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We study the asymptotic entanglement of two quantum harmonic oscillators nonlinearly coupled to an
environment. Coupling to independent baths and a common bath are investigated. Numerical results obtained
using the Wangsness—Bloch—Redfield method are supplemented by analytical results in the rotating wave
approximation. The asymptotic negativity as function of temperature, initial squeezing, and coupling strength, is
compared to results for systems with linear system-reservoir coupling. We find that, due to the parity-conserving
nature of the coupling, the asymptotic entanglement is considerably more robust than for the linearly damped
cases. In contrast to linearly damped systems, the asymptotic behavior of entanglement is similar for the two bath

configurations in the nonlinearly damped case. This is due to the two-phonon system-bath exchange causing a
suppression of information exchange between the oscillators via the bath in the common-bath configuration at

low temperatures.
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I. INTRODUCTION

Entanglement challenges our comprehension since the
1930s [1,2] and still remains a highly relevant topic. Problems
relating to entanglement creation and manipulation are of
importance for a broad range of questions related to quan-
tum information science [3], such as quantum cryptogra-
phy [4], quantum dense coding [5], quantum computation
algorithms [6], and quantum state teleportation [7-9]. In
particular, recent experimental advances [10—13] pave the way
for entanglement-based technology.

In this paper, asymptotic effects of nonlinear dissipation on
the entanglement of harmonic oscillators are investigated and
compared to the widely studied situation of linearly damped
(LD) systems. In the latter, the oscillators are linearly coupled
to bosonic reservoirs. Such system-reservoir interactions have,
for instance, been investigated within both Markovian [14,15]
and non-Markovian dissipation models [16-19]. For sys-
tems initially in squeezed states, high-temperature entangle-
ment [20] and the exotic behavior of entanglement sudden
disappearance and revival (ESDR) [14,16,18,21,22] have been
found.

Typically dissipation destroys quantum entanglement.
However, it is known that, by engineering the system-reservoir
coupling, entanglement can be generated [23-25]. For ex-
ample, one possibility to entangle initially separable states
is through the introduction of multi-quantum dissipation, or
nonlinear damping (NLD). Naturally occurring NLD has been
reported in systems which possess strong intrinsic nonlinear-
ities [26]. Among these are carbon-based nanomechanical
systems like graphene and carbon nanotubes [25,27,28].
Additionally, there have been reports of inducing nonlinear
dissipation in optomechanical systems [29,30] and suggestions
for the possible emergence of NLD in solid-state quantum
devices [31].

In Ref. [32] we demonstrated the possibility of entan-
glement generation from initially separable states. Here, in
the light of previous studies on linearly damped oscillator
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systems, we investigate how NLD affects the asymptotic-state
behavior of initially entangled states. For the latter we choose
two-mode squeezed vacuum states [13,14,33,34]. These states
are entangled Gaussian states, which approach the maximally
entangled Einstein-Podolsky-Rosen (EPR) state by an increase
in the squeezing parameter.

While NLD is usually accompanied by a conservative
nonlinearity, it was found in Ref. [32] that a weak conservative
Duffing nonlinearity did not affect the asymptotic state
behavior when only the lowest-lying eigenstates are occupied.
Hence, we here limit the study to purely harmonic oscillators,
nonlinearly coupled to either one common or two individual
environments. This approach serves to isolate the effect of the
nonlinear relaxation behavior on the entanglement and allows
a more transparent comparison with the linearly damped
systems.

Compared to a linearly damped system we find that
the parity protection inherent to the two-phonon exchange
between the system and the reservoirs, and present in the
nonlinearly damped systems, changes the asymptotic behavior
in several ways. First, the asymptotic decay of entanglement
is considerably slower for two uncoupled oscillators. This is
due to the necessity of simultaneous excitation processes of
the two oscillators needed for thermal dephasing. Second,
for individual oscillators coupled to a common bath, we
do not reproduce the sharp transition between steady-state
entanglement and disentanglement in the infinite-time limit,
which is seen in linearly damped systems. For the linearly
damped system, persistent entanglement is connected to the
relative oscillator motion degree of freedom being decoupled
from the bath. For the nonlinearly damped system, no such
decoupling occurs. Finally, for weakly coupled oscillators,
parity protection in combination with coherent oscillations
in the oscillator populations due to the coupling leads to
disappearance and reappearance of entanglement reminiscent
of ESDR behavior.

