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SUMMARY

Skeletal myocytes are metabolically active and sus-
ceptible to insulin resistance and are thus implicated
in type 2 diabetes (T2D). This complex disease in-
volves systemic metabolic changes, and their eluci-
dation at the systems level requires genome-wide
data and biological networks. Genome-scale meta-
bolic models (GEMs) provide a network context for
the integration of high-throughput data. We gener-
ated myocyte-specific RNA-sequencing data and
investigated their correlation with proteome data.
These data were then used to reconstruct a compre-
hensive myocyte GEM. Next, we performed a
meta-analysis of six studies comparing muscle
transcription in T2D versus healthy subjects. Tran-
scriptional changes were mapped on the myocyte
GEM, revealing extensive transcriptional regulation
in T2D, particularly around pyruvate oxidation,
branched-chain amino acid catabolism, and tetrahy-
drofolate metabolism, connected through the down-
regulated dihydrolipoamide dehydrogenase. Strik-
ingly, the gene signature underlying this metabolic
regulation successfully classifies the disease state
of individual samples, suggesting that regulation of
these pathways is a ubiquitous feature of myocytes
in response to T2D.
INTRODUCTION

Skeletal muscle is one of themost abundant tissues in the human

body, accounting for more than a third of our body weight (Lor-

enz and Campello, 2001), and is primarily composed of myo-
cytes. Myocytes communicate with other tissues and organs,

such as liver and adipose, through secretion of myokines (e.g.,

myostatin, follistatin, and interleukins) (Pedersen and Febbraio,

2012), and the metabolism of myocytes has a major impact on

whole-body homeostasis. For instance, myocytes are respon-

sible for roughly 75% of the insulin-stimulated clearance of

glucose from the blood after a meal (Stump et al., 2006). As

such, myocytes are highly susceptible to insulin resistance,

and the dysfunction of myocyte metabolism is implicated in life-

style diseases such as obesity, metabolic syndrome, and type 2

diabetes (T2D), all of which are to date globally ubiquitous (Chen

et al., 2012).

These medical conditions are complex in their mode of action

even in the context of a single tissue, like muscle, in that alter-

ations at the systems level are required to contribute to their

progression. This complexity can be explored through the gener-

ation of state-of-the-art genome-wide ‘‘omics’’ data (e.g., tran-

scriptomics and proteomics) that provide a global and unbiased

insight into myocyte function, dysfunction, and metabolism.

Nevertheless, in order to gain as much knowledge as possible

from such data, it is essential to have informative scaffolds for

functional andmechanistic interpretation of genome-wide omics

data. In this context, genome-scale metabolic models (GEMs)

are useful representations of metabolism, and in the broad

area of human disease, they have successfully been used for

prediction and interpretation through simulation and data inte-

gration (Bordbar et al., 2014; Mardinoglu et al., 2013b; Väremo

et al., 2013b). GEMs are, simply put, a list of mass-balanced

metabolic reactions that are connected into a network structure

through their shared metabolites. Each reaction is assigned to a

specific compartment, e.g., the cytoplasm or mitochondria, and

associated to genes known to code for proteins involved in that

reaction. During the last decade, there has been an increased

development and application of human GEMs resulting in gener-

ation of several so-called context-specific GEMs. These GEMs

capture the active subset of metabolism present in a particular
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Figure 1. Overview of the Workflow

(A) Myocyte-specific transcriptome data were generated using RNA-seq and compared to immunohistochemistry-based proteome data from the Human Protein

Atlas in order to evaluate the correlation and consistency between the transcript and protein levels.

(B) The proteome and transcriptome data were used to score the reactions in the generic human metabolic network HMR2 in order to evaluate the likelihood of a

metabolic reaction being present in myocytes. These scores were used as input to the tINIT algorithm, together with a list of metabolic tasks that the myocyte

GEM should be able to perform. The output of tINIT is a functional myocyte GEM that was manually curated, quality controlled, and compared to other existing

GEMs.

(C) The network topology of iMyocyte2419 was used to contextualize and interpret T2D transcriptome data from six different studies, comprising in total 153

subjects.
context, such as a disease state (Agren et al., 2014) or specific

tissues and cell types (Bordbar et al., 2011; Mardinoglu et al.,

2013a, 2014).

Reconstructing context-specific (e.g., cell-type-specific)

GEMs requires high-quality genome-wide data and a compre-

hensive human metabolic network to use as a template. To

this end, we previously constructed the HumanMetabolic Reac-

tion (HMR) database (Agren et al., 2012), which has been contin-

uously updated (Mardinoglu et al., 2013a) and is currently in

version 2.0 (HMR2) (Mardinoglu et al., 2014). Reconstruction of

a context-specific GEM from the generic metabolic network is

a process of determining, for each metabolic reaction, whether

or not it should be present, while simultaneously maintaining a

connected network that represents a functioning model (Agren

et al., 2012). The evidence for the presence of a reaction can

be determined by experimentally measuring the existence of

its components, i.e., the relevant metabolites and enzymes,

and high-quality data with genome-wide coverage are therefore

essential for the reconstruction process. We have previously

constructed manually curated GEMs for the metabolically active

tissues liver (Mardinoglu et al., 2014) and adipose (Mardinoglu

et al., 2013a). Like skeletal muscle, these tissues are implicated

in complex human metabolic diseases such as T2D, and there is

a lot ofmetabolic interplay among the three tissues. It is therefore

of great interest to reconstruct the skeletal myocyte metabolism

in a comprehensive GEM.

Here, we generated cell-type-specific RNA-sequencing (RNA-

seq) data for human myocytes and studied the correlation of this
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data with antibody-based immunohistochemistry for myocytes

from the Human Protein Atlas (Uhlen et al., 2010). These data

represent an extensive description of myocyte gene expression

at both the transcript and protein levels and enabled us to recon-

struct a comprehensive cell-type-specific skeletal myocyte

GEM. We next used the model to analyze and contextualize

T2D transcription data collected from six different studies

comprising in total 153 subjects. The meta-analysis of these

six studies provided a systems-level description of metabolic

regulation in T2D. Finally, we used the genes that underlie the

identified metabolic changes to classify individual T2D samples

from controls. An outline of the workflow is presented in Figure 1.

