

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, June 2015

Vector-based map cutting
In the context of cloud-based navigation systems
Master of Science Thesis in Electrical Engineering

ANDREAS KARLSSON
KRISTOFFER WILHELMSSON

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Vector-based map cutting
In the context of cloud-based navigation systems

Andreas Karlsson
Kristoffer Wilhelmsson

© Andreas Karlsson, June 2015.
© Kristoffer Wilhelmsson, June 2015.

Examiner: Marina Papatriantafilou

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden June 2015

Abstract

Vector maps are used when describing real world geographical objects, such as
lakes or roads, with the convenience of vectors and vector objects. Each vector,
or coordinate, describes a geographical point. Two or more vectors describe a
line, or polyline, and three or more cordinates can describe a polygon. A lake can
thus be described by a polygon with coordinates mapping its boundary, while
a road can be described by a polyline with coordinates mappings its stretch.

When dealing with vector map objects you often bound the geographical
area of interest by a bounding polygon. In its simplest form this is a bounding
box, but arbitrarily shaped polygons can be used as well.

This thesis report examines how vector map objects in form of polylines and
polygons can be cut out from arbitrarily formed polygons. It also describes how
the arbitrarily formed polygons in turn can be created by splitting up a corridor
surrounding a polyline, the corridor created by offsetting the polyline to each
of its sides.

It goes into details on algorithms used for polygon clipping and polyline
offsetting. The report also covers implementation of selected approaches into
a vector map based mobile navigation system, as well as benchmarking and
testing of it.

Contents
1 Introduction 3

1.1 Background . 3
1.2 Case study: Cloud-based navigation application Wisepilot 4
1.3 Analysis of old implementation 4

1.3.1 Rectangular enclosure of vector maps 4
1.3.2 Structural overview . 5
1.3.3 System performance . 6

1.4 Formulation of problem . 7
1.5 Aim of this thesis . 7

1.5.1 Project aim . 8
1.6 Limitations . 8
1.7 Geometric terminology conventions 8
1.8 Human vs computational perception of figures 9
1.9 Description of remaining sections 9

2 Related work 10
2.1 Offsetting algorithms . 10
2.2 Poly object simplification algorithms 10
2.3 Clockwise polygons and polygon area algorithm 11
2.4 Linear algebra . 11

2.4.1 Line intersection . 11
2.4.2 Relative positioning . 12

2.5 Locating algorithms . 13
2.5.1 Ray-edge intersection algorithm 13
2.5.2 Angle-summation algorithm 13

2.6 Polygon set-operation algorithms 14
2.6.1 Weiler-Atherton algorithm 15
2.6.2 Binary space partitioning tree algorithm 16
2.6.3 Vatti’s generic algorithm 18
2.6.4 Experimental polygon tree algorithm 19

3 Methodology 24
3.1 Implementation of offset algorithms 24

3.1.1 Equi-angular algorithm 24
3.1.2 Encapsulation polygon algorithm 25

3.2 Application of polygon set-operations 28
3.3 Implementation of locating algorithm 28
3.4 Computing relative position . 29
3.5 Implementation of polygon set-operation algorithm 29

3.5.1 Inserting intersections . 30
3.5.2 Generating output . 31
3.5.3 Filtering intersections . 32

4 Results and discussion 35
4.1 Measured results and system performance 35

4.1.1 Discussion . 40

1

5 Conclusions and possible future work 41
5.1 Conclusion . 41
5.2 Possible future work . 41

6 References 43

2

1 Introduction

1.1 Background
Mobile navigation applications are common on today’s mobile platforms. There
are basically two different types of navigation applications; online and offline.
Online, or cloud-based, is when the route calculation and map handling is done
by an online server, as opposed to offline when routing and maps are handled
locally on the device. Cloud-based car navigation applications have many ad-
vantages over offline applications, e.g. always fresh map data, no need for local
storage on the mobile device and no cumbersome download procedures. There
are however drawbacks that need to be considered in a cloud-based approach.
The obvious drawback is that the map data needs to be downloaded on demand
from the Internet, thus the device must have network coverage. To rely as little
as possible on the network, but still enjoy the benefits of a cloud-based solu-
tion, it’s important to keep the downloaded data amount as small as possible.
Another reason to keep the downloads small is the cell phone data plan, which
in the end the user of the car navigation application has to pay for.

This thesis is based on a hands-on project that was carried out at Appello
Systems AB. Appello is developing and selling a mobile navigation system called
Wisepilot. Wisepilot is a cloud-based car navigation application. Thus, for
Wisepilot, low data consumption is a selling point compared to both offline car
navigation as well as competing cloud-based solutions.

Before presenting the thesis’s problem formulation and aims, here is some
general terminology that will be used in the report.

Map server An online storage and service that can be queried for e.g. vector
maps and navigable routes between two points.

Client The car navigation application Wisepilot, running on a mobile device.

Map data Map data is stored on a map server that can be queried for bounding
box representations, resulting in vector map objects inside the bounding
box. On the client-side the map data is held in memory by the applica-
tion. Throughout the thesis, map data will always be referred to as being
vectorized and represented by coordinates, as opposed to a rasterized map
representation.

Map coverage Map data for a particular geometrical area. Could be a bound-
ing box represented by two coordinates but could also be of a more general
geometrical form, e.g. the geometry of a route with a given offset from
the route.

Map object A vector representation of a road, water area, park area or any-
thing found on a map.

Route A path between two or more geographical coordinates calculated by the
navigation system. The route holds spatial information of the path, as
well as navigational instructions used to guide the user while driving.

Corridor The area surrounding a route, defined by a given offset at every point
on the route.

3

Map tile Or simply tile. A part of a an offsetted route, a set of vector map
objcets bounded by a bounding box or polygon.

Wisepilot A cloud-based navigation system for cellular phones and smart-
phones. It consists of an end user application running on a device (a
thin client), and a server side application feeding the client with navigable
routes and map data surrounding the routes.

1.2 Case study: Cloud-based navigation application Wisepi-
lot

Wisepilot is a cloud-based navigation application for cellular phones and smart-
phones. Being cloud-based, the application running on the device only shows
what it downloads from the server. Wisepilot shows maps and navigable routes
that it gets by querying an online server. To find a navigable route between two
destinations the user submits its desired destination and the application queries
the server for a route calculated from current position to the desired destination.
The server responds with the route and the nearby pieces of map information
needed to graphically represent the current location of the user. When the user
progresses along the route the application detects this through GPS coordinates
provided by the device, and updates the display of the map and the user’s posi-
tion accordingly. This way the user will always be timely informed about coming
turns, roundabouts and other landmarks needed to navigate the route. During
this progression, map information along the route ahead is prefetched and held
readily available for the application to use when the user’s scope reaches its
perimeter.

Throughout this thesis references will be made to “the old implementation”,
which is the implementation used for querying and cutting vector map objects
before the outcome of this thesis was implemented. The old implementation
used a very simple algorithm deciding what vector map data should accompany
the route. The algorithm used bounding boxes as map tiles to supply the route
with map coverage along the route, which had the consequence of a an uneven
map coverage and also the same data being sent twice when the rectangular
tiles where overlapping eachother. The workings, and the limitations, of the old
implementation are more thoroughly described in section 1.3.

1.3 Analysis of old implementation
In this section we analyze the implementation that was used by Wisepilot prior
to this thesis project.We describe its bounding box algorithm to show how it
works and to present its limitations. We also analyze and present its data
structure and finally the metrics used to measure system performance.

1.3.1 Rectangular enclosure of vector maps

The old implementation used an algorithm which seeks to enclose the route with
rectangles. These rectangles in turn represent the bounding boxes used by the
lookup requests to the map server.

As figure 1 shows this algorithm provides a very uneven map coverage around
the route since this coverage is not related to the geometrical properties of the

4

route itself. This leads to the application intermittently showing insufficient map
coverage and also overlapping tiles, resulting in unnecessary data transfers.

Figure 1: A part of a route near Girona, Spain, with map rectangles outlined
in violet. Notice the sometimes very short distances from the red route to the
gray field which holds no map coverage.

1.3.2 Structural overview

In the old implementaion map data is strucuted in map tiles formed as rectan-
gles. These rectangles are fetched from a map server and holds infrastructural
and cartographic data stored as polygons and polylines, representing objects on
the map, e.g. buildings, water, roads, ferry lines etc. As the user travels along
the route, new squares are passed down to the client. The map server can only
be queried using bounding boxes, meaning that trimming of polylines and poly-
gons will have to be done in the new implementation, as the new implementation
will use arbitrarily shaped bounding polygons instead of rectangles.

The route (shown as a red line in figure 2) consists of vertices, defined in a
class called ShadePoint, which holds positional data in terms of longtitude and
latitude. ShadePoints are in turn, in terms of Java terminology, an extended
version of the IntPosition class. To emphasize a vertex where the route makes
a turn there is a class called WayPoint, which extends ShadePoint. The prefix
’Int’ in IntPosition implicates that longtitude and latitude are stored as integers,
multiplied with 100000 to have sufficient precision. Having positions stored as
integers makes for easier handling on different types of mobile devices, which
may have inefficient floating point handling. The shadepoints, which represents

5

the route, are accompanied by map objects which are either PolyLineObjects
or PolygonObject, which in turn also consists of IntPositions.

