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ABSTRACT

A general framework is presented for modeling direction-dependent effects that are also baseline-dependent, as part of the calibration
and imaging process. Within this framework such effects are represented as a parametric linear model in which basis functions
account for direction dependence, whereas expansion coefficients account for the baseline dependence. This separation enables the
use of a multiple fast Fourier transform-based implementation of the forward calculation (sky to visibility) in a manner similar
to the W-stacking solution for non-coplanar baselines, and offers a potential improvement in computational efficiency in scenarios
where the gridding operation in a convolution-based approach to direction-dependent effects may be too costly. Two novel imaging
approaches that are possible within this framework are also presented.

Key words. methods: analytical – methods: numerical – techniques: image processing

1. Introduction

Without properly correcting for various direction-dependent
(DD) effects, such as the antenna radiation patterns, ionospheric
phase delay, and non-coplanar baselines, the imaging perfor-
mance of existing and future interferometer arrays may be lim-
ited (Smirnov 2011). One aspect of this problem concerns the
determination of the various DD effects at the time of an ob-
servation, and in this context the characteristic basis function
pattern (CBFP) method has been developed to provide an effi-
cient parametrized model (i.e. high accuracy for very few param-
eters) with which unknown antenna radiation patterns may be
solved (Maaskant et al. 2012). However, even when DD effects
are known exactly, accurately correcting for them in a computa-
tionally efficient manner during the imaging process is difficult
since these effects often vary over time as well as among the an-
tenna elements in the array. The latter variation results in such
effects also being baseline-dependent (BD), and in turn causes
a breakdown of the Fourier transform relationship between the
visibility data measured by an interferometer array and the sky
brightness distribution (Offringa et al. 2014). This has a signif-
icant impact on the computational cost of estimating the sky
(imaging), which is often performed iteratively (Bhatnagar et al.
2008; Tasse et al. 2013), and relies on the efficiency of the fast
Fourier transform (FFT) to transform between the image and vis-
ibility planes.

One class of solutions to this problem accounts for DD ef-
fects, which enter as multiplicative distortions to the intensity
distribution on the sky, in the visibility domain through utiliza-
tion of the convolution theorem. Since the visibility sampling

provided by a typical array is not regularly spaced on a rectangu-
lar grid, as is required by the use of the FFT, additional gridding
and degridding steps in the form of a convolution are usually em-
ployed to relate visibilities on the FFT grid to those at the array
sampling positions (Briggs et al. 1999). Exploiting this already-
required convolution step to include DD effects is at the heart of
these solutions, which include the W-projection (Cornwell et al.
2008) algorithm, which corrects for the non-coplanar baselines
effect, and the A-projection (Bhatnagar et al. 2008) algorithm
which corrects for more general DD effects.

Accurate implementation of these approaches, however, re-
quires a visibility domain convolution kernel of which the
support is dependent on the spatial frequency content of the
DD effect accounted for, and may result in the computational
cost of convolution significantly overshadowing that of the
FFT. For non-coplanar baselines an alternative method, called
W-stacking (Humphreys & Cornwell 2011; Offringa et al. 2014)
has been developed to exploit the relatively cheap cost of the
FFT by trading a slow convolution operation followed by a sin-
gle FFT for a faster convolution and repeated FFTs. This method
is based on grouping visibilities having similar w-terms together
and then performing separate FFTs for each of these visibility
groups.

In this paper a novel framework is presented that allows a
similar approach to account for more general BD-DD effects.
Owing to the similarity to W-stacking, and the extension from
non-coplanar baselines to more general DD effects, our ap-
proach is called A-stacking. Within this framework the prevail-
ing BD-DD effects are represented as a linear model in which
the basis functions are DD but baseline-independent, while
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the expansion coefficients are BD but direction-independent.
Mathematically this separation of direction-dependence and
baseline-dependence is convenient, as it results in the forward
calculation (sky to visibility) assuming the form of a combina-
tion of separate Fourier transforms, and thus allows fast com-
putation via repeated FFTs. Furthermore, the accuracy of the
calculation is determined by the number of terms in the model,
thus allowing a simple trade-off between computational cost and
accuracy. In the next section the response of an interferome-
ter array is reviewed, followed by Sect. 3 where the A-stacking
formulation is presented. In Sect. 4 two alternative imaging ap-
proaches that are possible within this framework are developed,
and Sect. 5 describes a procedure by which an appropriate lin-
ear model may be derived for prior characterized BD-DD effects
via the singular value decomposition (SVD). Finally, in Sect. 6
some simulation results are presented to assess the performance
of A-stacking based BD-DD models.

Although the framework presented here is generally appli-
cable to any BD-DD effects, results will show that the method
is most efficient when these effects are accurately described by
low-order (relatively few terms) models. This typically applies to
the BD-DD gain associated with the primary beams in an array
comprising similar antennas, and the scope of this paper is lim-
ited to this particular effect. Furthermore, it is assumed through-
out that the BD-DD antenna gains are known a priori; modeling
and solving for unknown gains is the subject of ongoing work
and will not be discussed herein.

2. Interferometer array response

The full-polarization response on one baseline of a narrow-band
phase-tracking interferometer array is given by (see Hamaker
et al. 1996; Thompson et al. 2004; Tasse et al. 2013)

Vk =

∫
Ωsky

(
J1 ⊗ J2

)
Ie−j2πuk ·` d`, (1)

where 1 and 2 denote the antennas that comprise the interfer-
ometer formed on the kth baseline, ⊗ is the Kronecker product,
and x indicates the complex conjugate of x. J1 is the 2×2 Jones-
matrix which represents all instrumental effects introduced in the
received signal1 along channel 1. For a non-isotropic antenna the
Jones-matrix term is DD and evaluating the Kronecker product
in (1) yields a 4×4 direction-dependent matrix Ak. The 4×1 vec-
tor I represents the sky coherency in the polarization coordinates
of the antennas.