The organization of this paper is as follows: First, in Sec. II,
we present the model Hamiltonians and derive quantum master
equations (QMEs) for two separate harmonic oscillators
coupled to either individual baths or a common bath. Then,
in Sec. III, we present the asymptotic entanglement behavior
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as a function of temperature, initial squeezing, and dissipation
rate. We compare our results on nonlinearly damped systems
to previous results on linearly damped systems. In Sec. 1V,
we comment on some features of the asymptotic entanglement
behavior of a coupled-oscillator system.

II. QUANTUM MASTER EQUATIONS FOR UNCOUPLED
OSCILLATORS

First we consider two different scenarios where a system of
two independent harmonic oscillators with frequencies w, are
coupled quadratically in position to either two individual or
one common reservoir of harmonic oscillators. The situation
with two weakly coupled oscillators is discussed in Sec. IV.
For the uncoupled oscillators the Hamiltonian is H = Hs +
Hg + Hey'™. Measuring length, time, and energy in units of
VR 2may, w, ! and huwg respectively, we have

1 1
HS = Z <§p5 + 5&)3(]12), (]a)
j=1,2
Hy =) Y wopblbj, (1b)
J k
HE =3"g3> 0l + by, (1c)
J k
HGy =>"q; Y (bl + by). (1d)
J k

Here, p; = iv/wo/2(a} — a;) and q; = (] + a;)//Qwo)
denote the momentum and oscillation amplitude of oscillator
J, respectively, while a j(aj) is the annihilation (creation)
operator of the jth oscillator.

The system-bath coupling part of the total Hamiltonian
is denoted by H;% for two individual baths, and Hscg is for
the common bath. For the individual bath configuration the
operator bj-k (bjx) creates (destroys) a phonon in state k of
reservoir j with the frequency w ;. The coupling strength of
oscillator j to reservoir state k is denoted by 7. Similarly,

for the common bath, the operator b,z (by) creates (destroys) a
phonon in state k of the common reservoir with the frequency
wy. The coupling strengths of both oscillators to the reservoir
state k are denoted by 7.

To study the time evolution of the system we numerically
solve the QMEs for the reduced density matrix p in the weak-
system-reservoir-coupling limit. To obtain analytical results
we implement the rotating wave approximation (RWA). Below
we summarize the QME:s for both bath configurations with and
without RWA.

A. Quantum master equation for coupling to individual baths

Using the Born—-Markov approximation in the interaction
picture with respect to Hs, the general QME for the individual
bath configuration is given by [35]

8 oo
3P0 = _zZJ:/‘) de[S5;(1),S;(t — T)p()]Ci;(T)

=181, p()S;(r = DICji(—=7). 2
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The operators S;(t) = ei”S’(a']r. +a;)?e ' and Bj;(1) =
>, njk(b;kei‘“/k’ +bjke_f“’fk’) allow us to rewrite the cou-
pling Hamiltonian as Hé%(t) = ijl,z S;(t) ® B;(t) in the
interaction picture. Assuming initial thermal equilibrium of

the reservoirs, pg = pp.1 ® pB.2, their correlation functions
Cji(t) = Trg{B;(t)Bi(t — 7)pp} are

d A |
Ciu(r) = 311/ %"j(w)[N(w)e"” + (N(w) + De™""],
(3)

where N(w) = (e®/*T — 1)~! is the Bose—Einstein distri-
bution and «;(w) =27 ), |njk|28(a) — wjy) are the spectral
densities. The specific form of «; depends on the microscopic
details of the system-reservoir coupling. If «; is sufficiently
smooth around the frequencies of interest, the exact frequency
dependence is not crucial. To be specific, we use an Ohmic
spectral density, k;(w) = I'jow/(2wp), where I'; is the nonlin-
ear dissipation strength of the jth bath.

