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Abstract

We theoretically analyze the dynamics of a suspended graphene membrane which is in tunnel contact
with grounded metallic electrodes and subjected to ac-electrostatic potential induced by a gate
electrode. Itis shown that for such a system the retardation effects in the electronic subsystem generate
an effective pumping for the relatively slow mechanical vibrations if the driving frequency exceeds the
inverse charge relaxation time. Under this condition there is a critical value of the driving voltage
amplitude above which the pumping overcomes the intrinsic damping of the mechanical resonator,
leading to a mechanical instability. This nonresonant instability is saturated by nonlinear damping
and the system exhibits self-sustained oscillations of relatively large amplitude.

Rapid progress in carbon nanostructures manufacturing has stimulated new experimental and theoretical
efforts in studying their unique optical, electrical, and mechanical properties[ 1, 2]. In particular, the very high
stiffness and low density of graphene make it an ideal material for constructing nanoelectromechanical
resonators. These features of graphene are of great interest both for fundamental studies of mechanics at the
nanoscale level and a variety of applications, including force, position and mass sensing [3—7]. In particular, it
was demonstrated [8] that a graphene-based nanomechanical resonator can be employed as an active element
for frequency-modulated signal generation and efficient audio signal transmission. The operation of many
nanomechanical devices is based on the excitation of mechanical vibrations by an external periodic force, of
electrostatic or optic origin, with a frequency comparable to the vibrational frequency of the mechanical
resonator [8—13]. At the same time it was shown [14, 15] that, in certain nanoelectromechanical systems, self-
sustained mechanical oscillations with relatively large amplitude may also be actuated by ‘shuttle instability’. In
the shuttle structures described in [14, 15], the instability was found to occur at driving frequencies that are
much smaller than the eigenfrequency of the mechanical subsystem. In the present work we seek to answer the
question of whether it is possible to achieve a regime of self-sustained oscillations in a graphene-based
nanoresonator by using an electromechanical instability effect caused by a nonresonant high frequency driving
field. In the paper we demonstrate that such a feat is possible. However, in contrast to the shuttle instability,
electromechanical instability in graphene-based resonators similar to those considered in the publication [3—
6, 8] occurs when the driving frequency is much greater than the eigenfrequency of the mechanical subsystem.
In this regard, nonresonant excitations of mechanical resonators may be achieved in optomechanical systems
where the time delayed radiation pressure controls the mechanical damping [16, 17]. In particular, such a
phenomenon was demonstrated for a graphene resonator where the mechanical motion was both activated and
cooled by alaser beam [18]. However, the instability considered below is of electromechanical rather than
optomechanical origin. More specifically, it is controlled by the relaxation time in the electronic subsystem
rather than resonant properties of a microwave cavity [ 16, 18] or external circuit [19, 20].

The system under consideration in this paper is shown in figure 1. A doped graphene membrane is
suspended over a trench and is in contact with grounded metallic electrodes through the oxide layer. An
oscillating voltage V;; (£) = V cos (£t) is applied on a side-gate electrode which is positioned below the
suspended part of the sheet.
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Figure 1. A sketch of the graphene membrane resonator suspended over the trench and separated from the grounded metallic
electrodes by an oxide layer. A side-gate subjected to an AC voltage induces an electrostatic potential on the graphene sheet. It is
assumed that the potential is dependent on the membrane deflection . The schematic RC-circuit is shown above.

The potential ¢ on the membrane, and thus the electronic flow through the tunneling barrier, depends on
the charge g accumulated on the membrane, gate voltage and mutual capacitance. The latter depends on the
membrane deflection. At the same time, a high frequency electrical field produced by the gate electrode sets up a
time-varying force acting on the charged membrane. This force provides a feedback between the mechanical and
electronic subsystems. We show that such feedback may generate electromechanical instability, resulting in high
amplitude mechanical self-oscillations even for the case when the external frequency €2 is much higher than the
characteristic mechanical frequency w,,.

For a quantitative description of the above-mentioned phenomena, we suggest the following model. We
represent the graphene sheet as an elastic thin membrane whose motion is described within the continuum
mechanics approach and completely characterized by the amplitude of its fundamental bending mode u(#).
Since the instability, as it is shown below, is a nonresonant phenomenon, we disregard the geometric
nonlinearity of the graphene membrane. The time evolution of the membrane deflection u is described as a
damped oscillator subjected to an external electrostatic force induced by the side-gate voltage V (¢):

. Dy . 1 dCg - 2
u+6u+w,f1u=%$(go—vc(t)), (1)
where Qs the quality factor of the oscillator and Cg (1) is the mutual capacitance between the graphene and the
side-gate. Since the membrane deflection u(#) is much smaller than the distance d between the side-gate and the
membrane, we set Cg (1) & Cg (1 + u(t)/d), whered = Cg(0)/CL(0) ~ d.