The vector uk is the baseline between the antenna pair (1, 2)
expressed in the wavelength normalized Cartesian coordinates
(u, v, w) with w pointing towards the center of the field of view
(FoV) being tracked, and ` is a vector representing a direction
on the sky relative to the FoV center. Using direction cosines l
and m relative to u and v, respectively, to express the direction
on the sky yields

uk · ` = ukl + vkm + wk

(√
1 − l2 − m2 − 1

)
(2a)

d` =
dl dm

√
1 − l2 − m2

· (2b)

For the sake of simplifying notation, the denominator in (2b)
is subsumed into the sky coherency. Furthermore, the w-term
may be subsumed into the BD-DD gain Ak as a scalar factor

1 Additive noise is omitted here.

and is omitted in the following. We consider for now only a sin-
gle cross-correlation product, and assume the antennas have zero
cross-polarization2. The measurement in (1) can be seen as sam-
pling at the point (uk, vk) the visibility functionVk(u, v) which is
related to an apparent sky

Ik(l,m) = Ak(l,m)I(l,m) (3)

through

Vk(u, v) =

∫ ∞

−∞

Ak(l,m)I(l,m)e−j2π(ul+vm) dl dm, (4)

where the support of Ik spans only the visible region of the
sky Ωsky. Here the term Ak(l,m) is used to indicate the en-
try in the first row and first column in Ak and its direction-
dependence is explicitly stated. The subscript k inVk(u, v) indi-
cates the baseline-dependence of the sampled visibility function:
for a fixed point in the uv-plane,Vk(u, v) may vary depending on
which antenna pair is used to sample the visibility at that point.

Equation (4) forms the basis of synthesis imaging: by mea-
suring visibilities on a large number of unique baselines, the in-
version of this relationship becomes more tractable. To this end,
we consider the discrete form of (4). We let an Np × Np pixel
image of the sky be represented by the N2

p ×1 vector σ. Then the
visibility measured on the kth baseline may be written as

Vk(uk, vk) = φT
k (bk � σ) =

(
φT

k � bT
k

)
σ = φT

k diag (bk)σ, (5)

where � is the Hadamard or element-wise product, diag(x)
forms a diagonal matrix by placing the elements in the vector x
on the diagonal, bk is the N2

p × 1 vector discretization of Ak(l,m)
over the image plane, and φk is the N2

p × 1 vector in which the
element associated with the nth image pixel is

φ(n)
k = e−j2π(uk ln+vkmn). (6)

Grouping all visibilities measured on K unique baselines into a
single K × 1 vector yields

v =
(
Φ � B

)
σ, (7)

where

B =
[
b1 b2 · · · bK

]T
(8a)

Φ =
[
φ1 φ2 · · · φK

]T
. (8b)

Even though the relation between the measured visibilities and
the discretized sky in (7) is relatively simple, for long observa-
tions with large arrays the scale of this linear system precludes
its direct inversion, and even its direct evaluation as part of an
iterative solution may prove too costly (Tasse et al. 2013). An
approach that is typically employed to circumvent this problem
makes use of the Fourier transform relationship in (4) to en-
able more efficient calculations via the FFT (Briggs et al. 1999;
Jackson et al. 1991). In order to illustrate this approach, we con-
sider the visibility function V0(u, v) that would be measured by
a hypothetical interferometer array for which Ak(l,m) = 1,

V0(u, v) =

∫
Ωsky

I(l,m)e−j2π(ul+vm) dl dm. (9)

2 The scalar formulation is presented without loss of generality, and the
impact of the full-polarization form of (1) is considered subsequently.
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Fig. 1. Transformations between image and visibility domains a) for
FFT compatible visibility plane sampling, and b) for irregular visibility
plane sampling which requires an additional (de)gridding operation in
order to utilize the FFT.

Since all baselines measure the same visibility function, the true
sky I(l,m) may be computed simply using the inverse Fourier
transform. Furthermore, if the hypothetical array samplesV0 on
an Np × Np rectangular grid {(û, v̂)} which satisfies the following
spacing requirements

∆û =
1

Np∆l
, ∆v̂ =

1
Np∆m

(10)

over the uv-plane, where ∆l and ∆m are the spacing between
pixels in the image, then arranging the corresponding visibility
samples in the N2

p × 1 vector v̂0 yields

v̂0 = Φ̂σ, (11a)

where Φ̂ is a discrete Fourier transform (DFT) matrix. Using the
unitary property of Φ̂ the inverse transform is easily computed as

σ = Φ̂
H

v̂0. (11b)

Moreover, owing to the structure of Φ̂ the transforms in (11) may
be computed efficiently using the FFT. This approach is depicted
in Fig. 1a.

There are two caveats associated with the above outlined
procedure. Firstly, the uv-sampling provided by any practical in-
terferometer typically does not fall on a rectangular grid, and
as such does not satisfy the requirements in (10). This means
that, in order to utilize the efficiency of the FFT, it is nec-
essary to relate the visibility samples on the rectangular grid
{(û, v̂)}, or gridded visibilities, to the irregularly sampled visibil-
ities on {(uk, vk)}. That is, the following operators are required,
for gridding

v̂ = TGv (12a)

and for degridding

v = TDv̂. (12b)

This workaround is illustrated in Fig. 1b.
Secondly, the use of the FFT is based on the assumption

that the same visibility function, which may be related to the
same apparent sky, is sampled on all baselines. However, it is

well known that under certain conditions this assumption breaks
down (Smirnov 2011), e.g. for non-coplanar baselines or non-
identical primary beams. This problem is indicated by the de-
pendence on k of both the left hand side of (4), as well as the
integrand on its right hand side, as opposed to the form in (9)
which is identical for all k. In such a case it is desirable to find
some corrective transformation which can relate the baseline-
dependent apparent skies (visibility functions) to a single appar-
ent sky (visibility function) common to all baselines.

