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Abstract In this paper, we present and evaluate an automatic
unsupervised segmentation method, hierarchical segmenta-
tion approach (HSA)–Bayesian-based adaptive mean shift
(BAMS), for use in the construction of a patient-specific head
conductivity model for electroencephalography (EEG) source
localization. It is based on a HSA and BAMS for segmenting
the tissues from multi-modal magnetic resonance (MR) head
images. The evaluation of the proposedmethodwas done both
directly in terms of segmentation accuracy and indirectly in
terms of source localization accuracy. The direct evaluation
was performed relative to a commonly used reference method
brain extraction tool (BET)–FMRIB’s automated segmenta-
tion tool (FAST) and four variants of the HSA using both
synthetic data and real data from ten subjects. The synthetic
data includes multiple realizations of four different noise
levels and several realizations of typical noise with a 20 %
bias field level. The Dice index and Hausdorff distance were
used to measure the segmentation accuracy. The indirect
evaluation was performed relative to the reference method
BET-FAST using synthetic two-dimensional (2D) multimodal
magnetic resonance (MR) data with 3 % noise and synthetic
EEG (generated for a prescribed source). The source localiza-
tion accuracy was determined in terms of localization error
and relative error of potential. The experimental results dem-
onstrate the efficacy of HSA-BAMS, its robustness to noise
and the bias field, and that it provides better segmentation

accuracy than the reference method and variants of the HSA.
They also show that it leads to a more accurate localization
accuracy than the commonly used reference method and sug-
gest that it has potential as a surrogate for expert manual
segmentation for the EEG source localization problem.
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Introduction

Expert manual interpretation is considered the gold standard
for determining accurate localization of the source of epileptic
seizures from electroencephalography (EEG) scalp measure-
ments. However, it is a time-consuming and laborious process
[1]. A number of automatic non-invasive EEG source locali-
zation techniques [2] have been developed to overcome this
problem. The accuracy of these techniques is not only depen-
dent on the methods used to solve the underlying forward and
inverse problems [3] but also on the quality and fidelity of the
patient-specific head conductivity model used in the forward
problem. The construction of a realistic head conductivity
model requires accurate segmentation of magnetic resonance
(MR) images of the head into tissue classes corresponding to
different conductivity values. It is common practice to use five
tissue classes—white matter (WM), gray matter (GM), cere-
brospinal fluid (CSF), skull, and skin [4, 5] followed by
manual correction for source localization, although improve-
ments in localization accuracy can be achieved with more
classes [6]. Completely manual segmentation [7], typically
performed by a clinical expert, is the gold standard. Never-
theless, it is laborious and time consuming. Two refinements
that can be found in the literature are semi-automatic/interac-
tive segmentation requiring user input [6, 8–11] and fully
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automatic segmentation followed bymanual correction [5, 12,
13]. However, the need for user interaction or manual correc-
tion means that these approaches are still time consuming,
subjective, tedious, and labor intensive. Moreover, they are
impractical for large-scale group study. Fully automatic and
accurate segmentation is thus highly desirable.

The development of a fully automated and accurate segmen-
tation method for the construction of patient-specific head
models for EEG source localization is a challenging task for
several reasons including the following: (i) the complexity and
variability of the underlying anatomy, (ii) noise, (iii) the bias field
(spatial-intensity inhomogeneities), and (iv) the low contrast
between the skull, CSF, and air in traditionally used T1-
weighted (T1w) images. In this paper, we present a new fully
automatic method for head tissue segmentation from multi-
modal MR images suitable for EEG source localization. In
common with several approaches in the literature [5, 12, 13],
the method involves first partitioning the MR data into brain-
tissue and non-brain-tissue sub-volumes and then independently
segmenting each of these into multiple tissue classes. The idea
behind this hierarchical segmentation approach (HSA) is that the
detection of brain and non-brain tissue is a much simpler initial
problem than the problem of segmenting the whole head into
multiple tissue classes outright. For example, the brain extraction
tool (BET; is a part of the FMRIB Software Library (FSL) tools
developed by the FMRIB, University of Oxford) [14] can be
used to robustly obtain a brain-tissue mask while simple
thresholding and mathematical morphology operations [15, 16]
can be used to obtain a whole-head mask (from which the non-
brain-tissue mask can then be trivially obtained). What distin-
guishes our method is that a single segmentation approach,
Bayesian adaptive mean shift (BAMS), is used to segment both
the brain-tissue and non-brain-tissue sub-volumes into multiple
tissue classes. Mean-shift segmentation offers two important
advantages here. Firstly, it is an unsupervised segmentation
technique meaning that it is not necessary to provide training
examples. Secondly, it can make use of multiple magnetic reso-
nance imaging (MRI) modalities (e.g., T1w, T2w, and proton
density (PD) weighting) and indeed multiple imaging modalities
(e.g., CT and MRI).

