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Abstract

The reduction of rolling resistance is essential for a more environmentally friendly road trans-
portation sector. Both tyre and road design can be utilised to reduce rolling resistance. In both
cases a reliable simulation tool is needed which is able to quantify the influence of design para-
meters on the rolling resistance of a tyre rolling on a specific road surface.

In this work a previously developed tyre/road interaction model is extended to account for
different tread patterns and for losses due to small-scale tread deformation. Calculated contact
forces and tyre vibrations for tyre/road interaction under steady-state rolling are used to predict
rolling losses in the tyre. Rolling resistance is calculated for a series of different tyre/road com-
binations. Results are compared with rolling resistance measurements. The agreement between
simulations and measurements is generally very good. It is found that both the tyre structure
and small-scale tread deformations contribute to the rolling losses. The small-scale contribution
depends mainly on the road roughness profile. The mean profile depth of the road surface is iden-
tified to correlate very well with the rolling resistance. Additional calculations are performed for
non-traditional rubberised road surfaces, however, with mixed results. This possibly indicates
the existence of additional loss mechanisms for these surfaces.

Keywords: tire/road interaction, rolling resistance, parameter study, surface properties, tread
pattern, numerical simulation

1. Introduction

In 2006 23 % of the CO2 emissions in the European Union were due to the fuel consumption
of the road transportation sector. For cars powered by classical combustion engines, only about
10 % to 40 % of the chemical energy stored in the fuel is available as mechanical energy from the
engine. The other part is lost in the form of waste heat because of engine inefficiency [1]. The
available energy is consumed by aerodynamic drag, rolling resistance and acceleration. Depend-
ing on driving conditions, hysteretic losses in the tyres, i.e. rolling resistance, eventually account
for 5 % to 30 % of the fuel consumption of a typical passenger car [1]. These figures are even
higher for trucks and other heavy vehicles, ranging from 15 % to 40 %. Accordingly, there is a
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large potential to reduce a vehicle’s overall fuel consumption by decreasing energy losses due
to rolling resistance. A 10 % to 20 % reduction in rolling resistance is for example believed to
reduce the fuel consumption within the EU by up to 2.5 % for passenger cars and 3.6 % for heavy
vehicles [2]. Additionally, it has also been shown that the release of local pollutants such as CO
and NOx can be reduced by lower rolling resistances [1].

Hybrid and electrically powered cars have a greatly improved power train efficiency when
compared to vehicles with combustion engines. This implies that for this new type of vehicles the
influence of the rolling resistance on the overall energy efficiency is even bigger. To conclude, a
reduction of rolling resistance is essential for a more environmentally friendly road transportation
sector.

Both tyre and road design can be utilised to reduce rolling resistance. In both cases a reliable
model is needed which is able to quantify the influence of design parameters on the resulting
rolling resistance. Obviously, it is desirable to be able to use the same model for road and tyre
design purposes.

Numerous examples of calculations of rolling resistance are available in the literature (see [3]
for an overview). Besides some approaches partly based on measured data [4, 5], most of them
follow the same conceptual approach of using a steady-state rolling tyre model to calculate
rolling resistance either as a drag force or based on energy dissipation.

A stationary tension band on an elastic foundation was used by Stutts and Soedel [6] to
model the tyre; rolling resistance was then calculated from the deflection in the contact zone.
In [7] hysteretic energy dissipation is determined from a model of an elastic ring supported by
a viscoelastic foundation. Several other analytical methods for computing rolling resistance,
including a flexible ring model, are compared in [8]. All these tyre models, however, are geo-
metrically over-simplified, limiting their usefulness for tyre design purposes.

Finite element modelling (FEM) of the tyre is another very common approach, often com-
bining mechanical and thermal models. Typically, the heat generation rate is calculated from a
viscoelastic model of a free rolling tyre. Thermal simulations give the rolling resistance from the
hysteresis. Models following this approach are e.g. [9–12]. In a more recent work this approach
was used by Cho et al. [13] to investigate the influence of different tread patterns on rolling resist-
ance. A slightly different technique was used by Ghosh et al. [14], who calculated the dissipated
energy directly out of the strain energy density distribution in a steady-state rolling FE model.
Another method which directly computes the energy loss during the mechanical FEM process
was introduced as the directional incremental hysteretic model in [15]. Recently, Ali et al. [16]
calculated the rolling resistance of a heavy truck tyre rolling on different non-smooth surfaces
from reaction forces obtained by FE simulations. As the road surface profiles were artificially
created no comparison to measurements could be made. The advantage of FEM approaches is
that it is usually possible to use commercial software, thus reducing the implementation effort.
The models are also rather geometrically detailed, allowing the extraction of information on the
distribution of dissipation inside the tyre, thus aiding in the design process.

