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The Minority Game: evolution of strategy scores
ALVARO PEREZ DIAZ
Department of Applied Physics
Chalmers University of Technology

Abstract
The Minority Game is an agent based model that simulates competition for a scarce
resource, situations in which two options are available to the agents at every time
step and the winner option is the minority one. It was originally developed as a
model for financial markets, although it has been applied in different fields, like
genetics and transportation problems (choose less frequented road, lane, etc). This
model has been studied in detail in the last fifteen years, with more than a thou-
sand papers published on the topic, covering a wide range of analytical techniques,
improvements and modifications, and in the recent years, large integration with dif-
ferent market mechanisms that reproduce the stylized facts of real markets.

We will first explain the model in detail and state its most important features, such
as the existence of a phase transition that divides the game in two possible differ-
ent regimes. We are interested in the so-called dilute regime, and we will describe
in detail its particularities, which inspired our own work: it presents two different
kinds of agents with very different behaviours, all depending on the random initial
conditions. We will focus on the analysis of the strategy scores, which are the key
factor determining which category an agent lies in. We use a probability theory to
devise an analytical model for the so-called coin-toss limit inside this regime, and
a phenomenological model that explains the behaviour of the strategy scores in the
whole regime.

In the last chapter, we will introduce a similar game in which we constrain this
mentioned strategy scores, yielding simplified dynamics with similar outcomes: the
dynamics are trapped in typically small cycles in the state space, different cycles
being present and depending on the initial conditions of the game.
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1
Introduction

Traditionally, models in economics assumed perfect, logical and deductive rationality.
The economist Brian Arthur is one of the biggest detractors of this way of thinking,
claiming a long frustration with mainstream theory’s insistence that economic agents
are equipped with such rational minds as to know everything, understanding all with
implicitly infinite information capacity. He wanted to return to the drawing board,
have a fresh look at agents with bounded rationality [2].

The concept of bounded rationality was introduced by Herbert Simon in 1981 [3], it
is the idea that in decision-making, rationality of individuals is limited by the infor-
mation they have, the cognitive limitations of their minds, and the finite amount of
time they have to make a decision, and Arthur thought that this fitted better our
own minds, rather than ’god-like’ agents.

He also claims that inductive reasoning, in which the agents are aware of an in-
complete part of reality, and they build up their decisions trying to generalize this
information matches better our own situation rather than the omnipresent deduc-
tive approach, in which agents descend to their particular situation from a general
theory. It is usually explained as inductive meaning moving from specific observa-
tions towards broader generalisations and theories, whereas deductive moves from
a general theory to the specifics. Thus inductive reasoning is conceptually much
closer to the way human beings take decisions, as we have limited cognitive abilities
and cannot usually comprehend systems as a whole, at least systems with massive
number of variables such as financial markets.

To illustrate his views, Arthur developed the El Farol Bar problem [1], which goes
as follows: El Farol Bar is an Irish bar in Santa Fe that has live music on Thursdays,
and in his own words: there are 100 Irish music lovers but El Farol has only 60 seats.
The show is enjoyable only when fewer than 60 people show up. What should people
do? To make the decision, the agents can use some historical information, like the
number of attendants in the last several weeks, and use simple predictors to decide
whether to attend or not the incoming week.

This very simply posed problem presents remarkable features: for example, there
cannot exist an a priori best strategy, because then everybody will use it and it
will not be useful, hence heterogeneity across agents arises. All this inspired the
Minority Game, similar to the El Farol bar problem, but presenting a more rigorous
framework and a more detailed formalism. It was developed by Damien Challet,
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1. Introduction

Yi-Cheng Zhang and Matteo Marsili in 1997, and since then, more than a thousand
papers have been published about it and it has inspired lots of different games and
models.

It will be described in detail in the next chapter, together with some of the early
key results. In the following chapters our work on the evolution of strategy scores
and a modification of the original game are detailed.
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2
The Minority Game (MG)

The El Farol bar problem does not specify very rigorously what the predictors are,
this is the strategies agents use to choose whether they attend or not. In the origi-
nal formalism, a predictor is a rule which ‘predicts’ the attendance of the next week,
given the information about the attendances of the past weeks. Each agent has more
than one predictor, he ranks them according to their performance and follows the
recommendation of the best one [2].

As mentioned in the previous chapter, the Minority Game developed by Challet,
Zhang and Marsili in 1997, presents a precise framework with precise definitions.
We will devote the rest of this chapter to go through basic definitions and main
features of the MG.

2.1 Description
In the basic Minority Game, an odd number N of agents compete in successive
rounds where they can choose between two options, say −1 or 1, wanting to be in
the minority side each round. If they succeed they get a reward, otherwise they get
punished. At the beginning of the game each agent is assigned a number of random
strategies, which will govern the agent’s behaviour. To choose what strategy to use
each round, each is assigned a score based on how well it has performed so far,
the one with leading score is used at a time step. Breaking ties between strategy
scores can be done in different ways, but in the original game it is resolved randomly.