The A/W-projection algorithms present such a solution and
are based on the observation that the image plane multiplica-
tive distortions introduced by the BD-DD term Ak in (4) enter
as convolutions in the visibility domain (Cornwell et al. 2008;
Bhatnagar et al. 2008). This, combined with the fact that con-
volution is generally used to approximate the required gridding
operations (Briggs et al. 1999; Jackson et al. 1991), means that
BD-DD effects may be accounted for through a proper choice
of gridding convolution kernel. For instance, given the visibility
functionV0(u, v) uncorrupted by the effects of Ak, the irregularly
sampled visibilities may be computed by evaluating

Vk(u, v) = Ak(u, v) ∗ V0(u, v) (13)

at each point (uk, vk), and where Ak is the Fourier transform of
Ak. Practical implementation of this approach requires the sup-
port of Ak to be limited to some finite region, which depends
on the image plane spatial frequency content of Ak and the re-
quired accuracy of the calculation in (13). Consequently the cost
of gridding may increase substantially in certain instances by
correcting for BD-DD effects in this way.

Alternatively, provided that the computational bottleneck in
the transformation between the image and visibility planes is
not the FFT itself but the gridding step, a grouping together
of baselines for which the direction-dependent effects are suf-
ficiently similar and performing separate Fourier transforms for
each group may provide a more efficient solution if it allows
the computational cost of gridding to be reduced. This is the
approach used in W-stacking to account for non-coplanar base-
lines (Humphreys & Cornwell 2011; Offringa et al. 2014). In
the following it will be shown how the use of a linear model
to represent a general BD-DD effect Ak(l,m) results in a similar
solution.

3. A-Stacking formulation: forward calculation

Suppose the factor Ak(l,m) in (3) can be written in an exact form
as the weighted combination of NB basis functions3,

Ak(l,m) =

NB∑
i=1

a(i,k) fi(l,m), (14)

where each of the coefficients a(i,k) pertains to the specific base-
line k, and the DD expansion functions fi(l,m) are common to
all baselines. Using fi to denote the N2

p × 1 vector discretization
of fi on the image plane, the discrete form of (14) becomes

bk =

NB∑
i=1

a(i,k)fi. (15)

3 Strictly speaking an exact expansion is not required for the continu-
ous function, but only for the discretization over the image plane.
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Substituting this expression into (5) gives

Vk(uk, vk) = φT
k


 NB∑

i=1

a(i,k)fi

 � σ
 =

NB∑
i=1

a(i,k)φT
k (fi � σ)

=

NB∑
i=1

a(i,k)φT
k diag (fi)σ. (16)

Using ai =
[
a(i,1) a(i,2) · · · a(i,K)

]T
the result for all baselines

can be written as

v =

NB∑
i=1

ai �
[
Φ (fi � σ)

]
=

NB∑
i=1

diag (ai)Φ diag (fi)σ, (17)

which is the desired form relating the visibilities to the dis-
cretized sky.

Equation (17) states that the visibilities pertaining to a model
sky may be calculated as follows, while fully accounting for the
BD-DD effects contained in Ak:

1. Apply a per basis function image domain correction in the
form of an element-wise multiplication to calculate a corre-
sponding apparent sky,

σi = diag (fi)σ. (18a)

2. Fourier transform each apparent sky using the FFT, followed
by a degridding step, to compute per basis function sets of
visibilities,

v̂i = Φ̂σi (18b)
vi = TDv̂i. (18c)

3. Apply a visibility domain correction in the form of an
element-wise multiplication to each visibility set, and sum
the resulting visibility sets,

v =

NB∑
i=1

diag (ai) vi. (18d)

Extension of the above results to include the full-polarization
response in the forward calculation is straightforward, and sim-
ply uses a separate model similar to (14) for each of the sixteen
elements in Ak.

3.1. Computational complexity

In order to identify conditions under which A-stacking may
present an efficient alternative to a convolution based approach
for the forward calculation, the computational complexity of the
algorithm is compared here to that of A-projection. The algo-
rithms are illustrated in Fig. 2.

Assuming a gridding convolution kernel of size Ng × Ng

is required to meet dynamic range requirements (Duijndam &
Schonewille 1999), the overall cost incurred by (18) can be
shown to scale as

O (CA-stack) = NB(N2
p + N2

p log Np) + NBKN2
g , (19)

where the first term on the right-hand side accounts for the per
basis function image plane correction and FFT, and second term

accounts for the gridding and visibility plane correction. In com-
parison the overall cost of an A-projection implementation, as-
suming a convolution kernel of size NgA×NgA is required to accu-
rately account for the associated DD effects, scales as (Jongerius
et al. 2014; Offringa et al. 2014)

O
(
CA-proj

)
= N2

p log Np + KN2
gA
. (20)

If the overall cost in both cases is dominated by the gridding
step, that is

KN2
gA
,KN2

g � N2
p log Np, (21)

then A-stacking presents a more efficient alternative to
A-projection on condition that

NB <

(
NgA

Ng

)2

· (22)

The total storage required to perform the A-stacking forward cal-
culation in Fig. 2a completely in memory scales as

O (MA-stack) = NBN2
p + N2

g + NBK, (23)

where the first term accounts for the per basis function image
domain correction, the second accounts for the storage of the
single gridding convolution kernel, and the last term accounts
for the per basis function visibility domain corrections. In com-
parison, the total storage required to perform the A-projection
forward calculation in Fig. 2b completely in memory scales as

O
(
MA-proj

)
= N2

p + KN2
gA + K. (24)

Here storage of only a single image and visibility map are
required, however a (potentially) different convolution ker-
nel needs to be stored per baseline. The storage required or
A-stacking is less than that for A-projection if

NB <
KN2

gA + N2
p − N2

g

N2
p + K

≈

 K
N2

p + K

 N2
gA, (25)

where the approximation assumes that gridding dominates the
computational cost as in (21) (which implies that KN2

gA � N2
p ),

and that N2
g � KN2

gA.
Since NgA depends on the spatial frequency content of the

primary beam patterns on the sky, and NB depends on the inter-
element variation among the primary beams, a clear distinction
between cases where one algorithm should outperform the other
(in the asymptotic limit) in terms of computing time and mem-
ory requirements is possible in principle. We also note that the
cost of a convolution-based approach scales quadratically with
an increase in NgA , whereas that of the stacking approach in (18)
scales linearly with an increase in NB. This means that even with
a moderately sized NgA a relatively large number of basis func-
tions NB may still render the proposed method more efficient.

