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Abstract

This paper presents a novel fully automated unsupervised framework for the brain tissue segmentation in magnetic resonance (MR) images. 
The framework is a combination of Bayesian-based adaptive mean shift, a priori spatial tissue probability maps and fuzzy c-means. Mean shift is 
employed to cluster the tissues in the joint spatial-intensity feature space and then a fuzzy c-means is applied with initialization by a priori spatial 
tissue probability maps to assign the clusters into three tissue types; white matter (WM), gray matter (GM) and cerebrospinal fluid (CSF). The 
proposed framework is validated on a synthetic T1-weighted MR image with varying noise characteristics and spatial intensity inhomogeneity, 
obtained from the BrainWeb database as well as on 38 real T1-weighted MR images, obtained from the IBSR repository. The performance of the 
proposed framework is evaluated relative to the three widely used brain segmentation toolboxes: FAST, SPM and PVC, and the adaptive mean 
shift (AMS) and classical fuzzy c-means methods. The experimental results demonstrate the robustness of the proposed framework, and that it 
exhibits a higher degree of segmentation accuracy in segmenting both synthetic and real T1-weighted MR images compared to all competing 
methods.
© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

Accurate segmentation in magnetic resonance (MR) images 
plays a vital role in the quantitative analysis of normal and ab-
normal brain tissues [1–3]. It can also be useful in assigning in-
dividual tissues conductivity to construct realistic conductivity 
models for various neurological applications such as electroen-
cephalography (EEG) source localization in epilepsy patients 
[4,5] and hyperthermia treatment planning for head and neck 
[6,7].

A wide range of automated segmentation methods has been 
proposed in the literature over the years. These can be broadly 
categorized into two major types, i.e. supervised and unsuper-
vised segmentation methods.

Supervised segmentation methods [8–11] require labeled 
training datasets to extract the features and train a classifier. 
The classifier is then used to label unseen voxels. Artificial 
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neural networks, k nearest neighbor (kNN) and support vector 
machines are examples of supervised segmentation methods. 
A major downside of the supervised methods is that they need 
a sufficiently large training dataset from a similar distribution as 
the data to be segmented. Therefore in practice these methods 
cannot be useful to the data obtained with a different scanning 
protocol and image modality or scanner [12].

Unsupervised segmentation methods don’t require any la-
beled training datasets. The majority of unsupervised meth-
ods that have been proposed for automated segmentation of 
brain tissues are based on statistical parametric models [13–21]. 
These methods assume some distributional form for the under-
lying probability distribution of the data and seek to estimate 
its parameters. Some of these [13–15] are purely voxel wise in-
tensity based clustering methods. A downside of these is that 
they may give poor tissue classifications in the presence of 
additive noise and multiplicative bias field [22]. To overcome 
these problems, some of the parametric methods [17–21] using 
a Markov random field (MRF) statistical spatial model. A ma-
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jor drawback with these approaches is that the MRF algorithm 
is computationally expensive and requires critical parameters 
settings at higher dimensional feature space [22].

Mean shift (MS) [23,24] is one of the unsupervised cluster-
ing methods, which doesn’t have this problem. It is an adaptive 
gradient approach to estimate the modes of the multivariate dis-
tribution underlying the feature space. The feature points that 
are associated with a mode form a cluster. The only parame-
ter that influences the clustering is the bandwidth of the kernel. 
However, the use of a fixed bandwidth can cause over-clustering 
or under-clustering. Several approaches [25,26] have been pro-
posed to solve this problem, wherein the bandwidth of each 
feature point is used to estimate the clusters. Therefore, the 
mean shift based on the adaptive bandwidth of the kernel is 
called adaptive mean shift (AMS).

AMS can also provide clustering by taking both the spatial 
and the intensity domain into account. Due to this character-
istic, AMS can be more robust to noise and spatial intensity 
inhomogeneity artifacts in the MR brain images compared to 
intensity based clustering methods [22]. The output of the AMS 
is a set of clusters or modes. In order to get the desired number 
of clusters or tissue classes, merging is required.