This can be put more precisely as follows: all the N agents have a memory M ,
meaning that they can remember the winning side of the last M rounds of the
game, hence there are 2M possible past histories. A particular strategy can be seen
as a table with 2M rows, one for each possible past history, and the corresponding
predictions, which will dictate the side to choose in every different possible past.
Every agent gets a number S of strategies drawn at random from the strategy pool,
which contains 22M different strategies. The case S = 1 is not very interesting in
the sense that agents hold only one strategy and cannot evolve or learn. It still
presents chaotic behaviour extremely sensitive to the initial conditions. From now
on we will consider S = 2, as the same overall qualitative behaviour is obtained
using any S ≥ 2. We assign a score to each of the agents, and to each of the
strategies, U , which will be updated every time step, where different payoff schemes
can be chosen. Note that we update the scores of all strategies at all time steps

3



2. The Minority Game (MG)

Table 2.1: Strategy example, M = 2

History Prediction
00 1
01 1
10 0
11 1

independent of whether they have been used. Let’s call µ(t) the current past history
at time t, and denote the prediction of the strategy s of the agent i to the past string
µ as aµ(t)

i,s . We define the attendance A as the collective sum of actions from all the
agents at a time step:

A(t) =
N∑
i=1

a
µ(t)
i,si(t)

where si(t) is the best stragey hold by agent i at time t:

si(t) = arg maxsUi,s(t)

When every agent has made its choice, we sum all the bets for the two sides and
we find the minority choice (recall that N is chosen to be odd, so there is always
a minority side) and reward/punish agents and strategies accordingly. The basic
score payoff system is detailed below for the two choices of labels for the possible
agent actions:

Ui,s(t+ 1) = Ui,s(t)− sign[aµ(t)
i,s A(t)],

looking at the formula we see that it just updates the previous score by adding +1
if the strategy has predicted correctly this time step, and subtracts −1 if it has not.
In other texts the sign function is removed so the scores depend on the actual size
of the minority side, being the reward/punishment larger the smaller the minority
side. Both possibilities yield the same overall behaviour.

We will keep an analogous score system for agents, based on their predictions been
right or not. To initialize the game, one can just draw a initial history value ran-
domly. More about this initial condition can be found in chapter 5.

We can see that the game is inductive, as every agent bases its decisions on the
(probably partial) best choice they know, and adaptive as the agent’s actions evolve
with time and past history.

2.2 Major features
Now that we have precisely defined our game, it is time to look at the quantities
of interest and its main properties: we have defined the attendance A, which sums
up the collective behaviour of all the agents at each time step. The attendance will
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2. The Minority Game (MG)

then have N + 1 possible values, and due to the symmetry between the two actions
in the game, we find that its average value will simply be

〈A(t)〉 = 0

which does not carry any significant information.

2.2.1 Phase transition
The situation is completely different when we look at its variance, denoted by σ2,
which was the first quantity of interest studied for the MG, altogether with the
quantity α = 2M/N , discovered in 1999 by Savit et al. [5] and by Challet et al.
[11]. It was shown that the behaviour of the game does not depend on N or M
independently, but only on their ratio given by α. When we look at the behaviour
of the variance of the attendance with respect to α, which reflects one of the major
features of the MG: the existence of a phase transition between different regimes, as
shown below:

10−2 10−1 100 101 102

100

101 αc

z = 2M/N

σ
2
/N

N=101
N=301
N=501
N=701

Figure 2.1: Phase transition with α as control parameter. Horizontal dashed line
indicates coin-toss limit.

We can see the collapse of the three curves for different values of N and M . Three
regimes are found:

• Small number of agents with respect to number of possible histories (α� 1):
called as well coin-toss limit, as the results seem random and similar to the
ones obtained using a random coin-toss. This is produced due to over-fitting
the past fluctuations of the attendance, as the information the agents receive
at each time step is too complex to properly interpret it. This regime is
commonly referred to as diluted phase, as there are few agents compared to
the number of possible strategies.
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2. The Minority Game (MG)

• Increasing the number of agents (α ∼ 1): the fluctuations in the attendance are
greatly reduced, showing that all the agents manage to coordinate themselves.
As we decrease α from the coin-toss limit, σ decreases till it reaches a minimum
around 0.34 for S = 2. //Challet and Marsilli 1999//.

• Increasing even more the number of agents (α . 0.1): we see that the more we
decrease α the larger the variance becomes, indicating large fluctuations in the
attendance. This is related to the so-called crowd effects: as there are many
agents sharing a small number of possible strategies (as M will be small in
comparison), synchronized actions become usual. For this reason this regime
is also known as the crowded phase.