Furthermore, we define the one-sided Fourier transform of
the reservoir correlation function

1 o :
sr@ o = [ areeym. @

The rates y; determine the strength of dissipation, while o;
renormalize the system Hamiltonian. For simplicity, from here
on, we let wy denote the renormalized system frequencies
and neglect the corresponding small induced conservative
nonlinearity.

By using the expression of the bath correlation function (3)
one finds

¥jQwo) = I'j[N(2wo) + 11, (52)
Yj(—2wo) = I'j N (2wy). (5b)
In the RWA, Eq. (2) simplifies to

1
p=—35 2 rieti[af]+yi-2e0Li[a]]p. ©
j=12
with

LilXlp = X;Xip+pX,; Xt —2XTpX;. 7)

B. Quantum master equation for coupling to a common bath

For the common-reservoir configuration the summation in
Eq. (2) can be omitted and the general form of the common-
bath QME is

a o0
a—,O(f) = —/ dt[S(),5(t — 7)p(0)]C(7)
! 0
—[$@),p(®)S( — T)IC(—7), ®)

where the common system and bath operators in
Eq. (8) are S(1)=Y;_, ,(ale!™ +aje'')? and B(r) =

> nk(b,iei“’“ + bpe~ "), The correlation reservoir function
is then given by C(t) = Trg{B(¢#)B(t — 7)pB}.

012313-2



ENTANGLEMENT DYNAMICS OF QUANTUM OSCILLATORS ...

In this case the interaction-picture RWA QME is

b= =2 3 nCan(Efal] + L)

j=1,2
+yj(=2w0)(Li[a7] + La[a7])] e, ®)
with

1 T
ﬁz[Xj]p = Xij_(_l)jp + pXjX

f
1y = 2X oy P X

(10)

The QME in Eq. (9) is similar to Eq. (6), but with additional
cross terms by which the two subsystems are connected via
the bath.

As shown in Ref. [18], coherence and entanglement of a
squeezed state is better preserved in a symmetric system. We
therefore consider a setup in which the dissipation rates for the
two oscillators are set equal in all system-bath configurations,
I'j = T'y. We also define y(2wg) = y>— and y(—2wp) = yo+.
Furthermore, we define basis vectors [n,i) = |n); ® |i)»,
denoting eigenstates with n quanta in oscillator 1 and i quanta
in oscillator 2.

III. RESULTS FOR INDEPENDENT OSCILLATORS

In order to compare the asymptotic entanglement of nonlin-
early damped independent oscillators to linearly damped ones,
we solve the QME (2) numerically. We use the Wangsness—
Bloch—Redfield approach in the eigenbasis of the system
Hamiltonian [36-38] in a Hilbert space truncated above M = 8§
eigenstates for each oscillator.

To facilitate the comparison, the system is initialized with
the two-mode squeezed vacuum

p(0) = $15(£)[0,0)(0,0[8], (&), (11)

where the two-mode squeezing operator is Sjy(§) =
daa—Eaa g4 £ =re'’. In the Fock basis, using 8 = 7,
Eq. (11) becomes [39]

p=—r Y (=D [tanh ()" |n,n) (mm.

- 2
cosh” (r) a0

12)

To quantify the entanglement we use the measure of
negativity N = (||p™'||; — 1)/2, where p' denotes the partial
transpose of the bipartite density matrix with respect to
oscillator one. The negativity corresponds to the absolute value
of the sum of negative eigenvalues of p™' and vanishes for
separable states [40].

A. Asymptotic entanglement for coupling to individual baths

For the individual-bath configuration and a Markovian
model in the RWA, it was shown in Ref. [14] that, for finite
temperatures (7 > 0), all linearly damped two-mode squeezed
vacuum states disentangle within a finite time and relax to the
ground state. At T = 0 the relaxation to the ground state occurs
in the limit of infinite time. These results were further probed
with non-Markovian models in Refs. [16,17], lending support
to the predictions of Ref. [14]. Thus, we conclude that the
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Markovian and non-Markovian dynamics coincide for times
larger than reservoir correlation times.