Finally, since the efficiency of A-stacking depends on reduc-
ing the required size of the visibility plane convolution kernel,
it may be necessary to avoid a convolution based approach to
correct for non-coplanar baselines. As stated earlier, the w-term
is easily included in the BD-DD modeling approach presented
here, however, this may increase the number NB of terms in (14)
required to yield an accurate model. Alternatively, A-stacking
may be combined with W-stacking (Offringa et al. 2014), which
does not affect the cost of gridding, but does result in the number
of image plane corrections and FFTs increasing by a factor Nw

(number of w-layers). This means that the cost of repeated FFTs
may become more expensive than gridding for fewer Nw than
when combing W-stacking with A-projection in the so-called hy-
brid w-stacking (see Tasse et al. 2013).
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Fig. 2. a) Forward calculation in the A-stacking framework, subdivided into the algorithmic steps described by (18). b) Forward calculation using
A-projection. The A-projection convolution kernel size is NgA × NgA , as determined by the spatial frequency content of the direction-dependent
effects on the sky, and can result in a relatively expensive gridding cost. A-stacking aims to reduce this cost by decreasing the size of the gridding
convolution kernel to Ng × Ng, as determined by the required image dynamic range; the penalty is that multiple FFTs and gridding operations are
required.

4. Imaging with A-stacking: backward calculation

Imaging is concerned with the inversion of (7). As was already
stated, the scale of this system of equations precludes the use
of a direct method, so that a different approach to imaging is
required. In this section two approaches possible within the
A-stacking framework are derived.

4.1. Adaptation to the CLEAN algorithm

In theory, the Fourier relationship in (4) allows the apparent
sky Ik to be determined from the visibility functionVk via the in-
verse Fourier transform. Given the discretization inherent to the
limited sampling provided by any practical interferometer array
and the image representation of the sky, the result of the practical
equivalent of this is

σd =
1
K
ΦHv =

1
K
ΦH (
Φ � B

)
σ, (26)

which is the so-called dirty image4. Apart from the effects as-
sociated with B, the limited sampling of the array also adds a
distortion in the form of a convolution with the Fourier trans-
form of the visibility plane sampling function, or point spread
function (PSF) (Jackson et al. 1991). Not only does this limit
the resolution of the obtained image to the scale of the PSF main
lobe, but sidelobes in the PSF can also produce artifacts that may
produce false sources, hide existing ones, or distort other sources
in the image. Removing this corruption requires some deconvo-
lution procedure. However, owing to the imperfect sampling of

4 In practice this is usually calculated via gridding and applying the
FFT, i.e. σd = 1

K Φ̂v̂. For the purposes of the present derivation calcula-
tion of the dirty image via the direct Fourier transform is used.

the array in general the solution is not unique, so that a non-
linear deconvolution procedure is usually required (Cornwell
et al. 1999). The algorithm perhaps most widely used for this
purpose is CLEAN and its derivatives (Högbom 1974; Clark
1980; Schwab 1984). In general this algorithm is based on iden-
tifying a peak in the dirty image as the location of a point-like
source, and then removing the effect of that source by subtract-
ing an appropriately scaled and shifted PSF.

In order to demonstrate how this algorithm may be adapted
within the A-stacking framework, we consider the dirty image
produced by applying ΦH to the visibilities in (17)

σd =
1
K
ΦHv =

1
K
ΦH

NB∑
i=1

diag (ai)Φ diag (fi)σ

=
1
K

NB∑
i=1

ΦH diag (ai)Φ diag (fi)σ. (27)

Replacing the true sky image vector σ with an image es corre-
sponding to a single point source of unit intensity at the location
(ls,ms) and an otherwise empty sky, yields the PSF

ps =

NB∑
i=1

fi(ls,ms)
[

1
K
ΦH diag (ai)Φes

]

=

NB∑
i=1

fi(ls,ms)qi(s). (28)

Herein qi(s) is the PSF, centered at (ls,ms), and associated with
applying the weights ai to the visibilities. Although each qi rep-
resents a shift-invariant PSF, that represented by ps is not shift-
invariant, because of the direction-dependent weighting fi(ls,ms)
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applied to each qi. Assuming a sky composed of a number Ns of
point sources allows the following representation

σ =

Ns∑
s=1

σ(s)es (29)

which, when substituted into (27) and using (28) gives the de-
sired result,

σd =

NB∑
i=1

Ns∑
s=1

σ(s) fi(ls,ms)qi(s) =

Ns∑
s=1

σ(s)ps. (30)

This expression presents an interesting decomposition of the
dirty image: it is the superposition of a number of sub-images,
each of which is a different apparent sky σi convolved with an
associated PSF qi. More importantly, this interpretation can be
used to adapt the PSF subtraction in the CLEAN algorithm to
account more accurately for the BD-DD effects.

We let the NB different PSFs
{
qi

}NB
i=1 be pre-computed as part

of initializing the CLEAN algorithm, and we let σr be the resid-
ual dirty image at the start of a PSF subtraction iteration. With
a point source identified at location s in σr the PSF subtraction
now proceeds as follows:

1. Weigh each PSF qi(s) by the value of its corresponding DD
basis function towards the direction of the source fi(ls,ms),
and accumulate the result for all NB basis functions to yield
the total PSF ps as in (28).

2. Scale ps according to the intensity of the identified source
and the loop gain parameter γ,

ps ← γσ(s)
r ps. (31a)

3. Update the residual image by subtracting the PSF,

σr ← σr − ps. (31b)

Combining the above procedure with the forward calculation
in (18) provides an accurate method by which BD-DD effects
may be accounted for in the imaging process.

4.2. Diagonal correction

Using the BD-DD effect model in (14) also produces a useful
imaging approach for the case where deconvolution is not neces-
sary, either because the image dynamic range is not high enough
or because the spatial selectivity is very good, so that artifacts
produced by the PSF sidelobe structure do not have a dominant
effect on the image quality.