Concerning the coin-toss limit, it is modelled as a binomial random variable Bin(n, p),
with n = N number of agents and p = 1/2. Therefore the variance is found to be
σ2 = 1/2 · (1− 1/2) · 4 ·N , thus σ2/N = 1.

2.2.2 Predictability
In 1999, the same team led by Savit [5], discovered a new quantity featuring the same
phase transition, the so-called predictability: firstly, consider P(1|µ), the conditional
probability of finding ’1’ as winning side given a previous history µ. This probabiliity
is obtained by running a long simulation, storing the time series of past histories
and respective outcomes, there we obtain a histogram with 2M bins (possible past
histories) ranging between 0 and 1. Unexpected behaviour is found here as well:

• α < αc: on the left-hand side of the phase transition, all histograms P(1|µ)
look like shown below:

1 2 3 4 5 6 7 8

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

µ

P
(1
|µ
)

Figure 2.2: P(1|µ) histogram for a realization of the MG with parameters N = 51
and M = 3, α = 0.1569.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

µ

P
(1
|µ
)

Figure 2.3: P(1|µ) histogram for a realization of the MG with parameters N = 51
and M = 4, α = 0.3137.

Both histograms were generated using 104 time steps, and we can see they are
flat at probability 0.5, meaning there game is not predictable in this regime,
also called the unpredictable phase. So for α < αc there is no extractable
information from any history string of length M (the actual memory of the
agents), as the probabilities of getting either action are equal.

• α > αc: however, on the right-hand side of the critical point, the situation
is entirely different: We can see that now each history string (of length M)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ

P
(1
|µ
)

Figure 2.4: P(1|µ) histogram for a realization of the MG with parameters N = 51
and M = 4, α = 0.3137.

carries information about the best action for each past history, so we call this
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2. The Minority Game (MG)

regime the predictable phase.

It was also found that if one looks at history strings with one more bit, this is, length
m+ 1, we will find predictitive information in both sides of the phase transition.

2.3 The Prior MG
The original formulation of the MG, as it has been defined in this chapter, can
be seen as the sum of two processes: one deterministic and one stochastic. The
stochastic term corresponds to randomly breaking ties between strategy scores. The
deterministic term accounts for all the remaining dynamics, arising from the initial
distribution of strategies to the agents, and the initial history.

In 2013 a modified game is introduced [9], without stochasticity, named Prior MG
(PMG). In this game, instead of breaking ties randomly, each agent has a preferred
strategy which they will use in case of tie.

Both games, MG and PMG, have the same overall qualitative behaviour, thus being
interchangeable. We can use the simplified dynamics of the PMG to study properties
of the MG. From now on in this report we will use exclusively the PMG, although
we may use MG to refer to it.
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3
The evolution of strategy scores

As mentioned before, the behaviour of the MG is very different in both sides of the
phase transition, and this will affect greatly the dynamics of the strategy scores. On
the left hand side, overall dynamics are periodic, including game states and the time
series of strategy scores, which are bounded. When one jumps to the right hand
side, however, things change as we find diverging strategy scores and not obvious
periodic behaviour.

3.1 Divergence of strategy scores
When the MG is developing, each strategy has a virtual score which gets an update
of ±1 every time step. Theoretically, if a particular strategy works very good on
this realisation of the MG, its score could just keep accumulating +1 updates and
be always increasing towards∞. Similarly for poorly suited strategies, towards −∞.

To check the evolution of the strategy scores, we will run several realisations of the
MG for different values of α, where we will check the maximum difference between
strategy scores at the last time step. The results are shown below:

10−3 10−2 10−1 100 101 102
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

t = 2e4

t = 1e4

αc

α

M
ax

sc
or
e
-
M
in

sc
or
e

Figure 3.1: Max(score) - min(score) at the last time step for each value of α.
Averaged over 10 different games with t = 1e4 (blue) and t = 2e4 (red).

We can see that the phase transition also affects the spread in the strategy scores,
being tightly bounded for α < αc, but allowing diverging spread when α < αc. Of
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3. The evolution of strategy scores

course, if one runs longer runs, this values will increment after αc, but the shape
curve remains intact.

When looking at the time series of strategy scores for a couple of realisations of the
game, one for each regime, one finds the following:

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
−2

−1

0

1

2

3

t

st
ra
te
gy

sc
or
es

Figure 3.2: α = 0.0396, two agents
displayed, four strategies.
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−80
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−40
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20
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t

st
ra
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gy

sc
or
es

Figure 3.3: α = 0.7619, 9 agents
displayed, 18 strategies.

For the first figure, 3.2, we can see a completely periodic behaviour with period 8,
after a very short equilibration time, and the strategy scores will keep repeating with
this pattern. In the second figure, 3.3, we see that some strategy scores do grow
nearly linearly towards infinity, while others stay around zero, and some unfortunate
ones sink to minus infinity. This two examples show the stereotypical behaviour of
all games with analogous values of α.