A map tile containing map data is represented by the VectorMap class,
where functions for removing and adding map objects are found together with
functions for writing the map to a stream or finalize objects before actually
adding them. Figure 2 shows an example of a VectorMap object, with a route
object drawn on top of it. The orange background in the figure is also a part of
the vector map, spanning the vector map.

It’s sufficient to know that a vector map is a structure of polygons and
polylines and that a route is defined by shade points with coordinates, with
occasional way points where the route makes a turn, instructing the user how
to navigate at that turn.

IntPosition

ShadePoint

WayPoint

Route

PolygonObjectPolyLineObject

VectorMap

Inheritance

Figure 2: a) A vector map consists of polylines (white roads) and polygons
(orange background, blue and green shapes). The route (red) is not part of the
vector map, but is drawn and handled as an individual object. Waypoints are
marked with a yellow dot. b) A simplified UML over how the classes are related
to each other.

This report will not go into more detail about how each object is structured.
Enhancements has been done to the existing structure to some extent, but this
will be explained separately later on. Neither will the report explain how the
algorithm in the old implemenation works when it determines the rectangles
covering the route.

1.3.3 System performance

The two most important metrics are sufficient map coverage and small amounts
of data sent to the client’s handset. Using tiles shaped as rectangles presents a
problem when combining these two. A route going from west to east, or north
to south, or vice versa, is optimal for an algorithm with only rectangular tiles.
However, the geographical and topological reality has a way of not allowing
roads going solely in those directions. The most dreadful case for a rectangular
enclosure is a diagonal route. In order to get good coverage on a diagonal
road segment one has to use either a very large rectangle, including a lot of

6

redundant data, or let smaller rectangles overlap each other. None of these
alternatives are satisfying. With focus on keeping client downloads small the
old implementation used little overlap and small rectangles, letting map coverage
be somewhat scarce.

The system designed as part of this thesis can be guaranteed sufficient com-
putational power by means of the powerful servers it’s running on. Even though
most design choices through out the project have been made with fast and effi-
cient algorithms in mind, the fact that the new system will use more processor
power has not been a major concern. Measurements on CPU cycles has not
been done and discussion on the matter is not subject of this report.

1.4 Formulation of problem
In order to deliver map coverage to clients more efficiently several problems
must be solved along the way from the map server to the client.

• When the map server is queried for vector map objects that will surround
the route, the query must be performed in a way that guarantees complete
enclosure of the route and its corridor. The amount of data generated by
such a query might be massive if the route is long, and the number of
queries made to satisfy the route must be carefully considered with regard
to lookup overhead and data amounts.

• The map data surrounding the route must be trimmed according to a
desired offset value, preserving the integrity of the vector map objects.

• The map data surrounding the route, i.e. the corridor, must be spliced
into tiles before it’s sent to the client. This is because the client can’t
handle too much vector map data at a given moment. When splicing the
map data in to tiles, consideration must go into the size of these tiles in
regard to the capabilities of the device and network overhead. Again, if
such a splice were to occur just over a map object, the object’s integrity
must be preserved.

1.5 Aim of this thesis
The aim of this thesis is to describe the solution and implementation of the
problems stipulated in 1.3.1. In short we want to develop and implement a
route encapsulation corridor that doesn’t result in much more data traffic than
the old implementation, and that also presents an even coverage around the
route. To accomplish this we need to:

• evaluate a method for calculating an offset around a route represented by
a polyline

• evaluate a method for selecting map data that corresponds to the above
mentioned offset geographically

• evaluate a method for splicing vector objects

• evaluate and test different map- query- and splice- sizing parameters with
regard to network, system and device performance

7

Existing work related to the above problems will be investigated in order to
find algorithms and methods useful for the solutions to the problems, this is
described in section 2. If none is found, or deemed suboptimal, effort will be
put into the creation of an algorithm that meet the demands.

1.5.1 Project aim

The project that is the base of this thesis is to provide new and improved
algorithms for bounding vector maps, and also to implement the algorithms
for use in Wisepilot. The main aim is to provide better map coverage, and if
possible avoid increasing the data amount.

1.6 Limitations
This thesis does not cover route algorithms or route calculations. The routes
mentioned and used in this thesis are expected to be served by any service pro-
viding a polyline describing the route with latitude and longitude coordinates.
The scope of this thesis does also not cover the details of the old implemen-
tation’s data structure and algorithms. Outside of the scope is also algorithm
efficiency and comparisons in processing time between different algorithms, new
and old. What is also not covered is comparison with other navigation systems
or map software. The thesis focuses on the methods used in handling the map
data itself.

1.7 Geometric terminology conventions
In the report a number of geometric expressions are used. For the reader’s
convenience they are briefly explained in this section. All geometry is two di-
mensional, so that a position can be defined by two coordinates x,y or more
formally in geographical contexts: latitude and longitude. The following termi-
nology will be used henceforth:

Vertex A two dimensional position. May be on its own or part of a structure
of two or more vertices.

Edge A line segment spanned between two vertices.

Polyline A series of one ore more connected edges. A polyline may intersect
itself.

Polygon A polyline where the first vertex has the same coordinates as the
last vertex. A polygon may not intersect itself, then known as a simple
polygon.

Merge A merge between two polygons is the result of the union of the sets
represented by the span provided by their vertices.

Clip The intersection between two polygons.

8

1.8 Human vs computational perception of figures
Algorithms are used to enable computers to do what we as humans might see
as trivial actions. This is especially true when dealing with geomtrical figures.
Take for example the operation of clipping or intersecting two polygons. These
are operations that are intuitive and trivial for a human simply by tracing
a pen on a piece of paper. Completions of these tasks using computiation
seems cumbersome in comparison because the human has instant access to all
geometrical properties of the polygons in question simply by looking at them.
As the human mind creates a perception of the image, information regarding all
the vertices in the polygons becomes readily available: Which edges intersects
which, which points lie inside which polygon and so on. Then the human uses
this information (subconciously, or not) in guiding the pencil.

A computer, however, does not use visual percepts. Instead, a data-structural
representation must be created in order to evaluate the image, which is then
used to compute the result of the intended operation. These two parts are
the basis of any polygon operation algorithm: the creation of a data structure
representing the polygons and the subsequent traversal or manipulation of this
strucure to create the desired result. Different algorithms have different ways of
solving these two subproblems, leading to different complexities in the solutions
of the subproblems. If the representation of the image contains a lot of useful
information - it will be a lesser problem to compute the operation. On the other
hand, if the representation of the image is sparse, more computation is needed
to complete the operation. This means that computational complexity can be
shifted between the two operations, but how much information (in total) is vi-
tal to the desired operation? Clearly, if the amount of information needed can
be minimized - the operation will require less computation and that is always
desirable.

With this in mind we will in the next chapter take a closer look at what
previous work is available in the field of polygon and polyline operations and
algorithms.

1.9 Description of remaining sections
Section 2 will cover related work in the field of linear algebra and algorithms for
polygon and polyline computations. Section 3 will describe how the algorithms
were implemented. In section 4 we will cover the results and provide a discussion
of the findings. Finally, section 5 provides conclusions and propose some future
improvements to the implementation and algorithms.

9

2 Related work

2.1 Offsetting algorithms
Offset, or tracing, algorithms are used to traverse a polyline and trace its shape,
thus creating a corridor around the polyline. There are a number of related
articles published in journals and in-proceedings which have been studied in
order to get a grip of the field of vector manipulation in general, and outlining
and offsetting especially. Much of the work done in this field is pointed towards
the metal industry to be used in metal cutters and pocket-machining. The
algorithms published often have constraints, i.e. it only works on closed polylines
without holes. One article presents a complete algorithm for outlining curves
and polylines. [9] Measurements presented in the paper shows that it outpeforms
much of todays de facto standard CAD software products. Although this being
a fully functional set of algorithms to create outlines to polylines it is way too
complicated to be implemented with reasonable effort. It would also require
heavy studying for someone to get acquainted with the implementation if some
adjustments are to be made afterwards. [2] [7]

2.2 Poly object simplification algorithms
A normal route requst may result in a route consisting of thousands of vertices,
many of them not at all necesarry to get a sufficient picture of how the route
makes its way from start to destination. In order to avoid unnecessary amounts
of calculations, one of the first things that is done is a line-simplification, or line-
generalization, of the route. Among the line simplification routines available in
the public domain one of the most renowned is the algorithm published by Dou-
glas and Peucker in 1973 [3], and refined by others [5]. This is the algorithm used
for line-simplification throughout this thesis. It is a recursive algorithm were a
vertex’s redundance is determined by its distance to a fictious line connecting
the start and the end point of a polyline. If no intermediate vertex is distanced
enough from the fictious line, the line is used as an approximation. Otherwise,
new fictious lines are produced using the vertex farthest away from the previous
line as starting and ending point, respectively. The routine is visualized in figure
3.

