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ABSTRACT 
 
Stent graft migration has been recognized to influence the long-term durability of endovascular aortic repair. Flow-induced 
displacement forces acting on the attachment zones may contribute to this migration. An experimental perfusion model 
consisting of the flow loop described by Roos et al. [1] was used for further characterization of the pulsating flow induced 
stent graft movements with monocular and stereoscopic configurations of an optical imaging system. This paper adds new 
information on displacement measurement accuracy and 3D deformation analysis of the stent graft, which is used for 
abdominal aortic aneurysm treatment. The work describes used modification of Soloff’s Stereo PIV reconstruction 
algorithm for surface motion analysis. It was found that the oscillation of the stent graft’s body in the perpendicular 
direction to the front plane was 5 times less than side movements of the bent stent graft. These results can be used for 
further studies on different stent graft geometrical configurations and CFD simulations using fluid-structure interaction 
approach.  
 
INTRODUCTION 
 
Abdominal aortic aneurysm (AAA) has been reported to have increasing prevalence especially for older men, long-term 
smokers and those people who have high blood pressure in anamnesis. Endovascular aortic repair (EVAR) has been proved 
to reduce short-term morbidity and mortality during the treatment of the aortic aneurysms compared with open repair. 
However, EVAR has a higher risk of late complications and reinterventions [2, 3]. Many reinterventions are linked to 
migration of the stent graft and endoleaks of type I and III, related to insufficient seal at the stent graft attachments or 
interconnections respectively. Previous research [1, 4] has shown that the migration and endoleaks are linked with an 
insufficient anchoring of the stent graft. Stent grafts that are currently used for EVAR have hooks and barbs to prevent 
migration of the proximal (upstream) end of the stent graft. However, the distal (downstream) end does not have any 
additional mechanisms for fixation on the walls of the aorta except for the self-expanding force. As was previously reported 
by Resch et al. [4] the force needed to dislodge a stent graft with only self-expanding fixation is in the 2-4 N range. 
Biological incorporation has not been reported to provide any substantial support for stent graft fixation [4] because most 
migrations were diagnosed more than a year after an intervention. Roos et al. [1] found that the displacement forces have 
similar magnitude at both ends of the stent graft and that they increase with increased graft angulation and perfusion 
pressure but not with stroke frequency. 
 
Several papers have presented results of computational studies for displacement forces. Li and Kleinstreuer [5] stated that 
the risk of a stent graft migration increases with its ratio between the inlet and outlet diameters. They also stated that the 
drag forces amplify with a higher aneurism neck angle, which is referred to as “angulation” in the current paper. 
Molony et al. [6] simulated the blood flow inside real abdominal aneurysm geometries of 10 post-operative AAA patients, 
obtained by CT scans. They concluded that the displacement forces correlated with perfusion pressure. Both studies used 
similar fluid-structure interaction simulations and reported that the contribution of the wall shear stress, or viscous 
component of the drag force, is negligible in comparison to the blood pressure or momentum change inside the stent graft. 
Three-dimensional MRI and CT scans of deployed real stent grafts after the EVAR were also analyzed by Figueroa et al. 
[7] with a following computer simulation inside the obtained geometry. CT scans by Waasdorp et al. [8] detected sideways 
movement of the stent graft. Sideways movement of the stent graft was also associated with an increased need for re-
interventions.  
 



 

Volodos et al. and Liffman et al. [9, 10] presented results of in vitro experiments measuring the displacement forces acting 
on the stent graft in pulsating flow conditions. Both experiments simulated an aneurysm sac with adjustable outer pressure. 
Volodos et al. [9] considered a straight graft geometry without angulation. The mean weight required to fix the PTFE graft 
with diameter 22 mm and atmospheric outside pressure was equal to 208.5 g. Liffman et al. [10] investigated dependence of 
the extraction forces needed to pull the modular stent graft apart inside an aneurysm sac on the pressure difference. 
 