For NLD, earlier studies of a single-oscillator systems
undergoing NLD show that parity conservation brings the
system to a final nonclassical steady state [23,25]. For a
bipartite system with no intermode coupling, it follows that
the same parity conservation will, at 7 = 0, bring the system
into a general steady state

p(00) = Poo|00){00[ + Py1|11)(11] + po1,10/01){10]
+ £10,10110)(10] + [000,11100) {1 1]
+ £00,01100) (01| + 000.10100) (10[ + po1,10101)(10]
+ po1,11[01)(11] + p1o,11[10) (11| + H.c.],  (13)

with matrix elements py; ,,; determined by the initial state.
The particular initial state (12) leads to a steady state of the
form (13) where several elements are zero, reducing it to

p(00) = Pyo|00){(00] + Py |11) (11| + (000,11100) (11| + H.c).
(14)

The element pgp 1 is important for the asymptotic nega-
tivity (entanglement). While initially there are multiple off-
diagonal elements contributing to the negativity N'(r = 0) =
(€?" — 1)/2 [18], these quickly decohere, leaving only the
parity-protected matrix elements in Eq. (14), and the negativity
saturates at A (00) = |000.11(00)|7=0. This can be verified
through the characteristic equation for pT' of the steady
state (14). For a general M x M basis size the characteristic
equation is given by

(=M (Poo — (P11 — w)(?* = 1poo.11>) =0,  (15)

with only one negative root & = —|pgo,11]-

Comparing the nonlinear and linear decays of squeezed
states at T = 0 one finds that the nonlinearly damped states
remain entangled with a saturating negativity, whereas the
linearly damped states asymptotically disentangle in the limit
of t+ — oo. This can be seen in Fig. 1 showing the scaled
disentanglement time tg;5 (color bar) of a nonlinearly damped
(main figure) and linearly damped (inset) two-mode squeezed
vacuum as function of 7' and r. The results are obtained from
numerical simulations. The scaled disentanglement time is
defined as tg4is = otgis, Where #4i is the time at which N < ¢,
and ¢ is the negativity cutoff. Temperature is measured in units
of hwy/ kg. The main figure and inset have identical simulation
parameters, but different disentanglement timescales (main
and inset color bars). The white dashed lines in the inset are
the theoretically predicted disentanglement times derived in
Ref. [14].

The nonlinearly and the linearly damped systems for 7 > 0
both display a finite disentanglement time for all . The main
difference is the disentanglement timescale. The nonlinearly
damped states disentangle much slower than the linearly
damped states. During the chosen evolution time all LD states
disentangle, while a part of the NLD states remain entangled
(white region, main figure). After a longer time evolution all
NLD states will eventually disentangle.

The time evolution of the negativity while relaxing to the
steady state is shown in Fig. 2(a). Here we use a constant value
of r = 1/20 for several values of T and I'. The graphs for the
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FIG. 1. (Color online) Main figure: scaled disentanglement time
Tais = Lotgis (color bar) of nonlinearly damped two-mode squeezed
vacuum states as function of temperature 7' and squeezing parameter
r, for two individual baths with simulation time 7, = 50, damping
rate I’y = 103wy, and negativity cutoff ¢ = 1073, Inset: disentangle-
ment time 7y (inset color-bar scale) of linearly damped two-mode
squeezed vacuum states as function of 7 and r for two individual
baths, with simulation parameters as in the main figure. The dashed
lines are the contours of 74, = [1, %,2] (right to left), as theoretically
predicted in Ref. [14].

same 7T and different I'y overlap when expressed in terms of
scaled time units T = I'yz. Initially the negativity has a rapid
initial transient during which the initial squeezed state reduces
to a state of the form given by Eq. (14). This is followed by a
slow exponential decay.