The electrostatic potential on the membrane ¢ (g, V;; (t), u)is given by the expression ¢ = (Cg (1) V5 (t)
+ q)/C (u) ,whereC (u) = Cg(u) + Cgisthe total capacitance of the membrane and Cg is the mutual
capacitance between the graphene and the grounded electrodes which is independent of the membrane
deflection.

The time evolution of the charge q(t) may be described by the following equation for the equivalent RC-
circuit, shown in figure 1:

g =-vrc()(q + Co(w) Ve (1)) 2)

wherevgc (u) = 1/RC (u) is the charge relaxation frequency and R is the total resistance dominated by the
tunnel resistance between the graphene membrane and leads. The set of equations (1) and (2) describes a
coupled dynamics of the electronic and mechanical subsystems.

To analyze these equations analytically, let us introduce dimensionless variables for the displacement
x = u/d,time7 = tugc (0), mechanical frequency @,, = w,/vgc (0), external frequency £ = 2/vg¢ (0) and
chargeq = 9/C¢ (0) V. Then, by solving (equation 2) and keeping only linear terms with respect to x, we get the
following system of equations:

D 2 C(0)?

Wiy
Xz (T) + —Xx;+ 0, x=¢
Q Clx)?

[nq — (1 =n) cos (QT) ]2 (3)
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with capacitance ration = Cg (0)/C (0), and the phase shift of the component independent of the displacement

+ (1 = n) cos (Qr/) x (1) (4)

givenbytan 9 = Q. The parametere = Qy /v (0) = CcV?/ Zmﬁzvéc (0) characterizes the electromechanical

coupling strength. Therein, the coupling frequency €2y may be estimated as Qv = V' &o/ 20d’ wheree is the
vacuum permittivity and g is the 2D-mass density of the graphene. For the effective distanced = 10 nm, one
obtains Qy ~ 10°[Hz/V] V. Therefore, for the voltage range V < 10 mV, one can find that the frequency Qy is
less than 1 MHz, which is much smaller than the typical mechanical frequency @,, ~# 100 MHz. From

equation (4) it follows that the instant charge on the membrane exhibits a time-delayed response, with
exponential memory decay, to the mechanical displacement of the membrane. To study the stability of the
system we consider the linear regime with respect to x for the small parameter ¢ < 1 case. Under such conditions
the driving field introduces high frequency components of small order ¢ to the mechanical vibration and we can
writex (7) = %(7)(1 + gy (7)), with y (z) = y (z + ﬂQ_l) and % changing slowly on the time scale o
Substituting equation (4) into equation (3), we get the equation for the slow component x:

XITT(T) + %X‘T(T) + (Cf)nz1 + EQ)XI(T) —ea [l dr'e’ cos (T/)D_C(T +7) = % (5)

with coupling coefficienta = (1 + (1 — ;7)2[}2) / 1+ Qz). We seek the solution of this equation in the form
% = X + 6% (1), where Xy = ea/2n@* and 8% (r) = Y. A; exp A;7 is the general solution of the corresponding
homogeneous equation. The dimensionless complex frequencies 4; are the solutions to the dispersion equation:

ea(l + 1)

7~2' (6)
14+ +Q

/12+2/1+(d)31+8a)=
Q
To this end, we restrict the analysis to the regime in which the external frequency is of the order of the relaxation
frequency but essentially exceeds the mechanical frequency 2 ~ 1 > @,, and the electromechanical coupling is
considered to be weak so @,,, > & ~ @,,/Q. Under these assumptions, the solution of equation (6) in the first
order approximation on small parameters is:

. o}
A=7 +i|d)+ ea —
1+ Q0
1( @m 1-&°
7=—5(6+€C), {=a——7. (7)

( 1+ !}2)2
From equation (7) one can see that the electromechanical coupling shifts the mechanical frequency and the
effective mechanical damping of the membrane with respect to the intrinsic values. If the effective damping is
negative, the static stateu (t) = dx is unstable and % performs oscillations with frequency ~,, and
exponentially growing amplitude. This situation is possible when the normalized damping shift{ < 0, i.e., when
the external frequency exceeds the charge relaxation frequency £2 > vgc (0). Under this condition, the external
high frequency electromagnetic field generates an effective pumping of the mechanical oscillations despite the
fact that the resonance condition is strongly violated 22 > ®,,,. The behavior of the function ¢ (£2) for different
values of 7 is shown in figure 2. Further, instability occurs when the amplitude of the side-gate voltage is larger
than a critical value V > V,, satisfying Q\f (V2) = =@, vrc(0)?/£Q so that the pumping overcomes the intrinsic
damping.