In [22], the first adaptive mean shift framework is pro-
posed for segmenting the brain tissues in the MR images. The 
framework is based on the mode merging and voxel-weighted 
k-means algorithm to categorize the clusters, obtained from the 
adaptive mean shift, into WM, GM and CSF tissue.

A downside of this procedure is that mode pruning in a range 
(intensity) domain can lose spatial information of modes (clus-
ters), which may cause combining of the modes belonging to 
different tissue classes. Another downside of it is that the fi-
nal merging of pruned modes into three tissue types, using the 
prior knowledge about the ordering of tissue intensity [22] in 
MR images to initialize the voxel-weighted k-means algorithm, 
may also lead to assigning the clusters to the wrong tissue class.

To overcome these problems, we here propose a new unsu-
pervised segmentation framework, wherein we incorporate the 
spatial priors of the tissues to assign the clusters, obtained from 
the adaptive mean shift, into the three tissue types; WM, GM 
and CSF. The proposed framework is based on the Bayesian-
based adaptive mean shift, a priori spatial tissue probability 
maps and the fuzzy c-means algorithm.

The organization of the paper is as follows. Section 2 de-
scribes the MRI data, proposed framework, overview of com-
peting methods, segmentation performance measure, and statis-
tical analysis. The experimental results for both synthetic and 
real MRI data are presented in Section 3. Section 4 discusses 
the results and finally, the conclusions are drawn in Section 5.

2. Materials and methods

2.1. MRI data

We used a synthetic as well as real MRI data to evaluate 
the performance of proposed framework relative to the compet-
ing methods. The real MRI data is composed by two sets of 
MRI scans of normal subjects, obtained from the Internet Brain 
Segmentation Repository (IBSR) [27]. One of the sets of MRI 
scans is known as IBSR18 while the other is known as IBSR20.

Synthetic dataset The synthetic dataset comprises a T1-
weighted MRI scan of a normal subject for four (3%, 5%, 
7% and 9%) different noise levels with two (20% and 40%) 
different spatial intensity inhomogeneity levels, obtained from 
the BrainWeb simulated brain database (SBD) [28]. The T1-
weighted MRI scan is of size 181 × 217 × 181 with cubic vox-
els of size 1 mm×1 mm×1 mm. A ground truth (labeled data) 
for the T1-wiegthed MRI scan was also obtained from the SBD.

IBSR18 dataset The IBSR18 dataset comprises 18 real T1-
weighted MRI scans of normal subjects. Each MRI scan is 
of size 256 × 256 × 128 with voxels of size 0.94 mm ×
0.94 mm × 1.5 mm. A ground truth (manual segmentation) for 
each T1-weighted MRI scan for this dataset was obtained from 
the IBSR repository.

IBSR20 dataset The IBSR20 dataset comprises 20 real T1-
weighted MRI scans of normal subjects. Each MRI scan is of 
size 256 × 63 × 256 with voxels of size 1 mm × 3.1 mm ×
1 mm. Each MRI scan in the dataset suffered from low contrast 
and bias field (spatial intensity inhomogeneity). A ground truth 
(manual segmentation) for each T1-weighted MRI scan for this 
dataset was also obtained from the IBSR repository.

2.2. Bayesian adaptive mean shift

Bayesian adaptive mean shift is a variation on the adaptive 
mean shift (AMS) [25,26] segmentation method originally pro-
posed in [22] for brain tissue segmentation in MR images. In 
[22], the adaptive bandwidth of the kernel for the mean shift 
algorithm is defined in terms of the distance between the cur-
rent feature point and its k-th nearest neighbor. However, the 
bandwidth value defined using this approach can be biased by 
outliers [29].

In [29], a global bandwidth estimation approach is proposed 
for the kernel that does not have this problem. In Bayesian 
adaptive mean shift, we used this approach locally for adaptive 
bandwidth estimation of the kernel for mean shift algorithm. 
The approach is based on a Bayesian method that involves fit-
ting the Gamma distribution probability density function to the 
local variances of N sets of neighborhoods around the current 
feature point. See Appendix A for more details.