Suppose an overdetermined system in (7), that is, K > N2
p .

The well-known linear least squares (LLS) solution to such a
system is

σ̃ =
(
Φ � B

)† v =
[(
Φ � B

)H (
Φ � B

)]−1 (
Φ � B

)H v, (32)

where † denotes the Moore-Penrose pseudoinverse. Using the
model in (15) and the result in (17), the LSS solution becomes

σ̃ = M−1σ̃d, (33)

where the deconvolution matrix M−1 and the dirty image vector5

σ̃d have been introduced,

M =

 NB∑
j=1

diag
(
a j

)
Φ diag

(
f j

)
H  NB∑

i=1

diag (ai)Φ diag (fi)


=

NB∑
i=1

NB∑
j=1

diag(f j)HΦH diag(a j)H diag (ai)Φ diag (fi) (34a)

σ̃d =

 NB∑
i=1

diag (ai)Φ diag (fi)


H

v. (34b)

Because of the computational costs involved for typically en-
countered image sizes, direct evaluation of (33) may not be prac-
ticable. However, given the condition that deconvolution is un-
necessary, the inversion of M becomes tractable in that it may be
approximated as being diagonal6. This results from the fact that
the off-diagonal entries in this matrix represent the flux leakage
between different pixels in the image, the very effect deconvolu-
tion aims to correct.

We let Mdiag be the matrix formed by setting all off-diagonal
entries in M equal to zero. In order to determine the structure of
this matrix, we consider the qth diagonal element in[
ΦH diag(a j)H diag (ai)Φ

](q,q)
=

K∑
k=1

Φ(k,q)a( j,k)a(i,k)Φ(k,q)

= aH
j ai, (35)

where the relation Φ(k,q)Φ(k,q) = 1 has been used. Since the result
is independent of q, we can write

Mdiag =

NB∑
i=1

NB∑
j=1

diag(f j)H
[
aH

j aiI
]

diag (fi)

=

NB∑
i=1

NB∑
j=1

aH
j ai diag

(
f j � fi

)
, (36)

since aH
j ai is scalar, and where I is an appropriately sized iden-

tity matrix.
This naturally leads to the following imaging procedure:

1. Compute the dirty image σ̃d,i for each basis function by ap-
plying the weights ai to the visibilities, Fourier transforming
to the image plane (via gridding and using the FFT), and then
weighting the image values by fi,

σ̃d,i = diag(fi)H
[
Φ̂

H
TG

(
diag(ai)Hv

)]
. (37a)

This is simply a practical implementation of each term
in (34b).

2. Accumulate the result for the NB basis functions to yield the
dirty image,

σ̃d =

NB∑
i=1

σ̃d,i. (37b)

5 This is not the same dirty image as in (26).
6 In fact, the diagonal approximation may also be used to speed up
deconvolution via an optimization procedure such as the Levenberg-
Marquardt algorithm (Marquardt 1963). Such an approximation reduces
the Jacobian (and hence the approximate Hessian) of the deconvolution
problem σ̃ = M−1σ̃d to a diagonal matrix, which reduces the order of
complexity of the algorithm from O(N6

p ) to O(N4
p ).
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3. Compute the diagonal version of the deconvolution matrix
Mdiag using (36).

4. Compute the final result,

σ̃diag = M−1
diagσ̃d. (37c)

5. Basis function construction

Although the above results are generally applicable for any exact
expansion of Ak which has the form of (14), it is obviously desir-
able to obtain such an expansion which requires the least number
of terms, since the cost of the above derived algorithms generally
scale with NB. In this section an approach aimed at producing
such a model from a prior characterized Ak is presented.

For imaging purposes it is sufficient to obtain a model for
the discretization of Ak on the image grid, that is bk as in (15).
From (8a) it is clear that finding a set of expansion func-
tions {fi}

NB
i=1 with which each bk may be expressed as in (15) is

equivalent to finding a basis for the row space of B. One such ba-
sis may be obtained by computing the truncated Singular Value
Decomposition (SVD),

BT = UΣWH. (38)

Selecting the columns in the N2
p×NB matrix U (left-singular vec-

tors) as the basis functions {fi} in (15), it can be shown that each
expansion coefficient a(i,k) is the entry on the ith row and kth
column in the matrix7

a = UHBT = ΣWH. (39)

This produces an exact expansion with NB ≤ min
(
N2

p ,K
)

num-
ber of terms, where the inequality may result from a linear
dependence among the DD gains associated with each of the
baselines8.

Since the computational burden resulting from the use of
the linear model in (15) scales linearly with the number of
basis functions, it may be desirable to rather use nB < NB
number of terms, thus trading computational cost for accuracy.
Furthermore, since the accuracy of transformations between the
image and visibility planes is also affected by other factors (e.g.
noise, gridding/degridding), the required accuracy may need to
be only such that it does not limit the overall accuracy. With
these considerations in mind, the aim is to produce a model
which yields the highest precision for a given number of terms.
For this reason, the model provided through the use of the SVD
is especially useful in the case where nB < NB. Specifically,
the sum of the squared distances between each of the rows in B
and the vector space spanned by nB left-singular vectors is min-
imized by choosing those left-singular vectors corresponding to
the nB largest singular values on the diagonal of Σ (Jolliffe 1986).

