parallel

ion velocity. We note that the electrostatic approximation

(Ak ! 0) assumes a strong background B-field, which

implies a small Larmor radius and a large k. This means that

the
kkk

2kkAk
en0l0kk

term gives a nonzero contribution. However, in

the electrostatic case, the eigenvalue equation is preferably

derived from (13) where the Ampere law has not been

utilized.

E. Eigenvalue equations

Equations (13) and (17) form together a system of two

equations in / and Ak. After normalization with x�i, we get

ðX1U þ VUÞU ¼ ðX1W þ VWÞW; (18)

ðX2U � VUÞU ¼ ðX2W � VWÞW; (19)

where U ¼ e/
Ti

, W ¼ x�ieAk
kkTi

, and VUU� VWW represent the

(normalized) parallel ion velocity. With X ¼ x
x�i

, we have

X1U ¼
X
s
þ 1þ k2q2

i X� 1� gið Þ

� xDi

x�i
1þ 1

s
þ

2

3

X
s
þ 2

3
� gi

X� 5

3

xDi

x�i

0
BB@

1
CCA; (20)

X1W ¼ X� xDi

x�i
1þ

2

3
X

X� 5

3

xDi

x�i

0
BB@

1
CCA

2
664

3
775Xþ s

s
; (21)

VU ¼ �
k2
kv

2
thi

x2
�i

1

X
1þ 1

s
þ

2

3

X
s
þ 2

3
� gi

X� 5

3

xDi

x�i

0
BB@

1
CCA; (22)

VW ¼ �
k2
kv

2
thi

x2
�i

1

X
1þ

2

3
X

X� 5

3

xDi

x�i

0
BB@

1
CCAXþ s

s
þ X� 1� gi

2
664

3
775;

(23)

X2U ¼ �
Xþ s

s
; (24)

X2W ¼
kkk

2q2
i v

2
Akk

x2
�i

� Xþ s
s

X� xDe

x�i

� �
þ ge

xDe

x�i
; (25)

where v2
A ¼

B2
0

min0l0
(Alfv�en velocity). We note that xD and

k2 ¼ k2
? here have a variation along the magnetic field, while

the other quantities (except the potentials) do not.

F. Special cases

1. Electrostatic approximation

From (18) with Ak ¼ 0, we have ðX1U þ VUÞU ¼ 0, i.e.,"
X
s
þ 1þ k2q2

i X� 1� gið Þ

� xDi

x�i
� v2

thi

x2
�i

êk � r

 �2

X

 ! 
1þ 1

s
þ

2

3

X
s
þ 2

3
� gi

X� 5

3

xDi

x�i

!#
U ¼ 0;

(26)

where we have used jkk 	 êk � r. In the electrostatic limit,

parallel ion motion is caused by rk/ and rkp which gives a

second order differential equation along the parallel direc-

tion. Here, it is not necessary to use Amperes law, since

dB? � 0 ðAk � 0Þ (no induced E-field along B0).

2. vki 50 approximation

In this limit, we have VU ¼ VW ¼ 0, the only kk-depend-

ence now being in
kkk

2q2
i v

2
Akk

x2
�i

. From (18) and (19), we then get

U ¼ X1W
X1U

W and ðX2W � X2U
X1W
X1U
ÞW ¼ 0, i.e.,
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kkk
2q2

i v
2
Akk

x2
�i

�Xþs
s

X�xDe

x�i

� �
þge

xDe

x�i
þXþs

s
X1W

X1U

" #
W¼0:

(27)

This equation compares with, i.e., Eq. (18) in Ref. 10.

3. Electrostatic and vki 50 approximation

From (18) with Ak ¼ 0 and VU ¼ VW ¼ 0, we get

X1UU ¼ 0. We then have the following second order alge-

braic equation in X:

X
s
þ 1þ k2q2

i X� 1� gið Þ�xDi

x�i
1þ 1

s
þ

2

3

X
s
þ 2

3
� gi

X� 5

3

xDi

x�i

0
BB@

1
CCA¼ 0:

(28)

G. Gyro-Landau fluid model

The gyro-Landau fluid model of Refs. 26–28 includes

dissipative pole approximations that account for both the ion

drift resonance and the parallel ion dynamics. This model,

including anisotropic pressure perturbations, has reproduced

various gyrokinetic results for the gi mode with good accu-

racy, and it has also found wide use in nonlinear numerical

simulations of plasma turbulence. In this paper, the gyro-

Landau fluid model corresponds to truncating the energy

equation (10) according to

r � qi ¼ r � q�i þ j�ni
3

2
dTi; (29)

where

j� ¼ jrt
3
ffiffiffi
2
p

4
þ 3

4

� �
xDi þ jrs

2ffiffiffi
p
p kkvthi; (30)

and

rt ¼
xDi

jxDij
; (31)

rs ¼
kk
jkkj

: (32)

Here, the xDi term simulates the magnetic drift reso-

nance, and the kk term simulates the ion Landau resonance.

