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This paper presents a three dimensional constitutive model that describes the creep behaviour of natural
clays with anisotropic stress–strain response, focussing on robust model implementation. Creep is formu-
lated using the concept of a constant rate of visco-plastic multiplier, resulting in a formulation with easily
determined creep parameters. A key assumption in the model formulation is that there is no purely elas-
tic domain. Of the 10 input parameters that can be defined based on standard laboratory testing, five are
similar to those used in the Modified Cam-Clay model. The performance of the model at element level
and boundary value level is demonstrated, for the latter by comparing the simulations with the measured
response of Murro test embankment in Finland. For comparison, the simulations are also done using the
previously published anisotropic creep model and an equivalent rate-independent model. This enables
studying the role of evolution anisotropy and creep at boundary value level by systematic comparisons.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent years, various constitutive models have been proposed
to describe fundamental features of natural soil behaviour, such as
anisotropy, structure and rate-dependence (e.g. [1–5]). Different
approaches have been used to capture the various rate-dependent
phenomena, such as strain-rate effects, creep, relaxation and
accumulated effects. These constitutive models include empirical
models, rheological models and general stress–strain–time models
that are based on theories of visco-plasticity. Visco-plastic models
are easily adaptable to numerical implementation in a general
purpose finite element framework, as they are often formulated
in incremental form.

Most of the rate-dependent models were developed based on
the Perzyna’s [6,7] overstress theory (e.g. [1,2,4,8]). This approach
has become a preferred basis for the further development of vis-
coplastic models. However, determination of model input parame-
ters for overstress models is difficult (see e.g. [4]), and strictly
speaking not feasible in practical context due to the very low load-
ing rates required in the laboratory tests. As a consequence, the
input values require calibration via parametric studies, which lim-
its practical adaptation, and furthermore, the values for the input
parameters are not necessarily unique. The latter can lead to unre-
alistic predictions in some stress paths when applied in 3D stress
space. As discussed by Yin et al. [5], the major assumption in the
classic overstress models – that viscoplastic strain will not occur
inside the static yield surface (i.e. there is a purely elastic region)
– is in conflict with the experimental observations. It is commonly
thought that a consequence of the overstress theory is that it lacks
the capability to model tertiary creep, i.e. the acceleration of the
creep process [9], but as shown by Yin et al. [5] this problem can
be overcome by introducing some damage or destructuration law
in the formulation. However, it is only possible to model stress
relaxation if the stress state lies outside the current static yield
surface.

As an alternative, the concept of Nonstationary Flow Surface
(NSFS) theory has been used to model visco-plastic behaviour of
soils in general stress space (e.g. [10,11]). According to Liingaard
et al. [12] this approach has the following limitations:

(1) NSFS theory cannot describe the relaxation process when it
is initiated from a stress state inside the yield surface (flow
surface).

(2) The creep process initiated from a stress state inside the
yield surface cannot be predicted satisfactorily.
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Notation

a0 initial value of anisotropy
a scalar value of anisotropy
ad deviatoric fabric tensor
b creep exponent
dij Kronecker’s delta
ea axial strain
er radial strain
ev volumetric strain
eq deviatoric strain
_e strain rate
_ee elastic strain rate
_ec creep strain rate
_ee
v volumetric elastic strain rate

_ee
q deviatoric elastic strain rate

ded incremental deviatoric strain tensor
_ec

ij creep strain rate tensor
r0a effective axial strain
r0r effective radial strain
r0d deviatoric stress tensor
j� modified swelling index
k� modified compression index
k slope of normal compression line
g stress ratio
g0 stress ratio corresponding K0 state
l� modified creep index
t0 Poisson’s ratio
s reference time
ha lode angle

x rate of rotation
xd rate of rotation due to deviator stress
Ca creep index
CSS current stress surface
Dijhk stiffness matrix
e0 initial void ratio
G shear modulus
I identity matrix
ðJ2Þa modified second invariant to a-line
ðJ3Þa modified third invariant to a-line
K elastic bulk modulus
Knc

0 lateral earth pressure at rest for normally consolidated
state

MðhÞ stress ratio at critical state
Mc stress ratio at critical state in triaxial compression
Me stress ratio at critical state in triaxial extension
NCS normal consolidation surface
OCR over-consolidation ratio
p0 mean effective stress
p0p effective preconsolidation pressure
p0p0 initial effective preconsolidation pressure
p0eq effective equivalent mean stress
POP pre-overburden pressure
q deviatoric stress
Dt time increment
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Yet another approach is to develop more general
rate-dependent constitutive laws based on one dimensional empir-
ical formulations, such as the model by Yin et al. [13] Yin and
Graham [14], which has subsequently been extended to 3D e.g.
by Yin et al. [15] and Yin et al. [16], and further modified e.g. by
Bodas Freitas et al. [17]. However, these models contain concepts,
which are perhaps difficult to understand, such as equivalent time
or time shift, and the models mentioned ignore some key features
of natural soil behaviour, such as anisotropy. One of the most used
models in the category of empirical models is the isotropic Soft Soil
Creep model [18,19] available in the commercial Plaxis finite ele-
ment suite. Further developments of that model, based on the
ideas of Bjerrum and Janbu, have been proposed by several authors
(e.g. [3,20]).