Mean shift is itself an iterative algorithm for finding the 
modes of a multivariate probability density function given dis-
crete data sampled from it. Let {xi ∈ R

d | i = 1, . . . , n} denote 
this set of points. Given a starting point y1, the following iter-
ative rule defines successive locations of this point towards a 
denser region or mode (local maximum):
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∑n
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where g(x) is the kernel profile of kernel G, and h(xi) ≡ hi is 
the adaptive bandwidth of the kernel for point xi . The points 
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Fig. 1. Schematic procedure of the proposed framework.
that converge to the same mode constitute a cluster. To apply 
this to the problem of image segmentation one represents each 
pixel as a feature point xi formed by concatenating its spatial 
coordinates and range values (e.g. T1-weighted) and employs 
the following joint spatial-intensity domain kernel G defined

G(x) = c

h
p
s hd

r
g

(∥∥∥∥ xs
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2)
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where xs and xr are the spatial and range components of x, and 
hs and hr are the spatial and range bandwidths respectively. In 
this work, we used Gaussian kernel for both spatial and inten-
sity domain. The output of Bayesian adaptive mean shift is a set 
of modes or clusters of brain tissues.

2.3. Fuzzy c-means algorithm

Let {z1, z2, z3, . . . , zm} denote a set of m clusters obtained 
from the Bayesian adaptive mean shift. The fuzzy c-means [30]
is then applied to assign these clusters to the three tissue types 
by minimizing the cost function defined as

J =
m∑

j=1

c∑
k=1

p
g
kj‖Ij − μk‖2 j = 1,2, . . . ,m (3)

where Ij represents an intensity vector of cluster zj , μk is the 
kth cluster (tissue) center and pkj is known as membership 
function and it represents the probability that an intensity vector 
Ij of cluster zj belongs to kth tissue. The constant g controls 
the fuzziness of the resulting partition.
To initialize the tissue centers, a priori spatial tissue proba-
bility maps are incorporated into the fuzzy c-means algorithm. 
The kth tissue center is then initialized as

μk_initial =
∑m

j=1 p
g

kj_initialIj∑m
j=1 p

g

kj_initial

(4)

where pkj_initial represents a priori spatial probability map of 
kth tissue, obtained from the International Consortium for Brain 
Mapping (ICBM) [31,32]. The membership functions and tis-
sue centers are then updated as

pkj = 1∑c
i=1(

‖Ij −μk‖
‖Ij −μi‖ )2/(g−1)

(5)

μk =
∑m

j=1 p
g
kj Ij∑m

j=1 p
g
kj

(6)

2.4. Summary of the proposed segmentation framework

Herein, we summarize the proposed segmentation frame-
work. The schematic procedure of the proposed framework is 
shown in Fig. 1.

The proposed framework includes the following pre-proces-
sing steps: (1) Removal of non-brain tissue (such as skull, skin, 
fat, muscle, and spinal cord) from the MRI data (T1-weighted 
image) using a brain binary mask, generated from the pro-
vided ground truth. (2) Correction of Bias field using the N3 
bias field correction algorithm [33], and (3) Co-registration 
of a priori spatial tissue probability maps, obtained from the 
ICBM [31,32], to the MRI brain data (T1-weighted brain im-
age) by employing the Flirt registration tool in FSL [34]. Given 
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that these preliminary requirements are satisfied, the proposed 
framework segmenting the MRI brain into three tissue types; 
WM, GM and CSF is as follows.

1. The adaptive bandwidth hi for each feature point xi was 
estimated by employing the Bayesian-based estimator as 
described in Appendix A.

2. The modes or clusters {z1, z2, z3, . . . , zm} of the MRI brain 
tissue were then computed in Eq. (1) using the adaptive 
bandwidth hi , obtained from the step 1. The clustering was 
done in the joint spatial-intensity domain using the joint 
kernel, defined in Eq. (2).