Adding the dissipative term j� in the energy equation (10)

gives the temperature response

dTi

Ti
¼

2

3
x

dni

ni
þ x�i

2

3
� gi

� �
e/
Ti

j� þ x� 5

3
xDi

; (33)

and in Eqs. (12)–(26), the denominators x� 5
3
xDi and

X� 5
3

xDi

x�i
will be modified according to

x� 5

3
xDi ! j� þ x� 5

3
xDi; (34)

X� 5

3

xDi

x�i
! j�

x�i
þ X� 5

3

xDi

x�i
: (35)

In Ref. 29, our two-fluid model, excluding parallel ion

velocity effects, has been compared with a gyrofluid model,

i.e., adding ion drift resonance effects (xDi term in j�), and a

gyrokinetic model. It is shown that the two-fluid model is

able to reproduce the instabilities qualitatively, while lack of

quantitative agreement stems from the FLR expansion and

neglect of dissipative ion drift resonance effects. These are

important since the extended eigenmodes experience large

values of the kinetic parameters k2ðhÞq2
i and

xDðhÞ
x�

for large h.

The gyrofluid model is shown to be able to reproduce the

eigenvalues quantitatively for small values of the FLR pa-

rameter. The discrepancy for large values of this parameter

may be due to the use of isotropic pressure perturbations.

The more complete two-pressure version of the gyrofluid

model (Refs. 26–28) may be adequate in this region.

In the present work, we focus on the effects of parallel

ion velocity and neglect the ion drift resonance but keep the

ion Landau resonance.

H. Ballooning mode equations

Assuming an axisymmetric toroidal (Tokamak) geome-

try with a low beta equilibrium with circular flux surfaces

and a high mode number approximation, we may use the bal-

looning mode formalism where the spatial perturbation is

assumed to be of the form10,34

U ¼ Unðr; hÞe½in
Ð h
�ðr;h0Þdh0�inf�: (36)

Here, the exponential is the fast varying part, r, h, and f
are the (orthogonal) toroidal coordinates, and n is the toroi-

dal mode number. The variations of xD, k ¼ k?, and kk with

the poloidal angle h along the twisted magnetic field are

expressed by the following relations:

xD ! �nx�½cos hþ ðsh� a sin hÞ sin h� ¼ �nx�gðhÞ; (37)

k2
? ! k2

h½1þ ðsh� a sin hÞ2� ¼ k2
h~rðhÞ; (38)

kk ! �j
1

qR

@

@h
: (39)

Here, �n¼ xD

x�
¼ 2Ln

R ; a¼
bq2

�n
1þgeþ 1þgi

s

� 	
, b¼bið1þ sÞ;

bi¼ 2l0n0Ti

B2 is the ion plasma beta, q is the safety factor, and

s¼ rq0

q is the magnetic shear. By means of these relations, the

two coupled equations (18) and (19) may be transformed

into two equations in the poloidal angle h. Doing so, we

obtain after some algebra (see the Appendix for details)

W00 ¼ f1ðh;W;W0;U;XÞ; (40)

U00 ¼ f2ðh;W;W0;W00;U;U0;XÞ; (41)

where prime and bis mean derivatives with respect to h.

I. Semilocal approximation

An approximate solution of the eigenvalue equations

can be obtained by using a semilocal theory where the eigen-

functions are approximated with37–40
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U hð Þ;W hð Þ / 1þ cos hð Þffiffiffiffiffiffi
3p
p ; jhj 
 p: (42)

This eigenfunction has earlier been used for ballooning

modes in a two-fluid description10,25 with good qualitative

agreement. By making the substitutions kk ! �j 1
qR h @@hi;

k2
? ! hk2

?i and xD ! hxDi, where hi denotes averages over

the approximate eigenfunction, we may, from (18)–(25),

obtain a polynomial equation in x where the norms are

hk2
?i ¼

ðp

�p
Uk2
?Udh

¼ k2
h 1þ p2

3
� 2:5

� �
s2 � 10

9
asþ 5

12
a2


 �
; (43)

hk2
ki ¼

ðp

�p
Uk2
kUdh ¼ 1

3 qRð Þ2
; (44)

hxDi ¼
ðp

�p
UxDUdh ¼ �nx�

2

3
þ 5

9
s� 5

12
a

� �
; (45)

hkkk2
?kki ¼

k2
h

3 qRð Þ2
1þ s2 p2

3
� 0:5

� �
� 8

3
asþ 3

4
a2


 �
:

(46)

In this work, however, we choose to use the semilocal

approximation only in the evaluation of the ion Landau reso-

nance contribution in order to avoid a system of equations

(40) and (41) with higher than second order derivatives. In

Sec. III, we give results of the numerical solution of this

eigenvalue system using the ballooning mode formalism.