Natural clays generally exhibit both elastic and plastic anisotro-
pic behaviour as result of sedimentation and consolidation. For
normally and slightly overconsolidated clays, anisotropic beha-
viour due to elastic strains can be neglected in most loading prob-
lems, as the magnitudes of elastic strains in natural soft clays are
insignificant compared to plastic strains. This assumption makes
a constitutive model simpler in terms of modelling and parameter
determination. The anisotropic creep model (ACM) proposed by
Leoni et al. [3] accounts for the initial anisotropy and the evolution
of anisotropy in a simple manner, as an anisotropic extension of
the isotropic Soft Soil Creep model. ACM uses rotated ellipses (sim-
ilar to the S-CLAY1 model by Wheeler et al. [21]) as contours of vol-
umetric creep strain rates. This approach overcomes the following
limitations of the overstress theory:

1. Determination of viscous parameters is straight forward: ACM
uses a modified creep index l� as input parameter for soil vis-
cosity, which can be derived from the secondary compression
coefficient Ca. This value can be easily obtained from laboratory
tests and is internationally known, in contrast to the
time-resistance concept adopted by Grimstad et al. [20].

2. The reference time s has a clear link to the type of tests used in
defining the apparent preconsolidation pressure (see [3] for
details). Same value of s can be adopted for modelling element
test and a boundary value problem on the same soil as the test.

3. The model assumes that there is no purely elastic domain in
contrast to the classic overstress theory, allowing for creep
within the Normal Consolidation Surface.

However, as discussed by Sivasithamparam et al. [22] and
Karstunen et al. [23], the consequences of adopting the concept
of contours of constant volumetric creep strain rate are severe, as
illustrated later on:

1. The ACM model cannot predict swelling on the ‘dry’ side of the
critical state line, as it does not allow the stress state to cross
the failure line represented by the Mohr–Coulomb criterion.
Because of this, the ACM is limited to the ‘wet’ side of the crit-
ical state line only.

2. The ACM model cannot reach the critical state condition with
shearing at constant volume and effective stresses, given the
volumetric creep rates are assumed to be constant throughout
the stress space. In its finite element implementation, the crit-
ical state condition is artificially imposed by switching to
Mohr Coulomb failure criterion with zero dilatancy when
approaching failure, resulting in a ‘‘jump’’ in the predicted
stress–strain curve.

3. The ACM model cannot reproduce the isotach behaviour
observed in natural soft clays under a stepwise change in
strain-rate in undrained triaxial tests and CRS tests.



Fig. 1. Current State Surface (CSS) and Normal Consolidation Surface (NCS) of the
Creep-SCLAY1 model and the direction of viscoplastic strains (triaxial stress space).
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4. The stress paths simulated by ACM cannot overpass the critical
state for normally consolidated clay, which is not in agreement
with experimental observations on slightly structured or recon-
stituted clays [24].

The Creep-SCLAY1 model, presented in this paper, can be con-
sidered as a special kind of extended over-stress model similarly
to, e.g., the Yin et al. [5] model. In contrast to the latter, the model
is initially derived from an empirical equation similarly to ACM.
The formulation of the Creep-SCLAY1 model makes it a special kind
of extended over-stress model in the sense that:

(1) The rate of the plastic multiplier is derived based on an
empirical equation rather than a consistency rule.

(2) The stress state is allowed to be outside the Normal
Consolidation Surface, because no consistency rule is
applied.

The first part of this paper gives a description of the Creep-
SCLAY1 model and discusses briefly the ease of determination of
the input parameters. Subsequently, a robust numerical imple-
mentation compatible with most general finite element codes
and Plaxis in particular as a user-defined soil model is discussed.
The latter two features (i.e. ease of parameter determination and
robust implementation within a framework of commercial FE
code) make the model ideal for the use of practising engineers,
as well as researchers who do not want to implement their own
models, but yet require an advanced creep model for understand-
ing their data. The model will be useful for e.g. planning test pro-
grammes for accounting for viscous effects of soft clays and
peats, as well as studying installation effects of pile and ground
improvement the field. The performance of the model is then
demonstrated by numerical simulations that are validated against
the data from Murro test embankment, studying the effect of
evolution of anisotropy and creep on the results.

2. Constitutive model Creep-SCLAY1

For the sake of simplicity, the mathematical formulation of the
model in the following is presented in triaxial stress space, which
can be used only to model the response of cross-anisotropic sam-
ples (cut vertically from the soil deposit) subject to oedometric
or triaxial loading. The extension to more general stress space will
then be summarised, with full details in the Appendix. For the sim-
ple case above, the stress quantities of mean effective stress
p0 ¼ r0a þ 2r0r

� �
=3 and deviator stress q ¼ r0a � r0r

� �
and strain

quantities of volumetric strain ev ¼ ðea þ 2erÞ and deviator strain
eq ¼ 2ðea � erÞ=3 are used, where subscripts a and r denote the
axial and the radial directions, respectively, in the triaxial stress
space.

