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We report the electron doping of single-layer graphene (SLG) grown by chemical vapor deposition

(CVD) by means of dissociative hydrogen adsorption. The transfer characteristic showed n-type

doping behavior similar to that of mechanically exfoliated graphene. Furthermore, we studied the

thermoelectric power (TEP) of CVD-grown SLG before and after exposure to high-pressure H2 mol-

ecules. From the TEP results, which indicate the intrinsic electrical properties, we observed that the

CVD-grown SLG is n-type doped without degradation of the quality after hydrogen adsorption.

Finally, the electron doping was also verified by Raman spectroscopy. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4917470]

Given that graphene, a two-dimensional honeycomb lat-

tice of carbon, is an ideal monolayer, it has a large surface-

area-to-volume ratio. Hence, charge transfer phenomena

such as molecular sensing and doping have been extensively

investigated.1–8 We also recently reported n-type doping on

graphene by dissociative hydrogen (H2) adsorption.9 The

additional delocalized electron due to H2 adsorption results

in n-type doping, which allows the realization of lateral gra-

phene p-n junctions.10

In order to utilize the n-type doping feature in applica-

tions, it is necessary to investigate the electrical properties of

large-scale graphene such as single-layer graphene (SLG)

grown by chemical vapor deposition (CVD). Furthermore,

additional systematic and varied approaches are required to

understand the electrical properties of CVD-grown SLG after

exposure to H2. (We denote this sample as SLG/H2.)

Revealing the electrical properties, the electrical resistance

was mainly discussed in a previous report.9 In addition to the

resistance, thermoelectric power (TEP) and Raman spectros-

copy can be used to explore electronic structures. The TEP,

equivalent to the Seebeck coefficient S, is defined as

S ¼ � DV
DT, where DV and DT are the voltage and temperature

difference through the sample, respectively. Because the

TEP indicates the majority charge carrier in the system, this

quantity is often adopted to probe charge transfer phenom-

ena.11–13 Raman spectroscopy is also a useful tool with

which to probe the chemical potential and charge carrier

interaction at the molecular scale.14–18 Therefore, these two

tools have been widely used to study charge-related phenom-

ena in low-dimensional systems.

Here, we report the electrical properties, resistance,

TEP, and Raman spectroscopy of CVD-grown SLG/H2,

which probe electron doping in a sample due to H2 mole-

cules. The Dirac point in the transfer curve, the resistance

(R) vs the gate voltage (Vg), and the charge neutrality point

(CNP) in the TEP shift to the negative Vg region. All of these

findings are consistent with each other. From the simultane-

ous measurements of R and TEP, we found that the dissoci-

ated H2-adsorbed graphene follows a semi-classical Mott

relation and maintains an intrinsic electronic structure.

Raman spectroscopy also provided the signature of electron

doping in the carbon system. We proved that H2 exposure

contributes to electron doping manipulation.

Large-area SLG was grown on a copper foil (Alfa aesar

13382)19 and transferred onto a 285 nm thick SiO2 sub-

strate.20 Rectangular-shaped SLG (15 lm � 5 lm) was

obtained by conventional electron beam lithography, fol-

lowed by O2 plasma etching. Finally, electrodes were fabri-

cated by electron beam lithography and metal evaporation

(Cr/Au¼ 5/50 nm). We designed a typical TEP measurement

configuration which consists of a micro-heater, thermome-

ters and a voltage probe, as shown in the inset of Fig. 1(a).21

The two-probe resistance and TEP were simultaneously

measured on the same device at 300 K in a vacuum and in a

high-pressure H2 atmosphere. The steady state TEP measure-

ment was performed in the linear regime (DT�T). We

annealed the device at 390 K under a high vacuum

(�5� 10�6 Torr) for 10 h for pristine SLG to remove resi-

dues in the high-vacuum/high-pressure chamber. The pre-

pared SLG was exposed to a pressure of 11 bar of H2

(99.9999%) at 350 K. Raman spectroscopy was carried out

using a 532 nm laser with a power of 0.2 mW with a

LabRam 300 by JY-Horiba.