2 -10
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10-20 | | —— 10° g /wo=5
——— 10°r /=10
0 T a2 = = 2N(2w)
102 0 1 ksT/w, 2 3 ‘ - *o
0 50 100 150

Scaled time t = It
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To quantify the asymptotic decay, the inset in Fig. 2(a)
shows the negativity slope yn = |9, In /|, extracted from the
second half of the data in the main panel of Fig. 2(a), as
function of 7. The decay rate solely depends on T, which
is further corroborated in Fig. 2(b), showing the negativity
slope yy from Fig. 2(a) as function of 10°Ty. As shown
in Appendix A, in the limit of low temperatures, within
the RWA, the slope is given by the expression N ()=
(1000.11(00) | 7=0)e "N C@)T " shown as the dashed line in the
inset to Fig. 2(a).

The much slower decay of the negativity in the nonlinearly
damped case compared with the linearly damped system can
be understood as follows: For finite temperatures the disentan-
glement of the nonlinearly damped squeezed vacuum states is
related to the slow, thermal dephasing of the parity-protected
matrix element pg 1;. However, thermal decoherence of this
element requires a simultaneous two-quanta excitation of both
oscillators, a process which is less probable compared to linear
decoherence, where neither an individual nor simultaneous
excitation is needed to achieve a deexcitation.

B. Asymptotic entanglement for coupling to a common bath

We now turn to the situation with the two independent
oscillators nonlinearly coupled to a common reservoir. For a
linearly damped system in this configuration, the asymptotic
steady states of an initial two-mode squeezed state (11) can
be divided into entangled and separable states [14,18,19]. To
which category a state will belong depends on » and T'. This
result was obtained in Ref. [14] by using Markovian dynamics
and RWA and is shown in Fig. 3 (inset). An interesting
feature is that the system never disentangles for T = 0. This
entanglement preservation can be explained in terms of normal
modes, e.g., center-of-mass and relative coordinates. As only
the center-of-mass motion is affected by the dissipation to the
bath, the relative motion of the oscillators evolves freely. For

2.5

kgT/wo =0
(b) —e—kpT/wy =0.5
kgT/wy =1

——kpT/wy = 1.5
—— ey T/wy =2
—e—kpT/wy = 2.5
——kpT/wy =3

S
[8))

Slope yy = |0; In V|

o
(3]

0 2 4 6 8 10

Dissipation rate 103T,/wy

FIG. 2. (Color online) (a) Main figure: Time evolution of the negativity of a nonlinearly damped squeezed two-mode vacuum with squeezing
parameter » = 1/20, individual-bath configuration, for temperatures 0 < kg7 /wy < 3 and damping rates ['y = 1073we[1/10, 1/2, 1,5, 10].
The graphs for the same T and different I'y overlap when plotted as function of T = I'yz. Inset: Slope of the negativity, yxr = |9, In A/|, extracted
from the second half of the points in the main figure, as a function of T for 'y = 1073w,[1/10, 1/2, 1, 5, 10] (color code). The dashed line is
a slope fit of 2N (2wy). (b) Slope of the negativity vy = |, In /| from the inset in panel (a) as function of 103T/wy.
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FIG. 3. (Color online) Main figure: disentanglement time 74 =
[otgis (color bar) of nonlinearly damped two-mode squeezed vacuum
states as a function of temperature 7 and squeezing parameter r,
common bath, with simulation time g, = 50, damping rate [’y =
103wy, and the negativity cutoff ¢ = 107>, Inset: Entanglement
borderline of the linearly damped two-mode squeezed vacuum states,
common bath, in the phase space of r and T. The dashed line
is the theoretical prediction in Ref. [14] and the dots with error
bars are numerical data. The simulation parameters are g, = 50,

= 103wy, and ¢ = 1073,

nonlinear system reservoir coupling, there is no decoupling of
the relative oscillator motion from the bath, and we do not find
any finite-temperature steady-state entanglement.