The elastic and creep parts of the strain in the model are com-
bined with an additive law, expressing the total strain rate as com-
bination of elastic and creep components analogously to the
classical elasto-plasticity theory.

_ev ¼ _ee
v þ _ec

v
_eq ¼ _ee

q þ _ec
q

)
ð1Þ

where e is strain, a dot over a symbol implies rate (differentiation
with respect to time) and superscripts e and c refer to the elastic
and creep components, and subscripts v and q refer volumetric
and deviatoric components respectively.

A key assumption of the model is that there is no purely elastic
domain, similar to ACM [3]. The isotropic and deviatoric elastic
part of the model are defined simply as
_ee
v ¼

_p0

k
ð2Þ

_ee
q ¼

_q
3G

ð3Þ

where the elastic bulk modulus K ¼ p0=j� and elastic shear modulus
G ¼ 3p0=2j� 1� 2t0=1þ t0ð Þ are stress-dependent and t0 is Poisson’s
ratio.

The outer rotated ellipse (see Fig. 1) defines the Normal
Consolidation Surface (NCS), i.e. the boundary between small and
large creep strains, and the size of this ellipse evolves with volu-
metric creep strains according to the hardening law

p0p ¼ p0p0exp
ec

v
k� � j�

� �
ð4Þ

where k� and j� are the modified compression index and modified
swelling index, respectively. These are determined as the slopes of
normal compression and swelling lines in volumetric strain ev ver-
sus ln p0 plane. The intersection of the vertical tangent to the ellipse
with the p0 axis is the isotropic preconsolidation pressure p0p0. The
inner ellipse that represents the current state of effective stress is
called the Current Stress Surface (CSS). The intersection of CSS with
the horizontal axis is called the equivalent mean stress p0eq, and it is
defined as

p0eq ¼ p0 þ q� ap0ð Þ2

M2ðhÞ � a2
� �

p0
ð5Þ

where MðhÞ is the stress ratio at critical state (dependent on Lode
angle h) and a is a scalar quantity used to describe the orientation
of the normal consolidation surface and current stress surface.

Creep is formulated using the concept of a constant rate of
visco-plastic multiplier, following the idea of Grimstad et al. [20]
as follows

_K ¼ l�

s
p0eq

p0p

 !b M2ðhÞ � a2
Knc

0

� �
M2ðhÞ � g2

Knc
0

� �
0
@

1
A ð6Þ



Fig. 2. The Creep-SCLAY1 model in general stress space.

Fig. 3. Failure surface on deviatoric plane for various m values.
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where g2
Knc

0
¼ 3 1� Knc

0

� �
= 1þ 2Knc

0

� �
and the additional term

M2ðhÞ � a2
Knc

0

� �
= M2ðhÞ � g2

Knc
0

� �
is added to ensure that under

oedometer conditions, the resulting creep strain corresponds to
the measured volumetric creep strain rate. aKnc

0
defines the inclina-

tions of the ellipses in normally consolidated state (assuming K0

history) and l� is the modified creep index. To account for the rate
dependency of the apparent preconsolidation pressure that is used
to define the size of NCS, s is called the reference time and is set to
1 day, if the NCS is derived from a standard 24 h oedometer test (see
Leoni et al. [3] for details). The same value of s is adopted when
modelling a boundary values problem using the OCR value (over-
consolidation ratio) from a standard 24 h step oedometer test and
b is defined as

b ¼ k� � j�

l�
ð7Þ

l� is related to the one-dimensional secondary compression index
Ca and defined as:

l� ¼ Ca

ln 10ð1þ e0Þ
ð8Þ

In addition to the volumetric hardening law, the Creep-SCLAY1
model incorporates a rotational hardening law that describes the
changes in the orientation of the normal consolidation surface with
creep straining. This enables modelling the evolution of anisotropy
due to irrecoverable strains. In triaxial stress space, the hardening
law takes the following form

da ¼ x
3g
4
� a

� 	
hdec

vi þxd
g
3
� a

h i
dec

d



 

� �
ð9Þ

where dec
d is the increment of creep deviatoric strain, and x and xd

are two additional soil constants. The soil constant xd controls the
relative effectiveness of creep shear strains and creep volumetric
strains in setting the overall instantaneous target value for a (which
will lie between 3g

4 and g
3), whereas the soil constant x controls the

absolute rate of rotation of the yield surface towards its current tar-
get value of a. h�i are Macaulay brackets. Hence, hdec

vi ¼ dec
v for

dec
v > 0 and hdec

vi ¼ 0 for dec
v < 0. dec

d



 

 is a norm (absolute value)
of deviatoric plastic strain.