3. Finally, the fuzzy c-means algorithm was applied to cate-
gorize the clusters, obtained from the step 2, into the WM, 
GM, and CSF tissue by employing Eq. (3), wherein the 
center of the kth tissue μk_initial was initialized by incorpo-
rating the a priori spatial tissue probability maps pkj_initial

(obtained from the ICBM) using Eq. (4).

2.5. Overview of competing segmentation methods

The performance of the proposed framework was evaluated 
relative to the three widely used brain segmentation toolboxes: 
FAST (FMRIB’s Automated Segmentation Tool) [18,35,36], 
SPM (Statistical Parametric Mapping toolbox) [32,35–37], and 
PVC (Partial Volume Classifier) [19,20,35] as well as to the 
existing adaptive mean shift (AMS) framework [22] and the 
classical fuzzy c-means method [30].

FAST FAST is implemented in the FSL [38] software. In 
FAST, the underlying method for brain tissue segmentation is 
based on the hidden Markov random field model and associ-
ated Expectation-Maximization (HMRF-EM) algorithm [18].

SPM The underlying method [37] for the brain tissue segmen-
tation in SPM [32] is based on the parameter estimations of 
Gaussian mixer model (GMM), atlas registration and bias field 
correction at the same time iteratively. In this study, the lat-
est SPM version we used for segmenting the brain tissues was 
SPM8.

PVC PVC is implemented in the BrainSuite software [39]. 
The underlying method [19,20] for the brain tissue segmen-
tation in PVC is based on the maximum-a-posteriori (MAP) 
classifier and spatial prior model of the brain.

Adaptive mean shift (AMS) framework AMS framework is 
initially based on the adaptive mean shift to divide the brain 
tissue into a large number of clusters and then on the iterative 
mode pruning and voxel-weighted k-means to categorize these 
clusters into the three tissue types: WM, GM and CSF [22].

Fuzzy c-means (FCM) FCM [30] is frequently used in the pat-
tern recognition field. It is based on the distance function to 
partition the input data into clusters and it doesn’t take into ac-
count spatial information.
2.6. Quantification of segmentation performances

The segmentation performance for each segmentation
method was evaluated quantitatively using the Dice index 
(DI) [40].

The Dice index (DI) was computed for each tissue type, 
dataset, and segmentation method. The Dice index (DI) mea-
sures the degree of overlap between the ground truth and the 
segmentation result. It is defined as

DI = 2Vae

(Va + Ve)
(7)

where Vae is the number of voxels the segmentation result and 
the ground truth have in common, and Va and Ve denote the 
number of voxels in the segmentation result and the ground 
truth respectively. The DI has value one for perfect segmen-
tation and zero when there is no overlap between the segmenta-
tion result and ground truth.

2.7. Optimal parameters settings for the segmentation 
methods

The T1-weighted MRI scan for 0% noise level with 0% bias 
field level, obtained from the BrainWeb database [28], was used 
to empirically determine the optimal parameters settings for all 
segmentation methods.

The optimal parameters for each segmentation method, 
which gave the highest mean Dice index over all the brain tis-
sues for this particular MRI scan were selected.

For the proposed framework, we set hs (spatial
bandwidth) = 3, and M1 = 100, M2 = 300, and N = 10 (pa-
rameters involved in estimating the adaptive bandwidth, de-
scribed in Appendix A), and g = 1.5 (parameter defined in 
fuzzy c-means).

For the AMS framework, the parameter ‘k’ (nearest neigh-
borhoods) was set to 120 for the adaptive bandwidth estimation 
of the kernel for the mean shift as suggested in [22].

For the FCM, we set g = 1.5 and it was initialized using 
the prior knowledge of tissue intensity ordering in T1-weighted 
MRI scan. For example, in the T1-weighted MRI scan the high-
est intensity value was used to initialize the cluster for WM tis-
sue, the lowest intensity value was used to initialize the cluster 
for CSF tissue, and the mean of the highest and lowest intensity 
values was used to initialize the cluster for GM tissue.