A B B BA A

Figure 3: Example of a line-simplifcation for a line A to B. Note the fictious
dotted line, wherefrom distances to intermediate points are calculated. Points
with circles are placed closer than a certain distance, ϵ, from the fictious line
and not present in the generalized line to the right.

Not only are line-simplification carried out on the route itself but also on
other ojbects present in the cartographic representation of the map, such as
roads, parks, water areas etc. The only variable that affects the end result of

10

a line-simplification is the maximal allowed deviation, ϵ, the maximal distance
between the fictious lines and the vertices labeled redundant. When dealing with
this algorithm it’s noteworthy that a line’s starting point cannot be the same
as its end point, causing the algorithm to not terminate. Hence, all polygons
must be made polylines when conducting simplification on them.

2.3 Clockwise polygons and polygon area algorithm
When dealing with polygons it is important to know if they are oriented clock-
wise or counter-clockwise. It’s also important to have consequent orientation
on polygons sent to the client, where they are triangulated and drawn as tri-
angles. The MIDP specification for Java on embedded devices can only draw
triangles and it is important that the polygons sent for triangulation are all
oriented in the same way. A method to check clockwiseness was already present
in the existing framework but proved to be inefficeint and not fully trustable.
To tell the clockwiseness of a polygon one can calculate the signed area and if
found negative the polygon is clockwise, and vice versa. The signed area, A, of
a polygon with N vertices is given by formula 1.

A =
1

2

N−1∑

i=0

(xiyi+1 − xi+1yi) (1)

However the calculated area of a polygon is not used in the final implementation
it proved helpful in the development process when comparing map coverage
between different tiles and overlapping tiles etc. [4] [1]

2.4 Linear algebra
2.4.1 Line intersection

To detect whether two edges intersect, the intersection point of two lines drawn
coincident with the two edges are evaluated. As shown in figure 4 the coordinates
of the edges are used to create two vectors. Using expression 4 the respective
scalars defining the intersection point is evaluated. A scalar value including zero
up to and including one asserts that the intersection point is on the vector. Zero
puts the point on the base of the vector, and one on the point. Thus if both
scalars are in that interval the two edges intersect eachother and the coordinates
of the intersection point is evaluated using expression 5.

Forming the two lines’ equations:

PAB = A+ sAB(B −A)

PXY = X + sXY (Y −X)
(2)

PAB = PXY :

Ax + sAB(Bx −Ax) = Xx + sXY (Yx −Xx)

Ay + sAB(By −Ay) = Xy + sXY (Yy −Xx)
(3)

Solving for sAB and sXY yields:

11

A

B Y

X

P

s=0

s=1

s>1

s<0

Figure 4: Two lines as described by four points

sAB =
(Yx −Xx)(Ay −Xy)− (Yy −Xy)(Ax −Xx)

(Yy −Xy)(Bx −Ax)− (Yx −Xx)(By −Ay)

sXY =
(Bx −Ax)(Ay −Xy)− (By −Ay)(Ax −Xx)

(Yy −Xy)(Bx −Ax)− (Yx −Xx)(By −Ay)

(4)

Using sAB or sXY accordingly, P can be calculated:

Px = Ax + sAB(Bx −Ax)

Py = Ay + sAB(By −Ay)

Px = Xx + sXY (Yx −Xx)

Py = Xy + sXY (Yy −Xy)

(5)

If the denominator in expression 4 is zero, the lines are parallel. If the
numerator and denominatior both are zero, the lines are coincedent.

2.4.2 Relative positioning

Relative positioning, "left of" or "right of" and relative distance between an edge
and a point can be calculated by use of the cross product of the vector depicting
the edge and the vector depicting the point. The cross product between two
three-dimensional vectors are a third vector orthogonal to both its founding
vectors. In our case the two vectors are always in the xy-plane which means
that the resulting cross product will be parallel to the z-axis. Evaluating the
cross products z-component thus tells us the sign of the angle between b and c.

12

a = b× c

ax = bycz − bzcy

ay = bzcx − bxcz

az = bxcy − bycx

(6)

Also, the angle between b and c affects the lenght of a accordingly:

|b× c| = |b||c| sin θ (7)

2.5 Locating algorithms
Clearly, it is of the highest importance to have a way of deciding whether any
given point lies inside or outside of any given polygon. This method will become
a vital tool in the solution of many subproblems that are encountered along the
way. For example, if the method is applied to all the points in a polygon P with
regard to any other polygon Q one can easily deduce some basic knowledge
about these polygons spatial relationship to eachother. The application of this
knowledge is further discussed in section 2.6.

2.5.1 Ray-edge intersection algorithm

The ray vertice algorithm is a simple assumption based on the Jordan Curve
Theorem. The theorem states that every nonintersecting loop in a plane divides
that plane in an "inside" and an "outside". The algorithm consists in counting
the number of intersections between an arbitrarilly directed ray emanating from
the desired point and the loop, see 5. The loop in this case being the edges of
the polygon the point is being compared to. If zero or any even number of
intersections are found, the point clearly is outside the polygon. It follows that
if one or any odd number of intersections is found, the point is on the inside of
the polygon. [6]

Figure 5: Rays for different points and their intersections

2.5.2 Angle-summation algorithm

In the angle summation algorithm, all the angles between the rays formed by
the point and each vertice is summed. If the sum is zero the point is outside
the polygon (7), otherwise it is inside the polygon (6). [6]

13

Figure 6: The angles formed by a point in the interior of a polygon.

Figure 7: The angles formed by a point external to a polygon.

2.6 Polygon set-operation algorithms
It is clear that we need to perform two basic polygon operations, intersection
(or clipping, denoted ∩) as shown in 9 and union (denoted ∪) as shown in 8.
There’s also the case where all points in one polygon are inside the other, but
there still exists an intersection, as shown in 10.

If all the points in P are outside of Q, whilst all points in Q being inside
P, and there are no intersections between any edges in P and Q it is easily
understood that P∪Q = P and P∩Q = Q. Thus we can easily compute these
polygon operations in the case above. For the sake of argument it is generally
asserted that the two polygons discussed are intersecting one another, though
we may not know where or how many such intersections exists.

Figure 8: The union between two polygons.

14

Figure 9: The intersection between two polygons.

Figure 10: Although all the points in one polygon is inside the other, intersec-
tions do exist.

2.6.1 Weiler-Atherton algorithm

The Weiler-Atherton algorithm is the algorithm that closest mimics how a hu-
man would go about solving the problem at hand. For example, a person pen-
tracing the union of two polygons would put her pen down on a point outside
the other polygon and then start the trace, switching the pen between the two
polygons’ edges at each intersection, and stopping when reaching the starting
point. If the intersection was the goal, she would simply start the trace on a
point on the inside of the other polygon and carry on like above. [15]

Representation

The polygons are commonly represented as linked lists ordered so that list-
traversal corresponds to walking clockwise along the edge of the polygon. The
edges in P, constructed from two consecutive points in the list, are traversed
checking for intersections against the edges in Q.

When an intersection is found, it is inserted in both lists between the points
creating the intersecting vertices. This continues until all vertices in P has
been checked against all vertices in Q, resulting in the lists now containing all
intersection points as well as the original points of the polygons.

Operations

The desired operations are then carried out simply by applying the human pen-
sweep to the lists. The union, for example, is attained by starting on any point

15

A D

CB

T

U V

WS2

S1
A
B

S1
C

S2
D

T
S1
U
V
W
S2

Figure 11: Polygons with inserted intersection points

in any list that is outside the other polygon, traversing the list and copying
the visited points to a new list. If during the traversal, an intersection point is
found, the traversal continues at the corresponding point in the other list. Thus
mimicking the pen-tracing by switching list from which the result is read at every
intersection point until the traversal reaches its starting point. Computing the
clipping is the same as above, apart from starting the traversal on a point inside
the polygon.

Considerations

The Weiler-Atherton algorithm is by far the simplest algorithm to comprehend
due to its human-like behaviour but it has its drawbacks aswell. In implementing
the Weiler-Atherton algorithm care must be taken to handle special cases that
can arise from intersection detection. Inserting two or four intersections in the
polygons depicted in figure 12 will yield correct results, but any odd number
of intersections will generate incorrect results. This is the same problem as in
figure 25. Counting the number of intersections between any two polygons is
an easy way to check the integrity of the intersection detection. This since two
closed loops in a plane intersect each other zero or an even number of times.

In order to achieve robustness, more information must be available than just
the intersection points. Which points are inside or outside the other polygon?
And if all are, but intersections still exist - further investigation is needed to
decide where to start the traversal.

2.6.2 Binary space partitioning tree algorithm

The binary space partitioning tree algorithm is an algoritm for dividing and
sorting a space using hyperplanes. This algorithm can be used to create a tree-
structure representing a polygon, which can then be manipulated with regard
to another polygon to obtain the desired set-operation. [11]

Representation

Generally, the BSP-tree algorithm takes any space and recursively divides it
into two subspaces, associates a value with one space and the opposite to the

16

Figure 12: The number of detections between these polygons is dependent on
how one defines an intersection. With regard to the Weiler-Athertor algorithm,
two intersections is the "correct" number.