A general problem with all mentioned methods is the contact implementation. The used
tyre/road interaction models are usually limited to the large scale deformations caused by static
loading of a tyre rolling under steady-state conditions on a smooth road. Even in the few cases
where non-smooth surfaces are considered the contact resolution is very coarse: in [16], for
example, contact is calculated based on a tyre circumference divided into 60 segments. For the
considered heavy truck tyre this corresponds to a contact patch size of 6 cm or more. Accordingly,
the small scale variations of road roughness and the complex interrelation between tyre deforma-
tion and contact forces, which are both essential for the correct modelling of tyre vibrations, are
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typically ignored in FE simulations. Recently, Boere et al. [17] proposed a two-step process to
overcome this limitation. It superposes a dynamic local tread/road interaction on the large scale
deformations obtained from FEM. Rolling resistance is calculated by means of input power into
the system. Comparison of results to measurements showed that while rolling resistance was
generally overestimated, correct tendencies for different road surfaces were obtained. A limita-
tion of the implementation is that only 2D road roughness data, i.e. without lateral variation, is
considered, and that there is no interaction between the tread/road and large-scale-deformation
stages.

Another approach has been used by Fraggstedt [18]. He calculated the vibrations and rolling
losses of a rolling tyre with a waveguide finite element model (WFEM). Frequency and wave or-
der distributions were shown together with individual element contributions to the overall dissipa-
tion. However, the deviations between simulated and measured rolling resistances were slightly
higher than for some of the other mentioned methods. Furthermore, only a few different road
surfaces were considered and a detailed analysis of the results was missing.

An extension of the approaches suggested by Fraggstedt and Boere et al. is used in the work
presented in this paper. Rolling resistance can either be defined as the drag force FR acting in op-
posite direction to the rolling of the tyre, or, as is done in ISO 18164:2005 [19], as the dissipated
energy Ediss over the distance of rolling L. Normalising with the total averaged radial contact
force Fc, the rolling resistance coefficient Cr for steady-state rolling at speed V is obtained as

Cr =
FR

Fc
=

Ediss

FcL
=

Pdiss

FcV
, (1)

where Pdiss is the dissipated power. Due to conservation of energy, and under the assumption
that frictional losses can be ignored for steady-state rolling, the power input into the tyre through
the contact, Pin, is identical to the lost power, i.e. Pdiss. For a discrete description of the lateral
contact position the time-average input power for steady-state rolling is given as

Pin =
1
T

∑︁
i

2π∫︁
0

T∫︁
0

Fi(t, θ)
∂vi(t, θ)
∂t

dt dθ . (2)

Herein, Fi and ∂vi/∂t denote the radial contact force and radial tyre velocity for the lateral contact
track i, T is the evaluation time, and θ the circumferential angle.

This means that the rolling resistance can be expressed in terms of the time-varying contact
forces and tyre deformations as given by a dynamic tyre/road interaction model typically used
for tyre/road noise calculations. The use of such a model ensures detailed modelling of the tyre,
the road, and their interaction, as this is a prerequisite for successful tyre/road noise simulations.
Moreover, the distributions of rolling losses for different frequencies or circumferential orders of
tyre vibrations can be analysed [18, 20].

The starting point of the work presented in this paper is the tyre/road interaction model which
originally had been developed by one of the authors [21]. During the last decades the model
has been modified and extended [22–24]. It is based on a modular approach which allows to
combine tyre, contact, radiation and/or rolling resistance models of any necessary complexity
for the problem under investigation. The two core modules used for this work are a viscoelastic
WFE tyre model and a non-linear time-domain based tyre/road contact model. With these tools
the contact forces and tyre vibrations for tyre/road interaction under steady-state rolling can be
calculated. Based on these properties rolling losses can be calculated from (2). The existing
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contact formulation is extended to include non-linear damping. With this, rolling losses due to
local deformation of the tread by road texture asperities can be determined. The tyre and contact
models are also adjusted to account for the influence of tread patterns. From the AOT project [25]
road surface profiles for a variety of different test sections at the Kloosterzande test site in the
Netherlands are available to the authors. In [26] results for rolling resistance measurements
for two different tyres on exactly the same test fields are reported. In the present study rolling
resistance simulations are conducted with the aim of reproducing the results obtained in [26]. The
results further allow to investigate the influence of the surface roughness on the rolling resistance.
A few non-traditional poroelastic or rubberised road surfaces are examined as well.