In this study, the brain segmentation toolboxes: FAST, SPM 
and PVC were applied with the same parameter settings as de-
scribed in [35].

2.8. Statistical analysis

To determine whether there exists a statistically significant 
difference in the voxel-wise classification performance between 
the proposed framework and each of the other methods for each 
tissue type and each dataset, several multiple comparison tests 
were performed. Each multiple comparison test involved per-
forming five McNemar tests [41], each comparing proposed 
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framework to one of the other methods. Each McNemar test in-
volved computing a 2 ×2 contingency table 

[ n11 n12
n21 n22

]
where n11

is the number of voxels correctly classified by both methods, 
n12 is the number of voxels correctly classified by proposed 
framework but not the other method, n21 is the number of vox-
els incorrectly classified by proposed framework but correctly 
classified by the other method, and n22 is the number of voxels 
incorrectly classified by both methods.

For each McNemar test the null hypothesis was that the two 
methods have the same performance or error rate, i.e. n12 =
n21, versus the alternative hypothesis that they do not. The level 
of significance for each multiple comparison test was taken to 
be α = 0.05 and so, using Bonferroni correction, the level of 
significance for each McNemar test was α = 0.05 ÷ 5 = 0.01. 
Each McNemar test in essence tests whether the two methods 
classify in the same way; i.e. make the same misclassification 
errors.

3. Experimental results

3.1. Quantitative results

Synthetic dataset For the synthetic dataset, the Dice index 
for each noise level with 20% and 40% spatial intensity inho-
mogeneity levels for each tissue and segmentation method are 
presented in Figs. 2 and 3 respectively. The mean Dice index 
over all the noise levels for 20% and 40% spatial intensity in-
homogeneity levels for each tissue and segmentation method 
are presented in Figs. 4 and 5 respectively.

IBSR18 dataset The Dice index for each subject for each tis-
sue and segmentation method is presented in Fig. 6 and the 
mean Dice index over all the subjects for each tissue and seg-
mentation method is presented in Fig. 7.

IBSR20 dataset The Dice index for each subject for each tis-
sue and segmentation method is presented in Fig. 8 and the 
mean Dice index over all the subjects for each tissue and seg-
mentation method is presented in Fig. 9.

3.2. Qualitative results

An example of the segmentation results for each method for 
the 9% noise level with 40% spatial intensity inhomogeneity 
level for axial slice 100 of the synthetic dataset is shown in 
Fig. 10.

An example of the segmentation results for each method for 
coronal slice 31 of the subject 15_3 from the IBSR20 dataset is 
shown in Fig. 11.

4. Discussion

We presented a novel fully automatic unsupervised segmen-
tation framework for the segmentation of three tissue types 
from the MRI brain images. The framework is based on the 
Bayesian-based adaptive mean shift to initially divide the brain 
into a number of clusters and the fuzzy c-means algorithm, 
Fig. 2. Dice index for each segmentation method for the synthetic data for four 
different noise levels (3%, 5%, 7% and 9%) with 20% spatial intensity inhomo-
geneity level for (a) WM (b) GM and (c) CSF.

wherein the a priori spatial tissue probability maps are incor-
porated, to categorize the resulting clusters into WM, GM and 
CSF tissue.

We also presented the evaluation of the segmentation ac-
curacy of the proposed framework relative to three widely 
used brain segmentation toolboxes: FAST, SPM, and PVC and 
the adaptive mean shift (AMS) and classical fuzzy c-means 
(FCM) methods. The evaluation was performed on a synthetic 
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Fig. 3. Dice index for each segmentation method for the synthetic data for four 
different noise levels (3%, 5%, 7% and 9%) with 40% spatial intensity inhomo-
geneity level for (a) WM (b) GM and (c) CSF.

T1-weighted MR image for four different levels of noise with 
two different levels of spatial intensity inhomogeneity, obtained 
from the BrainWeb database as well as on 38 real T1-weighted 
MR images, obtained from the IBSR repository.