Measuring deformation and displacement of various objects is one of the most popular technique used in mechanical 
engineering in the design and testing of products and systems. And one of the most attractive methods of measurement is 
the photogrammetric approach, due to the nature of the non-contact measurement device design and the high degree of 
automation. The possibility of instantaneous measurements of a shape of an object opens very wide possibilities for the 
study of the processes of deformation and motion dynamics. There are currently a number of devices on the market for 
measuring shapes of bodies and their dynamics over time, for example Vic-3D from Correlated Solutions Inc. [11], 
StrainMaster from LaVision GmbH [12], etc. One of the directions of the European project AIM2, supervised by DLR, was 
dedicated to development of photogrammetric techniques for use in flight tests [13]. 
 

 
Figure 1 Scheme of the perfusion model 

 
Among the used algorithmic implementations, one can distinguish the approaches of tracking a small number of selected 
markers on the surface of the object, correlation techniques (Digital Image Correlation/Image Pattern Correlation 
Technique), algorithms based on optical flow (Optical Flow), which have different capabilities for accuracy, spatial 
resolution, the requirements to the properties of the surface and its preparation. One of the possible directions of 
development of the method of photogrammetry is the use of the approaches developed for solving problems of 



 

measurement of a velocity distribution in a fluid flow using movements of suspended particle-tracers in the flow volume 
(Stereo Particle Image Velocimetry, 3D Particle Tracking Velocimetry). A feature of these methods is the large number of 
points (particle-tracers) with the simultaneous measurement of velocity (tens of thousands or more), high precision 
measurements of displacements (0.1 pixel), the existence of procedures for error correction of calibration, the ability to 
measure with high temporal resolution (tens of kHz), etc. Much of the above is provided primarily by specialized image 
processing algorithms, allowing the basic configuration of measurement systems are simple enough to use. 
 
The present work describes the usage of a standard PIV system for experimental fluid mechanics to measure the motion of 
the surface of a bent stent graft under pulsatile in vitro flow conditions. In addition, 3D displacement field measurements of 
the stent graft surface are provided to compare the displacement in the perpendicular direction with that obtained within the 
bend plane. 
 
METHODS 
 
An in vitro model of the pulsatile flow was used to establish a flow that was in the range of the expected physiological flow 
through an iliac limb stent graft. This perfusion model is shown in Figure 1. We used a digital image correlation technique 
to obtain displacements of the stent graft with pulsatile flow going through it. We measured 2D projections of the stent 
graft’s surface displacement field in a direction perpendicular to the plane where the stent graft was located. For this 
purpose a digital camera was located perpendicular to the plane at the distance of 895 mm to it. It allowed us to analyze 
substantial side movements. Additionally, 3D displacements of its surface were measured using a stereoscopic optical setup 
in order to assess the value of normal to the plane dislocations of the stent graft. For the scheme of the optical measurement 
setup, please see Figure 2. 
 
Photographs of the used cylindrical stent graft are shown in Figure 3. The stent graft is a complex device made of 
composite materials. It can be easily bent or compressed as it incorporates a metal serpentine spring. On the other hand, the 
stretching capabilities are quite limited because the rectified and unbent tube from Gore-Tex is less flexible than its 
supporting spring. However in our experiments the stent graft was slightly compressed, hence, for small deformations less 
than 2-3 millimeters it can be considered to a certain extent as a coil spring. As it can be seen from Figure 3 the serpentine 
spring frame has higher zig-zags in its middle position preventing the body from folding and following occlusion while 
being bent. Therefore the stent graft has inhomogeneous distribution of elasticity with more flexible parts closer to its ends. 
The curvature of the stent graft was evenly distributed along its length.  
 