RESULTS

Cell-Type-Specific RNA-Seq Data for Human Skeletal
Myocytes
To quantify the skeletal myocyte-specific transcriptome, muscle

precursor cells were isolated from the vastus lateralis muscle of

three male and three female individuals (Table 1) and differenti-

ated into myotubes. These in vitro myocytes maintain genetic

and stable epigenetic components from their human donor, re-

sulting in a conservation of the in vivo phenotype in the in vitro

system (Broholm et al., 2012; Green et al., 2011; Scheele et al.,

2012). Thus, while cell lines rely on the fact that the gene expres-

sion in one single cell is representative of a cell population in a

given tissue or representative of a given human population, our

model system also takes biological variation into account. This,



Table 1. Characteristics of the Six Subjects

Female 1 Female 2 Female 3 Male 1 Male 2 Male 3

Age (years) 50 51 66 49 51 51

Body mass index (kg/m2) 23.0 24.0 24.8 23.7 23.9 24.4

Plasma glucose (mmol/l) 4.9 5.0 5.5 5.6 6.4 4.9

Plasma insulin (pmol/l) 25 17 36 26 24 20

HOMA-IR 0.47 0.38a 0.69 0.5 0.48 0.38

Plasma total cholesterol (mmol/l) 5.0 6.2 5.4 4.3 5.0 6.8

Plasma HDL cholesterol (mmol/l) 2.0 3.0 1.7 1.0 1.3 2.0

Plasma LDL cholesterol (mmol/l) 2.7 3.0 3.1 2.7 3.2 4.2

Plasma triglyceride (mmol/l) 1.16 0.72 0.97 1.20 1.38 1.40

Sequencing depth (M paired-end reads) 48.0 84.9 62.6 45.8 68.9 49.5

Phenotypic characteristics, selected plasma levels, and sequencing depth for the six samples.
aThe minimum allowed input (20 pmol/l) for plasma insulin was used for HOMA-IR calculation.
along with the fact that the culture only contains myocytes, in

contrast to heterogeneous tissue biopsies, enables the recon-

struction and analysis of myocyte-specific metabolism.

Isolated myocyte mRNA was sequenced at an average depth

of 60 million paired-end reads per sample, and relative abun-

dances in the form of FPKM (fragments per kilobase per million

mapped reads) values were calculated for each protein-coding

gene. The transcriptomes of the six samples showed high pair-

wise correlations (Figure 2A), and the vast majority of expressed

genes (with FPKM >1) were expressed in all samples (Figure 2B).

We identified 35 differentially expressed genes between males

and females, including NDUFA4L2, COX7A1, CD36, GPR116,

and Il6, indicating a higher activity of lipid and energymetabolism

in female myocytes (see Supplemental Results and Table S1).

Correlation between Myocyte Transcriptome
and Proteome
The immunohistochemistry-based protein abundance data from

the Human Protein Atlas (HPA) version 12 (Uhlen et al., 2010)

contains protein abundance levels (not detected, low, medium,

or high) for 16,378 genes in skeletal myocytes. In HPA, the reli-

ability of the abundance level of a given protein is either ‘‘sup-

portive’’ or ‘‘uncertain,’’ depending on the extent and quality of

evidence, and currently, 12,260 genes, 75% of the genes

measured in skeletal myocytes, are associated with abundance

levels with uncertain reliability (Figure 2C).

A positive correlation betweenmRNA and protein abundances

has been reported (Lundberg et al., 2010; Nagaraj et al., 2011;

Schwanhäusser et al., 2011), although transcript levels cannot

fully explain the variation of protein concentrations in a cell,

due to post-transcriptional events (Vogel and Marcotte, 2012).

However, mRNA abundances are generally believed to be

adequate for simply predicting protein presence/absence (Ram-

akrishnan et al., 2009).

We used the myocyte-specific RNA-seq data for evaluating if

the myocyte proteome and transcriptome are correlated. We

compared the FPKM-value distributions (median of the six sam-

ples) of genes with different protein abundance levels and sepa-

rated the supportive and uncertain data. For the uncertain

protein abundance levels, there was no clear difference between
the FPKM-value distributions of the non-detected and detected

(low, medium, or high) proteins in HPA, but more prominently, for

the more reliable supportive protein abundance levels, the de-

tected proteins generally had distinctively higher FPKM values

(Figure 2D), indicating a clear relation between expressed pro-

teins and high transcript levels.

Refining the Protein Abundance Scores Using
RNA-Seq Data
Since the observed difference in transcript levels between de-

tected (low, medium, or high) and non-detected proteins is not

apparent for the proteins with uncertain protein abundance

levels, a portion of these proteins has likely been assigned an

incorrect abundance level. To investigate this, we checked the

FPKM-value distribution specifically for proteins with abundance

levels that were updated, based on improved protein-level infor-

mation (according to the standards of HPA), from being non-de-

tected in previous versions of HPA to detected in the current

version. The FPKM-value distribution of these proteins showed

a similar pattern of higher values (Figure 2D), supporting the ra-

tionality behind an approach to use FPKM values to correct the

uncertain protein abundance levels.

An FPKM R 1 has previously been used as a threshold for

determining protein presence (Fagerberg et al., 2014; Heben-

streit et al., 2011). This was based on the observation of a

bimodal distribution of expression abundances that separated

genes into two groups, referred to as lowly expressed (LE) and

highly expressed (HE) genes (Hebenstreit et al., 2011). Our myo-

cyte RNA-seq data also showed this pattern, and importantly,

the FPKM values of the detected proteins with supportive reli-

ability (most likely expressed on a protein level) matched the

HE distribution (Figure 2E). For our data, the HE and LE group

were also divided at an FPKM value around 1, so this value

was selected as the cutoff.

We considered the HPA protein-level data as the primary

source of enzyme evidence but used the RNA-seq data to

reduce potential false negatives (as indicated in Figure 2C),

i.e., assigning the abundance level low (detected) to the

missing proteins in HPA and the uncertain non-detected pro-

teins, if their FPKM R 1. Based on this, 2,460 genes with
Cell Reports 11, 921–933, May 12, 2015 ª2015 The Authors 923



Figure 2. Comparison of Proteome and Transcriptome Data

(A) Pairwise Spearman correlations and scatterplots of �log10(FPKM values), for the six subjects, show a high consistency of their transcriptomes.