The period, if any, in the diluted phase becomes more difficult to asses: it greatly
depends on the number of agents N and on α. Choosing small α ∼ 1 and small
N < 10, one can easily find periodic behaviour with small period, but when one
increases α or uses larger values for N the periods quickly scale to astronomical
values which would need extremely long simulations to be found. There are other
weaker periodic effects (quasi-periodic), see for example [9]: every consecutive times
when we find the same past history, the minority side is very likely to switch, as the
agents have learnt about the previous occasion. We will deal with this periodicity
further in further chapters.

Concerning periodicity, the PMG behaves in a nicer way that the original MG: as
the stochasticity is eliminated, we obtain periodic games (with small period) even in
the diluted phase. In the MG, the presence of a small stochastic part, will generate
quasi-periodic looking games, but not perfectly periodic as it is the case for the
PMG as commented above.
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3. The evolution of strategy scores

3.2 Two types of agents
Taking any realisation of the PMG on the right hand side regime, we will see two
kinds of agents, which have been named in the literature [11] (2008) as frozen and
fickle agents:

• Frozen agents’ strategies will have diverging scores, so that every time step (at
least after some equilibration time) there will be a clear winning strategy which
the agent will always use. This way, the behaviour of these agents becomes
predictable and static.

• Conversely, fickle agents’ strategy scores will be intertwined, in the sense that
their scores will fluctuate around each other, causing the agent to actively
switch strategies frequently.

An example can be found in the following picture, showing a realisation of the PMG
with N = 101, M = 7 and α ≈ 1.25:
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Figure 3.4: Two intertwined strate-
gies from the same fickle agent.
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Figure 3.5: Two diverging strategies
from the same frozen agent.

3.3 Intertwined strategies
The existence of these two types of agents is determined by the random distribution
of strategies at the beginning of the game. When one of the strategies assigned to
an agent performs way better than the other one, the agent will be frozen using that
winning strategy and both strategy scores will diverge. This may not be the case
for a different agent, which will switch between theirs.

When an agent is using a particular strategy, it is inducing a negative bias on it:
it contributes to the outcome of the game this round, making it more likely to be
in the majority group. Eventually if the strategy scores for both the strategies are
close enough they will meet and possibilities of switching strategy will occur.

To get a better understanding of this phenomenon, we introduce the following ex-
periment: we will run a normal simulation of the PMG for some time, find two fickle
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3. The evolution of strategy scores

agents, and uncouple them from the game, which will run for some more time. With
uncoupling we mean taking the two agents out of the game, in the sense that they
are not counted towards the attendance anymore, so they do not participate in the
minority and majority groups. But we still keep track of their strategies’ scores. As
they are effectively not playing, the negative bias they include in the strategies they
use should be eliminated, and they strategy scores should diverge from each other,
and follow their own paths depending on how good the strategies are suited for the
current realisation of the game. One can afterwards include them back in the game
to check this bias is acting again.

0 1 2 3 4 5 6 7 8 9

·104

−2,400

−2,200
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200
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t
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Agent 1
Agent 2

Figure 3.6: Typical behaviour when we decouple and couple fickle agents from the
game.

We can see an example of this in figure (3.6), where the first and second dashed
lines mark the decoupling and re-coupling times respectively.

Fickle agents will continue switching strategies forever, as their strategy scores will
keep curling around each other. A similar phenomenon has been studied in [10],
where the attractive behaviour between a strategy and its anticorrelated partner is
detailed. It is shown that in the diluted phase we are looking at, pairs of anticorre-
lated strategies would cycle around each other thus producing an ever-changing strat-
egy rank vector, where anticorrelated strategies s and s′ verify ∑2M

µ=1 a
µ
sa

µ
s′ = −2M .

Similar experiment can be performed for the frozen agents, one typical run of the
game is displayed below in figure (3.7):
In this case, both agents use only one strategy, the one with higher score, which
is the one located higher for every colour. We can see that the non-used strategies
(the ones located lower for each colour) are not greatly affected by the decoupling:
they are not in use at any time, However, we see that for both agents their pre-
ferred strategy grows much more when decoupled, as the negative bias introduced
when they use it is removed. When we couple them again, we recover the original
behaviour and leading strategies return to their previous score trends.

12



3. The evolution of strategy scores
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Figure 3.7: Typical behaviour when we decouple and couple frozen agents from
the game.

All this observations led us to look at the distribution and behaviour of these pairs
of strategy scores, which will be discussed in detail in the following chapter.
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4
Analysis of the strategy score gaps

From now on, we shall refer to the score difference between an agent’s two strategies
as the score gap or just gap. Using the same notation as in the second chapter,
we can write the time series of scores for the two strategies of agent i as Ui,1(t) &
Ui,2(t). Thus the gap time series will be: xi(t) = Ui,1(t)− Ui,2(t).