The Creep-SCLAY1 model assumes an associated flow-rule as
this is a reasonable approximation for natural clays when com-
bined with the particular form of inclined ‘‘yield’’ surface [21,25]
and the particular rotational hardening law in Eq. (9). Thus, the
creep strain rates are calculated as

_�v ¼ _K
@p0eq

@p0
and _�q ¼ _K

@p0eq

@q
ð10Þ

In Creep-SCLAY1 model, the stress ratio at critical state ðMÞ has
been made a function of Lode angle h. This formulation incorpo-
rates a smooth critical state surface similar to the Matsuoka and
Nakai [26] failure surface, as an alternative to the Drucker–Prager
failure criterion of the MCC model (see Fig. 2). Following Sheng
et al. [27], the variation of MðhÞ for Creep-SCLAY1 is expressed as
a function of modified Lode angle given as

MðhÞ ¼ Mc
2m4

1þm4 þ 1�m4ð Þsin3ha

� �1
4

ð11Þ

where m is defined as

m ¼ Me

Mc
ð12Þ

where Mc is the value of M in triaxial compression with ha ¼ �30�,
and Me is the value of M in triaxial extension with ha ¼ 30�. A
function of the modified Lode angle ha which corresponds to the
stress state to the a-line and can be defined as
sin3ha ¼ �
3
ffiffiffi
3
p

2
ðJ3Þa
ðJ2Þ

3
2
a

" #
ð13Þ
where ðJ2Þa and ðJ3Þa are the second and third invariants of the mod-
ified stress deviator q� ap0, which compares the stress state with
the a-line.
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When Mc and Me are equal, the failure surface reverts to the
Drucker–Prager failure surface in p -plane, as shown in Fig. 3.
This formulation allows a freedom in determining the failure sur-
face between the Drucker–Prager and the Matsuoka and Nakai
type failure surface, dependant on experimental evidence avail-
able. Naturally, if only Mc is known, input for Me could be calcu-
lated based on Mohr Coulomb model.

The fully generalised version of the Creep-SCLAY1 model has
been included in Appendix A.

3. Parameter determination

The Creep-SCLAY1 model requires a number of soil constants
and state variables as input. They can be categorised into following
three groups:

1. Isotropic parameters which are similar to the Modified
Cam-Clay (MCC) model [28].

2. Anisotropic parameters which are similar to the S-CLAY1 model
[21].

3. Viscosity parameters which are similar to the Soft Soil Creep
(SSC) model [18], and therefore the Anisotropic Creep model
(ACM) [3].

Parameters which are similar to the Modified Cam-Clay model
include soil constants m0 (Poisson’s ratio), M (stress ratio at critical
state), k� (modified compression index) and j� (modified swelling
index). Strictly speaking the latter is not a constant for sensitive
natural clays, but for modelling purposes the highest gradient
resulting from an oedometer test can be adopted. Furthermore,
the initial value for a state variable p0p (initial size of the ellipse)
is required. In the context of finite element analyses, the initial
value of p0p is calculated based on the OCR (vertical overconsolida-
tion ratio) or POP (vertical pre-overburden pressure) and the nor-
mally consolidated KNC

0 value (estimated by Jaky’s formula) and
the anisotropy corresponding to K0 conditions.

Parameters describing initial anisotropy ða0Þ and its evolution
include soil constants x (rate of rotation of the surfaces) and xd

(relative rate of surface rotation). The scalar value aK0 and xd can
be theoretically derived based on Mc values (see Wheeler et al.,
[21] for details) for a soil which has had a one-dimensional consol-
idation history, as follows

aK0 ¼
g2

K0 þ 3gK0 �M2
c

3
ð14Þ

xd ¼
3
8

4M2
c � 4g2

K0 � 3gK0

g2
K0 �M2

c þ 2gK0

ð15Þ

where gK0 ¼ 3 1� KNC
0

� �
=1þ 2KNC

0 .

By using the definition above, the model is able to have a very
good KNC

0 prediction, in contrast to the MCC model.
The parameter x can be estimated based on initial anisotropy

a0, modified compression index ðk�Þ;M and xd (see Leoni et al.
[3] for details) as follows

x ¼ 1
k�

ln
10MM2

c � 2a0xd

M2
c � 2a0xd

ð16Þ
Table 1
Model parameter values for the Bothkennar clay.

k� m0 k⁄ M a0 x xd l� s day

0.1 0.2 0.0067 1.5 0.59 50 1.0 5.07E�03 1
In derivation of the above equation, a number of major assump-
tions have been made (see [3]). Consequently, with certain param-
eter combinations the above equation might result in a negative
value, which makes no physical sense. As an alternative, the empir-
ical formula suggested by Zentar et al. [29] to estimate the x value
can be used

10
k�
6 x 6

20
k�

ð17Þ

The values for parameter x could be optimised by simulating an
undrained triaxial extension test, if such results are available.
Alternatively, if the problem is such that no significant changes in
the anisotropy are expected, x could be set to zero, hence by explic-
itly assuming that an initial anisotropy is fixed.