(B) A majority of genes with an FPKM value larger than 1 are expressed in all six samples, showing a high consistency in whether or not a gene is expressed.

(C) The pie chart shows a summary of the coverage of protein-coding genes in the Human Protein Atlas (HPA). A majority of the genes are associated with protein

abundance levels with uncertain reliability, and more than 6,000 genes remain to be measured.

(D) The (median) FPKM-value distributions are displayed separately for the genes of the different HPA abundance groups. For the genes with supportive protein

abundance levels, there is a clear pattern of higher FPKM values for detected proteins (green) than non-detected proteins (red). This pattern is not apparent for the

genes with uncertain abundance levels, indicating that a portion of these are incorrectly scored. Indeed, genes that were incorrectly scored in previous HPA

versions but subsequently updated when new evidence was acquired according to the standards of HPA also show a pattern of higher FPKM values.

(E) The FPKM-value distribution of all genes show two peaks, representing lowly expressed (LE) genes and highly expressed (HE) genes. The HE genes have been

shown to be more likely to be translated into functional proteins. In line with this, the histogram of detected and supportive genes (in HPA) fits the HE part of the

density plot. The two peaks are divided at an FPKM of roughly 1, and this was chosen as a cutoff, so that non-detected genes (in HPA) with uncertain protein

abundance levels were updated to be detected, if their FPKM-value was larger than 1. The lowermost boxplot in (D) shows the FPKM values of these genes.

See also Table S2.
uncertain non-detected protein abundance levels and

FPKM R 1 were relabeled as detected (their FPKM values

are summarized in the lowermost boxplot in Figure 2D). Addi-

tionally, 3,221 genes with protein-level information missing in

HPA and with FPKM R1 were also added as detected. Table

S2 gives a summary of the updated genes and their number

of associated reactions.

Reconstructing iMyocyte2419, a Comprehensive
Myocyte GEM
The updated protein abundance levels were used to score the

reactions in HMR2 so that a reaction received a positive score

if at least one associated enzyme was determined detected in

myocytes. During the reconstruction process, we also included

known functionality of the myocytes by defining a list of 247

metabolic functions (or tasks) that the myocyte GEM should be
924 Cell Reports 11, 921–933, May 12, 2015 ª2015 The Authors
able to perform (Table S3), e.g., simulating uptake of fatty acids

and cholesterol from lipoproteins. Using the tINIT (task-driven

Integrative Network Inference for Tissues) algorithm (Agren

et al., 2012, 2014), which is part of the RAVEN toolbox (Agren

et al., 2013), a draft myocyte GEM was generated based on

the positive and essential reactions, while ensuring a connected

networkwhere all reactions could carry flux. Next, a relatively low

amount of reactions (22) were added so that the final model

could perform all the required tasks. Finally, relevant exchange

reactions were reintroduced and negative gene associations

were removed. The resulting skeletal myocyte GEM, iMyo-

cyte2419, consists of 5,590 reactions in eight different compart-

ments, 4,448 metabolites (2,396 unique), and 2,419 genes.

iMyocyte2419 can be downloaded in the systems biology

markup language (SBML) format from the repository of curated

models at http://www.metabolicatlas.org.

http://www.metabolicatlas.org


Figure 3. Comparison and Validation of the

Myocyte GEM

(A) The myocyte GEM, iMycoyte2419, was

compared to two previously published, yet

smaller-scale, muscle GEMs. The barplot shows

the number of genes and reactions in each model.

(B) The Venn diagram shows the gene overlap

among the three models. The pie charts show the

gene scores (based on the RNA-seq and HPA

data) for the indicated genes. As can be seen, the

majority of the excluded genes in iMyocyte2419

have negative scores (non-detected), whereas

only 78 out of 2,419 genes in iMyocyte2419 have a

negative score.

See also Tables S4 and S5 for more details.
iMyocyte2419 Has Increased Metabolic Coverage
Compared to Previous Models
Two small-scale GEMs for skeletal muscle, based on tissue-

level omics data, have previously been published (Bordbar

et al., 2011; Wang et al., 2012). In terms of numbers of reac-

tions and genes, both of these GEMs are significantly smaller

than iMyocyte2419 (Figure 3A). Nevertheless, it is interesting

to compare the overlap of the three GEMs (Figure 3B). In

terms of gene content, 82% of the Bordbar GEM and 70%

of the Wang GEM are encompassed by iMyocyte2419. There

are 286 genes (Table S4) in the muscle GEMs that are

excluded from iMyocyte2419, and the reason is that the ma-

jority of these have negative scores (not detected) based on

the RNA-seq and proteomics data. Of the 11 genes with pos-

itive scores (detected), 4 are not included in HMR2, 4 were

discarded during reconstruction in favor of preserving connec-

tivity of the network, and 3 are actually included in iMyo-

cyte2419 but under different Ensembl IDs. In contrast, the

majority of the genes included in iMyocyte2419 are positively

scored, whereas only 78 out of 2,419 genes have a negative

score.

Although it is expected to have a small number of negatively

scored genes in the final model, due to the constraints that are

put to ensure a connected and functional network, we investi-

gated why these genes were included. Out of the 78 genes with

negative scores in iMyocyte2419, 58 are detected at the tran-

script level (FPKM value above 0) and 38 of these have

FPKM values above 1 (Table S5). The 78 genes are associated

with 292 reactions (5.2% of total reactions) that were not asso-

ciated with any other positive genes. These reactions were

required to be included in iMyocyte2419 either because they

were part of pathways where several other proteins had a pos-

itive score (connectivity) or to successfully simulate all of the

required metabolic tasks (functionality). Since the myocyte

GEM provides a network-based representation of myocyte

metabolism, the 78 genes with a negative score in HPA may

actually be false negatives. To investigate this, we reevaluated

the existing protein-level evidence in HPA for the 78 negative

genes and, based on this, it was determined that 14 genes

(Table S5) would be updated in HPA (version 13) as being de-

tected in myocytes. This shows how the contextual analysis of

proteins, provided by the GEM reconstruction, can assist in

data curation.
Meta-Analysis of T2D Muscle Gene Expression
The topology of iMyocyte2419 provides a scaffold for interpret-

ing high-throughput data in the context of myocyte metabolism.