The quantitative results for the synthetic dataset for each 
noise level with 20% spatial intensity inhomogeneity level 
(shown in Fig. 2) show that the proposed framework has better 
segmentation (higher Dice index) for each tissue compared to 
all competing methods except for the noise level 3% for which 
Fig. 4. Mean Dice index for each segmentation method for the synthetic data 
over all the noise levels with 20% spatial intensity inhomogeneity level for 
(a) WM (b) GM and (c) CSF. The whiskers show plus/minus one standard de-
viation.

the proposed framework is comparable to the AMS method for 
the WM and GM classification. Fig. 2 also shows that the pro-
posed framework is comparable to the PVC for the noise level 
9% for the WM classification.

The quantitative results for the synthetic dataset for each 
noise level with 40% spatial intensity inhomogeneity level 
(shown in Fig. 3) show that the proposed framework has better 
segmentation (higher Dice index) for each tissue compared to 
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Fig. 5. Mean Dice index for each segmentation method for the synthetic data 
over all the noise levels with 40% spatial intensity inhomogeneity level for (a) 
WM (b) GM and (c) CSF. The whiskers show plus/minus one standard devia-
tion.

all competing methods except for the noise level 3% for which 
the proposed framework is comparable to the AMS method for 
the WM classification.

Figs. 4 and 5 show that on average over all the noise levels, 
the proposed framework is robust for each tissue type compared 
to all competing methods. Moreover, the results for the mean 
Dice index show that the proposed framework exhibits a de-
Fig. 6. Dice index for each method for each subject from the IBSR18 dataset 
for (a) WM (b) GM and (c) CSF.

creased in performance for the CSF for 40% spatial intensity 
inhomogeneity level, FAST has decreased in performance for 
the CSF for both 20% and 40% spatial intensity inhomogeneity 
levels, AMS exhibits a decreased in performance for the WM 
for 20% spatial intensity inhomogeneity level and also has de-
creased in performance for the CSF for 40% spatial intensity 
inhomogeneity level, SPM exhibits a decreased in performance 
for the WM and GM for both 20% and 40% spatial intensity in-
homogeneity levels, PVC has decreased in performance for the 
GM and CSF for both 20% and 40% spatial intensity inhomo-
geneity levels, and FCM exhibits a decreased in performance 
for each tissue type for both 20% and 40% spatial intensity in-
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Fig. 7. Mean Dice index for each method over all the subjects of the IBSR18 
dataset for (a) WM (b) GM and (c) CSF. The whiskers show plus/minus one 
standard deviation.

homogeneity levels. The statistical tests (two-tailed t-tests) for 
the results for 20% spatial intensity inhomogeneity (shown in 
Fig. 4) reveal that no significant differences (p-values > 0.05) 
exist between the proposed framework and FAST, SPM, and 
AMS method for each tissue type. Moreover, they show that 
no significant differences (p-values > 0.05) exist between the 
proposed framework, and PVC and FCM method for the WM. 
However, significant differences (p-values < 0.05) exist be-
Fig. 8. Dice index for each method for each subject from the IBSR20 dataset 
for (a) WM (b) GM and (c) CSF.

tween the proposed framework and PVC, and FCM method for 
the GM and CSF. The statistical tests (two-tailed t-tests) for 
the results for 40% spatial intensity inhomogeneity (shown in 
Fig. 5) show that no significant differences (p-values > 0.05) 
exist between the proposed framework and FAST, SPM, PVC, 
and AMS method for each tissue type. However, significant dif-
ferences (p-values < 0.05) exist between the proposed frame-
work and FCM method for each tissue type.
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Fig. 9. Mean Dice index for each method over all the subjects of the IBSR20 
dataset for (a) WM (b) GM and (c) CSF. The whiskers show plus/minus one 
standard deviation.