 
Figure 2 Scheme of an optical measurement setup 

 



 

No special surface preparation of the stent graft was done. The original surface with the tube supported by a tubular nitinol 
serpentine spring was illuminated with a continuous light source. The registered images were masked to remove the 
background and were then used as an input for DIC analysis. According to preliminary tests the 2D correlation algorithm 
succeeded to determine the relative displacement between the unloaded and loaded stent graft using the original wired 
surface pattern shown in Figure 3. The opaque tube surface did not produce significant specular reflections because 
expanded PTFE (Teflon), from which the tubing was made, is a porous material with good scattering characteristics. The 
only problem with the stent graft tracking was water droplets leaking at the proximal attachment due to the insufficient seal 
of the proximal fitting. Sometimes moving refracting droplets led to displacement field’s disturbances in that area. 
 
We used a stereoscopic configuration for assessment of the third displacement component of the deformed arbitrary surface 
of the stent graft. This was done to ensure that the main dislocation occurred in the bending plane and that the normal to the 
plane displacement component can be neglected in our cases as well as contraction and expansion of the tubular graft. For 
this purpose we used a second camera observing the object on the right with the viewing angle 40 degrees to the plane and 
at the distance of 769 mm to it, see Figure 2. The camera position was extracted from its calibration parameters. 
 
Both cameras were calibrated using a three-dimensional LaVision calibration object Type 11. For obtaining 3D surface 
deformation we analyzed stereoscopic images of the tested object before and after deformation. At first a depth map H(x, y) 
of the surface of the unloaded stent graft was calculated. The depth map was obtained by the standard method using 
disparity calculation of rectified stereo pairs through a local algorithm of optical flow calculation called a block-matching in 
the OpenCV library [16]. The depth map was then translated to the coordinate system defined by the calibrating object. For 
deformation calculation we used a modified algorithm for Stereo PIV reconstruction based on Soloff’s approach [17]. 
Originally this method was proposed to calculate a three component displacement field in the laser sheet plane z = 0 for 
velocity measurements. During modification we substitute constant z = 0 by the surface depth z=H(x, y) which was 
interpolated into the final regular grid (xi,yj). Displacement fields of the object upon the projections were obtained using a 
2D PIV cross-correlation procedure. Thus for measurements of the 3D surface deformation we used two camera mappings, 
the unloaded object’s depth map and two 2D deformation fields for the original images. The result is a 3D deformation 
field on a regular grid (xi, yj, H(xi, yj), dx, dy, dz), where (dx, dy, dz) are those three components of the deformation field at 
the grid nodes (i, j). 
 

 
Figure 3 Photographs of two stereoscopic views of the anchored cylindrical stent graft with the fitting diameter 16 mm 

 
We assessed the accuracy of the 3D deformation calculation algorithm described above using synthetic images of a 
deformed plate. The synthetic images were generated with the OpenGL functionality. This library allows users to create 3D 
graphics and has a required set of functions to create arbitrary texturing surface from finite elements in the form of 
triangles. The developed software simulated the deformation of an object surface and was able to use images of real 
surfaces as textures, which further enables us to obtain realistic input data for the measuring system with controlled 
deformation parameters. 
 



 

The software used perspective projection with parameters fovy = 13 degrees and aspect = 1.78 (field of view angle and 
aspect ratio correspondingly) and near and far clipping planes at distances z = 3 and 5000 mm. A 3D model of a thin plate 
with sizes 120×48.5 mm was constructed by dividing into geometric primitives (a total of ≈50 000 elements), 
approximating a smooth surface. The plate model was textured with evenly distributed peak intensities of the Gaussian 
shape on the plane. The entire scene was filtered with the algorithm of anisotropic texture filtering to prevent blurring of the 
images of the plate at a considerable distance of the camera from the perpendicular to the plane of the plate.  
 
The scene was projected onto three cameras located at points (0, 0, -300), (±300/(√3), 0, -300) in mm. Optical axes of the 
virtual cameras intersected at the origin of coordinates. Thus, all the cameras were located at the distance 300 mm from the 
plane of the plate and the angle between adjacent cameras was 30 degrees. The pixel size of the cameras was equal 20 µm, 
wherein the focal length of the central camera was equal to 72mm. 
 