III. NUMERICAL RESULTS

The system of two coupled differential equations in the

potentials U and W (Eqs. (18)–(25)) has been solved numeri-

cally. By means of the ballooning mode formalism, the

coupled differential equations (A2) and (A3) in the extended

poloidal angle h are derived (see the Appendix). To solve

this system, a shooting code has been developed where the

two potentials are shot simultaneously. The code uses Runge

Kutta and Muller methods, and the usual ballooning mode

boundary conditions U0ð0Þ ¼ W0ð0Þ ¼ 0 and U;W! 0 as

h!1 have been applied.34 The following parameters have

been chosen. s ¼ 1; gi ¼ ge; k
2q2 ¼ 0:1 (mode number with

largest growth rate in several studies10 shown to fulfil

kq � 0:3), q¼ 2 (safety factor used in, e.g., Refs. 10 and 11),

and s¼ 1. As a comparison, some of the parameters used in

the study of the Cyclone DIII-D36 high confinement shot

81499 were s ¼ 1; gi ¼ 3:1, q¼ 1.4, and s¼ 0.8. We show

the results both with (glf) and without the ion Landau reso-

nance taken into account as well as the case without parallel

ion velocity.

A. Effects of finite beta

Fig. 1 displays the normalized frequency x
x�e

(growth

rate and real frequency) as a function of b for the cases with

and without parallel ion motion. We note the sudden b stabi-

lization of the pure ITG mode which is characteristic and has

been verified in previous studies12,13 and is related to the

strong ballooning and electrostatic character of the mode.

With parallel ion motion, marginal stability is shifted

upwards, and the growth rate is reduced. The real frequency

is of the same order as the diamagnetic frequency and the

ion transit frequency xti ¼ kkvki ¼ 1
qR vki. (With the parame-

ters in Figure 1, we get x
xti
¼ 0:5 x

x�e
.) We note that inclusion

of the ion Landau resonance (glf) does not have much influ-

ence on neither the frequency nor the growth rate except

closer to marginal stability where a mode switch creates a

step in the scaling.

Fig. 2(a) displays the electrostatic and electromagnetic

potentials jUj and jWj as a function of the extended poloidal

angle h for the case without parallel ion motion. (U normal-

ized to one at h¼ 0.) We note the strong localization of U
around h¼ 0 (strong ballooning). This localization is

released by the influence of the ion acoustic mode when par-

allel ion motion is present (Fig. 2(b)). The h dependence for

the case when the ion Landau resonance effect is added is

similar to Fig. 2(b) and so not displayed here. We note that

U shows a magnetic drift resonance (where h fulfils

ReðxÞ � 5
3
xD ¼ 0). This resonance does not show in the

electromagnetic potential. We also note that W
U is about two

orders of magnitude smaller than b without parallel ion

motion but the order of b with parallel ion motion.

B. Effects of ITG

Fig. 3 displays the normalized frequency x
x�e

(growth

rate and real frequency) as a function of gi for the cases with

and without parallel ion motion. We note that the pure ITG

mode, being driven by temperature gradients, is destabilized

by gi. With parallel ion motion, the destabilization is

upshifted in gi, and both the growth rate and the frequency

are smaller than without the parallel motion. This is also

seen in Ref. 11, although finite b effects are absent there.

With the ion Landau resonance effect (glf), a couple of mode

shifts occur (steps in the curve), and the stabilization is

upshifted in gi as compared to the case without glf. The

FIG. 1. The normalized mode frequency X ¼ x
x�e

(growth rate—positive and

real frequency—negative) as a function of b for the cases with and without

parallel ion motion. GLF¼ ion Landau resonance taken into account.

�n ¼ 2:5; gi ¼ ge ¼ 6:5; 10; s ¼ 1; k2q2 ¼ 0:1; q ¼ 2; s ¼ 1.
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frequencies on the other hand are almost exactly the same

for the two cases.