It should be noted that the computational cost incurred by
evaluating (38) and (39) does not need to enter into the over-
all cost of the algorithms presented in the previous sections,
since the result need only be determined once and can be stored

7 The rows in a are mutually orthogonal owing to the unitary property
of W, so that aH

j ai = 0 for i , j. This result may be used to reduce the
complexity of evaluating (36) from O(N2

B) to O(NB).
8 For instance, this may apply to earth rotation synthesis where mul-
tiple visibility measurements are obtained between the same antenna
pair, resulting in identical rows in B. Even when the primary beams are
varying in time, e.g. rotating primary beams on the sky for alt-az mount
reflector antennas, a linear dependence will still be present if such varia-
tion is negligible over time scales much larger than the integration time.

for repeated use over the course of one or more observations9.
Nevertheless, one way to alleviate the cost of constructing the
BD-DD model is to sample Ak over a sparser grid prior to com-
puting the basis functions. The motivation for this approach is
that the resolution obtainable with the entire array may be much
higher than that required to accurately represent the radiation
pattern of a single antenna element in such an array. We let b′k be
such a discretization of Ak over an Nq × Nq grid {(l′,m′)} in the
image plane, where Np = αNq with α > 1, and

Np∆l = Nq∆l′, Np∆m = Nq∆m′. (40)

Using this discretization of the BD-DD effects the matrix B′

is constructed, and the SVD is computed to yield NB ≤

min
(
N2

q ,K
)

left-singular vectors {f′i}
NB
i=1. The model basis func-

tions are now obtained by first interpolating each singular vector
to extend its support onto the Np × Np grid,

TI : {(l′,m′)} → {(l,m)} , gi = TI(f′i), (41)

and then orthonormalizing the resulting set of vectors to yield
{fi}

NB
i=1. Each model coefficient a(i,k) is then computed by project-

ing the ith basis function onto the kth column of BT.

6. Results

In this section simulation results are presented in order to as-
sess the performance of the A-stacking approach. First the im-
pact of various factors on the accuracy of the forward calculation
is considered, followed by a demonstration of the performance
of the CLEAN algorithm when combined with the A-stacking
approach.

Simulations pertain to a snapshot observation in a narrow
frequency band around 50 MHz, using one polarization of the
LOFAR Low Band Antenna (LBA) station at Onsala, Sweden as
an interferometer array. A full-wave numerical model was ana-
lyzed in FEKO10 to determine the radiation patterns of all the
elements in the array (Young et al. 2014); see Fig. 3. Because
of the effects of mutual coupling, which was fully accounted
for in the numerical model, the primary beams exhibited a vari-
ation over the elements in the array so that a single primary
beam approximation would not suffice. The phase reference for
each pattern was located at the corresponding antenna position in
the array, as used to determine the baseline uv-coordinates. Sky
models were generated by randomly placing ten point sources
of varying intensity on an image grid, so that the source statis-
tics were in agreement with that reported in Bregman (2012)
for frequencies below 1.4 GHz. The sky models were then used
as input to various observation simulations. For each simula-
tion the reference (exact) visibilities vexact were calculated via
direct evaluation of (7), which were then used as input for fur-
ther analysis.

6.1. Accuracy of the forward calculation

Model visibilities were calculated from the input sky using var-
ious approaches, and then compared to the exact visibilities.
The sky model extended over the region |l|, |m| ≤ 0.5 and was

9 The caveat here is that, where the BD-DD effects are unknown and
also need solution, the solvable model may need to be in an appropriate
form to allow precomputing (38) and (39). This is not within the scope
of the present contribution and is the focus of ongoing work.
10 https://www.feko.info/

A56, page 7 of 11

https://www.feko.info/


A&A 577, A56 (2015)

(a)

(b)

Fig. 3. a) The LOFAR LBA station at Onsala Space Observatory,
Sweden. Photograph courtesy of Leif Helldner. b) FEKO model of
the 96 element LBA station showing the radiation patterns (magni-
tude) of each antenna in the array. The array comprises dual-polarized
inverted-V antennas above a ground plane (not shown in model).
Generally a larger degree of inter-element variability is observed among
the patterns of the antennas that are closely spaced than in the patterns
of those that are more isolated.

discretized with Np = 64 pixels along each dimension (i.e.
64 × 64 pixel image). The following model visibilities were
computed:

1. vavg – Visibilities are calculated using (7), but the DD gain on
all baselines is assumed identical and equal to b0, for which
the average power pattern over all antennas in the array is
used.

2. vavg-fft – Again an identical b0 is used for all baselines, but
the visibilities are calculated via the FFT, followed by a de-
gridding step which is implemented as cubic interpolation.

3. vstack
nB

– Visibilities are calculated using (17), but truncating
the summation over i after nB < NB terms and using basis
functions computed via the SVD in (38).

4. vstack-fft
nB

– Using again only nB model terms, visibilities are
calculated via the procedure outlined in (18), that is, using
the FFT and degridding.

5. vstack-interp
nB,α – Here b′k was calculated on an Nq × Nq grid

with Np = αNq in the lm-plane prior to computing the
SVD in (38). Cubic interpolation was used to extend the
support of the basis functions onto the image grid, and
the Gram-Schmidt method was then used to orthonormalize
the basis functions. Finally, visibilities were computed us-
ing (17) and truncating the summation over i after nB < NB
terms.
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Fig. 4. Error in model visibilities as a function of number of BD-DD
gain model terms. The error was computed using the exact visibilities
as reference.

In all cases the error between a reference visibility vector and
model visibility vector was computed as

ε(model, reference) =

(
‖vmodel − vref‖2

‖vref‖2

)
· (42)

Figure 4 shows the accuracy of the forward calculation obtained
with various truncated A-stacking based BD-DD gain models.
The result shown is the average of ε(model, exact) over 1000 dif-
ferent generated sky models. As can be expected, in all cases
the accuracy improves with an increase in the number nB of
model terms. The highest accuracy is achieved by using the di-
rect Fourier transform in (17), combined with basis functions
derived directly from a discretization of Ak on the full image
grid (stack model). Since the visibilities computed in this manner
converge to the exact visibilities for nB = NB this result can be
used to estimate the highest accuracy that may be obtained with
a model of a given number of terms. The error decays rapidly as
nB is increased for the first few terms (nB <∼ 10), and thereafter
at a somewhat slower rate, until nB ≈ 192 where a sharp drop
in the error occurs. This sudden decrease in error is related to a
similar sudden decrease in the Singular Value (SV) spectrum of
BT at twice the number of antennas in the array, 2 × 96 = 192.
Using a sparser discretization of Ak to expedite the construction
of the basis functions via the SVD (stack-interp models) is seen
to introduce an error between about 10−2.6 and 10−2.9, depending
on the sparsity of the grid, and only represents a significant loss
in accuracy for a model with more than about nB = 60 terms.
Similarly, utilizing the FFT-based calculation (stack-fft model),
an error of around 10−2.3 and associated with the degridding op-
eration is introduced which only has a significant impact on the
accuracy for a model with more than roughly nB = 40 terms.