A set of image projections with black circular markers 1.5 mm in diameter on a flat rectangular grid with the size 39×39 
and distance 3 mm between neighboring markers was generated for camera calibration. The plane of the grid was 
sequentially located at the different depth distances z=0, 5, and 10 mm. The model images were saved with 8 bit 
quantization of the gray level in HD format (1920×1080 pixels). The error related to the noise in the images or the position 
of the calibration markers in the model was not simulated. 
 
The deformation of the plate was performed by fixing its right edge (x=60mm) and moving its left edge (x=-60mm) 
perpendicular to the plane of the plate toward an observer. According to Sedov [14] a deformation of a thin plate takes on a 
parabolic profile, which was implemented in the framework of the model. The deformation was carried out with 
preservation of the original length of the plate (bending without stretching). 
 
(a) 
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Figure 4 Results of the error analysis for the correlation algorithm using synthetic images. (a): Profile of the simulated 

plate deformation in a plane XZ with a 1 mm left side bend in the positive Z direction. Points show the calculated 
displacement component along the Z direction, and the solid line denotes a theoretical displacement profile. (b, c, d): The 

deviation of the calculated displacement components from the exact values for X, Y, and Z directions. 
 



 

We compared the results of the correlation algorithm with results of an algorithm that can track the motion of individual 
points on a surface of a deformed body. This method triangulates densely located markers using its three registered 
projections. We applied the relaxation matching algorithm of the same markers on the original and deformed surfaces. This 
method was previously used by the authors to trace particles suspended in a volume of turbulent flow (3D PTV) [15]. 
Additionally we clustered markers that were located on a surface to remove outliers arising from ambiguity of 
correspondent points search during the triangulation process. The result of this algorithm is a field of three-dimensional 
deformation on an irregular grid in the form (xk, yk, zk, dxk, dyk, dzk), where k is an index of a tracked marker on a surface. 
 

(a)

 

(b)

 
Figure 5 Profile of the simulated deformation of the plate in a plane XZ with (a) 1 and (b) 2 mm side bend toward positive 
Z direction. Points show the calculated deformation along Z direction. The solid line denotes a theoretical parabolic profile.  
 
The results of an error assessment for the deformation measurements using the synthetic data of the thin plate bend are 
shown in Figure 4 and Figure 5. In this case, an element of a virtually infinite plate with coordinates x = -60mm was 
located at a distance z = 1 mm after bending. The left edge of x = -60mm (position without deformation) after deformation 
of the plate end was located 5 um closer to zero on the X axis compared to the unloaded state. The final grid during the 
calculation of the displacement using correlation analysis had the size of the cell equaled to 32 px. No cell overlapping was 
applied. The error was analyzed for 1089 measured points of the object. 
It is seen that the best accuracy is achieved for measuring deformation along axis Y. For example, the 1 mm bend gave us 
the standard deviation 0.9 um (see Table 1), while the standard deviation of the measured deformations along the X and Z 
axes were near 6 um. This represents 0.6% of the amount of bending for the relative error. 
 

Table 1 Assessment of deformation measurement accuracy using synthetic images of a deformed thin plate 
 Correlation analysis Surface points tracking 

Plate deformation 
dz(-60) cases [mm] 

1 2 5 1 2 5 

Bias error x, y, z 
[um] 

1,6 
-0,1 
0,2 

4,6 
-0,08 
0,9 

17,2 
0,02 
2,6 

-0,034 
0,005 
-3,4 

-0,37 
0,04 
-4,2 

-1,8 
-0,07 
-5,5 

Random error 
x ,y, z [um] 

6,4 
0,9 
5,9 

11,8 
1 
7,3 

19,5 
1,8 
15,6 

26,9 
4,6 
17,5 

61,7 
4,7 
19,3 

121,7 
4,6 
24,7 

Maximum absolute 
difference x, y, z 
[um] 