The dependence of the potentials on the extended poloi-

dal angle h shows a similar behaviour as in Figs. 2(a) and

2(b). Fig. 4(a) displays the electrostatic and electromagnetic

potentials U and W
b for the case with parallel ion motion and

two values of gi (U normalized to one at h¼ 0). Fig. 4(b) is

the corresponding figure for the case including the glf

contribution. We note the magnetic drift resonance at

h � 2:5, where xD / cosðhÞ þ ðsh� a sinðhÞÞ sinðhÞ passes

through zero and there is very sensitive to small variations in

h. The resonance is weaker in Fig. 4(a) than in Fig. 4(b), and

there also more pronounced for the lower gi value (closer to

marginal stability). We also note the difference in mode

character between gi ¼ 8 and gi ¼ 10 in Fig. 4(b)—a mode

shift shown in Fig. 3 occurring at gi � 8:3. We also note that
W
U is of the order of b in both of the figures (i.e., with and

without the glf contribution).

C. Effects of toroidicity—�n

Fig. 5 displays the normalized frequency x
x�e

as a func-

tion of �n ¼ 2Ln

R for the cases with and without parallel ion

motion. With vk ¼ 0, the mode is extended towards both low

and high values of �n.10,25 With parallel ion motion, how-

ever, the growth rate is decreased and the mode ultimately

stabilized with �n. This is due to the increase of kk / 1
qR and

as a consequence enhanced effect of the parallel motion. The

toroidicity (/ 1
R) then may be interpreted as the driving

source of the acoustic mode with an �n stabilization rate

stronger than for the pure gi mode. We note the almost iden-

tical growth rates for the cases with and without glf contribu-

tion and the slightly larger frequency for the former case. In

Fig. 5, we should also note the �n dependence of the

FIG. 2. (a) The electromagnetic (i) and electrostatic (ii) potentials jWj and jUj as a function of the extended poloidal angle h for the case without parallel ion

motion. �n ¼ 2:5; gi ¼ ge ¼ 6:5; s ¼ 1; k2q2 ¼ 0:1; q ¼ 2; s ¼ 1; b ¼ 0:002; 0:005; 0:01. (b) The electromagnetic (i) and electrostatic (ii) potentials W and U as

a function of the extended poloidal angle h for the case with parallel ion motion. Parameters the same as in (a) except gi ¼ ge ¼ 10.

FIG. 3. The normalized mode frequency X ¼ x
x�e

(growth rate—positive and

real frequency—negative) as a function of gi ¼ ge for the cases with and

without (blue curves) parallel ion motion. �n ¼ 2:5; s ¼ 1; k2q2 ¼ 0:1;
q ¼ 2; s ¼ 1; b ¼ 0:01.
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diamagnetic normalization frequency x�e (x�e / 1
�n

) which

adds to the X dependence of �n.

Fig. 6(a) shows the potentials U (expanded scale) and

W as a function of h for the case without parallel ion

motion for a couple of �n values. We note, as in Fig. 2(a),

the strong localization of the pure gi mode to the outer side

of the torus (strong ballooning—electrostatic potential U
large at h close to zero) and also mainly electrostatic char-

acter (WU small).

Fig. 6(b) shows the potentials for the case with paral-

lel ion motion and ion Landau resonance effect included.

Similar to Figs. 2(b), 4(a), and 4(b), the magnetic reso-

nance in U at ReðxÞ � 5
3
xD ¼ 0 is also present here. The

corresponding modes for the case without glf show a h
dependence very similar to Fig. 6(b) and are excluded

here.

IV. SUMMARY

An advanced fluid model has been extended to include

effects of parallel ion dynamics in toroidal (Tokamak) geom-

etry. The analytical result is a system of two coupled second

order differential equations in the electrostatic and electro-

magnetic potentials.

The model has earlier10,30 been compared with, e.g., a

local kinetic model and a model where dissipative wave-

particle resonances are taken into account by adding an

imaginary part (gyro-Landau contributions) to the heat

flow (r � qi) to represent all higher order moments in the

fluid hierarchy. This should increase the reliability of the

model. However, since nonlinear effects in velocity space

have a tendency to take particles out of resonance, we

may expect nonlinear effects to decrease the imaginary

part on the transport time scale in a nonlinearly saturated

state.

Our mode analysis is based on the ballooning formalism

with a full shooting technique (four quantities—real and

imaginary parts of the electrostatic and electromagnetic

potentials are shot simultaneously). Approximations in the

(linearised) basic equations are avoided and no assumptions

(except the semilocal) are made a priori about, e.g., strong

ballooning (h¼ 0) or structure (Gauss, harmonic) of the

mode in ballooning space.