The input values for l� (modified creep index) can be
obtained from oedometer results by plotting the volumetric
strain against the logarithm of time. As shown by e.g.
Karstunen and Yin [4], for natural medium sensitivity clays
the value depends on stress level, because it also indirectly
depends on the apparent compressibility which is varying due
to the gradual process of destructuration. Hence, the input value
would need to correspond to the ‘‘intrinsic value’’ which is
reached at high stress levels. The reference time s is linked to
the definition of vertical preconsolidation stress used in the
analyses, and if that is based on 24 h oedometer test, it can
be set equal to one day (see Leoni et al., [3] for details) both
at element and boundary value level.

4. Numerical implementation

The Creep-SCLAY1 model is implemented into the finite ele-
ment code PLAXIS as a user-defined soil model (UDSM) using a
fully implicit integration scheme with automatic substepping.

An integration scheme for general viscoplastic models can be
found in de Borst and Heeres [30]. Strain residuals are defined over
a time step Dt as

re ¼ Detrial � Dee
nþ1 þ Dec

nþ1

� �
¼ Detrial � Dee

nþ1 � Dt _Knþ1
@p0eq

@r0

� 

nþ1

ð18Þ

where D is increment and re is strain residual vector.
Residual related to visco-plastic multiplier is defined as

rK ¼ Knþ1 �Knð Þ � Dt _Knþ1 ð19Þ

where the subscripts n and nþ 1 denote the solutions at times t and
t þ Dt, respectively.

This numerical scheme always satisfies the following condi-
tions, as the model does not have any pure elastic region

Detrial � Dee
nþ1 � Dt _Knþ1

@p0eq

@r0

� 

nþ1
¼ 0 ð20Þ

Knþ1 �Knð Þ � Dt _Knþ1 ¼ 0 ð21Þ

The 6 strain components can be written for the iteration proce-
dure using Taylor expansion as follows

Detrial � Dee
n þ dDee

nþ1

� �
� Dt _Kn þ Dtd _Knþ1

� � @p0eq

@r0

� 

n

�

þ
@p0eq

@2r02

� 

nþ1

@r0nþ1

�
¼ 0 ð22Þ

By neglecting the higher order terms, and restructuring the
above system of equations, the following system of equations for
Newton–Raphson iterative process can be derived



(a) Creep-SCLAY1 - stress path (c) ACM - stress path 

(b) Creep-SCLAY1 - stress strain path (d) ACM - stress strain path 

Fig. 4. Simulations of undrained triaxial compression with varying strain rate.
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Iþ Dt _Kn
@2p0eq

@r02

( )
nþ1

Dnþ1

 !
dDee

nþ1 þ
@p0eq

@r0

� 

n

Dtd _Knþ1

¼ Detrial � Dee
n � Dt _Kn

@p0eq

@r0

� 

n

ð23Þ

where D is the mean stress dependent isotropic elasticity matrix.
The plastic multiplier residual can be expanded using Taylor

expansion (higher order terms are again neglected) as

rKn þ
@rK

@r0

� 

nþ1

dDr0nþ1 þ
@rK

@DK

� 

nþ1

Dtd _Knþ1 ¼ 0 ð24Þ

The above equation can be rewritten for iteration procedure as
follows:

� @rK

@r0

� 

nþ1

Dnþ1dDee
nþ1 �

@rK

@DK

� 

nþ1

Dtd _Knþ1

¼ ðKnþ1 �KnÞ � Dt _Knþ1 ð25Þ
By combining Eqs. (23) and (25), the system of nonlinear equa-
tions can be written in a matrix form as follows

I þ Dt _Kn
@2p0eq

@r02

n o
nþ1

Dnþ1
@p0eq

@r0

n o
n

� @rK
@r0

� �
nþ1Dnþ1 � @rK

@DK

� �
nþ1

2
64

3
75 dDee

nþ1

Dtd _Knþ1

( )

¼
Detrial � Dee

n � Dt _Kn
@p0eq

@r0

n o
n

ðKnþ1 �KnÞ � Dt _Knþ1

8<
:

9=
;

ð26Þ

where I is the 6 � 6 identity matrix. Based on the above system of
equations, the changes of elastic strain increment and the
visco-plastic multiplier can be calculated using Newton–Raphson
iteration. The iterative process can be considered complete when
changes are very small.

The first iteration can start from the following system of
equations
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Fig. 5. Geometry of Murro test embankment.

Table 2
Parameters for constructed embankment.

E (kN/m2) m0 u0 (�) w0 (�) c0 (kN/m2) c (kN/m2)

40,000 0.35 40 0 2 21
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The state variables are updated in each iteration. The resulting
implementation is very robust, and furthermore, as demonstrated
below, the model is able to represent single element simulation
and the deformation-time response of Murro test embankment.
5. Numerical simulation: Creep-SCLAY1 versus ACM

This section discusses the predictive capability of Creep-SCLAY1
in comparison to the ACM model in a single element simulation to
represent the isotach behaviour of normally consolidated natural
clay. Parameters used for these simulations corresponding to
Bothkennar clay are summarised in Table 1. Several publications
(e.g. [31–35]) have shown the influence of step changes in the
strain-rate on the stress–strain behaviour of soft soils. Important
feature of isotach behaviour is that the effects of change in rate
are continuous and the soil stays on the same stress–strain curve
until the strain rate is changed. Immediately after an increase in
strain rate, the stress–strain path is seen to jump upwards and
show initially stiff response. If the strain rate is reduced back to
the original strain rate, a downwards stress jump is observed, after
Table 3
The initial values for state parameters of Murro clay.