Although this paper mainly focuses on the influence of road texture and tyre tread pattern
on rolling resistance, the applied model is also applicable for investigating improved tyre design
solutions. This is shown by calculating rolling resistance by means of the internal dissipation
inside the tyre for some of the road surfaces.

The paper is organised as follows. In Section 2 a brief introduction into the models for the
tyre vibrations and the tyre/road interaction is given. It is explained how the rolling resistance
is calculated and how the influence of the tread pattern can be included in the simulations in an
efficient way. Section 3 gives an overview of the different considered road surfaces and their main
properties. Simulated and measured rolling resistances for different tyres and road surfaces are
compared in Section 4. In Section 5 the method is tested for the rubberised surfaces. Conclusions
are finally given in Section 6.

2. Calculating rolling resistance

2.1. The waveguide finite element tyre model

Traditionally, analytical models based on plates (e.g. [22, 27]) or cylindrical rings (e.g. [21,
28, 29]), or numerical FE models (e.g. [17, 30]) have been used to model the vibrational be-
haviour of tyres. In recent years several approaches combining parts of conventional FE mod-
elling with analytical methods have been presented, for example by Nilsson [31] or Waki et
al. [32]. Nilsson’s approach, the waveguide finite element method, was later used by Sabiniarz
and Kropp [33] to investigate the vibrational behaviour of tyres. The model is detailed, yet
computationally very efficient and has been validated against input and transfer mobility meas-
urements. It has also successfully been used for the calculating of tyre/road noise [24], and is the
basis for the tyre modelling in the present study. In the following a brief overview of the model
is given, more details can be found in [24, 33].

A waveguide is a system with constant geometrical and material properties along one (typi-
cally “long”) dimension. In this dimension, the motion can be described by a set of propagating
waves fulfilling the boundary conditions imposed by the waveguide characteristics. For a tyre
motion along the circumferential dimension can be described by waves fulfilling a periodicity
condition u(θ) = u(θ ± 2π), where u is the tyre displacement and θ the circumferential angle.
The tyre cross-section is modelled similar to a conventional two-dimensional FEM approach,
see Fig. 1a. For a cylindrical coordinate system as shown in Fig. 1b the components of the
displacement vector u = [ur ux uθ]T (with (∙)T denoting vector transpose) at a point (r, x, θ) are
accordingly given by

ui(r, x, θ, t) = N(r, x) vi(θ, t) , i = r, x, θ . (3)
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Figure 1: (a) WFE mesh of the 205/55 R16 tyre cross section. Nodes marked by ∙. (b) The tyre as a curved waveguide:
for the cross-section (marked in black) in the (x, r)-plane an FE approximation is used, while in circumferential direction
θ wave propagation is assumed. Waves traveling in negative θ direction have to be considered as well, but are not shown
here.

Herein, N is a vector of cross-sectional FE shape functions while vi represents the correspond-
ing nodal degrees of freedom vector. Thus, only the displacements’ dependence on the cross-
sectional coordinates is approximated using FE modelling. The nodal displacements are func-
tions of the angular coordinate θ and depend on the assumed wave propagation along this dimen-
sion.

The engineering strain vector ε is given in the bi-linear form

ε(r, x, θ) = E0(r, x)v(θ) + E1(r, x)
∂v(θ)
∂θ

, (4)

where v is the vector of all nodal displacements, and E0 and E1 are matrices depending on the
element-specific strain-displacements relations and shape functions and their derivatives. Using
Hamilton’s approach and assuming viscoelastic material properties, harmonic motion of type e jωt

(where ω is the angular frequency and j =
√
−1), and the absence of volume forces and external

traction, a set of coupled ordinary differential equations [34] is obtained:[︃
−A11

∂2

∂θ2 + (A01 − A10)
∂

∂θ
+ A00 − ω

2M
]︃

v(θ, ω) = f(θ, ω) . (5)

The generalised stiffness matrices Akl and the mass matrix M are derived from the tyre’s potential
and kinetic energies, and can be complex to account for damping. f is the generalised force vector
describing the external load. The solutions for the homogeneous case f = 0 are given as

v(θ, ω) = vn(ω)e− jnθ . (6)

These functions are waves of cross-sectional mode shape vn propagating along the circumferen-
tial direction with polar wave order n, see Fig. 1b. Inserting (6) into (5) results in an eigenvalue
problem which can be solved to get the eigenfrequency and -vector for a specific value of n.