We also present direct and indirect evaluations of our pro-
posed HSA-BAMS method. For the direct evaluation, the seg-
mentation accuracy of HSA-BAMS is compared with that of
several other instantiations of the HSA, and to a reference
method BET–FMRIB’s automated segmentation tool (FAST),
using both synthetic multi-modal MRI data and real data (both
single and multi-modal MRI data) from ten subjects. Each HSA
instantiation is based on a different multi-tissue segmentation
algorithm: the hidden Markov random field model and associat-
ed expectation-maximization (HMRF-EM) algorithm [17] (as
implemented in the FAST in the FSL tools), the adaptive
mean-shift (AMS) algorithm of Mayer and Greenspan [18], the
improved Fuzzy c-means algorithm with spatial constraints

(FCM_S), proposed in [19] and the simple k-means clustering
algorithm [20]. The reference method BET-FAST is based on the
BET [14, 21] and FAST [17, 21] tools commonly used [5, 12,
13] in the construction of realistic head models for EEG source
localization. The BET tool is used with extended functionality to
extract not only the brain-tissuemask but also the skin- and skull-
tissue masks (ideally both T1w and T2w images should be used
although it is possible to use T1w only) and the FAST tool is
employed to segment the brain tissues. For the indirect evalua-
tion, HSA-BAMS is compared with BET-FAST and completely
manual segmentation in terms of EEG source localization accu-
racy using synthetic two-dimensional (2D) multi-modal MRI
and EEG data.

Materials and Methods

Hierarchical Segmentation Approach

A schematic of the HSA is presented in Fig. 1. The HSA takes
as input a set of T1w MR images of the whole head and
optionally several additional spatially co-registered sets of
MR images (e.g., T2w and PD) of the whole head. This data
can be modeled as a single spatial volume (V) with vector-
valued voxels. In the first level of the HSA, the T1w data is
used to obtain both a brain mask and a whole-head mask. The
BET tool is used to obtain the former and a simple whole-head
segmentation algorithm (WHSA) is used to obtain the latter.
TheWHSA comprises two simple steps: (i) Otsu thresholding
[15] and (ii) hole filling using morphological reconstruction
and 26 connectivity [16]. The set difference between these
two masks then yields a mask of the non-brain head tissue.
These masks effectively partition the head volume (V) into
two disjoint sub-volumes: brain tissue (VBT) and non-brain
tissue (VNBT). In the second level of the HSA, the multi-tissue
segmentation algorithm (MTSA) is applied independently to
the brain-tissue (VBT) and non-brain-tissue (VNBT) volumes to
segment them into individual tissue classes VBT1 ;VBT2 ; ⋅⋅⋅
and VNBT1 ;VNBT2 ; ⋅⋅⋅ respectively. In our experiments below,
we used the following multi-tissue segmentation algorithms
(MTSAs): our own BAMS, AMS, FAST, FCM_S, and k-
means. Hereinafter, these four instantiations of the HSA are
denoted HSA-BAMS, HSA-AMS, HSA-FAST, HSA-
FCM_S, and HSA-k-means,

Bayesian Adaptive Mean Shift

BAMS is a variation on the AMS [22, 23] segmentation
method originally proposed by Mayer and Greenspan [18]
for brain tissue segmentation in MR images. Mayer and
Greenspan define the adaptive kernel bandwidth for
the mean-shift algorithm in terms of the distance be-
tween the current feature point and its kth nearest
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neighbor. However, the bandwidth value defined using
this approach can be biased by outliers [24].

In [24], a global bandwidth estimation approach is
proposed for the kernel that does not have this problem.
In BAMS, we proposed an adaptive bandwidth estima-
tion approach for the kernel for the mean shift algo-
rithm, which is a variation on the bandwidth estimation
approach proposed in [24]. The approach is based on a
Bayesian method that involves fitting the Gamma dis-
tribution probability density function to the local vari-
ances of N sets of neighborhoods around the current
feature point. See the Appendix for more details.