In order to put the results in Fig. 4 in perspective, we con-
sider the accuracy for various models reported in Table 1. The
error incurred by using a baseline-independent DD gain to com-
pute the visibilities is around −1.404. Using nB = 10 terms of
the A-stacking model and computing visibilities via the FFT al-
ready reduces the error by more than 50%, and using nB = 40
the error is reduced by more than 75%. (With nB = 40 and us-
ing the direct Fourier transform reduces the error slightly more,
by about 80%.) This indicates that a large improvement over us-
ing a baseline-independent DD gain model is possible with just
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Table 1. Various model visibility errors computed using (42).

Model Reference ε(model, reference)
avg exact –1.404
avg-fft avg –2.344
Stack, nB = 10 exact –1.739
Stack, nB = 20 exact –1.892
Stack, nB = 40 exact –2.120
Stack-fft, nB = 10 exact –1.725
Stack-fft, nB = 20 exact –1.865
Stack-fft, nB = 40 exact –2.053

Notes. Errors are shown in log-scale.

Table 2. Comparison between memory usage of A-stacking and
A-projection forward calculations based on (23) and (24), respectively,
and using K = 9121 unique baselines.

Method Np = 64 Np = 1024
A-stack, nB = 10 2.2 MB 177.5 MB
A-stack, nB = 20 4.2 MB 338.9 MB
A-stack, nB = 40 8.3 MB 661.7 MB
A-stack, nB = 96 19.6 MB 1565.5 MB
A-stack, nB = 192 38.9 MB 3114.9 MB
A-proj, NgA = 25 87.0 MB 103.0 MB
A-proj, NgA = 50 348.1 MB 364.1 MB
A-proj, NgA = 100 1391.8 MB 1407.8 MB

Notes. Results are shown for small and moderate size images, and for
various levels of accuracy in modeling BD-DD gains (number of terms
nB for A-stacking, and convolution kernel size NgA for A-projection).
Double precision computation is assumed.

the first few terms of the BD-DD model, even when the calcula-
tion is performed using the FFT followed by a degridding step.
Finally, the error in the avg-fft model when using avg model as
the reference confirms the error introduced by the degridding
operation to be around the 10−2.3 level.

Memory usage statistics for the A-stacking forward calcula-
tions based on (23) are listed in Table 2. Results show how the
memory requirement increases with the number of terms nB in
the BD-DD model for the Np = 64 images used here, and also
for Np = 1024 to indicate the requirements for larger images.
Since the overall cost scales linearly with the number of terms
in the model a simple trade-off between computational cost and
calculation accuracy is available. For comparison, the memory
requirements for A-stacking are also shown for different convo-
lution kernel sizes. We note that number of baselines relative to
the image sizes considered means that the memory requirements
for A-projection is almost independent of image size.

6.2. CLEAN performance

In order to demonstrate how A-stacking may impact on the
imaging performance, two simple CLEAN algorithms were im-
plemented to use BD-DD gain models of various levels of accu-
racy. Here the direct transforms in (17) and (27) were used for
the forward and backward calculations, respectively, so that the
impact of the accuracy of the BD-DD model on the result could
be isolated. The sky models used here extended over the same
region as before, but used a coarser grid with Np = 16 pixels
along each dimension (i.e. 16 × 16 pixel image).
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Fig. 5. Convergence of VDSS-CLEAN implementation for DD gain
models of various levels of accuracy. Figure shows how the residual
image norm is reduced over iterations of source subtraction in the visi-
bility plane.

Visibility domain source subtraction: VDSS-CLEAN algorithm

The first CLEAN algorithm is based on using the accurate
A-stacking forward calculation, and proceeds as follows:

1. Initialize the model sky σm and residual image σr as

σm = 0, σr = σd � b0, (43)

where � indicates element-wise division, 0 is the zero vec-
tor, b0 is the average power pattern over all antennas in the
array, and σd is obtained by computing (27) from the visibil-
ities vexact.

2. The residual norm is calculated as r = log10 (‖σr‖2).
3. The peak in σr is identified, and its location (ls,ms) and in-

tensity σ(s)
r used to update the model sky

σm ← σm + γσ(s)
r es, (44)

where γ is the loop gain.
4. Model visibilities vmodel are calculated using the model sky
σm in either (5) with the baseline-independent gain b0, or
in (17) with the A-stacking model and truncating the sum-
mation over i after nB ≤ NB basis functions. This is used to
compute residual visibilities,

vres = vexact − vmodel. (45)

5. The residual image is updated by substituting vres for the vis-
ibilities in (27), and applying a DD correction in the form of
element-wise division by b0 to the result.

6. Steps 2 through 5 are repeated for a fixed number of
iterations.

Figure 5 shows how the residual norm is reduced over the num-
ber of iterations of the VDSS-CLEAN algorithm, and the result
displayed is the mean of r over 1000 different generated input
skies. Assuming that at each iteration a source is correctly iden-
tified, and its intensity underestimated, the energy in the residual
image should ideally decrease monotonically with each subtrac-
tion. A comparison is shown between DD models of various lev-
els of accuracy, ranging from the same average antenna power

A56, page 9 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201425492&pdf_id=5


A&A 577, A56 (2015)

Table 3. Mean residual norms (log-scale) after 300 iterations of each
CLEAN algorithm for various BD-DD models.

Model VDSS-CLEAN IDSS-CLEAN
avg 0.445 0.721
stack, nB = 3 0.298 0.569
stack, nB = 61 –0.516 –0.129
stack, nB = 96 –0.825 –0.422
stack, nB = 192 –2.387 –1.915
stack, nB = 256 –6.076 –4.610

Table 4. Image dynamic range after 300 iterations of each CLEAN al-
gorithm for various BD-DD models.