Likewise, the inhomogeneous form of (5) for a particular wave order n is obtained as[︁
A00 − jnA01 + jnA10 + n2A11 − ω

2M
]︁

vn(ω) = Fn(ω) . (7)
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Figure 2: Contact geometry between tyre and road. The reference surface is located at Z = 0, the undeformed tyre
contour (grey) is given by ZT and the road roughness profile by ZR. Fe and Fm are the contact forces acting at points e
and m, and ue is the dynamic response of the structure in point e.

Herein, Fn(ω) results from the expansion of f(θ, ω) with respect to the circumferential wave order
n. For a tyre circumference which is discretised into C equidistant intervals of length ∆ it is given
as [24]

Fn(ω) =

C∑︁
c=1

Flat(θc, ω)
sin (n∆/2)

nπ∆
e jnθc , (8)

where Flat(θc, ω) is the force variation over the tyre cross-section in the circumferential segment
[θc − ∆/2, θc + ∆/2].

Eq. (7) can for example be solved using a modal summation procedure as described in [24].
While numerically efficient, this procedure can only be applied for proportional damping, i.e.
when the same loss factor applies to entries of Akl in (7). For rolling resistance modelling it is
desirable to assign different loss factors to for example the highly-damped tread rubber and the
less damped carcass. For this non-proportional damping the response for a particular wave order
n can be calculated by direct matrix inversion of (7), i.e.

vn(ω) =
[︁
A00 − jnA01 + jnA10 + n2A11 − ω

2M
]︁−1

Fn(ω) . (9)

The total response is then given as summation of (9) over all circumferential wave orders −N ≤
n ≤ N (where negative n denote waves travelling in negative θ-direction).

2.2. Tyre/road interaction

For the analysis a tyre/road interaction model is required which ensures that the time-changing
contact geometry and force distribution are captured realistically. The contact can be considered
as having a mixed boundary condition where the displacement of the tyre in the contact area is
prescribed by the contour of the tyre, the tyre vibrations, and the road surface texture. In order
to fulfil the contact geometry, contact forces are needed which ensure the required deformations
of the tyre. The model used here is based on the convolution approach originally developed for
tyres by one of the authors [21], and its subsequent enhancements by several authors [35–37].
Only contact deformations and forces in normal direction are considered.

The time-dependent position of a point e on the tyre surface can be written as

Ze(t) = ZT,e(t) + ue(t) , (10)
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Figure 3: (a) Due to the small-scale surface roughness the real area of contact is smaller than the apparent. (b) contact
springs are introduced to account for this effect.

where ZT,e(t) is the position of the tyre contour (which could include a tread pattern) as shown in
Fig. 2. The tyre vibration ue(t) is caused by present and past forces. It is given by the convolution

ue(t) =
∑︁

m

∞∫︁
−∞

Fm(τ) gm,e(t − τ) dτ . (11)

where gm,e is the displacement Green’s function for a point e due to a contact force Fm at point
m. It is obtained by an inverse Fourier transform of input and transfer receptances which are
calculated from the WFE tyre model. Assuming causality and that the system is at rest for times
t < 0, a time discretised version of (11) for tn = n∆t (with n = 0, 1, . . .N) is obtained as

ue(tN) =
∑︁

m

N∑︁
n=0

Fm(tn) gm,e(tN − tn) ∆t (12a)

=
∑︁

m

Fm(tN) gm,e(0) ∆t +
∑︁

m

N−1∑︁
n=0

Fm(tn) gm,e(tN − tn) ∆t (12b)

=
∑︁

m

Fm(tN) gm,e(0) ∆t + uold
e (tN) . (12c)

The contact forces in the second term of (12b) are known from the previous time steps. This
means that in each time step the term uold

e (tN) can be calculated separately before the contact
problem is solved. As a matrix expression for all possible contact points e = 1 . . . M, (12c) reads

u(tN) = G0 F(tN) + uold(tN) . (13)

Here, G0 is a M×M matrix containing the values of the Green’s functions for t = 0, and the term
∆t. The distance between tyre contour and road is given by

d(tN) = ZR(tN) − ZT(TN) − u(tN) , (14)

where ZT contains all ZT,e, and ZR is the three-dimensional road surface roughness. A positive
entry de in (14) indicates that the road penetrates into the tyre at the particular contact point e.