The finite parallel ion velocity allows an acoustic mode

to be set up and interact with the ion temperature gradient

mode. It is shown that this removes and shifts the character-

istic ITG mode sharp b stabilization upwards and also

reduces both the frequency and the growth rate. The localiza-

tion to the outer part of the torus (strong ballooning), charac-

teristic for the pure ITG interchange mode, and the sharp

resonance in the electrostatic potential in the ballooning

space are relaxed and shifted outwards by the parallel ion

motion, i.e., the ballooning is weakened by the nonlocal con-

tribution (/ kk) caused by the parallel ion motion. The fre-

quency of the mode may be of the order of the ion transit

frequency. The growth rate, however, is reduced in relation

to the pure (vk ¼ 0) ITG mode. The ion Landau resonance is

taken into account in our model by adapting the Landau part

of a gyro-Landau fluid model.11,26–28 It is shown that this

complement (glf) may enhance the gi stabilization but other-

wise that it gives growth, frequency, and ballooning proper-

ties which are similar to the case without ion Landau

resonance being taken into account.

FIG. 4. (a) The electrostatic and electromagnetic potentials U and W
b as a

function of the extended poloidal angle h for the case with parallel ion

motion. �n ¼ 2:5; s ¼ 1; k2q2 ¼ 0:1; q ¼ 2; s ¼ 1;b ¼ 0:01; gi ¼ ge ¼ 8; 10.

(b) The electrostatic and electromagnetic potentials U and W
b as a function of

the extended poloidal angle h for the case with parallel ion motion and glf

contribution. Parameters the same as in (a).

FIG. 5. The normalized mode frequency X ¼ x
x�e

(growth rate—positive and

real frequency—negative) as a function of �n for the cases with and without

parallel ion motion. gi ¼ ge ¼ 6:5; s ¼ 1; k2q2 ¼ 0:1; q ¼ 2; s ¼ 1;b ¼ 0:01.
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The stabilization of the pure ITG mode with decreasing

gi (gi ¼ Ln

LT
) is shown to be feasible also in the presence of ion

transit effects with an upshifted gi stabilization, which is

more pronounced when including the ion Landau resonance

(glf). With our choice of parameters (similar to those used

in, e.g., the Cyclone DIII-D study36), the mode including

parallel motion has a reduced frequency and growth rate

compared to the case without parallel motion. This trend is

also seen in Ref. 11, although finite b effects are absent

there. Similarly, we find the �n dependence (�n ¼ 2Ln

R ) to be

different compared to the pure ITG mode. The stabilization

with �n is faster, and the frequency and growth rate are

reduced. Addition of the ion Landau resonance (glf) does not

change this result.

The parallel ion motion enhances electromagnetic

effects, the relation between the electromagnetic and electro-

static potentials being about one or two orders of magnitude

larger than without the parallel motion. In general, the simul-

taneous shooting of the electrostatic and electromagnetic

potentials towards large values of the extended poloidal

angle in the ballooning formalism is not an easy task. This is

particularly true for the electrostatic potential which, con-

trary to the electromagnetic potential, strongly exhibits the

magnetic drift resonance.

Altogether, the results are interpreted as a tendency for

the acoustic mode to set its mark on the dependencies stud-

ied in this paper. Further studies comparing results from this

two-fluid model and gyrokinetic models as well as related

experiments are planned to be the scope of future work.
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APPENDIX: EQUATIONS IN THE POLOIDAL ANGLE

We note that the parallel ion motion terms in (18) and

(19) appear as “mirrors,” i.e., identically but with opposite

signs. If the two equations are added, we obtain

ðX1U þ X2UÞU ¼ ðX1W þ X2WÞW; (A1)

and with (20)–(25) and (30)–(32)

k2
h~rq2

i X� 1� gið ÞU� �ng 1þ 1

s
þ 1

N

2

3

X
s
þ 2

3
� gi

� �
 �
U

¼ � 1

qR

� �2 k2
hq

2
i v

2
A

x2
�i

~r 0W0 þ ~rW00ð Þ

� �ng
Xþ s

s
sþ 1þ 2

3

X
N

� �
þ ges


 �
W; (A2)

FIG. 6. (a) The electromagnetic (i) and electrostatic (ii) potentials Psi and U
10

as a function of the extended poloidal angle h for the case without parallel ion

motion. gi ¼ ge ¼ 6:5; s ¼ 1; k2q2 ¼ 0:1; q ¼ 2; s ¼ 1;b ¼ 0:01; �n ¼ 0:5; 2:5. (b) The electromagnetic (i) and electrostatic (ii) potentials W and U as a func-

tion of the extended poloidal angle h for the case with parallel ion motion and glf contribution. Parameters the same as in (a) and �n ¼ 1; 2.
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where N ¼X� 5
3
�ng and ~r 0 ¼ @~r