Model VDSS-CLEAN IDSS-CLEAN
avg 32.8 dB 24.0 dB
stack, nB = 3 34.3 dB 25.5 dB
stack, nB = 61 42.4 dB 32.5 dB
stack, nB = 96 45.5 dB 35.5 dB
stack, nB = 192 61.1 dB 50.4 dB
stack, nB = 256 98.0 dB 77.3 dB

pattern over all baselines (avg) to the exact A-stacking model
(stack, nB = NB = 256). The intermediate models correspond
to keeping only those terms corresponding to Singular Values
(SVs) in (38) that are above 1.0% (nB = 3) and 0.1% (nB = 61)
relative to the maximum; nB = 96 uses as many terms in the
model as antennas in the array, and nB = 192 uses twice as many
terms. The latter model is of interest since the SV spectrum ex-
hibits a sharp drop after the 192th SV. In general the algorithm
is seen to converge at ever lower values of the residual norm
as the model accuracy is increased. The results for each model
after the final iteration are summarized in Table 3. Compared
to the result for using the average DD gain, using A-stacking
with just 3 terms the residual is reduced by about 29%, and with
61 terms by 89%.

The distributions of residual norms after 300 iterations and
for all 1000 simulations are shown in Fig. 7 for four different
DD models. In 95% of the simulations the average beam model
yielded r < 0.55, and the A-stack model with nB = 3 and
nB = 61 yielded r < 0.45, and r < −0.35, respectively. Using
the exact model resulted in r < −5.65 for the same percentage
of simulations. For a small fraction of the simulations the algo-
rithm converged to a relatively large residual irrespective of the
DD gain model used.

Image domain source subtraction: IDSS-CLEAN algorithm

The second CLEAN implementation is based on the proce-
dure outlined in (31) from Sect. 4.1. Using the measured vis-
ibilities vexact the dirty image is computed using (27), and the
residual image σr is initialized to this dirty image without any
DD correction as was done for the VDSS-CLEAN algorithm.
The algorithm then proceeds by repeatedly performing PSF
subtraction via (31) to update σr for a fixed number of itera-
tions, and computing the residual norm r = log10(‖σr‖) at each
iteration.

Figure 6 shows how the residual norm is reduced over the
number of iterations for the IDSS-CLEAN algorithm. The result
shown is the mean of r over 1000 different generated sky models
and a comparison is shown for various DD gain models. Initially
the residual decreases at a steady rate for all DD gain mod-
els; beyond a certain number of iterations this decrease slows
down significantly, and the residual level at which this occurs
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Fig. 6. Convergence of IDSS-CLEAN implementation for DD gain
models of various levels of accuracy. Figure shows how the residual
image norm is reduced over iterations of source subtraction in the im-
age plane.

depends once again on the accuracy of the DD gain model. For
comparison, the results after 300 iterations of IDSS-CLEAN for
the different gain models are also shown in Table 3. Apart from
somewhat higher residuals after the same number of iterations
as compared to that in VDSS-CLEAN, the decrease in the resid-
ual with the increase in the number of terms in the gain model
is similar for both algorithms. To help put these results into per-
spective, the dynamic range of the images obtained after 300 it-
erations of either CLEAN algorithm was calculated and listed in
Table 4.

Assuming that a distinct source (in a distinct location) is
identified in each iteration of the IDSS-CLEAN algorithm, a
differently weighted combination of the PSFs associated with
each of the DD basis functions may be required at each itera-
tion. This combination step requires up to NBN2

p complex mul-
tiplications and is the computational bottleneck for this image
domain deconvolution approach. As can be expected the cost of
a single iteration of this algorithm is much cheaper than that for
the VDSS-CLEAN algorithm, which includes an image domain
correction that also scales as NBN2

p , as well as the costs associ-
ated with transforming between the image and visibility planes.
This holds even when utilizing the efficiency of an FFT-based
implementation, see (19).

7. Conclusion

A novel framework for modeling baseline-dependent direction-
dependent effects was presented. The approach is based on
the expansion of BD-DD effects in the form of a weighted
sum of basis functions, where the basis functions are direction-
dependent, and the coefficients account for the baseline-
dependence. Related to the W-stacking method which ac-
counts for non-coplanar baselines, the present approach, called
A-stacking, offers an alternative method to the convolution
based algorithm A-projection. As such it offers a potential
improvement in computational efficiency in scenarios where
A-projection results in a significant increase in the gridding cost.

Using the proposed modeling technique the calculation
from sky to visibilities is achieved by combining the result
from a number of separate Fourier transforms, which may be
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Fig. 7. Distribution of the residual norms after 300 VDSS-CLEAN iterations for 1000 different generated skies. Results are shown for different
DD models. We note that the upper limit of the vertical axis has been reduced to improve the clarity of results at lower densities.

implemented to utilize the efficiency of the FFT. The accuracy
of this calculation is directly controlled by the number of terms
retained in the model, and yields a simple trade-off between ac-
curacy and computational cost. Furthermore, results have shown
that good performance may be achieved with relatively few
terms, given that an appropriate basis is chosen for the linear
model. A method to obtain such a basis for a prior character-
ized BD-DD effect was presented, and is based on the use of the
SVD.

Within this framework, two different imaging strategies were
also derived. One strategy takes the form of an adaptation of
the PSF subtraction cycle in a typical CLEAN deconvolution
process, while the other presents an imaging approach where
deconvolution is deemed unnecessary. The use of A-stacking
model in two different CLEAN algorithms was also used to
demonstrate how this modeling approach may affect image qual-
ity. In either case the image residual after a fixed number of iter-
ations was seen to decrease steadily as the model accuracy was
improved.

Since the model relies on an accurate characterization of the
BD-DD effects, further work focuses on the development of a
solvable BD-DD model which is compatible with the A-stacking
approach.
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