As seen in the main part of Fig. 3, showing the scaled
disentanglement time (color bar) of nonlinearly damped two-
mode squeezed vacuum states as a function of 7" and r for
the common-bath configuration, the asymptotic entanglement
behavior is very similar to the nonlinearly damped squeezed
states in the individual-bath configuration. Again, the non-
linearly damped states disentangle slower than the linearly
damped states in the disentangled region in the inset of Fig. 3.
Like in the main panel of Fig. 1, not all states have yet
disentangled for the chosen simulation time (white region),
but will do so after a longer evolution.

The similarity in the behaviors stem from a suppression
of information exchange between the oscillators via the bath
in the steady state p(co) for T =~ 0. In the QME (9), the
term L£;p quickly brings the initial state (11) to the steady
state (14), which cannot be further affected by the term £;p,
as Lop(00) = 0. For higher temperatures, the term £, will
contribute to some information exchange, but not enough to
significantly alter the influence of the £, p term. The qualitative
evolution of the state is therefore as for the individual bath
configuration. This is supported by the results in Fig. 4,
displaying the slow temperature-dependent negativity decay
for various T and Iy (main figure), and the temperature
dependent negativity decay rates yn = |0, In | = 2N 2awyp)
(inset). The derivation of the exponent can be found in
Appendix A and is equal to the thermal decay exponent
obtained for individual baths.
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FIG. 4. (Color online) Time evolution of the negativity of a
nonlinearly damped squeezed two-mode vacuum with squeezing pa-
rameter r = 1/20, common-bath configuration, for temperatures 0 <
kgT/wo < 3 and damping rates Ty = 103wy[1/10, 1/2, 1, 5, 10].
The inset shows the slope y, extracted from the second half
of the points in the main figure, as a function of 7 for 'y =
1073w[1/10, 1/2, 1,5, 10] (color code). The dashed line is the
function 2N Qwy).

IV. RESULTS FOR COUPLED OSCILLATORS

Finally, we consider two weakly coupled oscillators. Based
on the results of the preceding section, the main qualitative
difference between LD and NLD stems from the parity con-
servation for the individual oscillators. When the oscillators
are coupled only the parity of the entire system is conserved.
In particular, the element pgo ;; which we found to give the
asymptotic negativity, is no longer protected and can decay via
an intermediate transition to the state pgo 20-

Since the situation is close to the linear case, we restrict the
discussion to individual baths. The system Hamiltonian (1a)
is adjusted to include an intermode coupling term

Hs=2<;p1+l

j=1.2

> Jwiwhqiqs. (16)

The corresponding Hamiltonian in the RWA is

A
Zal J4i——1y- (17

HSRWA— Z wja aj+ 3

j=12

By the same procedure as described in Sec. II, the RWA-QME
for a symmetric system, @; = wp, in the weak intermode-
coupling limit, A < wy, obtains the form [32]

=3 Z V/(zwo)ﬁl[ 1+ vi(=2w0)L1[a]]p

_] 1,2
+Dia(2)p. (18)

To the lowest order in A the oscillators are individually coupled
to their respective reservoirs, and the superoperator D;»(A)
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becomes
Dia(M)p =Y Li[(n1 — n2)lp
— Y [y — na)ajas — aday)p
— (@jay — alay)p(n; — ny)
+ plajar — alay)'(ny — ny)
— (m —m)plajay — alan)']. (19)

Here Y1 = y(X) £ y(—1) with y(X) = k(M)[N(A) + 1] and
Y(=2) = k(M)N@R).

The coupling A plays a dual role of contributing to oscillator
interaction via Hg and to decoherence via Dj,. For linearly
damped oscillators the decoherence terms in Dj, would only
arise if I'y #£ ', [41]. There is no such restriction however
for the nonlinearly damped system where the superoperator
D1, consists of two decoherence terms, proportional to Y
and Y_, respectively. The temperature dependencies of these
terms differ from those of y;. For temperatures exceeding
the coupling energy, A < kg7, we have Y, > Y_. In the
low-temperature limit, A > kg7, both terms approach equal
magnitudes Y, ~ YT_.