Figure 1(a) shows the representative transfer curve of

the CVD-grown SLG device. The black and blue curves cor-

respond to SLG and SLG/H2, respectively. We observed that

the Dirac point shifted from 3.8 V to �0.6 V during the H2
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exposure process. n-type doping was previously reported and

analyzed as a result of dissociative H2 adsorption.9 In order

to analyze this more quantitatively, we fitted the result to the

transfer curve model of SLG, R ¼ Rc þ 1
el

L
W

� �
1ffiffiffiffiffiffiffiffiffi

n2þn2
0

p , where

Rc, e, l, L (W), n, and n0 are the contact resistance, charge

element, mobility, length (width), carrier density, and resid-

ual carrier density, respectively.22 The carrier density was

obtained from a two-parallel-capacitor model, n ¼ aðVg

�VDÞ, where VD is Dirac point and aSiO2ð285 nmÞ ¼ 7:5

�1010cm�2 V�1. The fitting parameters are presented in

Fig. 1(b), showing a consistent tendency in the three devices.

We found that the three devices are of a high quality with a

mobility range of 1500–3500 cm2 V�1 s�1. The Rc and l val-

ues are constant during the H2 exposure process, while the n0

value increases and the Dirac point shifts to the negative Vg

region (from 3.8 V to �0.6 V). According to Kim et al.,9 disso-

ciative H2-chemisorption affects the increase in the residual

carrier density rather than the impurity density in SLG. This is

in good agreement with our interpretation, which means that

the residual carrier density increases but the mobility does not

change after the H2 exposure step. Because the residual carrier

density is directly related to the resistance at the Dirac point,

we can confirm that the experimental observation, R(SLG/

H2)<R(SLG) at each Dirac point, is also valid.

With complement of the electrical resistance, the TEP

can be used to study the intrinsic electrical properties. The

TEP is sensitive to the electronic band structure and repre-

sents the entropy per unit charge.21 Specifically, the TEP

directly reveals the sign of the majority charge carrier of the

system. We measured the TEP of both SLG and SLG/H2

(Fig. 2(a)), which are symmetric with respect to TEP¼ 0 lV/

K near the zero Vg. We observed a change in the CNP of the

TEP from 4.1 V (SLG) to �0.7 V (SLG/H2), which coincides

with those of the Dirac points. These symmetric shape and

coincidence between CNP and Dirac point indicate that the

effect of defects such as wrinkles in CVD-grown SLG23 is

ignorable in this study. As typical behavior of the TEP, the

sign of the TEP changes from positive (hole) to negative

(electron) as Vg varies across the CNP. The TEP far from the

CNP becomes zero, which can be understood by considering

that the entropy per carrier decreases in a degenerate state,

such as a highly doped regime. Quantitatively, it is known

that SLG follows the semi-classical Mott relation, which is

described by S ¼ � p2k2
BT

3jej
1
G

dG
dVg

dVg

dE jE¼EF
, where kB, T, G, and

EF are, respectively, the Boltzmann constant, the tempera-

ture, the conductance, and the Fermi energy. We also

checked the Mott relation for the TEP of SLG and SLG/H2,

as shown in the upper and lower insets of Fig. 2(b), respec-

tively. The measured TEPs are expressed with the black and

blue curves, and the calculated TEP with the Mott relation

FIG. 1. (a) Transfer curves of pristine SLG (black) and SLG/H2 (blue). The

red lines are the fitting curves with the transfer curve model for SLG. The

inset is an optical image of a typical configuration for the TEP measurement.

The scale bar is 10 lm. (b) The fitting parameters (VD: Dirac point, n0: resid-

ual carrier density, l: mobility, Rc: contact resistance) of pristine SLG (P)

and SLG/H2 (H) for three devices.

-50 -25 0 25 50

-100

0

100

 

S 
(µ

V/
K)

Vg (V)

 Pristine SLG
 SLG/H2

-100
0

100

-50 -25 0 25 50
-100

0
100

 

 Smeasured

 SMott

 Smeasured

 SMott

 

 

S 
(µ

V/
K)

Vg (V)

Pristine SLG

SLG/H2

(a)

(b)

FIG. 2. (a) Measured TEPs of pristine SLG and SLG/H2 as a function of Vg.