To establish a consensus result of the metabolic changes that

occur in skeletal muscle of T2D subjects, we queried the Gene

Expression Omnibus (GEO) data repository (Edgar et al., 2002)

and ArrayExpress (Rustici et al., 2013) for relevant microarray

datasets. This resulted in eight datasets that fitted our criteria

(see Experimental Procedures for details).

Meta-analysis is used to combine multiple studies with similar

hypotheses into one unified result. Ramasamy et al. (2008) stud-

ied the key issues in microarray meta-analysis and recommen-

ded themethod proposed by Choi et al. (Choi et al., 2003), which

we used here. Briefly, a Z score is calculated for each gene, and

significant genes altered in T2Dmuscle can then be identified by

selecting genes with absolute Z scores larger than a given

threshold.

First, we calculated gene-wise Z scores for the eight individual

datasets in order to calculate the Pearson correlation between

each possible pair of studies. Surprisingly, even though the data-

sets were selected to include baseline skeletal muscle samples

from people with T2D and healthy control subjects, two datasets

(Gallagher and Wu) clearly stood out by showing negative corre-

lation with themajority of the remaining datasets (Figure 4A). This

pattern could not, as far as we could assess, be explained by the

subject characteristics (e.g., body mass index, age, or fasting

glucose levels), microarray platforms, or muscle types used in

these datasets (Table S6). We also checked for possible sample

contamination of immune cells by using the R-package ESTI-

MATE (Yoshihara et al., 2013), but again, no pattern was found

that could explain the negative correlation of these two datasets

with the rest (Figure S1). In order to perform a meta-analysis of a

set of studies that represent a consistent gene expression

phenotype, we decided to focus on the bigger group of six

studies (Table 2) and exclude the Gallagher and Wu datasets

from our meta-analysis. As it turned out, the meta-analysis of

these six studies, comprising in total 86 T2D samples and 67

controls, recapitulated several known biological processes

attributed to T2D (as described below), supporting the selection

of these studies for further analysis.

Onemajor advantagewithmeta-analysis is the increase in sta-

tistical power as the sample size increases, and this can be illus-

trated by the integrated discovery rate (IDR) (Choi et al., 2003),
Cell Reports 11, 921–933, May 12, 2015 ª2015 The Authors 925



Figure 4. Meta-Analysis of Type 2 Diabetes Gene Expression

(A) A heatmap of pairwise Pearson correlations, based on the genes with jZj > 1 in both compared studies. The Gallagher and Wu datasets showed a negative

correlation with most of the remaining studies and cluster separately in the hierarchical clustering. In order to analyze an overall consistent phenotype, these two

studies were not considered in the downstream analysis. See also Figure S1 and Tables 2 and S6 for details about the studies.

(B) The plot shows the fraction of significant genes, in the meta-analysis, that were not significant in any individual study, for different Z score cutoffs. The dashed

lines similarly show the fraction of non-significant genes, in the meta-analysis, that were found significant in at least one of the individual studies. At a Z score

cutoff around 3, in principle, no genes are lost from the individual studies, whereas the increased statistical power of themeta-analysis identifies a large fraction of

significant genes that were not possible to detect in the individual studies.

(C) The plot shows the number of significant genes, in the meta-analysis and in each individual study, at different Z score cutoffs, showing the power of the meta-

analysis.

(D) A gene-set analysis (GSA) of the meta-analysis results, using the pathways of iMyocyte2419 as gene sets, show pathways significantly affected by tran-

scriptional regulation. The q-values (FDR-adjusted p values) are medians from the GSA methods used in the consensus GSA. In T2D, all pathways are either

distinctly downregulated, or are affected by a subset of downregulated genes.

See also Figure S2 for the GO-term analysis and Tables S7, S8, and S9 for the meta-analysis Z scores and the complete GSA results.
i.e., the fraction of significant genes detected in the meta-anal-

ysis (by integrating studies) that is not detected in any of the in-

dividual datasets. Figure 4B shows the IDR for upregulated and

downregulated genes, as well as the fraction of non-significant

genes in the meta-analysis that were significant in any of the in-

dividual datasets, i.e., the potential loss of information, study-

specific effects, or false positives in the individual datasets. At

a Z score threshold of �3, close to 50% of the significant genes

in the meta-analysis would not be identified by analyzing any of

the individual datasets and practically no significant genes iden-

tified by any of the individual datasets were lost in themeta-anal-

ysis. In Figure 4C, the number of significant genes at different Z
926 Cell Reports 11, 921–933, May 12, 2015 ª2015 The Authors
score thresholds shows that the meta-analysis always detected

more genes than any of the individual studies.

Integrating the Meta-Analysis Results with
iMyocyte2419 Reveals Pathways Implicated in T2D
We used the gene-reaction associations to investigate if any

specific metabolic processes were significantly affected by

T2D gene expression. This was done through consensus gene-

set analysis (GSA) (Väremo et al., 2013a) with the meta-analysis

gene-wise Z scores as input data (Table S7) and the iMyo-

cyte2419 pathways as gene sets. Figure 4D shows themetabolic

pathways most significantly affected by differential gene



Table 2. Summary of the Microarray Datasets Used in the Meta-Analysis

Author T2D NGT Platform Genes Muscle Type Dataset ID PubMed ID

van Tienen et al. (2012) 10 12 HG-U133 Plus 2 20899 vastus lateralis GSE19420 22802091

Sears et al. (2009) 51 18 HG-U133 Plus 2 20899 vastus lateralis GSE13070 19841271

Pihlajamäki et al. (2011) 7 10 HG-U133 Plus 2 20899 rectus abdominis GSE22435 21803291

Jin et al. (2011) 10 15 HG-U133 Plus 2 20899 vastus lateralis GSE25462 21393865

Patti et al. (2003) 5 10 Hu6800 6060 vastus lateralis GSE21340 12832613

Chibalin et al. (2008) 3 2 Hu6800 6060 vastus lateralis E-MEXP-1270 18267070

T2D, number of type 2 diabetes samples; NGT, number of normal glucose-tolerant (control) samples; platform, Affymetrix microarray type; genes,

number of unique Ensembl gene IDs; muscle type, the origin of the biopsy; dataset ID, GEO accession number (except for the Chibalin dataset, which

comes from ArrayExpress).
expression in T2D, all showing patterns of downregulation.