A D

CB

T

U V

W

B

A

C

D

Figure 13: The subspaces created by the planes based in the polygon’s edges.
Note that the tree containing the edges are spatially sorted accordingly.

other. E. g. left and right. Thus the tree generally describes subspaces of any
space, and their relative spatial relationship. If these spaces boundaries were to
coincide with the edge of a polygon, clearly it can be used to obtain informa-
tion about that polygon’s spatial relationship. This by asserting whether the
subject polygon lies wholly or partially within a subspace of the other polygon
represented in the tree. [8]

The polygon is recursively divided, using its own vertices as basis for the
planes and the two parts are inserted into the left/out and right/in of the node
representing the plane. Thus creating a binary tree representation of the poly-
gon. Inserting the faces of another polygon into the tree is done by checking
its relationship to the node-plane and moving down the tree accordingly. If
an edge were to intersect a node’s plane it is split accordingly and the pieces
passed down their corresponding side. When all faces of the subject polygon is
inserted, the relative spatial relationship between the two polygons are known.
This since all vertices in the subject polygon has been sorted into subspaces
created by the faces of the clip polygon.

17

Operations

The tree representation of the two polyogons can now be manipulated and tra-
versed. If, for example, the union of two polygons is wanted the desired result
is actually the edge describing the edges of the polygons that are mutually ex-
ternal to eachother. Which edges of the subject polygon that are external to
all subspaces created by the clip polygon is already defined by the tree - so
traversing the tree and puzzling together the external edges is obviously part of
the solution, but as can be seen in figure 13 the edges of the clip polygon also
needs manipulating in order to obtain the the union’s edges. In that case edges
C-D and D-A needs partitioning according to their intersection with the subject
polygon. There are several ways of solving this. For example node-pushing as
described by [13] can be used to split the edge of the clip polygon. Another way
is to construct two BSP-trees, one for each polygon, and then merge them. [10]
When the tree is finally manipulated to contain all faces needed for the desired
result a polygon can be constructed using a tree-traversal algorithm.

Considerations

While harder to intuitively comprehend than the Weiler-Atherton algorithm,
the Binary space partitioning tree algorithm has advantages. The subdivision
and sorting of space is a logically assertive way of approaching the problem
(if, for example a point is "outside" every subspace created by the polygon -
logically it must be outside the polygon itself). Also, optimization for specific
operations can be done simply by discarding faces instead of passing them down
the tree. If, when inserting the faces of the subject polygon, the union is desired
- a face asserted to be on the interior of one subspace does not need checking
against the subspaces lower in the tree [13].

2.6.3 Vatti’s generic algorithm

Vatti’s generic algorithm processes both polygons at once in a horizontally par-
titioned fashion. The polygons, in turn, are assigned types according to their
edge-profile. The algorithm searches for events and determines the output based
on the type of the edges constituting the event.

Representation

The polygons are thought of as having local maximas and minimas as described
by figure 14. The edges connectining a local minima and a local maxima are
asserted to be either left or right intermediates. This depending on their re-
spective orientation compared to the local minima. Both polygons are scanned,
bulding a table containing local maximas and minimas.

Operations

When the polygons have been scanned, they are in effect partitioned according
to the table containing the local minimas. The polygons are then processed in
a horizontally partitioned fashion using "scanbeams". A scanbeam is defined
as the area between two succesive fictional lines which are drawn horizontally
through all the vertices in the polygons. Each scanbeam is then processed by

18

Local max
Local max

Local min
Local min

Local max

Local max

Local min

Local min

Figure 14: Two polygons after preprocessing, partitioned according to local
maximas/minimas. Also shown are the scanbeams.

checking the faces intersected by the scanbeam for intersections with eachother.
The scanbeam methodology is a simple way of asserting if two faces can intersect
eachother. Two lines that does not share the same horizontally infinite space
cannot intersect eachother, but two that does may or may not. To generate the
desired output polygon(s) the scanbeams are sequentially processed according
to a set of rules. The rules stipulate how different events found in a scanbeam
shall be processed and, if appropriate, what should be written to the output.
E. g. "clip’s left intermediate intersects subjects right intermediate: generate
local maximum in output". [14] Thus the output is incrementally generated as
the scanbeams are processed.

Considerations

Vatti’s generic algorithm is the least intuitive of the three studied algorithms
due to its sequential processing of events, whose result is simply asserted by way
of processing rules. However, it is capable of handling self-intersecting polygons
and have only one documented special case. This is in regard to horizontal lines
being able to lie on the edge of a scanbeam.

2.6.4 Experimental polygon tree algorithm

This algorithm was developed as attempt to find out why, what kind of and
how much information is needed in order to compute the union and intersection
between two polygons. The goal was to create an algorithm that partitions
and sorts one polygon by intersecting it with another, thus creating a tree
structure representing both polygons from which the union and intersection
could be extracted through a simple traversal. Instead of using hyperplanes
(like in the BSP-tree algorithm) only the edges of the clipping polygon acts as
the partitioning agents, and the two resulting parts of the subject polygon are
sorted either to the left or the right side of that edge. The main difference being
that whilst the BSP-tree algorithm always sorts the edge in question to the left
or right, the experimental algorithm omits clip- and subject polygon edges that

19

does not intersect from the sorting. This in an attempt to minimize the amount
of information that is needed to achieve the result.

This tree-representation of the two polygons is then to be traversed using
a set of rules according to the operation that is performed. The investigation
initiates assuming only relative spatial knowledge of "left of" and "right of"
is needed. Also the tree should give sufficient information for both union and
intersection operations. The tree-generation algorithm checks each of the edges
in the clip polygon against the edges in the subject polygon. For each inter-
section found, the subject polygon is partitioned to the left and right of the
intersecting edge. It is trivial that a point lying to the right of every edge in a
convex polygon is inside it, but this is not true in the concave case as shown in
figure 15. Thus it is necessary to obtain this information by other means for at
least one point in each polygon. By knowing whether the starting point for a
polygon walk is either inside or outside the oter, one can keep track of whether
the next point is inside or outside depending on the number of intersections
detected. For the sake of argument it is assumed that the polygon traversals
start on a point outside the subject polygon and inside the clip polygon. Thus
the tree can be constructed with full information about direction (left of/ right
of) and locality (inside/outside other polygon). The polygons are processed in
alphabetical order respectively in all examples. Eg. A-B vs T-U, A-B vs U-V
and so on.

Figure 15: A point can be to the left of an edge, but still inside the polygon.

Pseudo code for generating the tree

Cn is the current edge in the clip polygon c0-cN

if Cn is the last point in the clip polygon {
return a leaf containing the subject polygon

}

for each edge S:s1-s2 in the subject polygon s0-sN {
if Cn intersects S {

create intersection point X
if s1 is right of C {

append s0-s1,X to right polygon
} else {

append s0-s1,X to left polygon
}

}
}

if C did not intersect any subject vertice {
append C to current node’s vertices
return this(Cn+1, subject polygon)

}

20

return node(this(Cn+1, left polygon), this(Cn+1, right polygon))

Note that the two polylines created by the intersection and subsequent par-
titioning are appended to either the right or left polygons, this in an attempt
to create as much useful output as possible in the leafs of the tree.

Some polygons and their representation

A D

CB

T

U V

WS2

S1
B

A

T, S1C

S1, U, V,W, S2

D

 S2,T

A

Figure 16:

A D

CB

T

U

V

WS4

S1 S2

S3

B

A

S1, U, S2 C

D

A

S3, W, S4 T, S1, S2, V, S3, S4, T

Figure 17:

A B

D C

S1

S2

S3

S4

T

U

V

X

W

Figure 21: The curve marks the edges partitioned by A-B that cannot be said
to be either left or right of A-B.

21

A D

CB

E T

W

W

U S1 S6

S2

S3

S4

S5

A

B

S1, U, W, S2 C

S3, W, S4

D

E

S6, S1S5, S6

T, S5

B

C

D

E

A

A

S2, S3, S4, T

Figure 18: A polygon generating two subtrees

Generating output

As a first attempt at generating output a simple breadth first search is used.
Depending on whether the intersection or the union is sought each level is pro-
cessed in different directions. From left to right for the union and from right
to left for the intersection. A leaf on the operation’s side of the tree is simply
appended to the output polygon whereas points in nodes are appended if they
are outside of the clip polygon for the union, and inside for the intersection.

This approach generates a correct output for figure 16 and figure 17, but as is
visible in figure 18, a way of handling double nodes is required. As it is desirable
to keep the tree-traversal from jumping back and forth in the clip polygon the
subtree that is first in the polygon must be processed entirely before the other.
An other way to view this problem is by examining the two subtrees tail-section.
In the subtree rooted in point B the tailsection contains points D, E, and A as
if they would not generate any leafs. This, however, is plainly visible as D-E
intersects T-U. Thus the subtree with the longer tailsection must be processed
wihtout regard to the tailsections contents, whereas the subtree with the shorter
tailsection is processed in normal fashion.