104,5 
12,8 
79,7 

145,8 
12,3 
50,8 

91,3 
20,8 
20,5 

943,4 
10 
85,2 

1964,9 
10 
360,7 

5196,7 
10 
616,8 

 
For the analysis of individual markers during the triangulation the uncertainty area size was equaled to 4 px. Markers 
position identification was done by PMC (Particle Mask Correlation) method using particle template with the Gaussian 
intensity distribution variance 0.8. We used parameters of relaxation algorithms as follows: the maximum possible 
displacement – 1.5, 2.5, 5.5 mm (respectively for each case of 1, 2, and 5 mm bend), the radius of the current particle 
neighborhood - 10mm, maximum permitted value of displacement deviation 0.2, and the number of iterations is 3.  
 



 

The random error of the deformation using the triangulation algorithm turned out to be 2 times higher than for the 
correlation algorithm and was about 20 um for the Z deformation component. Variation in the Y component also was 
significantly lower than the other components and was at 5 um. Variation in the X component increases with increasing of 
deformation, which may be caused by presence of outliers in the output of the relaxation algorithm. Due to the lower 
precision of the surface point tracking approach we have chosen the correlation approach for deformation measurements. 
 
EXPERIMENTAL SETUP 
 
For the measurements we used a 135 mm long Gore Excluder iliac limb stent graft (W. L. Gore & Associates, Inc., 
Newark, DE, USA) with 16 mm fitting diameter. A hydrodynamic loop with water was used to mimic in vivo aortic 
pressures and to establish a flow through the stent graft (see Figure 1). Three different perfusion pressures were investigated 
with fixed stroke rate at 60 b.p.m. An optical imaging system consisting of two synchronized cameras ImagerProX 4M 
(LaVision, Goettingen, Germany) with 2048 × 2048 pixel resolution with SIGMA AF 105 mm f/2.8 EX DG MACRO lens 
was used. Images were captured at 14.4 Hz, which made it possible to perform time-resolved object displacement 
measurements. Data processing was performed using the DaVis 8.2.2 software package (LaVision, Goettingen, Germany) 
for 2D correlation analysis, and in-house MATLAB and C++ codes for deformation fields post-processing and 3D 
deformation characterization. The stent graft movement was evaluated by image cross-correlation with images of the 
unloaded stent graft. The original tube surface supported by a tubular metal web was illuminated with halogen projectors of 
a total power 1.5 kW.  
 
Two strain gauge load cells (Tadea-Huntleigh Model 1004; Vishay Transducers, Malvern, PA, USA) were installed to 
measure the forces at the ends of the stent graft. The relative measurement error for the strain gauge load cells was 
0.0067%. We used a pressure transducer attached to the distal region of the stent graft to measure the pulse waveform, 
which was carefully adjusted to resemble in-vivo characteristics [1]. The type of pressure transducer was the Safedraw 
transducer blood sampling set (Argon Critical Care Systems, Singapore). A solar 8000 patient monitor (GE-Marquette, 
Milwaukee, WI, USA) was used to display the pressure curves. 
 