Mean shift is itself an iterative algorithm for finding the
modes of a multivariate probability density function given
discrete data sampled from it. Let {xi∈ℝd | i=1,….n} denote

this set of points. The density at point x can be estimated by
the Parzen window kernel density estimator

bf K xð Þ ¼ 1
n

Xn

i¼1

1

hid
k ∥

x−xi
hi

∥
2

! "
ð1Þ

where h(xi)≡hi>0 is the adaptive bandwidth of the radially
symmetric kernel K for point xi and k:[0 1]→ℝ is the kernel
profile of the kernel K with bounded support defined as

K xð Þ ¼ ck;dk ∥x∥
2

! "
∥x∥≤1 ð2Þ

and ck,d is a normalizing constant ensuring that the kernel K
integrates to 1. The derivative of Eq. 1 leads to

Fig. 1 Schematic of the proposed
hierarchical segmentation
approach (HSA) for automated
whole-head segmentation. In the
figure, WHSA stands for
whole-head segmentation
algorithm and BET stands
for brain extraction tool
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where Mhi;G xð Þ represents a mean-shift vector, which points
toward the direction of maximum increase in density and also
provides the basis for clustering, C is a positive constant, and
g(x)=k ′(x) is the kernel profile of kernel G.

Given a starting point y1 of the kernel G, the following
iterative rule defines successive locations of the kernel G
toward a denser region or mode (local maximum):
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The points that converge to the same mode, wherein the
magnitude of the mean-shift vector converges to zero, consti-
tute a cluster. To apply this to the problem of image segmen-
tation, one represents each pixel as a feature point xi formed
by concatenating its spatial coordinates and range values (e.g.,
T1w, T2w, and PD) and employs the following joint spatial-
intensity domain kernel G defined
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where xs and xr are the spatial and range components of x, and
hs and hr are the spatial and range bandwidths, respectively,
and c is the normalization constant.

In BAMS, the resulting modes are then pruned; i.e.,
two modes that are close to one another (with respect to
the Mahalanobis distance) in the range domain are
merged (decided using a window of radius R). This is
done in an iterative fashion with increasing R until the
variance of merging modes reaches a preset threshold
value [18]. Finally, the desired number of final clusters
is obtained by applying voxel-weighted k-means cluster-
ing. Cluster initialization is performed making use of
prior information about tissue intensity ranges in the
multi-modal MR images [18]. In this study, we used
Gaussian kernels for both the spatial and range
domains.

Reference Method: BET-FAST

The reference method is a combination of the BET and FAST
tools commonly used for the creation of patient-specific con-
ductivity models [5, 12, 13]. It takes the same inputs as the
proposed HSA. In this study, the BET tool was applied to
extract the brain-tissue mask, skull-tissue mask, and skin-

tissue mask from the T1w images in each data set. The FAST
tool was then used to segment the brain-only image (masked
version of the T1w images) into three tissue classes: white
matter (WM), gray matter (GM), and cerebrospinal fluid
(CSF).

MRI Data for Direct Evaluation

We used four different data sets to evaluate the segmentation
accuracies of HSA-BAMS, the four other instantiations of the
HSA (HSA-AMS, HSA-FAST, HSA-FCM_S, and HSA-k--
means) and the reference method BET-FAST. These data sets
are hereinafter referred to as data set 1, data set 2, data set 3,
and data set 4.

Data set 1 comprises synthetic multi-modal MRI da-
ta, generated using custom MRI simulations from the
BrainWeb-simulated brain database (SBD) [25]. More
specifically, the data set comprises realistic [18] T1w,
T2w, and PD scans of a human head for four different
noise levels—3, 5, 7, and 9 % [25] with five realiza-
tions each, and also for a 20 % bias field level with
five realizations of 5 % noise. Each scan is of size
181×217×181 (rows by columns by axial slices) with
cubic voxels of size 1 mm3. The parameters that were
used to generate the data from the custom MRI simu-
lations are described on the BrainWeb website [26]. The
simulations also contain some MRI acquisition artifacts
above the head and around the nose (described on the
simulation Website). These were removed manually
using the Polygon tool implemented in the ITK-SNAP
software [27].

Data set 2 comprises a real T1w MRI scan of the head of a
healthy subject. The volume was acquired on a 3 T Philips
Achieva scanner using a gradient echo sequence with the
following parameters: TR=8.17 ms, TE=3.76 ms, and flip
angle of 8°. The size of the scan is 256×256×195 (rows by
columns by sagittal slices) with voxels of size 0.94×
0.94×1 mm3.

Data set 3 comprises real multi-modal MRI data (T1w and
T2w scans) of the head of a second healthy subject (acquired
using the same scanner as used for data set 2). The T1w scan
was performed using a gradient echo sequence with the same
parameters as for data set 2. The size of the T1w scan is 256×
256×195 (rows by columns by sagittal slices) with voxels of
size 0.94×0.94×1mm3. The T2w scan was performed using a
spin echo sequence with the following parameters: TR=
2500 ms, TE=233 ms, and flip angle of 90°. The size of the
T2w scan is 256×256×327 (rows by columns by sagittal
slices) with voxels size of 0.94×0.94×0.55 mm3.