For weakly coupled oscillators, linearly coupled to indi-
vidual baths, a phase diagram separating the entangled steady
states from nonentangled steady states exists (see, for instance,
Ref. [20]). Whether the state remains entangled depends on
temperature and strength of coupling. A more-in-depth study,
using both Markovian as well as non-Markovian evolution,
can be found in Ref. [17]. As explained in Ref. [17], starting
from an initial two-mode squeezed state, an undamped coupled
oscillator system will display coherent oscillations during its
time evolution with corresponding oscillations in negativity.
Adding finite linear damping results in loss of entanglement
in the long-time limit and suppression of coherent oscillations
in the negativity.

For the case of nonlinear coupling to individual baths
we find results which are similar to those in Ref. [17],
with coherent oscillations reflected in the decay curve shown
in Fig. 5. As can be seen, with increasing temperature
the oscillations vanish but the initial rapid decay remains
unaltered. The coherent oscillations can be traced back to
the time evolution for 7 = 0 and A > 0. In this case, after
the transient rapid decay, the negativity dynamics is governed
by the evolution of the pgg;; matrix element. Since the
two-mode squeezed vacuum only has even entries, it suffices to
analyze the matrix elements with total amount of two quanta.
The evolution of pg 11 is influenced by the elements oo o2
and pgp 20 which in the RWA approximation contribute to
decoherence and hence the asymptotic negativity decays to
zero. The detailed calculation is given in Appendix A3. The
resulting time evolution of pgo 1; is shown in the inset of Fig. 5.

Numerically solving the full QME at T =0, we see a
residual nonzero negativity. This is due to the RWA Hamil-
tonian [ Hs o< Hy + k(alTaz + a;al )] not properly reproducing
the correct ground state of the coupled-oscillator system since
terms proportional to a’ (a'a') are neglected. Hence, the
numerical results display a small residual entanglement. In the
inset of Fig. 5 the comparison of the results of the numerical
simulation and the RWA shows a very good agreement.
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FIG. 5. (Color online) Decay of the negativity A/ as function of
scaled time T = I'y¢ for an initial state with squeezing parameter r =
0.3 for different temperatures and A = 'y = 10~ 3wy. The coupling is
reflected in the coherent oscillations superposed on the exponential
decay towards the thermal equilibrium state. The inset shows the
time evolution of pgy 11 of a nonlinearly damped squeezed two-
mode vacuum with squeezing parameter r = 1/20, individual-bath
configuration, for T = 0 and damping rate A = I'y = 10 3.

V. CONCLUSIONS

We studied the asymptotic behavior of entanglement be-
tween two harmonic oscillators when they are quadratically
coupled to an environment. In particular, we investigated
to what extent phenomena known from studying the decay
of two-mode squeezed states in the corresponding linearly
damped systems change when damping is nonlinear. We
find that the number parity conservation associated with
pure nonlinear damping causes significant reduction of the
disentanglement rate. Moreover, the equilibrium distribution is
different from the standard Bose distribution. Furthermore, in
contrast to the linearly damped systems, we find no qualitative
difference between oscillators coupled to common baths and
coupled to individual baths. We attribute the latter effect to
the lack of a conserved quantity (relative oscillator energy)
in the nonlinearly coupled system in combination with a
suppressed information exchange between the oscillators at
low temperatures. For weakly coupled oscillators, the number
parity is no longer individually conserved, hence, the system
can relax to the ground state.

The results here are obtained in the Markovian limit.
Extending the study to a non-Markovian dynamics could
alter the picture presented here. For instance, it is known
that, for linearly damped oscillator systems studied with the
non-Markovian dissipation models [17-19], a more detailed
and complex picture of the asymptotic behavior emerges. Still,
in those studies the overall characteristics obtained in the
Markovian limit, for instance, the division into entangled and
separable steady states, remain intact.
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At present it is not known whether it is possible to
realize a system where the dominant dissipation mechanism
at low excitation levels is purely nonlinear. However, for
some dissipation mechanisms (see, for instance, Ref. [28]),
symmetry can dictate that the lowest-order coupling to the
environment must be quadratic in the coordinates. Systems
with such symmetries are thus strong candidates for studying
NLD in the quantum regime. Moreover, it was suggested that
engineering of NLD might be feasible [29-31]. Exploiting the
reduced disentanglement in systems with NLD is a promising
path towards realizing entanglement-based technologies.