The movements of the stent graft were captured close to the maximum available frame-rate of the digital cameras, with 14.4 
Hz at full resolution and an exposure time of 250 us. This allowed us to get about 14 displacement fields per stroke and 
resolve the displacement fields referring to the aortic ejection event in time without synchronization with the stroke rate. It 
should be noted that although the stroke rate does not influence the extraction forces, a higher rate can lead to a faster 
migration of the stent graft due to the increased number of extraction acts for a certain period of time. The image data was 
registered for three different perfusion pressures 145/80, 170/90, and 195/100 mmHg, recording five times 100 images in 
order to have enough data for statistics of local extrema of displacements values.  
We assessed the Reynolds number from the mean flow-rate Q taking into account the working principle of the two-roller 
peristaltic pump (HL-10; Gambro, Lund, Sweden), which squeezes one half of a circumference fluid volume of a flexible 
tube per stroke. The radius of the pump rotor was R = 70 mm, and internal diameters of the tubing and the stent graft were 
d = 12.7 mm and D = 16 mm correspondingly. Therefore the Reynolds number equaled 
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stroke rate for all experiments was 60 b.p.m., and ν is the kinematic viscosity. This Reynolds number corresponded to the 
transitional flow regime in a pipe. While the mean flow-rate velocity through the stent graft with diameter D was 0.14m/s 
and flow-rate 1.7 L/min, the maximum velocity of the pulsating flow during a systolic phase is higher. Instantaneous 
velocity measurements inside the stent graft were not carried out at this time. This work focused mainly on integral 
parameters like the stent graft displacement and displacement forces caused by pulsating fluid motion.  
 
DATA PROCESSING  
 
The registered images were analyzed in the following way. At first we determined a spatial location of the maximum 
displacement within the unloaded graft’s surface compared to the loaded state. Most of the time it was a position at the 
middle of the stent graft. For two-dimensional analysis of the displacement field an iterative correlation algorithm from the 
DaVis 8.2.2 software was utilized. The background area not related to the stent graft surface was masked with a manually 
selected rough polygonal area and a fine mask based on an intensity threshold value. The correlation analysis was 
performed with two passes by two iterations each. The first pass was done using 64 × 64 px interrogation area size and 50% 
overlap factor, while the second and final pass had 32 × 32 px areas with 25% overlap. We correlated a stationary image of 



 

the stent graft without pulsating flow and those that were recorded during consecutive strokes. In order to avoid an outlier 
in determination of the maximum displacement location using only one time step we averaged the position of the maximum 
displacement location between first 100 time steps. Before averaging, the maximum location candidates were filtered out 
by a criterion that displacement direction must be in the fourth quadrant of the Cartesian plane within the range between 
290 and 340 degrees. It was corresponded to the right down direction in Figure 6 (a), where the right direction coincides 
with x axis and the down direction is –y, as fluid inside the object was susceptible to a centrifugal inertial force during 
movement along a curved path down to the left. The point of maximum displacement is shown in Figure 6 (a) as Q, and a 
schematic representation of its x component displacement in time is shown in Figure 6 (b). It presents that in the unloaded 
condition when only static pressure was applied the point Q had the x coordinate value less than its mean value plus a half 
of the oscillation amplitude after enabling pulsating flow. Then a time history plot for a nearest neighboring point to the 
average maximum location was extracted. Finally, the end local maxima and minima were determined and its statistics was 
calculated for all the perfusion pressures. The displacement extrema in time were identified at the maximum displacement 
location point and at the lower and upper fixing points.  
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Figure 6  (a): Equivalent scheme of the flexible stent graft for 90 degrees symmetrical bend and distribution of forces 

(displacement force Fcent is marked with red color). (b) A schematic representation of a displacement oscillation for a point 
Q from the left graph before and after activation of the pulsating flow. 

 
We will start by focusing on the fundamentals of movements of the bent cylindrical stent graft under a pulsating flow. It is 
illustrated in Figure 6 (a) in terms of a simplified equivalent scheme with two springs. Due to the momentum change of 
fluid inside the stent graft’s bend an inertial (centrifugal) force Fcent occurs to prevent it. This force works against elastic 
forces T and T’  of the stents graft’s material, which increases with its deformation. The stent graft moves and deforms such 
that elastic forces equalize the inertial force. The higher the fluid velocity the more prominent displacement becomes. In 
this interpretation the upper strain gauge load cell measured projection Fu of the reaction force N in the direction of a flow. 
The similar situation is at the distal end. As it was stated by Roos et al. [1], both the proximal and distal ends undergo the 
same forces in magnitude. This occurs due to the symmetry of the current configuration, with an evenly distributed bend 
with curvature radius R. If the bend has a sudden drop of a curvature radius below R on one of its legs, for example when it 
has a fold, this will produce a displacement force redistribution between the two ends due to symmetry breaking.  
 