Finally, data set 4 comprises real multi-modal MRI data
(T1w, T2w and PD scans) of the heads of eight healthy subjects,
of differing sex and age, obtained from the IXI datasets [28].
The details of these subjects are presented in Table 1. The data
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of each subject were acquired using a Philips Medical Systems
Intera 1.5 T scanner. The T1w scan for each subject was
performed with the following parameters: TR=9.80 ms, TE=
4.60 ms, and flip angle of 8°. The size of the T1w scan is 256×
256×150 (rows by columns by sagittal slices) with voxels of
size 0.95×0.94×1.20 mm3. The T2w scan for each subject was
performed with the following parameters: TR=8178 s, TE=
100 ms, flip angle of 90°. The size of the T2w scan is 256×
256×130 (rows by columns by sagittal slices) with voxels of
size 0.94×0.94×1.25 mm3. The PD scan for each subject was
performed with the following parameters: TR=8178 ms, TE=
8.0 ms, and flip angle of 90°. The size of the PD scan is 256×
256×130 (rows by columns by sagittal slices) with voxels of
size 0.94×0.94×1.25 mm3.

A reference or gold standard segmentation for each data set
was obtained as follows. For data set 1, the gold standard was
obtained from the nine tissue classes defined in the synthetic
data [25]. This was reduced to seven classes by merging
tissues with similar conductivity values. In particular the
connective and muscle tissue classes were merged, and the
glial matter and GM classes were merged. For data sets 2, 3,
and 4, a radio-oncologist, with more than 17 years experience,
manually segmented each subject data into five tissue classes:
WM, GM, CSF, skull and skin. This represented a tradeoff
between the time needed to manually segment the images and
delineating the essential classes for EEG source localization
(these five classes are commonly used for EEG source local-
ization [4, 5, 7]). The radio-oncologist included fat, muscle,

and skin in the “skin” class. The manual segmentation took
about 170 h for 200 slices. Another clinical expert indepen-
dently reviewed these segmentations and queried/resolved
any perceived anomalies.

In EEG source localization it is generally accepted that
weak volume currents in the face region (including the nose
and pharynx) of subjects have a negligible influence on the
measurement fields [4]. The reason is that these regions are
located far away from the EEG electrodes. Given that they are
also difficult to segment because the air cavities and bone
cannot be distinguished in the T1w and T2w images, and
because of susceptibility artifacts, we excluded these regions
(using the ITK-SNAP polygon tool) from each real data set
according to the cutting procedure described in [4, 29]. This
was performed in consultation with a clinical expert.

Pre-processing: Co-registration and Intensity Scaling

The use of multiple modalities with differing spatial resolu-
tions necessitates the use of spatial co-registration and resam-
pling. This ensures that each voxel can be assigned a vector of
multi-modal values. For this purpose, the T2w image
was spatially co-registered with the T1w image for the
subject in data set 3 and both the T2w and PD images
were spatially co-registered with the T1w images for
each subject in data set 4.

In this study, we employed the well-known and publicly
available FLIRT tool for co-registration. It is “a fully automat-
ed robust and accurate tool for linear (affine) intra- and inter-
modal brain image registration.” It is based on a hybrid
global–local optimization technique [30] that provides a fast
and accurate multi-modal affine registration.

Finally for each image (T1w, T2w, and PD) of each subject
in each data set the intensity values were scaled to the interval
[0, 1] using linear contrast stretching [18].

MRI and EEG Data for Indirect Evaluation

We used a 2D slice (slice number 100) from each scan (T1w,
T2w and PD) in the 3 % noise data from data set 1 to indirectly
evaluate the performances of the proposed method and the
reference BET-FAST method in terms of EEG source localiza-
tion accuracy.

Table 1 Details of the eight healthy subjects for data set 4

Data set 4 (IXI datasets)

No. Name Sex Age

1 IXI040_Guys_0724 Female 44

2 IXI109_Guys_0732 Female 36

3 IXI121_Guys_0772 Male 35

4 IXI144_Guys_0788 Female 29

5 IXI191-Guys-0801 Male 44

6 IXI249-Guys-1072 Male 68

7 IXI491-Guys-1032 Female 75

8 IXI587-Guys-1128 Male 33

Table 2 McNemar tests for the
GM tissue class for data set 3 Comparison test n11 n12 n21 n22 p value

Proposed vs HSA-AMS 484,118 82,252 40,810 88,662 <0.01

Proposed vs HSA-FAST 516,421 49,949 36,967 92,505 <0.01

Proposed vs HSA-k-means 455,050 111,320 45,687 83,785 <0.01

Proposed vs HSA-FCM_S 471,030 99,340 35,687 53,785 <0.01

Proposed vs BET-FAST 516,421 49,949 36,967 92,505 <0.01
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Synthetic EEG was generated using the 2D ground
truth by placing a source in the GM tissue and calcu-
lating EEG signals from 30 electrodes placed equidis-
tantly around the head, based on the 10/10 system [1,
5, 7].