Looking at the gap sign one will know which strategy the agent i is using: if xi(t) ≥ 0,
the preferred strategy will be the first one, otherwise the second one will be selected.

Note as well that every time step the strategy scores are allowed to vary with ±1
only, so the gap will vary with −2, 0, 2, which can be normalised to −1, 0, 1 just by
taking xi(t) = (Ui,1(t)− Ui,2(t))/2.

As we mentioned in the previous chapter, at the right hand side of the phase tran-
sition fickle agents will be forever switching strategies as the gap vector will keep
switching from positive to negative values and vice versa. It then becomes interesting
to investigate further on the distribution and behaviour of the gap time series.

4.1 The distribution of gap values
The first thing we need is to identify fickle and frozen agents, as the gap analysis
only makes sense for the former. This can be accomplished by choosing a threshold
value gapmax for the fickle agents’ gap, then run a simulation checking whether the
gap of the agents goes past the threshold, this will effectively distinguish between
the two kinds of agents. To choose the threshold value one has to take into account
the magnitude of the equilibration time, but still a large range of values works per-
fectly: if one chooses a too small threshold, we will be leaving fickle agents out,
which will not be a problem, but we will get less data. For a too big threshold one
will risk including frozen agents whose gap will just increment with time.

Once we have correctly identified the fickle agents we will continue the simulation
storing the gaps for all of them at every time step. It is worth noticing here that
we have arbitrarily assigned the labels 1 and 2 to the two strategies hold by each
agent, so to eliminate this bias we will work all the time with the absolute value of
the gap, making sure to double the zero gap, so that we do not double count in an
inconsistent way.
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4. Analysis of the strategy score gaps

We have performed extensive simulations for a variety of values of α, and in all cases
the obtained distributions seem to follow, letting x = |gap|,

Px ∼ e−bx
c

, x = 0, 1, 2, . . .

the so-called stretched exponential.

Its parameters are a function of N and α, as we can see in the following plot for the
exponent parameter c:
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Figure 4.1: The parameter c of the stretched exponential as function of N and α.

We can see that for large N and large α, c → 1, thus obtaining an exponential
distribution. Two examples for low and large α are shown below:
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Figure 4.2: N = 101, M = 7, α ≈
1.27, c ≈ 1/3
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Figure 4.3: N = 1001, M = 18,
α ≈ 261, c ≈ 1

It is true, as we see in figure (4.2), that for small α the fit works very well for all
but the very first values of x, which deviate themselves a bit from the stretched
exponential. For larger α when the stretched exponential turns into exponential,
the fit is great for all values of gaps x.
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4. Analysis of the strategy score gaps

4.2 An upper bound for the maximum gap sizes
based on time

In this chapter, we are studying the gap sizes in our simulations. It is possible then
to introduce a simple estimate for an upper bound for the maximum gap size we
expect to find, given the simulation time. The reasoning is as follows: given a time
window τ , we expect to see a gap x if and only if Px · τ ≥ 1, thus

τ ≥ P−1
x = 1

a
ebx

c =⇒ log τ ≥ − log a+ bxc ≈ bxc =⇒ x ≤
(

log τ
b

)1/c

the timescale τ , in the periodicity sense, will be roughly the size of the state space
(as the game is deterministic, it will repeat itself whenever it finds the same state,
which cannot take longer than the size of the state space), which depends on the
number of fickle agents Ns (the ones switching strategies, with dynamic behaviour),
the maximum gap size x and the number of possible past histories:

τ ≈ 2M(2x+ 1)Ns =⇒ log τ ≈ Ns log 2x

Hence, bringing together the two equations we obtain:

x ≤
(
Ns log x

b

)1/c

=⇒ Ns log 2x− bxc ≥ 0

This is a rough upper bound for the period time, as it is based on the game looping
all over the possible state space, which includes all possible past histories and gap
configurations for all the agents: the truth is that for most of the cases in the diluted
phase, the game does not visit all the states evenly, so the estimate will be way bigger
than reality, but still an upper bound.

4.3 The jump probability chain
We found experimentally that the the probability mass function for the size of the
gaps fits a stretched exponential, Px ∼ e−bx

c . To justify this experimental obser-
vation, we will describe in this section a phenomenological model that provides the
stretched exponential behaviour.

We will look at the jumps between agent’s strategy gaps: for every agent and time
step of the game we will check the gap jumps (how the score difference between
their two strategies varies that time step) and store them, so that we obtain the
probabilities to jump to gap y from gap x, P(x → y). As in a single time step
the gap can only jump ±1 or stay +0, we will effectively have three probabilities
for each observed gap value x: (p−x , p0

x, p
+
x ), where p−x +p0

x+p+
x = 1 ∀x, see figure 4.4.