These include several processes suggested to be implicated in

T2D, such as oxidative phosphorylation, b-oxidation, tricarbox-

ylic acid cycle, glycolysis, and branched-chain amino acid

(BCAA) (valine, leucine, and isoleucine) metabolism (Abdul-

Ghani andDeFronzo, 2010; Lynch andAdams, 2014; Szendroedi

et al., 2012). Additionally, other less studied gene sets also

appear to be affected by transcriptional downregulation, namely

omega-6 fatty acid metabolism, vitamin E metabolism, nucleo-

tide metabolism, and cysteine and methionine metabolism.

In a similar manner, we used Gene Ontology (GO) terms as

gene sets, and this also pointed at regulation of metabolism, in

particular downregulation of genes coding for proteins acting

in the mitochondria, respiratory electron transport chain, oxido-

reductase activity, pyruvate metabolism, tricarboxylic acid cy-

cle, glucose metabolic process, and BCAA catabolic process

(Figure S2). Additionally, GO terms related to RNA splicing

(RNA helicase activity, RNA splicing, and mRNA processing)

were enriched by downregulated genes. A decreased expres-

sion of splicing factors in muscle of obese subjects has previ-

ously been reported by one of the studies included in the

meta-analysis (Pihlajamäki et al., 2011), and interestingly, this

signature is recapitulated also when taking all six studies into ac-

count. Finally, the GO-term analysis also revealed upregulation

of several immune-related processes, which is in line with the ev-

idence of inflammation being associated with the development

of T2D (Donath and Shoelson, 2011). The complete pathway

and GO-term GSA results are presented in Tables S8 and S9.

Topology-Based Analysis of the Meta-Analysis Results
Using iMyocyte2419
We next used the transcriptional data to identify reporter metab-

olites (Patil and Nielsen, 2005), which are metabolite gene sets

defined by the gene-reaction associations provided by iMyo-

cyte2419, so that for a given metabolite, a gene set consists of

all genes associated with reactions in which the metabolite is

participating. Consensus GSA was performed (complete results

are shown in Table S10), and the GSA visualization tool Kiwi was

used to process the results in order to highlight the most signif-

icant metabolites and their interconnectivity in the myocyte

metabolic network. In order to demonstrate the value of a myo-

cyte-specific GEM, we also performed the same analysis using

the generic human metabolic network, HMR2, which yielded

similar, but not identical, results (Figure S3). The two results
have a Pearson correlation of 0.89 (based on the non-directional

median adjusted p values). This difference is due to the changes

made to the gene-metabolite edges to reflect the myocyte-spe-

cific metabolic topology, and this shows the value of cell-type-

specific models for integrative analysis.

As can be seen in the network plot (Figure 5A), most of the

implicated metabolites are mitochondrial (marked with [m]) and

affected by transcriptional downregulation (blue nodes) in T2D.

In addition to the general downregulation of mitochondrial pro-

cesses, the network plot is recapitulating on amore detailed level

some of the implicated parts of metabolism that were identified

in the pathway and GO-term analyses. The mitochondrial import

of pyruvate and its conversion to acetyl-coenzyme A (acetyl-

CoA) is affected by transcriptional downregulation indicated by

the reporter metabolites: pyruvate, CO2, S-acetyldihydrolipoa-

mide, lipoamide, and dihydrolipoamide. The underlying genes

associated with the reporter metabolites are displayed in Fig-

ure 5B, which illustrates significant downregulation of the mito-

chondrial pyruvate carrier MPC2, as well as PDHB, DLAT, and

DLD (all taking part in pyruvate oxidation). There is also an

apparent reduction of TCA cycle activity, shown by the reporter

metabolites fumarate, succinyl-coenzyme A (succinyl-CoA),

CO2, and FAD, as well as FADH2, H
+, NADH, and NAD+ (high-de-

gree metabolites that were excluded from the plot to preserve

readability).

In line with the observed downregulation of BCAAmetabolism

in the pathway andGO-term analysis, the reporter metabolites 3-

methylcrotonyl-coenzyme A, 2-methyl-3-oxopropanoate, dihy-

drolipoamide, lipoamide, and succinyl-CoA, intermediates of

BCAA degradation, are all surrounded by downregulated genes.

In particular, dihydrolipoamide dehydrogenase (DLD) is part of

the branched-chain alpha-keto acid dehydrogenase complex

(BCKDC), 3-methylcrotonyl-CoA carboxylase (MCCC1) is cata-

lyzing a key step in leucine degradation, short/branched chain

specific acyl-CoA dehydrogenase (ACADSB) is catalyzing an in-

termediate step in valine and isoleucine catabolism, and the

aldehyde dehydrogenase ALDH3A2 and methylmalonyl CoA

mutase (MUT) are catalyzing some of the last steps of the break-

down of valine and isoleucine to form succinyl-CoA.

The reporter metabolite 5,10-methenyl-THF is an intermediate

in folate one-carbon metabolism. It is one of several tetrahydro-

folate (THF) derivatives (also including 10-formyl-THF, 5,10-

methylene-THF, and 5-methyl-THF), which act as one-carbon

group donors in nucleotide synthesis, methionine synthesis,
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purine synthesis, and DNAmethylation. Interestingly, two genes,

MTHFD1 and FTCD, are both associated with this metabolite but

are significantly regulated in different directions. The cytosolic

methylenetetrahydrofolate dehydrogenase (MTHFD1) is signifi-

cantly downregulated in T2D and is catalyzing the interconver-

sions of 5,10-methylene-THF, 5,10-methenyl-THF, and 10-

formyl-THF. Formimidoyltransferase cyclodeaminase (FTCD),

on the other hand, is significantly upregulated and functions to

contribute with one-carbon units from histidine degradation to

the folate pool.