(b) Comparison of the measured and simulated (the Mott relation) TEPs of

pristine SLG and SLG/H2.
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are presented using red curves for both cases. Given the con-

sistency between the experimental and the calculated data,

we observed that H2-chemisorbed graphene as well as pristine

graphene follow the semi-classical Mott relation. The TEP af-

ter H2 exposure showed a simple position shift without dis-

tinctive shape deformation. In this light, we can conclude that

the exposure of SLG to H2 results in n-type doped graphene

without a prominent change of the electronic structure.

n-type doping was also observed by Raman spectroscopy.

The G and 2D peaks around 1580 cm�1 and 2700 cm�1,

respectively, are sensitive to the charge carrier density. For

example, the position, the full width half maximum (FWHM)

and the intensity ratio (I(2D)/I(G)) change depending on the

doping.14 In Fig. 3, we show the Raman spectra of SLG and

SLG/H2 in black and red lines, respectively. It was reported

that a D peak around 1350 cm�1 appears and that C-H stretch-

ing mode at 2930 cm�1 develops in multilayer graphene after

exposure to H2.9 In the CVD-grown SLG, there were no dis-

tinctive features for the D peak or the C-H mode, which is

identical to results with mechanically exfoliated graphene. In

contrast, it was clearly observed the change of the position,

the FWHM and the I(2D)/I(G) as shown in the inset of Fig. 3.

The positions of the G and 2D peaks are correspondingly

1591 cm�1 (1582 cm�1) and 2680 cm�1 (2674 cm�1) for the

pristine SLG (SLG/H2). Both the G and the 2D peaks were

red-shifted due to H2 exposure. This can be understood by

assuming that SLG is initially hole-doped. The G peak posi-

tion non-monotonically depends on the carrier density; that is,

the G peak position has a minimum at the Dirac point and

increases with a higher carrier density regardless of the sign

of the charge carrier.14 On the other hand, the 2D peak is

monotonically red-shifted when the majority carrier changes

with an increase in the electron density. In addition, it was

reported that the FWHM of the G peak is about 8 cm�1 and

16 cm�1 in a highly doped regime (holes and electrons) and at

the Dirac point, respectively. The results in this study show

that the FWHMs are 8 cm�1 for SLG and 15 cm�1 for SLG/

H2, which are in good agreement with earlier results.14 This

indicates that the pristine SLG is initially hole-doped and that

the chemical potential of SLG/H2 is closer to the Dirac point.

Note that the FWHMs of the 2D peak are 25 cm�1 and

29 cm�1 for SLG and SLG/H2, respectively. Moreover, I(2D)/

I(G) changes from 1.3 to 2.5 after the H2 treatment, which is

also consistent with the findings in a previous report.14 We

noted that exfoliated SLG showed a Raman G peak blue-shift

even in the hole carrier which was probed by transfer curve

measurements.9 A d-spacing study with transmission electron

microscopy (TEM) revealed that the carbon lattice was com-

pressed after H2 exposure. Because the lattice strain as well as

the charge carrier density affect the Raman spectrum, it is

clear that the Raman spectrum results from the competition

between these two factors.24,25 Interestingly, two different

strains, compressive and tensile strains, induce an opposite

change in the Raman spectrum. For example, the G peak posi-

tions show a blue and red shift for compressive and tensile

strain, respectively. Therefore, it is possible for exfoliated

SLG to show a net blue shift, where the blue shift from the

compressive lattice strains dominates the red shift from the

electron doping.

In summary, we fabricated CVD-grown SLG device and

proved the electron doping by assessing the transfer charac-

teristic and through TEP measurements and Raman spectros-

copy. As an exfoliated sample, the CVD-grown SLG showed

n-type doping after exposure to H2. In particular, the TEP

results show that H2 exposure step induces n-type doping

without any degradation in the quality. This study provides

the easy means of electron doping manipulation in research

fields associated with large-scale graphene.
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