RESULTS 
 
Figure 7 and Figure 8 show examples of the 2D and 3D deformation results for the 90 degrees bent cylindrical stent graft 
with a maximal perfusion pressure 195/100 mmHg. The left images correspond to the deformation distribution, while the 
plots on the right refer to the time history of the point marked with the yellow circle in Figure 7 (a) characterized by 
maximal displacement values. The time history for the Z displacement in Figure 8 (b) looks noisier than that corresponding 
to the front plane displacement due to the smaller displacement oscillations in Z direction. According to the shown profiles, 
the maximum amplitude of displacement of the stent graft in this case is 0.24 mm, which is five time higher than it was in 
the out-of-plane direction. Therefore the stent graft movements can be analyzed only as 2D case. 
 
Additionally, the accuracy of the surface 3D shape reconstruction was assessed as follows. The distance from the camera to 

a point of an object for a stereoscopic optical system is defined using the formula
d

fT
Z = , where f is a focal distance, T is a 

separation distance between cameras, and d is a disparity value in mm. Hence, the accuracy of the depth (surface shape) 



 

measurements is expressed as d
fT

Z
ZZ ∆=∆

2

)( , where 16/pxd ∆=∆  is the available resolution of the OpenCV algorithm 

for disparity calculation and px∆  is the a pixel size of the camera in mm [16]. Substituting real values in this expression we 

get the surface shape accuracy as 04.0=∆Z mm or 40 um, which is of the same order as the displacement oscillation 
amplitude in the Z direction. This is the reason for the noise in Figure 8 (b). However, the mean deformation of the surface 
in the Z direction after enabling of the pulsating flow was identified with the satisfactory relative error of 13%. 
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Figure 7 Deformation of 90 degree bent stent graft with fitting diameter 16mm and perfusion pressure 195/100mmHg. 
(a): Photograph of the anchored stent graft with the estimated systolic 2D displacement magnitude field. (b): Time history 

of the stent graft displacement in a point with the maximum amplitude. 
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Figure 8 Results of the measured displacements in Z direction for the 90 degrees bend with the fitting diameter 16 mm 
and perfusion pressure 195/100 mmHg. (a): Displacement of the stent graft surface in Z direction. (b): Time history of the 

stent graft displacement in a point with the maximum amplitude. 
 
The error of the 2D deformation measurement was obtained using the DaVis 8.2.2 software and a-posteriory uncertainty 
quantification for PIV vector fields by correlation statistics [18], which is shown in Figure 9. Both bias and random errors 
are presented in this figure. The typical error values range from 2 um at the lower end and middle position up to 25 um at 

Maximum  
displacement location  
(white, above 0.95 mm) 



 

the upper more shiny part of the stent graft. The error at the position of the maximum displacement was found to be about 
10 um. 
 

(a) (b)  
Figure 9 Results of error assessment for 2D correlation displacement calculations; (a): the bias error distribution, (b): the 

random error for different regions of the stent graft. 
 
The final results of the measurements are summarized in Table 2. The table has two different parts, showing the maximum 
displacements within the stent graft and the displacements at the ends. The displacements are presented as a mean value 
around which the body of the stent graft was oscillated with some amplitude (after the slash) as it is depicted in Figure 6 
(b). As the extrema max and min were obtained averaging several measurements these values are given the standard 
deviation in brackets. The X and Y maximum displacements are quite similar and increasing with the increase of the 
perfusion pressure. Here vertical displacements dominated in 10% compared to the horizontal ones. The maximum 
observed displacement magnitude was 0.95 mm (0.83+0.24/2).  
 