Layer Depth (m) POP (kN/m2) e0 a0 In-situ K0

1–1 0.0–0.8 20 1.4 0.63 1.25
1–2 0.8–1.6 10 1.4 0.63 1.25
2 1.6–3.0 2 1.8 0.63 0.34
3 3.0–6.7 2 2.4 0.63 0.35
4 6.7–10.0 2 2.1 0.63 0.40
5 10.0–15.0 2 1.8 0.63 0.42
6 15.0–23.0 2 1.5 0.63 0.43
which the path rejoins the original curve defined by the lower
strain rate. The paths in stress–strain curves are indicated to be
uniquely defined by the strain rate and the effects of strain rate
changes are observed to be persistent, which is a characteristic of
isotach behaviour, i.e., there is a unique stress–strain strain-rate
relation for a given soil [34].

Fig. 4 shows a stepwise change in strain rate in undrained com-
pression simulations using Creep-SCLAY1 and ACM for normally
consolidated samples. Fig. 4 clearly demonstrates that ACM cannot
simulate the isotach behaviour observed in natural soft clays under
a stepwise change in strain rate due to the assumption of constant
volumetric creep strain rates. Furthermore, experimental results
e.g. by [24] demonstrate that with high shearing rates under
undrained conditions it is possible the stress path to go well above
the critical state line. ACM cannot reproduce that type of experi-
mental behaviour due to the assumption on the constant viscoplas-
tic volumetric strain rate.
5.1. Murro test embankment

The Murro test embankment was constructed on a 23 m deep
deposit of medium sensitive clay near the town of Seinäjoki in
Western Finland. The embankment has been monitored for a long
time, since it was built in 1993, and it has been subjected to several
studies (see e.g. [36–39]) due to decent instrumentation and exten-
sive non-standard laboratory testing (for details see [4]). The latter,
combined with long period of monitoring, does not apply to many
case studies. Furthermore, it is the cases like Murro that are almost
normally consolidated that are most difficult to model creep-wise,
as creep strains get easily highly overpredicted. The almost nor-
mally consolidated clay is overlain by a 1.6 m thick overconsoli-
dated dry crust and the underlying thick clay layer is almost
normally consolidated and relatively homogeneous. The ground-
water table is estimated to be at 0.8 m below ground level.
Murro clay is highly strain anisotropic and time-dependent
[4,39]. The Murro test embankment is 2 m high and 30 m long with
a gradient of 1:2. The width of the top of the embankment is 10 m.
The embankment material consists of crushed rock (biotite gneiss)
with a grain size of 0–65 mm [38]. Construction of the embank-
ment was completed in two days.



Table 4
Murro embankment parameters.

Layer c (kN/m3) m0 Mc Me kx (m/day) ky (m/day) x xd k� k�

1–1 15.8 0.35 1.6 1.04 2.13E�04 1.64E�04 45 1.02 0.0667 4.20E�03
1–2 15.8 0.35 1.6 1.04 2.13E�04 1.64E�04 45 1.02 0.0667 4.20E�03
2 15.5 0.35 1.6 1.04 2.13E�04 1.64E�04 25 1.02 0.1786 1.07E�02
3 14.9 0.10 1.6 1.04 1.78E�04 1.34E�04 20 1.02 0.1471 1.06E�02
4 15.1 0.15 1.6 1.04 1.10E�04 9.07E�05 25 1.02 0.1161 9.07E�03
5 15.5 0.15 1.6 1.04 6.85E�05 5.48E�05 25 1.02 0.1143 1.21E�02
6 15.9 0.15 1.6 1.04 1.04E�04 8.22E�05 30 1.02 0.0560 1.60E�03

Table 5
Murro embankment parameters.

Layer l� s day

1–1 8.69E�04 1
1–2 8.69E�04 1
2 2.33E�03 1
3 1.92E�03 1
4 1.52E�03 1
5 1.49E�03 1
6 7.30E�04 1
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5.2. Finite element analysis

The construction and consolidation of Murro test embankment
has been modelled with a plane strain finite element analysis using
PLAXIS 2D Version 2012. Due to the symmetry of the problem, only
half of the embankment was considered in the analyses. Fig. 5
shows the geometry and soil layers of Murro test embankment.
The problem was simulated as large strain analysis using updated
mesh and pore water option in PLAXIS. The finite element model
was discretized by using a mesh consisting of 1416 15-noded tri-
angular elements following mesh sensitivity studies. In the model
the symmetry axis and the lateral boundary at a distance of 36 m
were fixed in the horizontal direction and the bottom boundary
at a depth of �23 m was fixed in both horizontal and vertical direc-
tion. The construction of the embankment was simulated as an
undrained calculation phase followed by a fully coupled consolida-
tion analysis.