Interestingly, the emergent downregulation surrounding the

lipoylproteins and lipoamides connects several of the implicated

parts of metabolism identified above, as they play an important

role in pyruvate, BCAA, and THF metabolism. The key enzyme

that is connecting these parts (as can be identified by the heat-

map in Figure 5B) is the transcriptionally downregulated DLD,

which is located in themitochondrial matrix, where it is a compo-

nent of the pyruvate dehydrogenase complex, the branched-

chain alpha-keto acid dehydrogenase complex, and the glycine

decarboxylase complex.

Finally, a separate subnetwork affected by transcriptional

regulation, which emerges from the reporter metabolite analysis,

is that of glyceraldehyde 3-phosphate (GAP), dihydroxyacetone

phosphate (DHAP), and sn-glycerol-3-phosphate. In particular,

GAP is the most statistically significant reporter metabolite, con-

nected to increased transcriptional activity, driven by the signif-

icantly upregulated genes transketolase (TKT), aldolase A and B

(ALDOA and ALDOB), and GAP dehydrogenase (GAPDH). Also

glycerol-3-phosphate dehydrogenase 1 (GPD1), connected to

DHAP and sn-glycerol-3-phosphate, is upregulated, but there

is also an influence of downregulated genes (DERA, GNPAT,

and GPD1L). In summary, this points toward an active transcrip-

tional regulation around the branch point of glycolysis, the

pentose phosphate pathway and lipid biosynthesis, in T2D skel-

etal muscle.

The Identified Metabolic Signatures Have the Power
to Classify T2D Samples
The subnetwork of reporter metabolites establish a metabolic

signature of T2D in muscle, across six different studies. In order

to determine if this signature was prominent enough to be recog-

nized at the level of individual subjects, we performed a sample

classification approach. To do this, we selected the most signif-

icant (p < 1e-5) genes among the ones connected to the reporter
Figure 5. Metabolic Subnetworks Implicated in Type 2 Diabetes

(A) Using the tool Kiwi, the network of significant reporter metabolites was produc

apart in themetabolite-metabolite network (extracted from iMyocyte2419), and th

to avoid too unspecific connections, metabolite nodes with a degree above 73

metabolite-metabolite distances. The node size corresponds to the gene-set (rep

captures the general direction of change. See also Table S10 for the complete re

while using HMR2.

(B) The heatmap shows the significance and direction of regulation of the genes

(C) Themost significant genes, underlying themetabolic subnetwork (marked in re

individual samples, using a random forest model. The performance of the classi

curve for each study of the meta-analysis. See also Table S11.

(D) The area under the ROC curve (AUC) was calculated 100 times for each study b

to the AUC scores of classification based on random or randommetabolic genes (

the AUC scores from random genes, show that the metabolic signature shown i
metabolites (marked in red in Figure 5B). These 12 genes are

associated with 20 out of 25metabolite gene sets, thus generally

representing the affected identified metabolic subnetwork.

First, we investigated to what extent each gene influenced the

myocyte function by blocking the associated reactions in iMyo-

cyte2419 and testing what metabolic tasks (Table S3) the GEM

would fail to carry out. The 12 genes disrupted in total 105 of

the 247 metabolic tasks (Table S11), and the biggest effect in

terms of number of failed tasks was observed for ACADL and

HADH, both disrupting 55 tasks.

Next, for each study, the disease state (healthy or diabetic) of

each sample was predicted based on a random forest model

trained on the expression values of the 12 genes in the remain-

ing samples. The performance of the classification is shown by

receiver-operating characteristic (ROC) curves for the six

studies (Figure 5C). The area under the ROC curve (AUC) is

shown in Figure 5D, while repeating the classification 100 times

for each study, and can be compared to the AUC scores of us-

ing random genes (orange) or random metabolic genes (red) as

classifiers. The AUC scores are larger than random in all six da-

tasets, illustrating the relevance of these 12 representative

genes on a sample-wise level, across several studies. This sug-

gests that the expression patterns of these genes and the cor-

responding effects in metabolism are a ubiquitous feature of

T2D in muscle.

DISCUSSION

Here, we reconstructed the skeletal myocyte metabolism and by

that provide a comprehensive myocyte GEM. This was in large

part enabled by the high-quality proteome data from HPA and

the RNA-seq data generated in this study, together providing

an extensive description of myocyte-specific gene expression.

Human genome-wide data are often collected from tissue sam-

ples, but in order to study the myocyte metabolism, our goal was

to make a cell-type-specific, rather than tissue-specific, GEM. In

this context, the myocyte-specific RNA-seq data were invalu-

able for the reconstruction process. The use of in vitro myocytes

could arguably be a step away from in vivo biology; however,

data show that these cells are able to recapitulate known pheno-

types of their donors (Broholm et al., 2012; Green et al., 2011;

Scheele et al., 2012), including known differences between

males and females, such as higher lipid and energy metabolism

in females, as shown here.
ed. An edge between twometabolites means that they are less than three steps

e thickest edges connect themetabolites that are closest to each other. In order

(mainly co-factors) were removed from the network prior to calculating the

orter metabolite) significance (median of non-directional p value), and the color

porter metabolite results and Figure S3 for a comparison to the same analysis

connected to the metabolites in (A).

d in the heatmap) were used to classify the disease state (healthy or diabetic) of

fication is shown by (a representative) receiver-operating characteristic (ROC)

y repeating the random forest classification (green bars) and can be compared

yellow and red bars). The high AUC scores, and the fact that they are larger than

n (A) is relevant also on the level of individual T2D subjects.
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The myocyte GEM, iMyocyte2419, is a valuable resource that

can be used in future research on muscle metabolism, providing

a scaffold for data integration and support for analyzing genome-

wide data, as demonstrated in this study. Furthermore, the GEM

can be used for simulation of muscle metabolism, and there is an

increasing interest in studying the metabolic interactions be-

tween cells and tissues and the implication this has on blood

metabolite levels and whole-body metabolism. An approach to

accomplish this task is to connect multiple GEMs (Bordbar

et al., 2011), which requires a proper simulation framework and

high-quality cell-type-specific GEMs. The myocyte GEM,

together with our previous published models of hepatocyte

and adipocyte metabolism (Mardinoglu et al., 2013a, 2014), con-

stitutes an essential step in this direction.