To estimate the amplitude of the gate voltage oscillations needed to initiate the instability, we set
n = Cg/C = 0.5. From figure 2 one can deduce that under this condition, the minimum value of {~ — 0.03.
Then, by using the following values for the distanced ~ 100 nm, vibrational frequency @, ~ 10°Hz, quality
factor Q ~ 10, charge relaxation frequency vgc (0) ~ 10° Hz, membrane tunneling resistance R ~ 107 £2,and
capacitance of the membrane C &~ 10~ '° F, we get an estimation for the threshold voltage

V. = \/ 20,Vrc (0)pd 3( |¢1Qep)™! ~ 10 mV. Now, let us analyze the saturation mechanism of the instability. If
the system is driven resonantly, the nonlinearity in the mechanical subsystem will saturate the system ata
stationary oscillation amplitude. However, since in our case the excitation phenomena is not of resonance
nature, the saturation mechanism should be of different origin. One of the most likely candidates is the intrinsic
nonlinear damping [21, 22]. This may be taken into account by adding the term w,, Q" 'é(u — uy)?/a*into
equation (1), where a is the characteristic length of damping variations. Such nonlinear damping saturates the
amplitude of the mechanical oscillations at
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Figure 2. Markers indicate numerical simulations of the normalized damping shift from equations (1) and (2) for different values of

and parameter values @,,/vrc (0) = 1072 andu/d ~ 1072 The solid black lines are the corresponding analytical solutions { from
equation (7). When the driving frequency exceeds the inverse retardation time v (0) the damping shifts becomes negative.
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Figure 3. Time evolution of the membrane deflection obtained by direct numerical simulations of equations (1) and (2), including the
nonlinear damping in the form discussed in the text. The parameterse = 1072/2, Q/vpc (0) = 3/2, @u/vre (0) = 1071 Q = 104,

n = 1/2 anda = d/20 were chosen in order to clearly demonstrate (a) the exponential amplitude growth and saturation due to the
nonlinear damping and (b) small amplitude modulation of fast oscillations with frequency 2£2. This modulation is not visible in (c)
since the @,, component has been pumped to a relatively large amplitude. The dashed line corresponds to the saturated value of the
amplitude of oscillations predicted by equation (8).

(8)

To confirm the above mentioned phenomena, we perform direct numerical simulations of equations (1) and
(2), shown in figure 3.

Finally, note that the membrane deflections induced by the ac-voltage give rise to a nonlinear correction to
the impedance Z, of the equivalent RC-curcuit, see figure 1. In particular, one can show that the instability
discussed above manifests itself as a discontinuous jump atV = V, in the first derivative of the average active ac-
power W(V)

+0
Vc

oW (V)
ov

=10(x4)ﬂ(§)2 (9)

where Iy (V;) = Re Z'V,,and 8 (5, ) is a numerical factor. Modeling C; as a parallel plate capacitor and
considering the case 2 = 3/2, which yields an almost optimal pumping regime, we obtain 8 ~ 12(1 — 0.77).
Therefore, measurement of the ac-power may provide information about the electromechanical instability, in
particular, to estimate the nonlinear damping of the mechanical vibrations.

Vo

4
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To conclude, we have found that the mechanical vibrations of a graphene-based oscillator may be actuated
by nonresonant, high frequency electromagnetic fields. This is due to the fact that the effective damping of the
oscillator is reduced when the frequency of the electromagnetic field exceeds the inverse response time of the
charge oscillations in the graphene membrane. If the field strength is strong enough to overcome the intrinsic
damping, the mechanical vibrations become unstable and saturate due to the nonlinear damping. The
phenomena should be detectable with the available experimental techniques not only for the graphene
membranes but also for other electromechanical oscillators due to the robustness of the predicted mechanism.
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