Implementation Details and Optimal Parameters Settings
for the Segmentation Algorithms

MATLAB, together with FSL, was used to implement all of
the algorithms. The synthetic multi-modal MRI data with 0 %

Fig. 2 MeanDice index with 0%
bias field level for a 3, b 5, c 7,
and d 9 % noise level. The
whiskers show ±1 standard
deviation
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noise level and 0 % bias field level from the BrainWeb
database [25] was used to empirically determine the optimal
parameter settings for all algorithms.

The HSA-k-means method was implemented using
MATLAB’s “k-means” function with user-defined initializa-
tion. The initialization was based on the prior knowledge of
tissue intensity ordering in MR images. For example, in the
T1w brain images the darkest region corresponds to the CSF
tissue, the brightest region corresponds to the WM tissue and
the second brightest region corresponds to the GM tissue.

For the brain, skull, and skin mask extraction, the BET tool
was applied with the default threshold parameter setting f=0.5.

In the HSA-FAST and BET-FAST methods, the FAST tool
was employed with the default MRF beta value settingH=0.1
and user-defined initial tissue-type means (to initialize the
clustering centers for tissue segmentation). These means were
determined using the prior knowledge of tissue intensity or-
dering in MR images. For example, in the T1w brain image
the highest intensity value was assigned as the mean for WM
tissue, the lowest intensity value was assigned as the mean for

Fig. 3 Mean Hausdorff distance
(mm) for 0 % bias field level with
a 3, b 5, c 7, and d 9 % noise
levels. The whiskers show
plus/minus one standard
deviation
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CSF tissue, and the mean of the highest and lowest intensity
values was chosen as the mean for GM tissue.

The optimal values of the parameters hs, and M1, M2, and N
(described in the Appendix) for the proposed method, HSA-
BAMS, were obtained using a grid search over a predefined
range of values. For each 4-tuple (hs,M1,M2, N), the Dice index
(DI) was computed for all seven tissue types. The optimal 4-tuple
was chosen to be that which yielded the maximummeanDI over
the all seven tissue types. The optimal 4-tuple for brain-tissue
(VBT) segmentationwas (3, 100, 330, 10 and (3.7, 100, 1300, 10)
for non-brain-tissue (VNBT) segmentation.

In the HSA-AMS method, the same values of hs were
chosen for brain-tissue (VBT) and for non-brain-tissue (VNBT)
segmentation as determined for HSA-BAMS. The parameter
‘k’ (nearest neighborhoods) was set to 120 for brain-tissue
(VBT) segmentation as suggested in [18]. A gridded search
was used to determine the optimal k for non-brain-tissue (V-
NBT) segmentation (using the same optimality criterion used
for HSA-BAMS). The optimal value of k for non-brain-tissue
(VNBT) segmentation was determined to be 120.

In the HSA-FCM_S method, the FCM_S [19] was
employed with following parameters settings: m=2 and
α=0.8, wherein the parameter m was used to control the
fuzziness of the resulting clusters and α was used to
control the tradeoff between the original image and the

corresponding median-filtered image. Moreover, in
FCM_S, the clusters was initialized using the prior
knowledge of tissue intensity ordering in MR images

EEG Source Localization

Three head conductivity models were constructed from the
ground truth (GT), HSA-BAMS, and HSA-FAST segmenta-
tions respectively. The localization procedure is that described
in [1, 5, 7]. In summary, given a head conductivity model
and the EEG data, the procedure involves the solution
of the following two problems: (i) the forward problem
that deals with finding the scalp potentials for the given
current sources and (ii) the inverse problem that deals
with estimating the sources to fit the given potential
distributions at the scalp electrodes.

Quantification of Segmentation Performances

The segmentation performances of HSA-BAMS, the four
instantiations of the HSA, and the reference method BET-
FAST were evaluated quantitatively using the DI [31] and
Hausdorff distance (H) [32].