The value of our reconstructed GEM for analysis of transcrip-

tion data was here clearly demonstrated by the identification of

metabolic anomalies associated with T2D, some consistent

with earlier findings but several not reported before. A set of

genes associated with oxidative phosphorylation have previ-

ously been shown to be downregulated in human diabetic mus-

cle tissue (Mootha et al., 2003), and this, together with mitochon-

drial dysfunction, has repeatedly been reported as one of the

signatures of T2D muscle (Szendroedi et al., 2012). Conversely,

other studies report a normal mitochondrial function in T2D

(Boushel et al., 2007) and no difference in oxidative phosphory-

lation (De Feyter et al., 2008) or the expression of associated

genes (Frederiksen et al., 2008). The Gallagher study (Gallagher

et al., 2010), which we briefly considered here, found no differ-

ence in expression of genes in the oxidative phosphorylation

gene set, as opposed to Mootha et al. (2003), and speculated

that this may be because the subjects in the latter study were

exposed to insulin prior to biopsy sampling, suggesting that a

reduced oxidative phosphorylation could be explained by a dis-

similar acute insulin response rather than a baseline difference.

In order to not be confounded by data from a single study, we

performed a meta-analysis in order to establish a consistent

result across multiple datasets. This analysis covered T2D

gene expression in human muscle from six studies covering

153 subjects, and the findings reported here are thus supported

on a wider base. Following the speculations of Gallagher et al.

(2010), during the selection of the studies for the meta-analysis,

we excluded all studies where subjects had been exposed to any

insulin stimuli (e.g., a hyperinsulinemic-euglycemic clamp) prior

to biopsy sampling. Regardless, the results from our pathway

analysis showed a significant downregulation of oxidative phos-

phorylation. Thus, at least across the six studies of the meta-

analysis, there is an association between T2D and reduced

expression of oxidative phosphorylation genes, although it still

remains to be investigated if this is a cause or an effect of T2D.

The Gallagher study, which reported no difference in oxidative

phosphorylation between diabetics and controls, was excluded

from the main meta-analysis (together with the Wu dataset) due

to negative correlation with the other six studies, but while

running our analyses, no pathways were found to be significantly

changed (at q < 0.05) in a separate meta-analysis of these two

datasets. Furthermore, when including these two datasets in

the meta-analysis, oxidative phosphorylation was still found

significantly downregulated.
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The topology of iMyocyte2419 gave us a unique opportunity to

further dissect the meta-analysis results to the level of individual

metabolites in a network-based approach. This analysis re-

vealed connected metabolic subnetworks affected by T2D tran-

scriptional regulation, in particular around pyruvate oxidation,

BCAA catabolism, and tetrahydrofolate metabolism. These re-

sults were found to be very robust markers of T2D, and based

on the underlying top significantly differentially expressed genes,

we were able to classify the disease state of individual samples,

yielding high AUC scores (Figure 5D).

The downregulation surrounding 5,10-methenyl-THF has, to

our knowledge, not been reported before in human diabetic skel-

etal muscle. Interestingly, two of the pathways, methionine and

nucleotide metabolism, that THF-derivatives are precursors for

were also identified as affected by transcriptional downregula-

tion in the pathway analysis. There is also an influence of both

upregulation and downregulation around 5,10-methenyl-THF.

The downregulated MTHFD1 suggests a decreased activity

around interconversion of THF intermediates, whereas there is

an upregulation of FTCD that could indicate a contribution into

THF metabolism from histidine catabolism. Plasma histidine

has been reported to be associated with positive effects on dia-

betes, such as reduced blood glucose levels (Stancáková et al.,

2012), triglycerides, and proinflammatory cytokines (Lee et al.,

2005). Histidine has also been shown to reduce gluconeogenesis

in liver (possibly by activating IL6/STAT3 signaling, but without

increasing insulin levels), and it was therefore suggested as a

candidate target for T2D treatment (Kimura et al., 2013). Specu-

latively, increased histidine catabolism in muscle could reduce

plasma histidine, limiting its reported positive effects on T2D.

When we specifically checked the expression of genes in our

meta-analysis belonging to the histidine degradation pathway,

we did coincidently find an upregulation (p < 0.07) of both histi-

dine ammonia-lyase (HAL) and urocanate hydratase 1

(UROC1).UROC1 has previously been found to be demethylated

in the placenta of rats with gestational diabetes (Petropoulos

et al., 2014).

Increased plasma levels of BCAAs have been associated with

T2D, and it has been hypothesized that BCAAs can promote in-

sulin resistance either by activating mTORC1 signaling, which in

turn can lead to inhibition of insulin signaling, or by leading to

toxic accumulation of BCAA metabolites through disruptive

BCAA metabolism, which could lead to mitochondrial dysfunc-

tion (Lynch and Adams, 2014). In line with our results, a

decreased expression of BCAA catabolism in muscle has been

reported before (Lefort et al., 2010). It has also been shown

that insulin lowers plasma BCAA levels and increases the

expression in liver of DLD and 3-methylcrotonyl-CoA carbox-

ylase (Shin et al., 2014), both genes that we identified with oppo-

site patterns in the meta-analysis, i.e., downregulated in diabetic

muscle. These authors also reported that insulin lowered liver

levels of 3-methylcrotonyl-CoA, an intermediate in BCAA catab-

olism and a metabolite that was identified in our analysis as a re-

porter metabolite in diabetic muscle. Interestingly, our network

analysis also identified lipoamide-containing proteins, con-

nected to the downregulation of DLD, as contributors not only

to decreased BCAA catabolism but also to the downregulation

that we observed around pyruvate and THF metabolism. DLD



is catalyzing the reaction of dihydrolipoamide to lipoamide,

which is needed as an intermediate step in the carboxylation of

pyruvate, branched-chain alpha-keto acids (which is a step in

BCAA degradation), and glycine (at the same time forming

5,10-methylene-THF from THF).