@h¼ 2ðsh� a sinhÞðs� acoshÞ.
From (18), we obtain

Xþ s
s

Uþ k2
h~rq2

i X� 1� gið ÞU

� �ng 1þ 1

s
þ 1

N

2

3

X
s
þ 2

3
� gi

� �
 �
U

þ 1

qR

� �2 v2
thi

x2
�i

1

X
1þ 1

s

� �
U00 þ 2

3

X
s
þ 2

3
� gi

� �
U
N

� �00" #

¼ X� �ng 1þ 2

3

X
N

� �
 �
Xþ s

s
W

þ 1

qR

� �2 v2
thi

x2
�i

1

X
X
s
þ X� gi

� �
W00 þ Xþ s

s
2

3
X

W
N

� �00" #
:

(A3)

From (19), we obtain

�Xþ s
s

U

� 1

qR

� �2 v2
thi

x2
�i

1

X
1þ 1

s

� �
U00 þ 2

3

X
s
þ 2

3
� gi

� �
U
N

� �00" #

¼ � 1

qR

� �2 k2
hq

2
i v

2
A

x2
�i

~r 0W0 þ ~rW00ð Þ

� Xþ s
s

Xþ s�ngð Þ þ ges�ng


 �
W

� 1

qR

� �2 v2
thi

x2
�i

1

X
X
s
þX� gi

� �
W00 þXþ s

s
2

3
X

W
N

� �00" #
;

(A4)

where

U
N

� �00
¼ 2 N0ð Þ2

N3
U� N00

N2
U� 2

N0

N2
U0 þ U00

N
; (A5)

N0 ¼ � 5

3
�ng0 ¼ � 5

3
�n �1þ sð Þsin hþ sh cos h� a sin 2h½ �;

(A6)

N00 ¼ � 5

3
�ng00

¼ � 5

3
�n �1þ 2sð Þcos h� sh sin h� 2a cos 2h½ �: (A7)

The ð 1
qRÞ

2 v2
thi

x2
�i

factor (parallel ion velocity contribution)

may be written (�n ¼ 2Ln

R )

1

qR

� �2 v2
thi

x2
�i
¼ 1

qR

� �2 v2
thi

kh
qi

Ln
vthi

� 	2
¼ �n

2q

� �2 1

k2
hq

2
i

: (A8)

Similarly, we may write in the Alfv�en terms

1

qR

� �2 k2
hq

2
i v

2
A

x2
�i
¼ �n

2q

� �2 v2
A

v2
thi

¼ �n

2q

� �2 2

bi

; (A9)

where bi ¼ 2l0nTi

B2
0

is the ion plasma beta. By introducing

v ¼ 1þ 1

s
þ 1

N

2

3

X
s
þ 2

3
� gi

� �
 �
U: (A10)

Eqs. (A2) and (A3) may also be written

�ng� k2
h~rq2

i X� 1� gið Þ

1þ 1

s
þ 1

N

2

3

X
s
þ 2

3
� gi

� �
2
64

3
75v

¼ �n

2q

� �2 2

bi

~r 0W0 þ ~rW00ð Þ

þ �ng
Xþ s

s
sþ 1þ 2

3

X
N

� �
þ ges


 �
W; (A11)

and

� �ng�
Xþ s

s
þ k2

h~rq2
i X� 1� gið Þ

1þ 1

s
þ 1

N

2

3

X
s
þ 2

3
� gi

� �
2
6664

3
7775vþ �n

2q

� �2 1

k2
hq

2
i

1

X
v00

¼ X� �ng 1þ 2

3

X
N

� �
 �
Xþ s

s
W

þ �n

2q

� �2 1

k2
hq

2
i

1

X
X
s
þX� gi

� �
W00 þXþ s

s
2

3
X

W
N

� �00" #
:

(A12)

Substituting v from (A11) into (A12), we would get a

fourth order equation in W (instead of two coupled second

order equations).