The granular embankment fill was modelled with the simple
linear elastic perfectly plastic Mohr Coulomb model and
Fig. 6. Murro test embankment. Comparison between measured and predicted time-set
parameters are shown in Table 2. Parametric studies confirmed
that the simulations are not sensitive to the embankment fill
parameters, as the response is controlled by the underlying soft
soil [38]. Karstunen et al. [38] divided the clay deposit into 7 layers
based on available test data. Required parameters for
Creep-SCLAY1 model were obtained from Karstunen et al. [39]
and are summarised in Tables 3–5. For numerical stability
pre-overburden pressure of 2 kPa has been assumed in the appar-
ently normally consolidated layers.

Fig. 6 shows the measured vertical settlements at centre-line,
and 2 m and 5 m off the centre-line, underneath the embankment,
together with the Creep-SCLAY1 and ACM model predictions. Very
good agreement is achieved between the measured and predicted
settlements with Creep-SCLAY1. In contrast, the ACM model over-
predicts the vertical settlement versus time compared to
Creep-SCLAY1.

Fig. 7 presents the measured and predicted surface settlement
immediately after the construction and during subsequent consol-
idation. Again, the Creep-SCLAY1 model captures well the surface
settlements during the consolidation compared to the measure-
ments. However, the model overestimates the settlement immedi-
ately after the construction which could be related to the fact that
often the first measurements do not necessarily correspond to time
zero. Though ACM predicts similar magnitudes in the beginning,
with time the overprediction increases. Both models predict some
creep deformation due to in situ stresses alone at the non-loaded
section next to the lateral boundary.

Fig. 8 presents the comparison between the predicted and mea-
sured horizontal displacements, underneath the crest of the
embankment and underneath the toe of the embankment, by the
tlements (symbols and thick lines are measurement and predictions respectively).
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Fig. 7. Murro test embankment. Comparison between measured and predicted surface settlements (symbols and thick lines are measurement and predictions respectively).
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Creep-SCLAY1 and ACM model. Very good agreement is achieved
between the measured and predicted results for both cases with
Creep-SCLAY1, although for the early stage of consolidation the
horizontal displacements were overestimated. However, ACM sig-
nificantly overpredicts the horizontal displacement, and even the
predicted trend under the toe is not correct. This is due to the
assumption of constant volumetric creep strain rates which results
in shear strains being significantly overestimated.

For comparison, the influence of evolution of anisotropy in
Creep-SCLAY1 is further studied by switching off the rotational
hardening law (i.e. x ¼ 0). This results in an anisotropic model
with a fixed Normal Consolidation Surface. As shown in Fig. 9,
when the evolution of anisotropy is ignored, the Creep-SCLAY1
model overestimates the settlements compared to the field mea-
surements. The reason for this overprediction is that the model
predicts lower soil stiffnesses when the evolution of anisotropy is
ignored. When anisotropy evolves, energy is dissipated due to rota-
tion of fabric, and therefore smaller settlements are predicted than
with fixed anisotropy.

Even though the rate-dependency in the Creep-SCLAY1 model
can be reduced by reducing the input value for the modified creep
index, it is not possible to totally ‘‘switch off’’ the strain-rate effects.
With a zero value of creep index, the model is undefined, as power b
in Eq. (6) becomes undetermined. Decreasing creep index to very
low values is also numerically challenging because of the power
law. Hence, it is not possible to ‘‘switch off’’ the rate effects.
Consequently, to study if it really is important to include
rate-dependency in this particular problem, the embankment is also
simulated using the equivalent (rate-independent) elasto-plastic
S-CLAY1 [21] model. As shown in Fig. 10, the S-CLAY1 model signif-
icantly underpredicts the settlements with time. The results also
demonstrate that it is important to account for strain rates even at
the undrained construction stage, and as the time goes on, creep
becomes increasingly significant. The results show that the
time-dependent Creep-SCLAY1 model has clear advantages com-
pared to the time-independent S-CLAY1 model in this respect.

6. Conclusions

This paper described a simple constitutive approach for mod-
elling the creep behaviour of anisotropic clay that overcomes the
problems associated with many of the rate-dependent models
published so far. The foundation of the Creep-SCLAY1 model is
the S-CLAY1 model [21], which has been extended to account for
rate effects using ideas from Leoni et al. [3] and Grimstad et al.
[20]. The model has been implemented as a user-defined soil
model, using a fully implicit integration scheme with automatic
substepping, resulting in a robust finite element formulation.

Unlike in classic Perzyna type overstress models, there is no
purely elastic range in the Creep-SCLAY1 model. This makes the
determination of the input parameters related to
rate-dependency straightforward, as these can be derived directly
from experimental data, without calibration of the values using
test simulations. The existence of small positive volumetric creep
rates upon unloading will also reduce the amount of heave in
unloading problems, but as yet there is no systematic experimental
data available to validate this feature of the model. A comprehen-
sive validation programme on element level, including both load-
ing and unloading loops, will take several years to complete and
samples need to be tested within days from sampling in order
not to affect the creep properties by disturbance by loss of suction
and stress relaxation.