Considerations

As can be seen in figure 16 special care is needed when handling right leafs.
If a leaf is a closed polygon, the other leafs are thus not connected to it and

22

A D

CB

T

X

Y

Z

V

US1S2

S3

S4

B

A

S1, X, S2C

S3, U, V, S1, S2, Y, Z, S4

D

 T, S3, S4, T

A

Figure 19:

A D

CB

U V

WT

X

S1 S2 S3 S4

B

A

C

D

A

S1, U, V, S4, S3, X, S2 T, S1, S4, W, S3, S2, T

Figure 20:

generates additional polygons, which should be closed. If a leaf contains one
endpoint it should be paired with the leaf containing the other.

Should the two subtrees be rooted in the same point the leafs must be
processed in the order in which they are found when walking along the edge
corresponding to the node. This could be acheived by spatially sorting the leafs
intersection points with regard to the point of the node. Thus enabling the
piecing-together of the output.

At this point the algorithm uses no less information or spatial processing
than the Weiler-Atherton algorithm. Unlike the BSP-tree algorithm there is
no spatial sorting done per edge, but only on the edges intersecting the clip
polygon. For the algorithm to be a serious contender we must do away with the
"inside or outside"-preprocessing needed in order to enforce the starting-point
rules stipulated in the beginning. This, however causes the algorithm to break
down. As can be viewed in figure 21, the edges marked by the curve cannot be
asserted to be either on the left or right of the A-B edge. This could possibly be
solved by terminating the tree, generating only the unambiguous leafs around
the A-node and then passing the ambigouos partition down a new tree rooted in
B. Then we would have two trees and a new set of puzzling-together problems.
The conclusion of this is that in order to achieve a robust algorithm, one must
keep track of the entire subspace encapsulated by a polygon. Either by enclosing
it with partitioning planes related to eachother, or by asserting which points in
the other polygon lies inside or outside it.

23

3 Methodology

3.1 Implementation of offset algorithms
As stated in section 2.1 offseting algorithms are used to trace a polyline. In the
case of this project, as the algorithm traces down the route it creates a corridor
around the route that will be used to create the desired map coverage. Two
algorithms were tested and the implementation ended up using a combination
of the two.

3.1.1 Equi-angular algorithm

Between three consecutive vertices in the route two line segments can be drawn,
seperated by the angle θ. The equi-angular algorithm uses θ to place an offset
point on both sides of the two connected line segments, so that the offset line on
one side has the same angular distance to both line segments. Offset points are
sited for all line segments in the route and forms a corridor around the route.
Figure 22 shows an example of a line, with a corridor formed by this algorithm.
An obvious problem arises when the angle between three consecutive points is
smaller than 90°, which the figure demonstrates. A solution is to add extra
points on the outside of narrow angles, or to increase the offset. These were
tested in combination with each other, but the coverage could even now be
insufficient on the inside between line segments with narrow angles.

Figure 22: Example of the equi-angular algorithm done on three points. Illus-
trates the obvious problem with narrow angles.

Even though this algorithm didn’t fully meet the needs with sufficient cov-
erage, it’s easy to use when dividing a longer corridor into tiles. With a tile
ending with a fixed angle towards the route, it’s convenient to start next tile
with that same fixed angle. Thus eliminating redundancy in coverage, and in
extent minimizing redundant data down to the client.

24

3.1.2 Encapsulation polygon algorithm

Unlike the equi-angular algorithm, which uses three consecutive vertices, this
method forms an edge of two vertices and encapsules them with a polygon, e.g.
a hexagon as in 23a. A new polygon is calculated from the next line segment
and merged with the former using a polygon merging algorithm. Pilot studies
at Appello regarding a corridor shaped map coverage included this method.
The main issue with this algorithm, and also what kept Appello from starting
a development of it, is to create a robust merging algorithm that handles all
kinds of polygons. The merging algorithm itself is described in section 3.5. This
method guarantees even coverage for the entire route but doesn’t provide a
intuitive way to split the corridor into tiles. One could simply merge a number
of polygons created from encapsulation of the same number of edges, and let the
result of this merge be a tile. The problem is that there will be some overlapping
coverage between all adjacent tiles (23 b), not minimizing data sent to the client.

Figure 23: a) Example of an edge encapsuled by a hexagon and b) two hexagons
overlapping each other.

As mentioned above the equi-angular algorithm for offsetting the route poly-
line proved insufficient in providing decent coverage when the route made sharp
turns. On a lighter note, the fashion it delimited one offsetted edge from an-
other was unambiguous, making it suitable for splitting a corridor into smaller
pieces.

The polygon encapsulation algorithm did in fact provide a satisfying coverage
but did not have built-in functionality to split the corridor into tiles, without
generating redundant overlapping map coverage.

Taking the strength of both algorithms you end up with something purposive
for making a corridor and split in into convenient sized tiles. The coming section
will explain what preparations are made and how the tiles are constructed from
the route.

Preparation of the route

First of all is the inserting of so called splice points, a boolean mark on those
vertices where a tile splitting will occur later on. The splice points are set up
at a preferred distance from one another, marking what is called the preferred
tile distance. The distance between vertices might be too long so that the pre-
ferred tile distance marking fails. Leaving this untreated would create very large
tiles, which in turn could lead to the downloading of tiles larger than a mobile
device can handle. To avoid this behaviour intermediate vertices are inserted
at the preferred tile distance. There is also another parameter in the working,

25

a precision parameter. It defines how precise the tile length should be. The
precision parameter ranges from 0 to 1, with a value close to 1 inserting many
intermediate vertices. If a tile is to have a preferred distance of l kilometers,
and the precision parameter is set to 0.9, it can use existing vertices in the route
polyline to have a distance between 0.9l and 1.1l kilometers. For the case where
no such vertices exist, intermediate vertices will be inserted at distance l.

Now when the vertices that start and end all tiles are marked, a polyline
simplification is performed on the route. Not all vertices is needed in order to
present the route properly. Fewer edges also means lighter computational load
when merging the polygons that will encapsule each edge, and fewer vertices
sent to the client. A special version of the existing line simplification has to
be done, one that preserves the newly marked splice points. It is solved by
handling the vertices between each splicepoint as separate polylines and using
the existing polyline simplifier at each one of the semi-routes.

This concludes the preparation of the route. The following pseudo code does
a preparation of a route, without doing any special treatment for first and last
vertex in polyline:

loop through all vertices
if length of current tile <= preferred tile length

if length of current tile + distance to next vertex >= preferred tile length
mark next vertex as splice point
reset tile distance

else if tile not long enough
add distance between vertices to this tile, check next vertex

else if distance to tile was too long
add intermediate point and mark it as splice point
reset tile distance

end loop

simplify polyline with regards taken to splice points

Creating the actual tiles

Next step, after the route is prepared with splice points, the corridor itself must
be created. This is where the polygon encapsulation comes in. The encapsula-
tion algorithm starts from the beginning of the route and creates one tile at a
time, as opposed to creating the entire corridor and then splitting it into tiles.
The method will be explained using hexagons as the encapsuling polygons, how-
ever the algorithm works with any higher edged, even numbered, polygon. The
algorithm is best described using a series of figures. Figure 24 describe it in
nine steps for a short route with one splice point, creating two tiles. Below is a
list that walks through and explains the figures.

a) N=0, where N is what vertice in the route that is discussed. This figure is
a short route polyline with five vertices, ordered from left to right. The
third vertice is marked as a splice point. New vertices in every figure will
be filled with white.

b) N=1, in the first step two polylines are shaped around the first vertice. Direc-
tion of polylines/polygons are always clockwise around the vertice/edge.
Notice that the right hand side (in the route direction) is only one vertice
long.

26

c) N=2 is not a splice point, so the encapsulation will carry on. One vertex
is added to the left hand polyline, and two on the right hand polyline.
Notice that vertices added to the left is added last, while vertices added
to the right is added first.

d) N=2, still on the second vertice. The hexagon around the first edge is com-
pleted by creating it from the left and right polyline. Two new polylines
are being started on, again the right with only one vertice.

e) N=3, which is a splice point. Instead of doing the other side of the hexagon,
one vertex on either side of the route is added. A fictious line from the
route vertice to these vertices is splitting the angle that is formed by the
two adjacent edges in two equal parts. The hexagon around the first edge
and this pentagon is then merged to one big polygon, namely the first tile.

f) N=4, the next vertex is not a splice point, but we must use the two equi-
angular vertices from the splice point to start next polygon. The polygon
formed share the two equi-angular points with the first tile.

g) N=4, the start of a normal encapsulation.

h) N=5, the last vertex is handled like a normal vertex and a hexagon is created
by the two polylines.

i) N=5, finishing off by merging the last two polygons, creating the second tile.

a) b) c)

d) e) f)

g) h) i)

Figure 24: Creation of tiles from polygon encapsulation and equi-angular split-
ting.

So far the method is described for a standard case but there is a special case
when the splicepoint is located at a vertice where the route creates a narrow
angle. In this special case the algorithm locates the outer part (e.g. the right
hand side of the route when it makes a left hand turn) of the curve and extends
the offset with 30%. Nothing is done about the inside of the curve because
extending the offset may create a non-simple polygon, i.e. a polygon intersecting
itself.