The DI was computed for each tissue type, data set, and
segmentation method. The DI measures the degree of overlap

Fig. 4 a Mean Dice index. b
Mean Hausdorff distance (mm)
for five realizations of 5 % noise
level with 20 % bias field level.
The whiskers show ±1 standard
deviation
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between the ground truth and the segmentation result. It is
defined as

DI ¼ 2V ae

V a þ V eð Þ ð6Þ

where Vae is the number of voxels the segmentation result and
the ground truth have in common, and Va and Ve denote the
number of voxels in the segmentation result and the ground
truth respectively. The DI has value one for perfect

segmentation and zero when there is no overlap between the
segmentation result and ground truth. Likewise, H was mea-
sured for each tissue type, data set, and segmentation method.
It is defined as

H ¼ max HSG;HGSf g ð7Þ

where S and G are two sets of points that belong to the
segmentation result and the ground truth, respectively.

Fig. 5 Segmentation example from data set 1 for the 9% noise level: aT1w, bT2w, c PD, d ground truth, eHSA-BAMS, fHSA-AMS, gHSA-k-means,
h HSA-FAST, i BET-FAST, j HSA-FCM_S (WM in white, GM in gray, CSF in black, skull in red, fat in green, muscle in brown, and skin in yellow)
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HSG =max{di
SG} is the maximum value of the surface distance

(Euclidian distance) of all surface voxels in S, and di
SG repre-

sents the minimum distance for the ith surface voxel in S to the
set of surface voxels in G. Similarly, HGS =max{di

GS} is the
maximum value of the surface distance of all surface voxels in
G and di

GS represents the minimum distance for the ith surface
voxel in G to the set of surface voxels in S.

Tests for Statistical Significance in Voxel-Wise Classification
Performances

To determine whether there exists a statistically significant
difference in the voxel-wise classification performance be-
tween the proposed HSA-BAMS and each of the other
methods for each tissue type and each data set, several multi-
ple comparison tests were performed. Each multiple compar-
ison test involved performing five McNemar tests [33], each
comparing HSA-BAMS with one of the other methods. Each

McNemar test involved computing a 2×2 contingency table
n11 n12
n21 n22

$ %
where n11 is the number of voxels correctly

classified by both methods, n12 is the number of voxels
correctly classified by HSA-BAMS but not the other method,
n21 is the number of voxels incorrectly classified by HSA-
BAMS but correctly classified by the other method, and n22 is
the number of voxels incorrectly classified by both methods.

For each McNemar test, the null hypothesis was that the
two methods have the same performance or error rate, i.e.,
n12=n21, versus the alternative hypothesis that they do not.
The level of significance for each multiple comparison test
was taken to be α=0.05 and so, using Bonferroni correction,
the level of significance for eachMcNemar test was α=0.05÷
5=0.01 (The results for the GM tissue class for data set 3 are
shown in Table 2 for illustrative purposes). Each McNemar
test in essence tests whether the two methods classify in the
same way; i.e., make the same misclassification errors.

Fig. 6 Data set 2: a Dice index
and b Hausdorff distance (mm)
for each tissue and method
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Quantification of EEG Source Localization Performances

The EEG source localization performances of the proposed
method HSA-BAMS and the reference method BET-FAST
were evaluated quantitatively in terms of relative error (RE) of
potential and localization error (LE) [1, 5, 7]. The relative
error is defined:

RE ¼ Umeasured−Uestimatedk k
Umeasuredk k

ð8Þ

where Umeasured is a vector of the measured potential on the
head and Uestimated is a vector of the potential generated from
the simulated source. The localization error is defined:

LE ¼ Xtrue−Xestimatedk k ð9Þ

where Xtrue is the real source position and Xestimated is the
estimated source position.

Results and Discussion

Segmentation Evaluation for Data Set 1

The mean DI and mean H values over the five realizations of
four different noise levels (with 0 % bias field) for each

method and each tissue are shown in Figs. 2 and 3,
respectively.

The mean DI values show that the segmentation perfor-
mance of HSA-BAMS is consistently better than that of the
HSA-FCM_S and HSA-FAST methods, and the reference
method BET-FAST for all tissue types. They also show that
HSA-BAMS is consistently better than the HSA-k-means and
HSA-AMS methods for the WM, GM, fat, and muscle tissue
and achieves essentially the same performance as these two
methods for the CSF, skin, and skull.

The mean H values show that the segmentation perfor-
mance of HSA-BAMS is consistently better than that of the
HSA-FAST method and the reference method BET-FAST for
all tissue types. They also show that HSA-BAMS performs
consistently better than the HSA-k-means and HSA-FCM_S
methods for the segmentation of WM, GM, fat, and muscle
tissue at all noise levels and the HSA-AMS method for the
segmentation ofWM, GM, fat, and muscle tissue especially at
higher noise levels (5, 7, and 9 %).