The advantage of using the adopted anisotropic formulation is
that, unlike in the MCC model, the K0 prediction of the model in
the normally consolidated region is realistic, as long as the value
for parameter xd is defined as proposed in Eq. (21). Furthermore,
by using the concept of constant viscoplastic multiplier proposed
by Grimstad et al. [20], it is possible to model the experimentally
evidenced isotach behaviour. The model will also predict a unique
critical state, regardless of the strain rate and stress path, as the
normal compression surface rotates as a function of irrecoverable
shear strains.

Given the model has a hierarchical structure, it is possible to
switch off the evolution of anisotropy. When this is done, the pre-
dictions will generally be on the conservative side, i.e. vertical
deformations will be over-predicted for embankment-type loading
problems. Even though the rate-dependency in the Creep-SCLAY1
model can be reduced by reducing the input value for the modified
creep index, it is not possible to totally ‘‘switch off’’ the strain-rate
effects. If comparisons with equivalent rate-independent models
are needed, simulations with the S-CLAY1 model should be per-
formed, as was done for Murro test embankment.



 

 

(a) Under crest

(b) Under toe

Fig. 8. Murro test embankment. Comparison between measured and predicted
horizontal displacements (symbols and thick lines are measurement and predic-
tions respectively).
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Simulations on single element level, as well as boundary value
level (the stress–strain–strain rate behaviour of the Murro test
embankment) demonstrate that the Creep-SCLAY1 model gives
realistic predictions. When compared with field deformations, in
contrast to the predictions by ACM and an equivalent
rate-independent model (S-CLAY1), the proposed model has a very
good match with the measured data, both qualitatively and quan-
titatively. Simulations demonstrate that in the case of Murro test
embankment, the rate-effects are significant already just after
the construction stage, so it is not just a long-term effect where
rate-dependent model is needed. Furthermore, the test embank-
ment was also simulated with the model with fixed anisotropy.
Results suggest that it is necessary to account for evolution of ani-
sotropy in this problem, as with fixed anisotropy the deformations
are over-predicted.

Due to the robustness of the implementation, the model is an
ideal basis for further extensions, such as inclusion of effects of
bonding and destructuration, as necessary for modelling the
stress–strain response of highly sensitive clays.
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Appendix A

Deviatoric stress tensor
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Incremental deviatoric strain tensor
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Deviatoric fabric tensor
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where components of fabric tensor have the property

1
3

ax þ ay þ az
� �

¼ 1 ðA:4Þ



Fig. 9. Murro test embankment. Comparison between measured and predicted time-settlements with and without evolution of anisotropy (symbols and thick lines are
measurement and predictions respectively).

Fig. 10. Murro test embankment. Comparison between measured and predicted time-settlements with and without rate-dependency (symbols and thick lines are
measurement and predictions respectively).
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Scalar value of fabric tensor, a, which defines the orientation of
the ellipses in triaxial stress space, can be defined as

a2 ¼ 3
2
ad : ad ðA:5Þ

The initial components of a values is determined using the ini-
tial scalar value a0

ax ¼ az ¼ 1� a0
3

ay ¼ 1þ 2a0
3

axy ¼ ayz ¼ azx ¼ 0

9>=
>; ðA:6Þ

The triaxial formulation of the Creep-SCLAY1 model is easily
extended to three-dimensional stress space. The boldface charac-
ters are used to denote tensor quantities and subscript d denotes
the deviatoric component. As the current stress surface (CSS) is
similar to the elasto-plastic model S-CLAY1 [21], it can be
expressed as:

p0eq ¼ p0 þ 3
2p0

r0d � adp0
� �

: r0d � adp0
� �

M2 � 3
2 ad : ad

� � ðA:7Þ

The rotational hardening law describing the change of the ori-
entation of the yield surface with irrecoverable straining can be
expressed in general stress space as:

dad ¼ x
3r0d
4p0
� ad

� 	
hdec

vi þxd
r0d
3p0
� ad

� 	
dec

d



 

� �
ðA:8Þ
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The direction of creep strain rate is defined (associated flow
rule) as

_ec
ij ¼ _K

@p0eq

@r0ij
ðA:9Þ

The total strain rate is sum of the elastic and creep part as

_eij ¼ _ee
ij þ _ec

ij ðA:10Þ

The elastic part of the strains modelled using Hooke’s law

_re
ij ¼ Dijhk _ee

hk ðA:11Þ

where the elastic stiffness matrix Dijhk is

Dijhk ¼
2Gt0

1� 2t0
dijdhk þ G dikdjh þ dihdjk

� �
ðA:12Þ

The second J2ð Þa and third J3ð Þa invariants of the modified stress
deviator r0d � adp0 are defined as:

ðJ2Þa¼
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