1. Special cases

a. Electrostatic approximation

From (26), we obtain

Xþ s
s
þ k2

h~rq2
i X� 1� gið Þ


 �
U� �ngvþ 1

qR

� �2 v2
thi

x2
�i

1

X
v00 ¼ 0;

(A13)

where

v ¼ 1þ 1

s
þ 1

N

2

3

X
s
þ 2

3
� gi

� �
 �
U:

Substituting U, we then get

1

qR

� �2 v2
thi

x2
�i

1

X
v00 � �ng�

Xþ s
s
þ k2

h~rq2
i X� 1� gið Þ

1þ 1

s
þ 1

N

2

3

X
s
þ 2

3
� gi

� �
2
6664

3
7775v ¼ 0:

(A14)

b. vki 50 approximation

From (27), we obtain

� 1

qR

� �2 k2
hq

2
i v

2
A

x2
�i

~r 0W0 þ ~rW00ð Þ

� Xþ s
s

Xþ s�ngð Þ þ ges�ng� Xþ s
s

X1W

X1U


 �
W ¼ 0;

(A15)
and U ¼ X1W

X1U
W.
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c. Electrostatic and vki 50 approximation

From (28), we get the (local) equation X1U ¼ 0, i.e.,

X
s
þ 1þ k2

h~rq2
i X� 1� gið Þ� �ng 1þ 1

s
þ

2

3

X
s
þ 2

3
� gi

N

0
@

1
A
¼ 0;

(A16)

which has the solution

X¼�d
2

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
�
�ng gi�

7

3
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3
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3
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 �

1

s
þ k2

h~rq2
i

vuuuuut ;

(A17)

d ¼
1� �ng 1þ 10

3s

� �
� k2

h~rq2
i 1þ gi þ

5

3
�ng

� �
1

s
þ k2

h~rq2
i

: (A18)

1J. Weiland, Collective Modes in Inhomogeneous Plasma (Institute of

Physics Publishing, 2000).
2A. Jarm�en, P. Andersson, and J. Weiland, Nucl. Fusion 27, 941 (1987).
3P. B. Snyder and G. W. Hammet, Phys. Plasmas 8, 3199 (2001).
4J. Nilsson, M. Liljestr}om, and J. Weiland, Phys. Fluids B 2, 2568 (1990).
5F. D. Halpern, A. Eriksson, G. Bateman, A. H. Kritz, A. Pankin, C. M.

Wolfe, and J. Weiland, Phys. Plasmas 15, 012304 (2008).
6A. Ishizawa, Phys. Plasmas 17, 074503 (2010).
7A. Casati, C. Bourdelle, X. Garbet, and F. Imbeaux, Phys. Plasmas 15,

042310 (2008).
8I. Predebon, C. Angioni, and S. C. Guo, Phys. Plasmas 17, 012304 (2010).
9A. Kuley and V. K. Tripathi, Phys. Plasmas 16, 032504 (2009).

10A. Jarm�en, P. Malinov, and H. Nordman, Plasma Phys. Controlled Fusion

40, 2041 (1998).
11S. Guo and J. Weiland, Nucl. Fusion 37, 1095 (1997).

12B. Jhowry, J. Anderson, and S. Dastgeer, Phys. Plasmas 11, 5565 (2004).
13B. Jhowry and J. Anderson, Phys. Plasmas 10, 782 (2003).
14M. J. Pueschel, M. Kammerer, and F. Jenko, Phys. Plasmas 15, 102310

(2008).
15M. J. Pueschel and F. Jenko, Phys. Plasmas 17, 062307 (2010).
16P. B. Snyder and G. W. Hammet, Phys. Plasmas 8, 744 (2001).
17F. Merz and F. Jenko, Nucl. Fusion 50, 054005 (2010).
18A. Skyman, H. Nordman, and P. Strand, Phys. Plasmas 19, 032313 (2012).
19H. Nordman, A. Skyman, P. Strand, C. Giroud, F. Jenko, F. Merz, V.

Naulin, T. Tala, and JET-EFDA Contributors, Plasma Phys. Controlled

Fusion 53, 105005 (2011).
20J. Anderson, H. Nordman, and J. Weiland, Plasma Phys. Controlled

Fusion 42, 545 (2000).
21A. Eriksson, H. Nordman, P. Strand, J. Weiland, T. Tala, E. Asp, G.

Corrigan, C. Giroud, M. de Greef, I. Jenkins, H. C. M. Knoops, P.