In conclusion, our extensive analysis, using multiple transcrip-

tome datasets, comprehensive metabolic modeling, consensus

GSA, and network topology analysis, provided a holistic insight

into the metabolic state of type 2 diabetic human muscle. The

identified metabolic signature of T2D was confirmed by classifi-

cation of the sample disease states, across multiple cohorts,

based on gene expression patterns. Finally, the myocyte-spe-

cific GEM iMyocyte2419, which was reconstructed based on

myocyte-specific transcriptome and proteome data, provides

a valuable and useful resource for future studies.

EXPERIMENTAL PROCEDURES

Subject Selection and Characteristics

Six normal glucose tolerant and non-obese males and females (aged 49–66

years, body mass index 23.0–24.8 kg/m2) were selected from a previous

cohort (Green et al., 2011; Møller et al., 2014). All participants gave written

informed consent before inclusion, and the study was performed according

to the Declaration of Helsinki and approved by The Regional Committee on

Biomedical Research Ethics in Denmark (KF 01-141/04). HOMA-IR values

were calculated using the HOMA2 Calculator 2.2.3 (https://www.dtu.ox.ac.

uk/homacalculator/).

Culturing of Myocytes and Sampling of RNA

Muscle precursor cells (satellite cells) were isolated from human skeletal mus-

cle biopsy specimens obtained from the vastus lateralis muscle using a biopsy

needle with suction (Bergström, 1975) as described in detail previously (Green

et al., 2011). Isolated satellite cells were cultured and fully differentiated (see

Supplemental Experimental Procedures). Total RNA was extracted using Tri-

zol (Life Sciences) according to the manufacturer’s instructions. Frozen sam-

ples were shipped to the sequencing facility where they were purified by

poly(A) enrichment using Illumina TruSeq RNA.

RNA-Seq and Data Analysis

The raw sequence reads were trimmed from adaptor sequences and aligned

to the human genome using STAR (Dobin et al., 2013). FPKM values and

gene counts were calculated using Cufflinks (Trapnell et al., 2010) and

HTSeq-count (Anders et al., 2015). Differential expression was assessed using

edgeR (Robinson et al., 2010). See Supplemental Experimental Procedures for

more details.

Reconstructing the Myocyte GEM

To reconstruct the myocyte GEM, the gene scores acquired from the Human

Protein Atlas and the RNA-seq data were used by the tINIT algorithm, together

with HMR2 as reference model and the metabolic tasks defined in Table S3.

See further details in Supplemental Experimental Procedures.

Meta-Analysis

The GEO database and ArrayExpress were queried for datasets that con-

tained subjects with T2D or insulin resistance, and that had not been given

any stimuli (such as insulin or drug) prior to biopsy sampling, according to

the description given in the corresponding publications, which resulted in

eight datasets. Six of these (see Table 2) were used in the final analysis,

and two (GEO accession numbers GSE22309 and GSE18732) were excluded

due to negative correlation with the others. The datasets were preprocessed

(see Supplemental Experimental Procedures) and the meta-analysis was car-

ried out according to Choi et al. (2003), and as implemented in the Bio-

conductor R package GeneMeta, using a random-effects model, yielding

one Z score for each gene.
Pathway and GO-Term Analysis

The pathway and GO-term analyses were performed using the consensus

GSA approach implemented in the Bioconductor R package piano (Väremo

et al., 2013a). Each GSA method generates its own gene-set p values based

on gene permutation. The consensus approach then yields a consensus score

for each gene set, and the median p value for each gene set is reported (see

details in Supplemental Experimental Procedures). The heatmap in Figure 4D

shows �log10(median of false discovery rate [FDR]-adjusted p values) of the

pathways with a median adjusted p < 0.005 (in at least one of the directionality

classes), and the heatmap in Figure S2 shows �log10(median of FDR-

adjusted p values) of the GO terms with a median adjusted p < 0.05 (in the

non-directional class).

Reporter Metabolite Analysis

Reporter metabolite analysis was performed using piano, as described above,

and the metabolite-reaction-gene associations of iMyocyte2419 (and HMR2)

to create the metabolite gene sets. The Python package Kiwi (Väremo et al.,

2014) was used to make the network plot (Figure 5A). For this, the metabo-

lite-metabolite network was reduced to metabolites with degrees % 73

(removing mainly co-factors). The p value cutoff was set to 0.001, and the

shortest path-length (SPL) cutoff was set to 3. The network plot layout was

manually adjusted in Cytoscape.

Random Forest Classification

The random forest classificationwas carried out, using the R package random-

Forest, by leave-one-out cross-validation, so that the disease state of each

sample was predicted using a model based on gene expression data from

the remaining samples. See Supplemental Experimental Procedures for

further details.
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Pihlajamäki, J., Lerin, C., Itkonen, P., Boes, T., Floss, T., Schroeder, J., Dearie,

F., Crunkhorn, S., Burak, F., Jimenez-Chillaron, J.C., et al. (2011). Expression

of the splicing factor gene SFRS10 is reduced in human obesity and contrib-

utes to enhanced lipogenesis. Cell Metab. 14, 208–218.

Ramakrishnan, S.R., Vogel, C., Prince, J.T., Li, Z., Penalva, L.O., Myers, M.,

Marcotte, E.M., Miranker, D.P., and Wang, R. (2009). Integrating shotgun pro-

teomics andmRNA expression data to improve protein identification. Bioinfor-

matics 25, 1397–1403.

Ramasamy, A., Mondry, A., Holmes, C.C., and Altman, D.G. (2008). Key issues

in conducting a meta-analysis of gene expression microarray datasets. PLoS

Med. 5, e184.

Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bio-

conductor package for differential expression analysis of digital gene expres-

sion data. Bioinformatics 26, 139–140.

Rustici, G., Kolesnikov, N., Brandizi, M., Burdett, T., Dylag, M., Emam, I.,

Farne, A., Hastings, E., Ison, J., Keays, M., et al. (2013). ArrayExpress up-

date—trends in database growth and links to data analysis tools. Nucleic

Acids Res. 41, D987–D990.

Scheele, C., Nielsen, S., Kelly, M., Broholm, C., Nielsen, A.R., Taudorf, S., Ped-

ersen, M., Fischer, C.P., and Pedersen, B.K. (2012). Satellite cells derived from

obese humans with type 2 diabetes and differentiated into myocytes in vitro

exhibit abnormal response to IL-6. PLoS ONE 7, e39657.
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