27

Hexagon or higher edged encapsulation

The example with hexagon encapsulation and merging gives the idea of how
a route can be covered by a corridor. If the system would allow curved lines
one could use half circles on each end of the two lines parallell to an edge and
encapsule with a fixed offset around the edge. This is however not plausible in
the current system. What one can do is to increase the number of edges in the
encapsuling polygon and use for example eight or ten edges. By doing this a
more even coverage can be provided, but also creating more data that has to be
sent to the client. A trade-off between even coverage and amount of data has
to be done.

Simplification on tiles

After a tile has been created it may have many small edges not contributing to
the overall perfomance of good coverage. By doing a simplification on created
tiles along the route a lot of those small edges can be removed. All vertices that
are created on either side of a splicepoint must be preserved in the simplification,
otherwise gaps between tiles can occur. This is done by marking those vertices
as splice points, so that they are preserved if ran through the new simplification
algorithm. Again, a trade-off has to be done. Data sent to the client is decreasing
with stronger simplification, but to strong a simplification calls for a very poor
experience.

Tiles overlapping each other

Consider a route taking a sharp turn and then continuing on a path parallell
and close to the first one. If the distance also is long enough so that a new tile
is beginning somewhere near the sharp turn, the two adjacent tiles will then
share a lot of coverage. Much of the information sent to the client will only
be a duplicate of what was already sent. To get rid of such redundant data a
check is done upon all created tiles. If the area spanned by the newly created
tile shares 50% or more of the area spanned by the previous tile, those tiles will
be merged before moving along with the rest of the route.

3.2 Application of polygon set-operations
This section describes why and how the polygon set-operations are used in order
to create the desired map output. At this point the shape of the tile has been
asserted, what is left to do is to filter the map output. This is done by requesting
a square of map-data covering the tile and subsequently computing the inter-
section between the polygon formed by the tile and the polygons and polylines
in the map data. The result of the intersection-computation is packaged into
an object ready to be sent to the client.

3.3 Implementation of locating algorithm
Since the ray-vertice intersection algorithm will be dependent upon the imple-
mentation (and success) of the intersection-detection and also what is defined as
an intersection (E. g. Does a vertice with one point on anoter vertice intersect
that vertice?), the choie is made to use the sum of angles algorithm. This in

28

order to ensure a high level of modularity in the program, meaning that one
can modify the conditions for a detected intersection when dealing with polygon
operations, thus minimizing the risk of inconsistent behavoiur originating from
the locating algorithm.

Figure 25: Zero, one or two intersections?

The implementation of the algorithm was part of the system supplied by our
tutor.

3.4 Computing relative position
Three points are passed to a function, A, B, and X. The edge that is the basis
of the comparison is described by A→B. The point’s coordinates are treated as
they were cartesian coordinates (x,y,0) and are shifted uniformly so that A is
in origo and B describes a vector emanating from origo, →B, and X describes
another vector emanating from origo →X. Using expression 6 →B× →X’s z-
component is evaluated. As given by 7 it will be zero if X is in line with A→B,
greater than zero if X is left of, and lesser than zero if X is right of A→B. Note
that for X to be on the edge A→B, the cross-product’s z-component has to
evaluate to zero and lie inside the bounding box formed by A and B’s respective
coordinates.

A B

C

 ~Cz

Figure 26:

3.5 Implementation of polygon set-operation algorithm
Since the number of polygons that are to be processed in each iteration are
relatively small, 0-20, and the number of edges in those polygons are relatively
small aswell, 3-15, performance of the algorithms was deemed of little impor-
tance. The algorithm should be easy to understand and modify in order to
facilitate easy modification of the system’s behaviour by any other person, and
since the investigation of the experimental polygon tree algorithm had yielded
further insight into the possible ambiguous intersections, and how they could be

29

detected, the Weiler-Atherton algorithm was the final choice for implementation.

X

A S1S2S3S4

Figure 27: The intersections S1-S4 will be found in the enumerated order, but
if they are inserted in that order into the list that represents the polygon X it
will degenerate.

3.5.1 Inserting intersections

Firstly, the polygons’ intersection points must be found and inserted into the
polygons. This is not as simple as brute-forcing each edge in one polygon against
the other, inserting the points when they are found. This is because of two
properties of the problem. Firstly, the points in the polygons lie on integer
coordinates, but two lines described by four integer coordinates may intersect
eachother in a point that lies between integers. When inserting an intersec-
tion point, one must make sure that it does not alter the original intersection-
behaviour of the polygon by moving it around. In this implementation the points
are therefore inserted but kept inactive. This allows for them to be correctly
ordered in the data structure without altering the polygon itself. Secondly, one
must make sure that the points are inserted in correct order. If the intersection
points in figure 27 are inserted into the clipping polygon the same order as they
are found by a brute-force algorithm the resulting polygon will be out of order.
Therefore it is necessary to either spatially sort the intersection points along the
edge, or insert them in a smarter way. In order to solve this, a recursive way
of inserting intersection points in a polygon was developed, thus mimicking a
binary search. In order to calculate the intersection point expression 5 is used,
at this point the scalar interval for a valid intersection is choosed as 0 ≤ s < 1.
Thus not covering the endpoints (which is the succeeding edge’s starting point)
of the edges that are compared. This in order to avoid overlapping intervals
which would create duplicate intersection detection events.

Pseudo code for inserting intersection points

Cn is the edge n -> n+1 in the clip polygon
Sp is the edge p -> p+1 in the subject polygon

30

lowerBound and upperBound are the scalar values defining a valid intersection
on an edge in the clipping polygon, these values are always 0 and 1 for the subject polygon.

for each Cn : Cn = [n, generate(Cn, 0, 1, subject), n+1];

generate(Cn, lowerBound, upperBound, subject){
for each edge Sp in polygon

if Cn intersects Sp in point P and lowerBound =< scalarVal < upperBound
return(generate(c1-P,lowerBound,scalarVal,subject),

P,generate(P-c2,scalarVal,upperBound,subject));
}

Thus the intersection points are inserted in both polygons in the correct
order. Note the use of scalar values in restricting the interval on Cn for which
an intersection is valid.

3.5.2 Generating output

Generating output is a fairly straightforward procedure called polygon walking.
First, a suitable starting point for the polygon walk is selected. If the inter-
section between two polygons is to be attained either a point inside the other
polygon or an entering intersecion-point is used as a starting point. For the
union any point on the outside or an exiting intersection-point is selected. The
polygon walk then commences from the starting point along the edges of the
polygon until an intersection with the other polygon is found. At this point the
walk swithces polygon and continues along the intersecting edge, continuing in
this manner until returning to its starting point. The walk is now complete and
the path taken by the walk is the result of the desired operation. Since this be-
haviour is completely independent of the direction of the edges it is crucial that
the polygons are ordered in the same way. In this thesis and its implementation
the convention of clockwise-ordered polygons are used. So what does this do
in effect? The real idea here is that when walking two clockwise polygons, and
"turning left" in each intersection the edge creating the outmost contour will be
chosen. This since walkin along a clockwise polygon, its interior will always be
to the right. Thus the innate directionality of the clockwise polygons are used
in order to turn left or right in each intersection.

Generating output for polylines is done as above, with the only difference
that no output is generated when walking in the clip polygon.

Pseudo code for output generation

P and Q are the processed polygons,
containing points p0-pN and q0-qN respectively

x is the current point in polygon P

generate(P, Q, x) {
if x is marked

terminate
else

mark x

if p is an intersection point
append p to output
generate(Q, P, x+1) // this is a jump to the point after the intersection

//point in Q, a jump between the polygons

31

Figure 28: The two walks forming the union, note that the direction of the hole
is counter-clockwise in accordance with the convention.

Figure 29: The two walks forming the two polygons that are the intersection.

else
append p to output
generate(P, Q, x+1) // this is simply walking along the polygon

}

This generates both the intersection and the union depending on which point
was selected as starting point. Also, if the polygons generates several polygons,
the generation will terminate for each resulting polygon and a new starting point
must be selected until no more starting point-candidates are unmarked.

3.5.3 Filtering intersections

Not all intersections detected are useful for for output-generation and introduc-
ing them into the representational structure of the algorithm will degenarate
results in most cases. As can be seen in figure 12 only two intersections are
useful for output generation, whereas the third, if introduced, will create a de-
generative result. This is due to the algorithm’s use of innate directionality of
a clockwise polygon. In the general case , where two edges intersect each others
interior, there can be no ambiguities with regard to the way the polygon walk
will turn in the intersection. But when two polygons intersect eachother with
one point lying on the edge of the other, special care is needed in order to avoid
a wrong turn. As implemented in this thesis these ambiguous intersections are
handled at the time of intersection detection and are either discarded or inserted.
Since the directional assumptions for the general case is void, these special cases

32

must be processed with regard to spatial directionality to eachother. Meaning
that the decision whether to discard or insert an intersection point is based on
mathematical evalutation of the directionality of the edges in question. Thus
asserting whether the intersection is due to one polygon actually leaving or
entering the other, instead of just reflecting on the edge.