Mantica, K. M. Rantamki, P. C. de Vries, K.-D. Zastrow, and JET-EFDA

Contributors, Plasma Phys. Controlled Fusion 49, 1931 (2007).
22A. Eriksson and J. Weiland, Phys. Plasmas 12, 092509 (2005).
23M. Fr}ojdh and A. Jarm�en, Nucl. Fusion 35, 575 (1995).
24A. Jarm�en and M. Fr}ojdh, Phys. Fluids B 5, 4015 (1993).
25A. Jarm�en and P. Malinov, Phys. Plasmas 2, 3055 (1995).
26G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990).
27H. Bigliari, P. H. Diamond, and M. N. Rosenbluth, Phys. Fluids B 1, 109

(1989).
28R. E. Waltz, R. R. Dominguez, and G. W. Hammett, Phys. Fluids B 4,

3138 (1992).
29H. Nordman, A. Jarm�en, P. Malinov, and M. Persson, Phys. Plasmas 2,

3440 (1995).
30J. Weiland and A. Hirose, Nucl. Fusion 32, 151 (1992).
31J. Anderson, J. Li, and Y. Kishimoto, Phys. Plasmas 14, 082313 (2007).
32G. M. Steabler, J. E. Kinsey, and R. E. Waltz, Phys. Plasmas 12, 102508

(2005).
33J. E. Kinsey, G. M. Steabler, and R. E. Waltz, Phys. Plasmas 15, 055908

(2008).
34J. W. Connor, R. J. Hastie, and J. B. Taylor, Phys. Rev. Lett. 40, 396

(1978).
35J. Weiland, Phys. Plasmas 11, 3238 (2004).
36A. L. Dimits, G. Bateman, M. A. Beer, B. I. Cohen, W. Dorland, G. W.

Hammett, C. Kim, J. E. Kinsey, M. Kotschenreuther, A. H. Kritz, L. L.

Lao, J. Mandrekas, W. M. Nevins, S. E. Parker, A. J. Redd, D. E.

Shumaker, R. Sydora, and J. Weiland, Phys. Plasmas 7, 969 (2000).
37A. Hirose and L. Zhang, Phys. Scr. 52, 208 (1995).
38A. Hirose, Phys. Fluids B 3, 1125 (1991).
39A. Hirose, A. I. Smolyakov, and O. Ishihara, Nucl. Fusion 33, 735

(1993).
40A. Hirose and M. Elia, Plasma Phys. Controlled Fusion 37, 853 (1995).

082508-11 Jarm�en, Anderson, and Malinov Phys. Plasmas 22, 082508 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

90.231.152.90 On: Sat, 15 Aug 2015 11:34:48

http://dx.doi.org/10.1088/0029-5515/27/6/006
http://dx.doi.org/10.1063/1.1374238
http://dx.doi.org/10.1063/1.859381
http://dx.doi.org/10.1063/1.2829762
http://dx.doi.org/10.1063/1.3460346
http://dx.doi.org/10.1063/1.2906223
http://dx.doi.org/10.1063/1.3290173
http://dx.doi.org/10.1063/1.3080744
http://dx.doi.org/10.1088/0741-3335/40/12/005
http://dx.doi.org/10.1088/0029-5515/37/8/I05
http://dx.doi.org/10.1063/1.1804941
http://dx.doi.org/10.1063/1.1543576
http://dx.doi.org/10.1063/1.3005380
http://dx.doi.org/10.1063/1.3435280
http://dx.doi.org/10.1063/1.1342029
http://dx.doi.org/10.1088/0029-5515/50/5/054005
http://dx.doi.org/10.1063/1.3695014
http://dx.doi.org/10.1088/0741-3335/53/10/105005
http://dx.doi.org/10.1088/0741-3335/53/10/105005
http://dx.doi.org/10.1088/0741-3335/42/5/305
http://dx.doi.org/10.1088/0741-3335/42/5/305
http://dx.doi.org/10.1088/0741-3335/49/11/012
http://dx.doi.org/10.1063/1.2048738
http://dx.doi.org/10.1088/0029-5515/35/5/I07
http://dx.doi.org/10.1063/1.860621
http://dx.doi.org/10.1063/1.871203
http://dx.doi.org/10.1103/PhysRevLett.64.3019
http://dx.doi.org/10.1063/1.859206
http://dx.doi.org/10.1063/1.860422
http://dx.doi.org/10.1063/1.871125
http://dx.doi.org/10.1088/0029-5515/32/1/I13
http://dx.doi.org/10.1063/1.2761861
http://dx.doi.org/10.1063/1.2044587
http://dx.doi.org/10.1063/1.2889008
http://dx.doi.org/10.1103/PhysRevLett.40.396
http://dx.doi.org/10.1063/1.1738648
http://dx.doi.org/10.1063/1.873896
http://dx.doi.org/10.1088/0031-8949/52/2/012
http://dx.doi.org/10.1063/1.859803
http://dx.doi.org/10.1088/0029-5515/33/5/I05
http://dx.doi.org/10.1088/0741-3335/37/8/002