For each realization of each noise level, the McNemar tests
provide evidence that the classification behavior of HSA-
BAMS is different to that of HSA-k-means and HSA-AMS
methods (p values <0.01) for WM, GM, fat, and muscle and
also different to that of HSA-FCM_S, HSA-FAST, and BET-
FAST methods for all tissue types. The tests do not provide

Fig. 7 Data set 3: a Dice index
and b Hausdorff distance (mm)
for each tissue and method
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evidence that the classification behavior of HSA-BAMS is
different to that of the HSA-k-means and HSA-AMS methods
for the segmentation of CSF, skull, and skin tissue.

Themean DI and meanH values over five realizations of 5%
noise with 20 % bias field for each method and each tissue are
shown in Fig. 4. ThemeanDI values for HSA-BAMS are higher
(better) than that for the HSA-AMS, HSA-k-means, HSA-
FCM_S, HSA-FAST and BET-FAST for all tissues except skin
and skull where HSA-BAMS is on a par with HSA-AMS.

The proposed method HSA-BAMS has consistently lower
(better) mean H values compared with the reference method
BET-FAST and HSA-FAST and HSA-FCM_S methods for all
tissue types. Compared with the HSA-k-means and HSA-AMS
methods, HSA-BAMS has consistently lower meanH values for
the segmentation of WM, GM, fat, and muscle tissue.

The McNemar tests provide evidence that HSA-BAMS
performs differently (p values <0.01) to all the other methods
for all tissue types. The tests do not provide evidence that the
classification behavior of HSA-BAMS is different to that of
the HSA-AMS method for the segmentation of skin tissue.

Figure 5 shows a segmentation example for each meth-
od for the 9 % noise level. It shows that HSA-BAMS is
less sensitive to noise; in particular for the segmentation

of GM and WM tissue. It also shows that it is less likely
to misclassify fat as muscle or skin tissue compared with
all other methods.

Segmentation Evaluation for Data Set 2

The DI and H values for each method and each tissue are
shown in Fig. 6. The DI values show that the performance of
HSA-BAMS is consistently better than that of the HSA-AMS,
HSA-k-means, HSA-FCM_S, HSA-FAST, and BET-FAST
methods for the GM, CSF, skin, and skull tissue. TheH values
show that the proposed method is consistently better (lower
values) than all of the competing methods for the segmenta-
tion of WM, GM, skin, and skull tissue.

The McNemar tests provide evidence that HSA-BAMS
performs differently (p values <0.01) to all other methods
for all tissue types.

Segmentation Evaluation for Data Set 3

The DI and H values for each method and each tissue are
shown in Fig. 7. The DI values show that the performance of
HSA-BAMS is consistently better than that of all competing

Fig. 8 Data set 4: a Mean Dice
index and b mean Hausdorff
distance (mm) over the eight
subjects for each tissue and
method. The whiskers show ±1
standard deviation
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methods for all tissue types. The H values show that HSA-
BAMS is better (lower H values) than all competing methods
for the WM, GM, skin, and skull tissues.

The McNemar tests provide evidence that HSA-BAMS
performs differently (p values <0.01) to all other methods
for all tissue types.

Segmentation Evaluation for Data Set 4

The mean DI and mean H values over the eight subjects for
eachmethod and each tissue are shown in Fig. 8. ThemeanDI
andmeanH values show that the performance of HSA-BAMS
is consistently better than that of the reference method BET-

FAST as well as that of the HSA-FAST, HSA-k-means, HSA-
FCM_S, and HSA-AMS methods for all tissue types.

The McNemar tests for each subject provide evidence that
HSA-BAMS performs differently (p values <0.01) to all other
methods for all tissue types.

Figure 9 shows a segmentation example for each method
for a single sagittal slice (face region has been excluded) from
the subject (IXI040_Guys_0724) in data set 4. It shows that
HSA-BAMS more accurately segments all of the tissue types
than the competing methods compared with the ground truth.
The HSA-k-means, HSA-FCM_S, HSA-FAST, and HSA-
AMS methods over-segment the skull tissue while the BET-
FAST method over-segments the skin tissue. Figure 10 also

Fig. 9 Segmentation example from the subject (IXI040_Guys_0724) in
data set 4 for a single sagittal slice a T1w image, b T2w image, c PD
image, d ground truth, e HSA-BAMS, f HSA-AMS, g HSA-k-means, h

HSA-FAST, i BET-FAST, j HSA-FCM_S (WM in white, GM in gray,
CSF in black, skull in red, and skin in yellow)
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suggests that all of the competing methods (HSA-k-means,
HSA-FCM_S, HSA-FAST, HSA-AMS, and BET-FAST)
have a higher tendency to over-segment the WM tissue com-
pared with the proposed method HSA-BAMS.