Case 1: One point on the edge

In this case it is evaluated whether X and Z are on the same side of the plane
created along edge A-B. If they are, the intersection is discarded. If not, an
intersection point is inserted in A-B and Y is marked as an intersection point.

X

Y

Z

A B

Z

Figure 30: Case 1

Case 2: Point overlap

This case is slightly more complex since it involves more edges, it is possible
to intersect the plane based in A-B without entering or leaving the polygon.
Therefore the test must be augmented with the plane based in B-C to define
the interior of the polygon. For example the left side, or exterior is formed as
follows. If C is left of the A-B plane the left side of the polygon is what is left
of the A-B plane intersected with what is left of the B-C plane. If C is righ of
the A-B plane, the left side of the polygon is what is left of the A-B plane in
union with what is left of the B-C plane. Thus the rule of "right-of = inside of"
has been augmented to solve this special case.

33

X

Y

Z

A
B

Z
C

C

C

Figure 31: Case 2

Case 3: Case 1 and/or case 2 with padding parallel edges

This is in turn a special case of case 1 or case 2 which cannot be solved in the
above ways since there is no useful information to be gained from parallel edges.
Instead X is marked as being ambiguous, and the polygon is marked for special
processing. If a polygon contiains an ambiguous intersection the one piece of
directional information available from the ambiguous intersection is compared
to that obtained from the first point in the polygon that useful information can
be extracted from.

X

Y 0

Z

A B

Z

Y 1 Y n-1 Y nY ...

Figure 32: Case 3

34

4 Results and discussion

4.1 Measured results and system performance
This chapter is about the implementation and experimental evaluation and tun-
ing of the methods presented in the previous chapter. The implementation was
done in cloud-based navigation system Wisepilot, where a number of settings
has been tuned to get the best possible performance out of the implementation.
One major setting that won’t be adjusted in any measurement is the offset dis-
tance parameter. This is the distance between the route and the edge of the
map coverage. The offset distance is hence to be considered as a fixed value.
This will be set to 200 m throughout all measurements that will be presented in
this section. Using this offset gives a user experience that encompasses current
needs in the client software. Discussions on how different offsets can be used to
improve performance will be presented in section 5.2.

To get a fair picture of the performance, three different routes will be used in
the measurements, specified in table 4.1. The first route is one within Gothen-
burg, an in-city route with some freeway and many roads beinged covered, not
being the route itself. Next route is a typical Swedish long-distance route, main
part being freeways, starting and ending in a city. Finally, an Austrian equiva-
lent to the Swedish long-distance route, chosen because Austria is a big market
for Appello.

The metrics that have been studied to meet the aims of the thesis are:

Tile simplification factor Decides how much the polygon that makes up each
tile is simplified using the algorithm described in 2.2.

Route simplification factor Decides how much the route polyline to be en-
capsulated with a corridor is to be simplified, again using the algorithm
described in 2.2.

Decagon or hexagon encapsulation Compares two geometric forms for en-
capsulation of the line segments making up the route polyline.

Merge overlapping tiles Compares merging of adjacent tiles that overlap ge-
ometrically.

Tile length When creating the corridor and splitting it up into tiles, the tile
length describes how long each tile should be.

Tile length precision Decides how exact the tile length should be.

Start Destination Route info
Name Lat. Long. Name Lat. Long. Length Vertices

Järnbrott 57.65821 11.93172 Kålltorp 57.71594 12.0284 12.7 km 123

Gothenburg 57.70309 11.95902 Uppsala 59.85811 17.64463 459 km 2191

Vienna 48.20919 16.37279 Innsbruck 47.26267 11.39471 480 km 2349

Table 1: The routes that will be used in measurements.

35

Comparison between different tile simplification factors

Tile simplification is used to remove some of the angularity that arises when
merging a lot of polygons together. Since every edge in the generalized route
will be encapsuled there will be a lot of small edges in the corridor that doesn’t
add anything to the coverage. In fact, from a user perspective, the corridor looks
a lot nicer without all the small edges around the route. A smoother corridor
is to prefer not only because of its appearance but also of a somewhat reduced
amount of data. Table 4.1 shows how the data amount for the test routes varies
with different tile simplification factors.

Tile simpl.
factor

Järnbrott to Kålltorp Gothenburg to Uppsala Vienna to Innsbruck

Bytes sent Comp. to no
simplification Bytes sent Comp. to no

simplification Bytes sent Comp. to no
simplification

0 8802 0% 88460 0% 116310 0%

10 8717 1% 87357 1% 114675 1%

20 8687 1% 87148 1% 114403 2%

30 8646 2% 86974 2% 114254 2%

40 8599 2% 86922 2% 114177 2%

Table 2: Shows how line simplification on the tile polygon affects the data amount sent to the

client. Measurements are done with route simplification = 40, tile length = 2 km, precision = 0.9,

decagon encapsulation and merging of overlapping tiles.

Using too much simplification on tiles leads to a problem with the encap-
sulation. In the above measurements a decagon encapsulation have been used.
With a simplification factor of 40, edges in the decagon where removed, which
of course can’t be tolerated. Reducing the simplification factor to 30 preserves
the decagon edges, but still does a little too much simplification. Figure 33 illus-
trates how simplification decreases the distance from the route to the corridor
border, making it too short.

As a matter of fact, using no tile simplification at all doesn’t guraantee a
distance of 200 meters, since the corridor is based on a simplified route. Only
when not using simplification on neither route nor tiles can one be sure to have
a specified distance between the route and the corridor border. When using
tile simplification set to 20, 10 or even no simplification, the distance from the
route to the border is 173 meters. When doing distance calculations between two
points on a curved surface, as the Earth, one cannot simpy apply Pythagora’s
formula. One can however apply Haversine’s formula, explained in equation 8,
where R = 6371 km is the approximated earth radius, d is the distance between
two latitude - longitude pairs, ∆φ = φ1 - φ2 is the radial latitude separation
and ∆λ = λ1 - λ2 is the radial longitude separation. [12]

36

Figure 33: With the tile simplification set to 30 it generalizes the tiles too much,
making the distance from the route to the corridor border too short.

Let haversin(θ) = sin2
(
θ

2

)

and let haversin

(
d

R

)
= haversin(∆φ) + cos(φ1) cos(φ2)haversin(∆λ)

then denote h = haversin

(
d

R

)

⇒ d = R · haversin−1(h) = 2R arcsin
(√

h
)

(8)

Comparison between different route simplification factors

As mentioned in the previous section, route simplification has impact on the
coverage. Since the route shown in the client’s device is ungeneralized and the
one that the corridor is built upon is more or less generalized, the distance from
the route to the corridor border can vary. Aside from the coverage the route
simplification also alters the data amount, since the number of encapsulations
increases with decreasing simplification. Table 4.1 gives the details on how
different simplification factors alters the data amount.

Using more than a factor of 40 results in a too rough generalization. Es-
pecially where the route makes soft, big turns. When simplified with a factor
of 60 the corridor is too much off-centered to get a good coverage. The extra
vertices in the less generalized route makes the coverage sufficiently centered on
the route.

37

Route simpl.
factor

Järnbrott to Kålltorp Gothenburg to Uppsala Vienna to Innsbruck

Bytes Comp. to
factor 10 Vert’s Bytes Comp. to

factor 10 Vert’s Bytes Comp. to
factor 10 Vert’s

10 9059 0% 67 89630 0% 997 116425 0% 1052

20 8940 1% 43 88786 1% 705 115902 0% 764

40 8687 4% 27 86974 3% 514 114403 2% 545

60 8641 5% 22 86402 4% 437 113574 2% 459

Table 3: Shows how data amount, percental data amount difference and number of route vertices

varies with different route simplifications. Measurements are done with tile simplification = 20,

tile length = 2 km, precision = 0.9, decagon encapsulation and merging of overlapping tiles.

Difference between decagon and hexagon encapsulation

Using a decagon encapsulation rather than a hexagonal is an easy choice given
the data in table 4.1. For the short in-city route the amount of data is a little
bigger, but the coverage of both hexagon encapsuled routes are not good enough.

Polygon
edges

Järnbrott to Kålltorp Gothenburg to Uppsala Vienna to Innsbruck

Bytes sent Comp. to
6 edges Bytes sent Comp. to

6 edges Bytes sent Comp. to
6 edges

6 7987 0% 87104 0% 114407 0%

6a 7948 0% 86935 0% 114238 0%

10 8687 9% 87148 0% 114403 0%

a) Tile simplification factor = 30

Table 4: Measurements are done with route simplification = 40, tile simplification = 20, tile

length = 2 km, precision = 0.9 and merging of overlapping tiles.

Merging of overlapping tiles

The difference between using and not using merging of overlapping tiles is very
small for long-distance routes. For a route within a city, or for a short route,
the difference may be larger. To see if a tile is to be merged or not is a very
small operation and it can be worth the effort. A comparison between the two
cases are shown for the example routes in table 4.1. For the example routes
there is no difference, but given a route with many intersections it’s more likely
to make a difference.