Experimentally we can run a simulation and obtain the probabilities (p−x , p0
x, p

+
x ) at

each gap x for this game, the typical result looks like figure 4.5.
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4. Analysis of the strategy score gaps
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Figure 4.4: Jump probability chain, featuring possible gap values as nodes and
the possible jumps with their probabilities.
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Figure 4.5: Set of probabilities (p−x , p0
x, p

+
x ) for each gap value.

This way we have build a chain with nodes (0, . . . , xmax), where each node has arrows
pointing to the immediate right and left nodes and to itself. The next step will be to
derive the master equation for this chain. Let Px(t) be the probability of occupation
of node x at time t.

Px(t+ 1) = p0
xPx(t) + p−x+1Px+1(t) + p+

x−1Px−1(t)

We shall now solve the equation in order to find agreement with the observed experi-
mental distribution Px(t). There is no experimental evidence of any time dependence
on Px(t), so assume a stationary distribution and write Px(t) ≡ Px. If one has a
look at the typical curves p−(x) and p+(x) we can see that they are nearly flat from
gap values around 10, which induces the following assumptions: p+

x−1 ≈ p+
x ≡ p+

and p−x+1 ≈ p−x ≡ p−. Hence the master equation will look like:

Px = p0Px + p−Px+1 + p+Px−1 = (1− p+ − p−)Px + p−Px+1 + p+Px−1 =⇒

=⇒ p−
(

1− Px+1

Px

)
= p+

(
Px−1

Px
− 1

)
This equation relates the probabilities p± to the gap size distribution Px, so let’s
solve it. Trying the ansatz Px ∼ α−x = e−x logα we easily obtain:

p−

p+ = α =⇒ Px ∼ e−x log(p−/p+) (4.1)
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4. Analysis of the strategy score gaps

and if one compares with the experimental expression Px ∼ e−bx
c one finds:

e
−x log

(
p−

p+

)
∼ e−bx

c =⇒ log
(
p−/p+

)
∼ xc−1
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Figure 4.6: Fitting the model to a PMG with parameters N = 101, M = 7,
t = 109.

In figure 4.6 one can see that our model fits the simulation data very well. The
vertical dashed line represents the start of the gap values used to fit the stretched
exponential to the probability mass function. As we commented earlier, when mak-
ing the assumption of slow variation of p+/−

x with x, this would be reasonable for
gap values greater than, approximately, ten, which is precisely the dashed line’s
position.

4.3.1 Random walk on the chain
As a experiment and confirmation of our chain analysis, once we have the jump
probabilities for each gap (figure 4.5) we can perform a random walk on the gap
sizes following these jump probabilities. This way we can obtain the probability of
occupation for each gap size, which is equivalent to Px. We show in the following
picture an example run, where we can see very good agreement with the experimental
probabilities even for small runs.

4.4 Analytical solution for the jump probability
chain in the limit of large α

We remember from figure 2.1 that values of σ2, for large α, approach σ2/N = 1, as
corresponding to a coin-toss limit. So in this regime, the non-used strategies will
update their scores with ±1 equally likely. For the strategies in use at a given time
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Figure 4.7: Random walk on the experimental chain. Parameters: N = 101,
M = 7, 108 jumps.

step, we will have attendance:

A(t) =
N∑
i=1

ai(t)

where ai(t) is the strategy used by agent i at time step t, and score updates:

Ui(t+ 1) = Ui(t)− ai · sign(A(t))

Without loss of generality, assume ai(t) = 1 for a fixed value i and drop the explicit
temporal dependence, then the attendance will look like:

A = 1 +
∑
j 6=i

ai

where the sum extends now over N ′ = N − 1 agents, being N ′ an even integer.
However, as we work in the large N limit, N ≈ N ′ and we will drop the prime
henceforth.
Let’s look at the following probability:

P (A > 0) = P

(
N∑
i=1

ai ≥ 0
)

= P (λ > 0) + P (λ = 0) (4.2)

where λ = ∑N
i=1 ai, the sum extending over all the agents but the fixed i-th one. As

the strategies are randomly distributed, P (λ > 0) = P (λ < 0), therefore

1 = 2 · P (λ > 0) + P (λ = 0) =⇒ P (λ > 0) = 1
2 −

1
2 · P (λ = 0)

hence equation (4.2) turns into:

P (A > 0) = 1
2 + 1

2 · P (λ = 0)
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4. Analysis of the strategy score gaps

and similarly:
P (A < 0) = 1

2 −
1
2 · P (λ = 0)

In terms of score jumps, keeping in mind that ai = 1:

P (A > 0) = P (∆Ui = −1) & P (A < 0) = P (∆Ui = +1)

and defining again x = (∆U+
i − ∆U−i )/2, the score gap between agent i’s two

strategies, where strategy U+
i has the highest score (or either of them in case of tie),

and ∆ = xt−xt−1 the gap variation at a given time step which can only be ±1, lets
us write:

P (∆ = 1) = P (∆U+ = +1) · P (∆U− = −1) = 1
4 (1− P (λ = 0))

P (∆ = −1) = P (∆U+ = −1) · P (∆U− = +1) = 1
4 (1 + P (λ = 0))

P (∆ = 0) = P (∆U+ = −1) · P (∆U− = −1) + P (∆U+ = +1) · P (∆U− = +1) = 1
2

With the same notation as in the previous section, we identify p+ = P (∆ = 1),
p− = P (∆ = −1) and p0 = P (∆ = 0).