The quantitative results for the IBSR18 dataset (shown in 
Fig. 6) show that for the WM, the proposed framework has 
better segmentation (higher Dice index) for each subject com-
pared to all competing methods except for the subjects 06, 08, 
15, and 18 for which the proposed frame work is compara-
ble (similar Dice index) to the FAST and the subject 12 for 
which the proposed frame work is comparable to the AMS 
method. For the GM, the proposed framework has better seg-
mentation (higher Dice index) for each subject compared to 
all competing methods except for the subjects 11, and 15 for 
which the SPM is slightly better than the proposed framework. 
For the CSF, the proposed framework has better segmentation 
(higher Dice index) for each subject compared to all compet-
ing methods except for the subject 15 for which the FAST is 
slightly better than the proposed framework. Fig. 7 shows that 
on average over all the subjects, the proposed framework is 
robust for each tissue type compared to all competing meth-
ods. Moreover, the results for the mean Dice index show that 
both proposed framework and FAST exhibit a decreased in 
performance for the CSF, AMS has decreased in performance 
for the WM and CSF, SPM exhibits a decreased in perfor-
mance for the WM and GM, PVC has decreased in perfor-
mance for each tissue type, and FCM exhibits a decreased in 
performance for the GM and CSF. The statistical tests (two-
tailed t-tests) for the results (shown in Fig. 7) show that sig-
nificant differences (p-values <0.05) exist between the pro-
posed framework and each competing methods for each tissue 
type.

The quantitative results for the IBSR20 dataset (shown in 
Fig. 8) show that for the WM, the proposed framework has bet-
ter and similar segmentation (higher and similar Dice index) 
for each subject compared to all competing methods except 
for the subjects 2_4, 15_3, and 16_3 for which the SPM has 
better segmentation, the subjects 2_4, and 191_3 for which 
the FAST performs better and the subject 11_3 for which the 
FCM method is better. For the GM, the proposed framework 
has better segmentation (higher Dice index) for each subject 
compared to all competing methods except for the subjects 
8_4, 15_3, 16_3 and 17_3 for which the AMS is compara-
ble (similar Dice index) and the subject 100_23 for which 
the SPM is comparable. For the CSF, the proposed frame-
work has better segmentation (higher Dice index) for each 
subject compared to all competing methods except for the sub-
ject 13_3 for which the AMS performs better and the sub-
ject 202_3 for which the SPM is better. Fig. 9 shows that 
on average over all the subjects, the proposed framework is 
robust for each tissue type compared to all competing meth-
ods. Moreover, the results for the mean Dice index show that 
both proposed framework and AMS have decreased in per-
formance for the CSF, FAST exhibits a decreased in perfor-
mance for the GM and CSF, both SPM and FCM have de-
creased in performance for the GM and CSF and PVC exhibits 
a decreased in performance for each tissue type. The statisti-
cal tests (two-tailed t-tests) for the results (shown in Fig. 9) 
reveal that no significant differences (p-values > 0.05) ex-
ist between the proposed framework and FAST, AMS, SPM, 
and PVC for the WM. Moreover, they show that no signifi-
cant differences (p-values > 0.05) exist between the proposed 
framework and AMS, and SPM for the GM and CSF. How-
ever, significant differences (p-values < 0.05) exist between 
the proposed framework and PVC for the WM and also signif-
icant differences (p-values < 0.05) exist between the proposed 
framework and FAST, PVC, and FCM method for the GM and 
CSF.
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Fig. 10. Segmentation example for axial slice 100 of the synthetic dataset for 9% noise level with 40% spatial intensity inhomogeneity level: (a) T1-weighted (b) 
Ground truth (c) Proposed (d) AMS (e) FAST (f) SPM (g) PVC (h) FCM (WM in white, GM in gray and CSF in black).

Fig. 11. Segmentation example for coronal slice 31 of the subject 15_3 from the IBSR20 dataset: (a) T1-weighted (b) Ground truth (c) Proposed (d) AMS (e) FAST 
(f) SPM (g) PVC (h) FCM (WM in white, GM in gray and CSF in black).
In this study, for the synthetic dataset, the segmentation re-
sults for the FAST toolbox for the WM and GM are comparable 
to those published in [21]. For the PVC, the results for the 
WM and GM are similar to those reported in [19] and for the 
SPM (SPM8), the results are comparable to those published in 
[37]. However, the results for the CSF for the FAST toolbox are 
higher than those published in [21]. The reason is that in [21] a 
different brain binary mask was used to remove the non-brain 
tissue that affects the accuracy of CSF classification.