Merge Järnbrott to Kålltorp Gothenburg to Uppsala Vienna to Innsbruck
Bytes Diff. to yes Bytes Diff. to yes Bytes Diff. to yes

yes 8679 0% 87148 0% 114403 0%

no 8679 0% 87148 0% 114403 0%

Table 5: Shows the lack of difference between merging and not merging adjacent overlapping

eachother. Measurements are done with route simplification = 40, tile simplification = 20, tile

length = 2 km and precision = 0.9.

38

Impact of tile length precision

Tile length precision determines how far before and after an existing vertice a
new intermediate vertice can be placed. With a low precision the tiles might
end up with very different lengths, and a high precision normalizes the average
tile length. Table 4.1 tells us that for a start, for longer routes, the higher the
precision the lower the data amount. A turning point is the precision of 0.93,
where after the amount of data increases. The short in-city route shows off a
result where three different, consecutive, precisions all yields the same result.
They all produces the same tiles, and the precision 0.93 is in the middle of these
three precisions.

Tile length
prec.

Järnbrott to Kålltorp Gothenburg to Uppsala Vienna to Innsbruck
Bytes Tiles Bytes Tiles Byte Tiles

0.7 8783 10 91406 291 120682 307

0.8 8681 9 89061 261 117425 271

0.85 9132 8 87859 247 115470 260

0.9 8687 8 87148 234 114403 247

0.92 8588 8 86937 233 114341 245

0.93 8588 8 86879 232 113445 243

0.94 8588 8 88726 231 114537 242

0.95 8495 8 88771 230 114345 241

Table 6: A comparison of different tile length precisions. Measurements are done with route

simplification = 40, tile simplification = 20, tile length = 2 km and merging of overlapping tiles.

Comparison between different tile lenghts

The tile length is the parameter that most gravely changes the byte/tile value,
not considering the offset that is constant at 200 m. As mentioned before,
a mobile device can’t handle tiles that are too big. This is because of the
limited computational power, in particularly when keeping the client software
compatible with old devices. Table 4.1 shows how the the size of the tiles varies
with the length.

Tile length
(km)

Järnbrott to Kålltorp Gothenburg to Uppsala Vienna to Innsbruck

Bytes Tiles Bytes/tile Bytes Tiles Bytes/tile Byte Tiles Bytes/tile

0.5 10890 26 419 14404 909 159 181955 958 190

1.0 9470 14 676 104548 460 228 136965 485 282

1.5 8986 10 899 92936 312 298 122131 327 373

2.0 8687 8 1086 87148 234 372 114403 247 463

2.5 8168 7 1167 83685 191 438 108885 198 550

3.0 8523 6 1421 80953 160 506 103767 167 621

Table 7: A comparison of different tile lenghts. Measurements are done with precision = 0.9,

route simplification = 40, tile simplification = 20 and merging of overlapping tiles.

39

4.1.1 Discussion

Above tables shows how the parameters can be tweaked in order to get the
best performance out of the new implementation. If all parameters are adjusted
to the value that gives the most desirable result the demands set up for the
new implementation is fully met. Table 8 shows how the new implementation
compares to the old one. All paramters are adjusted to minimize the amount of
data with respect also taken to user experience. When this project was started
the requirement was to develop a route encapsulation corridor that did not
result in much more data traffic than before, and that also presented an even
coverage around the route. The results presented here fulfil these requirements,
but also leaves room for some future improvements that can enhance the system
performance, as discussed in 5.2.

Implemen-
tation Järnbrott to Kålltorp Gothenburg to Uppsala Vienna to Innsbruck

Bytes Diff (%) Bytes Diff (%) Bytes Diff (%)

Old 10251 123646 166741

New 8588 16 86879 30 113445 32

Table 8: A comparison between new an old implementation. Measurements are done with route

simplification = 40, tile simplification = 20, tile length = 2 km, precision = 0.93 and merging of

overlapping tiles.

40

5 Conclusions and possible future work

5.1 Conclusion
The thesis set out to examine if a simple bounding box based clipping algorithm
could be replaced by a more advanced algorithm based on bounding polygons
formed by the shape of the route polyline. The conclusion is that, yes, it is
possible. Not only is it possible but also provides a more even map coverage
compared to the bounding box alternative. The data amount needed to down-
load the vector maps is also reduced by as much as a third.

Now, even some time after the thesis actually took place, it’s interesting
to point out that the algorithms that came out of this thesis, and their imple-
mentation, are busy serving vector maps to the users of cloud-based navigation
application Wisepilot.

5.2 Possible future work
Presented here are number of adjustments that can be made to the corridor and
tile creating algorithms to improve the overall performance. They are presented
with a brief description and an approximation of the effort it would take to
implement them.

Dynamic tile sizes

Since some devices running the client application is not suitable for large tiles, a
differentiation could be made when calculating the corridor and tiles for different
screen resolutions. For example could a high-end mobile phone with high-speed
data access cope with longer tiles, thus increasing the data amount, while a
lower-end mobile phone could have the tiles calculated as proposed in table 8.
On the other hand, if one would rather desire a wider offset, instead of the 200
meters used in the measurements, a high-end phone with high screen resolution
could increase the offset but use the same tile length.

Another use of dynamic tile sizes could be to let tiles covering a city map have
bigger offset and those covering a freeway have smaller offset. When driving on
a freeway it’s not likely a user is intereseted in roads passing nearby. In the city,
on the other hand, a user might find it useful to see the surrounding road net,
in order to get a better orientation.

An implementation of dynamic tiles for different unit types would not be
a very time demanding operation. All parameters that control the tile shape
are easily changed for each corridor calculation and can thus be dependent of
screen resolution and type of handset. To make different offsets for different
kinds of roads are bit trickier. It would mean a change of corridor offset in the
middle of a corridor calculation and also information on what kind of road that
is currently encapsuled etc.

Merge map server requests

When a request is made to the map server there is a lot of overhead data trans-
fered every request. If a method for making the map server request for n suc-
ceeding tiles at once, the number of map server request could be decreased and

41

the result faster calculated and transferred to the user. The response for todays
system is not a concern, but a slight increased performance can be expected.

To implement this functionality is not to be considered especially difficult.
There are some obstacles in merging and selecting from vector map data that
would have to be conquered, but it could be done with superable effort.

42

6 References

References
[1] R. Boland and J. Urrutia. Polygon area problems, 2000.

[2] Byoung Kyu Choi and Sang C. Park. A pair-wise offset algorithm for 2d
point-sequence curve. Computer-Aided Design, 31(12):735–745, 1999.

[3] David H Douglas and Thomas K Peucker. Algorithms for the reduction of
the number of points required to represent a digitized line or its caricature.
Cartographica: The International Journal for Geographic Information and
Geovisualization, 10(2):112–122, 1973.

[4] JSR 118 Expert Group. Mobile Information Device Profile for Java(TM)
2 Micro Edition. Java Community Process, Sun Microsystems, 2 edition,
November 2002.

[5] John Hershberger and Jack Snoeyink. Speeding up the douglas-peucker
line-simplification algorithm. In Proceedings of the 5th International Sym-
posium on Spatial Data Handling, volume 1, pages 134–143, Charleston,
South Carolina, 1992.

[6] Kai Hormann and Alexander Agathos. The point in polygon problem for
arbitrary polygons. Computational Geometry, 20(3):131–144, 2001.

[7] G. Kalmanovich and Gregory Nisnevich. Swift and stable polygon growth
and broken line offset. Computer-Aided Design, 30(11):847–852, 1998.

[8] Ravinder Krishnaswamy, Ghasem S. Alijani, and Shyh-Chang Su. On con-
structing binary space partitioning trees. In CSC ’90: Proceedings of the
1990 ACM annual conference on Cooperation, pages 230–235, New York,
NY, USA, 1990. ACM.

[9] Xu-Zheng Liu, Jun-Hai Yong, Guo-Qin Zheng, and Jia-Guang Sun. An
offset algorithm for polyline curves. Comput. Ind., 58(3):240–254, 2007.

[10] Bruce Naylor, John Amanatides, and William Thibault. Merging bsp trees
yields polyhedral set operations. In SIGGRAPH ’90: Proceedings of the
17th annual conference on Computer graphics and interactive techniques,
pages 115–124, New York, NY, USA, 1990. ACM.

[11] William C. Thibault and Bruce F. Naylor. Set operations on polyhe-
dra using binary space partitioning trees. SIGGRAPH Comput. Graph.,
21(4):153–162, 1987.

[12] http://en.wikipedia.org/wiki/Haversine_formula. Haversine —
Wikipedia, the free encyclopedia, 2015. [Online; accessed 03-May-2015].

[13] http://www.faqs.org/faqs/graphics/bsptree-faq/. Binary space par-
titioning trees faq, 2015. [Online; accessed 01-May-2015].

[14] Bala R. Vatti. A generic solution to polygon clipping. Commun. ACM,
35(7):56–63, 1992.

43

[15] Kevin Weiler and Peter Atherton. Hidden surface removal using polygon
area sorting. In SIGGRAPH ’77: Proceedings of the 4th annual confer-
ence on Computer graphics and interactive techniques, pages 214–222, New
York, NY, USA, 1977. ACM.

44