Source Localization Evaluation

Figure 10 shows the location of (a) real (simulated) source (in
green), (b) estimated source using the proposed method HSA-
BAMS (in red), and (c) estimated source using the reference
method BET-FAST (in blue), superimposed on the ground
truth image. It can be seen that the estimated location of the
source obtained using HSA-BAMS is in good agreement with
the actual location of the source while that obtained using
BET-FAST is not.

The RE of the potential and the LE for the proposed
method HSA-BAMS are 0.01 and 0.0 mm, respectively, and
for the reference method BET-FAST are 0.04 and 4.2 mm,
respectively. They also show that HSA-BAMS yields better
EEG source localization than BET-FAST.

Summary and Conclusion

In this paper, we presented a new fully automatic unsuper-
vised method for head tissue segmentation from multi-modal
MR images suitable for EEG source localization. In common
with several existing approaches, it is a hierarchical segmen-
tation approach wherein the MR data is first partitioned into

brain-tissue and non-brain-tissue sub-volumes and then each
sub-volume is independently segmented into multiple tissue
classes. What distinguishes our method is that a single
segmentation approach, BAMS, is used to segment both
the brain-tissue and non-brain-tissue sub-volumes into
multiple tissue classes. The two main advantages of
mean-shift segmentation are that it is an unsupervised
technique (it does not require training examples) and
that it can make use of multiple MRI modalities and
indeed multiple other imaging modalities.

Several evaluations of the performance of the proposed
method and of reference and variant methods were also pre-
sented. This included both direct evaluation in terms of seg-
mentation accuracy and indirect evaluation in terms of EEG
source localization accuracy. The direct evaluation results,
based on both synthetic data and real data from ten subjects,
show that the proposed method generally performs better than
the competing methods and is more tolerant to the noise and
the bias field. Importantly, for the real data, the proposed
method, HSA-BAMS, outperforms the reference method
BET-FAST and variations on the proposed method for all
tissue types considered important for the EEG source locali-
zation problem. The EEG source localization results show
that the proposed method outperforms the reference
method BET-FAST commonly used for the construction
of a realistic head model for EEG source localization.
Overall, the experimental results suggest that the pro-
posed method HSA-BAMS can be used as a surrogate
for the reference method BET-FAST, as well as manual
segmentation for the construction of patient-specific
head models for EEG source localization.
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Appendix

A.1Bayesian-Based Adaptive Bandwidth Estimator

The bandwidth is modeled [24] by the a posteriori probability
density function p(s|x) of local data spread or variance s given
the data (feature) point x . Let M<n (total number of data
points) be the number of nearest neighbors to a data sample xi.
We can then define the pseudolikelihood

P s

&&&&&x

 !

¼ ∏
N

j¼1
P s

&&&&&xM j

 !

ð10Þ

where P s

&&&&&xM j

 !

is the probability of local data spread s
depending on the Mj nearest neighborhood samples to xM j

and {Mj| j=1,....,N} is the set ofN such neighborhoods of various

Fig. 10 EEG source localization results: ground truth superimposed with
the location of the real (simulated) source (green), HSA-BAMS-
estimated source (red), and BET-FAST-estimated source (blue)
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sizes. The evaluation of these probabilities over the entire set of
Mj is then given by

P s

&&&&&xM j

 !

¼
Z

P s

&&&&&M j; xM j

 !

P M j

&&&&&xM j

 !

dM j ð11Þ

Applying Bayes rule we get

P M j

&&&&&xM j

 !

¼
P xM j

&&&&&M j

 !

P M j
' (

P xM j

' ( ð12Þ

where P xM j jM j
' (

is the probability of the data sample xM j

given theMj nearest neighborhood. Hereinafter, P(Mj) is consid-
ered to have uniform distribution on the interval [M1, M2].
Several values are selected for Mj in this interval according to

M j ¼ M 1 þ j
M 2−M 1

N
ð13Þ

For a given Mj, the local variance sj is computed as

s j ¼

XM j

l¼1
∥xi;l−xi∥2

M j−1
i ¼ 1; 2…::n j ¼ 1; 2;…N ð14Þ

where xi,j is the lth nearest neighbor to the data point xi. The
distribution of variances is modeled as the Gamma distribu-
tion defined as

p s
&&&α;β

) *
¼ βαsα−1

Γ αð Þ
e−βs s≥0 α;β > 0 ð15Þ

where

Γ tð Þ ¼
Z∞

0

rt−1e−rdr ð16Þ

is the Gamma function, and α and β define the shape
and the scale of the Gamma distribution, respectively.

These parameters are estimated using the maximum likeli-
hood approach [24]. The estimate of the adaptive bandwidth is
identically the mean of this distribution, i.e.,

bh xið Þ ¼ bαbβ i ¼ 1; 2;…n ð17Þ
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