Moreover, P (λ = 0) is binomially distributed, as it is just the probability that N/2
agents choose ±1 respectively, and one can write:

P (λ = 0) =
(
N

N/2

)(1
2

)N
≈(N�1)

√
2
πN

where we have used Stirling’s approximation for the factorial, valid for large N ,
N � 1. Then we can approximate our previous formulae to:

P (∆ = 1) = p+ = 1
4

1−
√

2
πN

 & P (∆ = −1) = p− = 1
4

1 +
√

2
πN


and therefore:

p−

p+ ≈
1 +

√
2
πN

1−
√

2
πN

≈ 1 +
√

8
πN

Going back to equation (4.1), we obtain the following expression for the gap prob-
ability distribution:

Px ∼ e−x·log(p−/p+) ∼ e−x·log(1+
√

8/πN)

and as N � 1, we can Taylor expand the logarithm to finally obtain:

Px ∼ e−x
√

8/πN (4.3)
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Figure 4.8: Analytical model for large α, PMG with parameters N = 1001, M =
18. The slope of the red line is −

√
8/πN .

One finds very good agreement between the analytical expression and simulation
data in the right regime, large N and α. An example of a particular run of the game
is displayed in the previous picture 4.8.

If one looks back at expression 4.3, we can rewrite it as Px ∼ e−x/x0 , where

x0 =
√
Nπ

8

is the characteristic length. We can then see that only for finite N the strategies
are confined, in the N −→ ∞ we get a simple random walk (with p+ = p−) in the
jump chain, yielding to diffusion behaviour: 〈x2〉 ∼ t (time).
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5
The Constrained Prior Minority

Game (CPMG)

As studied in the previous chapter, frozen agents will be completely static as they
do not switch strategies. Concerning the fickle agents, their score gap is enough
information to know which strategy they are currently using. Moreover, when we
use the Prior MG, we take out any kind of stochasticity from the simulation, being
completely deterministic from the start. Although it still presents random quenched
disorder corresponding to the randomly generated strategy tables.

These two features suggest the possibility of looking at the PMG as a deterministic
dynamical system or Markov process, in which we can define a set of states and the
deterministic transitions between them. A state is determined by the past history
µ and the gap values for all the fickle agents {x1, x2, . . .}. The frozen agents will
always use the same strategy, so they do not count towards more states.

However, the possible gap values for the fickle agents are usually large, most of the
cases of a few hundreds. This inspired us to introduce a slightly different game,
which we named Constrained Prior Minority Game (CPMG). The difference with
the usual MG is that we introduce a maximum gap value xmax, which bounds the
fickle agents’ possible gap values. This maximum gap value can be chosen small
compared to these typical few hundreds, thus obtaining a much smaller number of
possible states and a greatly simplified behaviour in comparison with the PMG.

This way, the number of possible states will be given by 2M(2xmax + 1)Ns , where N s

is the number of fickle agents, and we have used again the fact that gaps can only
be even numbers, hence normalizing dividing by two so that we obtain successive
gaps . . . , i−1, i, i+1, . . . . The 2M comes from the number of possible past histories.

We can represent our system as a directed graph where the nodes are the different
states and there is one arrow coming out from every node, which can be a self loop.

5.1 Justifying the use of the CPMG
When we bound the possible score gaps we are introducing a bias in the system, or
equivalently, defining a new game. It is not obvious that both the classical and this
newly defined games have the same behaviour, so that the CPMG is a good tool
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5. The Constrained Prior Minority Game (CPMG)

to study and analyse the PMG. There are several things we can check to guarantee
this equivalence:

• The dependence on the initial history: we need a preliminary simulation to
find the frozen agents, where we use a random initial history. Insensitivity to
initial history will guarantee this procedure is reasonable. Also, getting similar
score despite of this initial history will also show stability.

• The behaviour of the variance of the attendance, σ2, one of the main features
of the game. The new game exhibiting the same transition will guarantee the
two games behave similarly.

We will go through each of these issues in detail now.

5.1.1 Initial history dependence

To check the effect of the initial history, one can distribute strategies to all players
and then perform simulations of the same configuration of the game with each pos-
sible initial history, measuring whether this affects the agents being frozen or not.
It is found that for all tested values of N : 101, 301, 501, 1001; and α: from ≈ 1 to
≈ 120, being frozen is completely independent of the initial history, it is completely
determined by the random assignment of strategies to all players. Then, it is safe
to use a random history to characterise agent type.