For both the IBSR18 and the IBSR20 datasets, the segmen-
tation results for the brain segmentation toolboxes (FAST, SPM 
and PVC) are comparable to those published in [35].
For each dataset and tissue, the McNemar tests provide ev-
idence that the proposed framework is significantly different 
(p-values < 0.01) to all competing methods.

The qualitative results (shown in Fig. 10) show that com-
pared to all segmentation methods, the proposed framework is 
less sensitive to noise and spatial intensity inhomogeneity; in 
particular for the segmentation of WM and GM tissue.

The qualitative results (shown in Fig. 11) show that relative 
to the ground truth, the proposed framework has a higher ten-
dency to misclassify the WM as GM tissue compared to the 
SPM, which has more smooth WM segmentation especially in 
a region close to the ventricles.
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5. Conclusions

We have proposed and evaluated a fully automatic unsuper-
vised framework for segmenting the WM, GM and CSF tissue 
in MR brain images. We demonstrated the robustness of our 
proposed framework on the synthetic T1-weighted MR image 
with varying noise characteristics and spatial intensity inhomo-
geneity as well as on 38 real T1-weighted MR images. The 
experimental results show the accuracy and efficacy of the pro-
posed framework, and that it consistently outperforms the three 
widely used brain segmentation toolboxes: FAST, SPM and 
PVC as well as the AMS and FCM methods for each tissue 
classification for all datasets. Moreover, incorporation of a pri-
ori spatial tissue probability maps in the proposed framework 
makes the tissue segmentation objective and reproducible.

For future work, we will extend the proposed framework for 
segmenting abnormal tissues such as multiple sclerosis lesions 
and tumors using multi-modal MR images.
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Appendix A

A.1. Bayesian-based adaptive bandwidth estimator

The bandwidth is modeled [29] by the a posteriori probabil-
ity density function p(s | x) of local data spread or variance s
given the data (feature) point x. Let M < n be the number of 
nearest neighbors to a data sample xi . We can then define the 
pseudolikelihood

P(s | x) =
N∏

j=1

P(s | xMj
) (A.1)

where P(s | xMj
) is the probability of local data spread s de-

pending on the Mj nearest neighborhood samples to xMj
and 

{Mj | j = 1, . . . , N} is the set of N such neighborhoods of var-
ious sizes. The evaluation of these probabilities over the entire 
set of Mj is then given by

P(s | xMj
) =

∫
P(s | Mj,xMj

)P (Mj | xMj
)dMj (A.2)

Applying Bayes rule we get

P(Mj | xMj
) = P(xMj

| Mj)P (Mj )

P (xMj
)

(A.3)

where P(xMj
| Mj) is the probability of the data sample xMj

given the Mj nearest neighborhood. Hereinafter P(Mj) is con-
sidered to have uniform distribution on the interval [M1, M2]. 
Several values are selected for Mj in this interval according to

Mj = M1 + j
M2 − M1 (A.4)
N

For a given Mj the local variance sj is computed as

sj =
∑Mj

l=1 ‖xi,l − xi‖2

Mj − 1
i = 1,2 . . . , n, j = 1,2, . . . ,N

(A.5)

where xi,l is the l-th nearest neighbor to the data point xi . The 
distribution of variances is modeled as the Gamma distribution 
defined as

p(s | α,β) = βαsα−1

Γ (α)
e−βs s ≥ 0, α,β > 0 (A.6)

where

Γ (t) =
∞∫

0

rt−1e−rdr (A.7)

is the Gamma function, and α and β define the shape and the 
scale of the Gamma distribution respectively.

These parameters are estimated using the maximum likeli-
hood approach [29]. The estimate of the adaptive bandwidth is 
identically the mean of this distribution, i.e.

ĥ(xi ) = α̂β̂ i = 1,2, . . . , n (A.8)
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