ACKNOWLEDGMENT

Financial support for this work was provided by Veten-
skapsradet.

APPENDIX
1. Negativity exponent: individual baths

Here it is shown that yy = 2N(Q2wp). As argued in
Sec. I A, N(t) of a nonlinearly damped squeezed state
depends only asymptotically on the density matrix element
poo.11- Equation (9) is used to obtain the respective equation
of motion, along with equations of motion for elements
X = «/5(,002,13 + p20.31), which influence pg 1. By assuming
that the other elements have already decayed, one obtains a set
of two coupled, first-order differential equations

(Ala)
(Alb)

where a = (y2— + 5y»4) and y»4 is scaled by I'y. For solutions
of the form of pgg 11 ~ Ae"'* + Be'?", one finds

ria = —(16y24 +2)
+2[8y2s + 12 — 210, Clysy + D2,

where Y, = y»4 + 1 was used. For low T, 5, = NQuwp) <
1, the square root in Eq. (A2) can be Taylor expanded up to
second order to yield

ri ~ —2NQuwy),

Poo,11 = 2y2- X — 8y24 poo,11,
X = 12y21poo. 11 — 4aX,

(A2)

ry & =2[15NQwp) + 2], (A3)

and

/00(),11('5) — A€72N(2w0)r + Be*Z[lSN(Zon*Z]T , (A4)

where the first term denotes the slow thermal decay. The second
term describes a rapid initial decay of the matrix element. The
amplitudes are given by

_ 000,11 (O[11N (2wp) + 2]

, (A5a)
14N Qawp) + 2
11INQ2 +2
B = ,000,11(0)|:1 - %], (A5b)
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where pgo,11(0) is given by Eq. (12). Also, A > Oforall» > 0
and A > B for low T'. Hence yyr = 2N(2wp)t.

2. Negativity exponent: common bath

Here we verify that the decay of entanglement, as governed
by the matrix element pgg i, for the individual-bath case
is Y = 2N(2wp). With the same assumptions as for the
individual baths, from Eq. (9) one obtains the equations of
motion for the matrix elements responsible for the negativity
in the common-bath case:

poo.11 = 2¥3y2-Z — 8y2i poo 11 (A6a)

Z =83y, 00011 — 8(v2- 4+ 3v21)Z,  (A6b)

where Z = pg2,13 + po2,31 + 020,13 + p20,31- In this case we
obtain the solution

po0.11 = Ce 2NCT 4 pp=219NCeo+4)r (A7)
with the amplitudes

O)[15N2awp) + 4

_ £00.11(0)[15N Qwy) + ]’ As)
18N (2ao) +4
1SN (2awo) + 4

D =pon©)|1 - =xo———1 (A8
P00 11( )|: 18N(2a)0)+4] (A8b)

where ppo.11(7 = 0) is given in Eq. (12). Also, C > 0 for all
r > 0and C > D for low T. Hence the decay rate is again
dominated by yn = 2N (wy).

3. Negativity evolution: individual-bath, nonzero
intermode coupling

For T = 0 and an intermode coupling A > 0 the evolution
of negativity is still governed by the pgo i; element. For an
initially two-mode squeezed state, the equations of motion
governing the evolution are

. A
£00,11 = —=
V2

Y = (ivV2h — 2v2)pp0.11 — (72— +27)Y,  (A9b)

where Y = ppo.02 + poo.20. For a solution of the form pp 11 =
Aie+t + A_e’- 7" one finds

Y, (A9a)

re = —3(To +27) £ 1/(To + 27)2 — 4(A2 + i2A7),

(A10)
with amplitudes
A+=—'000’”(0)r_, (Alla)
(ry—ro)
r_
A_= ,000,11(0)|:1 + —] (Allb)
(ry —ro)
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