As we can see in the following picture, agent success in the game depends mostly
on their set of strategies, rather than the choice of initial history, as all the agents
fluctuate very little for all histories:
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Figure 5.1: Agent ranking (from 1, best score, to N , worst) for each possible initial
history. Each line is a different agent, a few agents have been picked and plotted to
keep things clear.
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5. The Constrained Prior Minority Game (CPMG)

5.1.2 The variance of the attendance
As explained in chapter (2.1), the variance of the attendance, σ2, is one of the most
important features of the MG. We would like to recover this two-phase structure for
our game as well.

10−1 100 101

100

αc

α

σ
2
/N

PMG
Max gap = 6
Max gap = 12
Max gap = 18
Max gap = 24

Figure 5.2: In thick black, the original PMG. Thin lines, CPMG with different
maxgap sizes.

In figure (5.2) we can see that we recover the phase transition, the larger xmax,
the better resemblance compared to the original game. Clearly, the PMG is the
xmax −→ ∞ limit of the CPMG, but still the curves approach the original even for
small xmax.

5.2 Advantages of the CPMG
As we mentioned earlier, in the diluted phase, periods grow enormously big, making
the game look absolutely aperiodic simulation-wise. However, when one constrains
the possible gap values, the resulting game exhibits very small periods, reaching a
stable periodic behaviour very quickly. We typically get a few connected compo-
nents, two in the example plot below, and a few attracting short cycles, meaning
from all states we reach a stable cycle with some small period ∼ 10.

Depending on the initial state, the game will be quickly stabilised in one of this
cycles. In the example below, figure 5.3, we find four different cycles, the game will
be trapped in either of them depending on the initial history.

As we discussed in section 4.4, the PMG should exhibit much better periodic be-
haviour (for finite N) than the original game, which has a stochastic component.
In the PMG we can find periodic behaviour (small period) for games in the diluted
phase, keeping N very low, but as soon as we go to a bit larger games, the periods
grow enormously. On the other hand, this CPMG keeps periods low, but it is true
that its complexity and computation time grows fast with N and M .
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Figure 5.3: CPMG graph for parameters N = 5, M = 3, gapmax = 4. Dashed red
line separates the two connected components. Red loops show the attractive cycles.
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6
Summary and conclusions

In the first chapter we presented a historical introduction to this kind of models in-
spired by economics, starting with El Farol Bar problem, which was the precursor of
the Minority Game. It introduced the concepts of inductive reasoning and bounded
rationality in a precise model which could be simulated mechanically.

The second chapter is devoted to the inner workings and important results con-
cerning the MG: we started with the basic definitions to then introduce the phase
transition and the predictability analysis. Also we described the modification to the
original game with gives yield to the prior MG, getting rid of the small stochastic
component of the early MG. This will be a key point as the two games are completely
equivalent in terms of behaviour and will allow us to perform all the analytical anal-
ysis with greatly simplified statistical framework.

In the third chapter we start focusing on the evolution of the strategy scores, funda-
mental part of our work. Depending on the regime we are working at, we find very
different overall behaviour which also translates in very different score behaviour: in
the diluted phase we observe that the strategy scores diverge with time, rather than
being bounded as happens in the crowded phase. This divides the agents into two
types: frozen and fickle, depending on whether they only use one strategy continu-
ously or they actively switching between their two. A key aspect of this fickle agents
is the gap between their two strategies’ scores, a big gap meaning they will use the
leading strategy for a long time, whereas a small gap indicates faster switching.

In the fourth chapter we analyse the distribution and behaviour of this score gap:
we performed extensive simulations to find that the distribution of the gap fits a
stretched exponential distribution, which slowly turns into a regular exponential for
large N and α, and a phenomenological model for this behaviour is provided solving
the master equation of a random walk on jump chain. Moreover, an analytical model
is detailed in the limit of large α, the coin-toss limit. We see very good agreement
with the simulation data. Also an analytical upper bound to the period of the game
is provided, explained in terms of basic probability and the game parameters.

In the fifth chapter, a modification of the MG is proposed: we will bound the gap
between all the agents’ strategy scores. This will create a finite state space of much
smaller dimension compared to the original game, and as the game is deterministic
we can represent the dynamics using a transfer matrix (equivalent to the adjacency
matrix in graph theory). This gives yield to a much simplified behaviour, with small
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6. Summary and conclusions

period behaviour. It can conveniently be presented as a graph, where the nodes are
the possible states (in terms of past history and gap configuration for all the agents),
with a single arrow coming out of every node indicating the next state.

An interesting problem for future work is to study similar analyitical models for the
PMG in the case of the dilute phase but far from the coin-toss limit, where important
correlations appear affecting greatly the behaviour of the agents. This analysis is
much more complicated than the coin-toss model, and it will need extensive use of
the Central Limit Theorem, to work statistically with the mentioned correlations.
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