Table 2 Summary of the obtained 2D displacements for different perfusion pressures 
 Notation for displacements: (max+min)/2 (stddev) / max-min (stddev) 
Pressure [mmHg] 145/80 170/90 195/100 
 Maximum displacements 
dx [mm] 0.38(0.005)/0.16(0.009) 0.46(0.008)/0.14(0.015) 0.55(0.007)/0.15(0.014) 
-dy [mm] 0.41(0.004)/0.17(0.009) 0.52(0.006)/0.18(0.012) 0.62(0.009)/0.19(0.018) 
(dx2+dy2)0.5 [mm]  0.56(0.004)/0.24(0.008) 0.69(0.008)/0.23(0.009) 0.83(0.006)/0.24(0.012) 
-dy/dx 1.08 1.13 1.13 
 Displacements at the fixing points 
dxl [mm] (Lower fix) 0.05(0.003)/0.05(0.005) 0.08(0.008)/0.04(0.016) 0.095(0.008)/0.042(0.016) 
-dyu [mm] (Upper fix) 0.11(0.003)/0.07(0.007) 0.14(0.002)/0.07(0.005) 0.176(0.002)/0.076(0.005) 
-dyu/dxl (Upper/Lower) 2.2 1.75 1.85 
 
If we consider movements in the fixing points they are close to the measurement error at the distal end for the lower 
pressure and reach up to 0.214 mm at the proximal end for the maximum pressure. It should be noted that displacements of 
the proximal end were near two times higher than at the distal end, which is linked with the less rigid upper strain gauge 
compared to the lower one, because the measurement range of the load cells was 0-2.8 N proximally and 0-5.6 N distally. It 
did not affect the force measurements since both load cells were properly calibrated. As for the extraction forces they were 
quite similar for both ends and increase with the pressure. All results are in agreement with Roos et al. [1]. The previously 
observed values of the displacements in the middle of the stent graft 0.22, 0.28, 0.29 mm for corresponding pressures were 
lower due to the manual selection of the tracking point and the higher tension of the stent graft between the two fixing 
points. 
 



 

CONCLUSION 
 
Measuring deformation and displacement of various objects is one of the most popular technique used in mechanical 
engineering in the design and testing of products and systems. And one of the most attractive methods of measurement is 
the photogrammetric approach, due to the nature of the non-contact measurement device design and the high degree of 
automation. In this paper a modification of the known Soloff’s algorithm [17] for Stereo PIV data processing was applied 
for 3D surface motion reconstruction. Synthetic images of the deformed thin plate were used to assess the error for 3D 
deformation measurements by correlation and tracking techniques. The correlation method gave us 3 times less random 
error for the Z deformation component than separate points on a surface tracking approach in the case of small 1-2 mm 
deformations of the plate. 
 
Results of an application of the surface motion analysis 2D and 3D in an experimental study of the displacements of the 
stent graft’s body induced by a pulsating flow were presented. For this purpose an in vitro perfusion model that mimics a 
target part of the human circulatory system was used. The pressure pulse form was adjusted to be close to the real situation 
and the pressure outside the stent graft was atmospheric. Results were reported for mean displacement and oscillation 
amplitude at the location of the maximum displacement and at the fixation points of the 90 degrees bent cylindrical stent 
graft with the diameter 16 mm. In this study the detailed analysis of the measured displacement error was provided. The 2D 
measurement error was in the range from 2 um to 25 um within a deformation field. 
 
Using stereoscopic imaging and digital image correlation (DIC) it was found that the stent graft’s pulsating flow induced 
oscillations in the front plane were 5 times higher than in the out-of-plane direction, for example, 0.24 mm compared to 
0.05 mm. For the currently used stereoscopic optical configuration and the stereo correspondence matching algorithm the 
surface depth estimation accuracy was found near 40 um. The relative error of the measured mean displacement in Z 
direction was 13%. According to the obtained results, the maximum mean displacement of the stent graft was 0.83 mm for 
the highest pressure with the mean displacement of the fixing points 0.095 mm and 0.176 mm for the distal and proximal 
end correspondingly.  
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