Equations (10) to (14) formulate a continuum mechanics based description of the tyre/road
contact for length scales down to the used tyre discretisation. However, small-scale roughness
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phenomena can have a considerable effect on the contact behaviour. The difference between
the apparent and the real area of contact (which is much smaller than the apparent one) affects
the contact stiffness, see Fig. 3(a). One solution to account for this is to use a sufficiently fine
resolution of the contact zone. Yet, with respect to the necessary numerical effort, this is often
not reasonable. As is shown in Fig. 3(b), contact springs can instead be introduced between the
possible points of contact on the tyre and the road to account for the difference in stiffness [36].

A similar argument can be made for rolling losses induced by the small-scale road roughness.
The interaction between the road asperities and the highly damped tread rubber is not adequately
represented by a contact resolution which is within numerically reasonable limits. The losses
due to the small-scale tread deformations can instead be included as an additional damping term
in the expression for the contact force at a point e:

Fe(tN) =
[︁
ke de(tN) + ce de(tN) ∂

∂tN
de(tN)

]︁
· ℋ{de(tN)} . (15)

ℋ is the Heaviside function, and ke and ce denote the contact spring stiffness and damping coef-
ficient. In (15) a special non-linear damping expression is used. Compared to viscous damping
it has the advantage of resulting in a physically more reasonable hysteresis loop [38]. In partic-
ular does it not lead to a discontinuous contact force at initial contact and separation. Damping
also depends on the indentation which is physically reasonable as the contact area increases with
deformation. Because of these properties and its relative simplicity, it is a widely used formula-
tion in impact modelling (for an overview see the review article [39]). The damping coefficient
c is usually determined as a global parameter from the coefficient of restitution [38]. As this
approach is not readily applicable to the rolling tyre/road interaction, and as there is no reason
to not allow individual ce for each contact point e, another approach is chosen here, see Sections
2.4 and 2.5.

In contrast to the model described in [36], only linear contact springs are used here. This is
motivated by the fact that the resolution of the available road roughness data is not sufficient1

for a proper estimation of the non-linear stiffnesses as outlined in [36]. This implies that the
difference between the real and apparent area of contact is included in the contact model, while
the change in contact area during contact is not.

Equations (13) to (15) formulate a non-linear contact problem. This is solved iteratively for
every time-step using a Newton-Raphson algorithm to obtain the contact forces. After Fourier
transformation to the frequency domain the forces are used as excitation for the WFE tyre model.
The result is the vibrational field of a tyre rolling on a road which can be used as input into the
rolling loss model.

2.3. Rolling losses

In the time-space-domain rolling losses can directly be calculated from the input power
Eq. (2). In [18] it is shown that the same expression in the frequency and circumferential wave
order domain is given as

Pin = 2π
N∑︁

n=−N

M∑︁
m=0

jωm

(︁
FH
−n(ωm) · v−n(ωm) − FT

n (ωm) · v*n(ωm)
)︁
, (16)

1The available resolution is 0.2 mm, in [36] 38 µm was used.
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(i)

(a) (b)

Figure 4: (a) Example of a tread pattern. (b) Scheme for scaling the contact stiffnesses by the amount of rubber in the
respective contact patch. There is more rubber in patch (i) than in patch (ii). Accordingly the local contact stiffness in (i)
will be nearly unchanged while it will be very little in (ii), i.e. ki ≫ kii.

with (∙)H = (∙)T*, and (∙)* being the complex conjugate. The nodal displacements and forces,
v±n and F±n, are given by equations (8) and (9). Eq. (16) conveniently allows the identification of
the contribution of individual wave orders or frequencies to the rolling losses. Moreover, as the
stiffness and mass matrices in (9) are assembled from element-specific components, (16) can be
decomposed into a sum of element contributions. This allows to identify the spatial distribution
of the internally dissipated power over the tyre cross section.

The rolling losses due to small-scale tread indentation are given by a discrete version of (2)

Ptread =
1
T

I∑︁
i=0

∑︁
e

ce di,e

(︃
∂di,e

∂t

)︃2

∆t , (17)

where T = I∆t.
The rolling resistance coefficient Cr is finally calculated based on the sum of the large-scale

tyre and small-scale tread losses, i.e. Pdiss = Pin + Ptread in (1).

2.4. Influence of the tread pattern

The influence of the tread pattern is twofold. Geometrically it influences which areas of the
tyre are in contact with the ground. This also results in a variation of the local contact stiffness.
Additionally, the tread pattern influences the dynamic tyre response. Studies have shown that the
eigenfrequencies of typical tread blocks of passenger car tyres are very high in frequency [40].
This indicates that details of the block dynamics might not be particularly important for the
rolling resistance simulations as it has been shown that rolling losses are mainly a low frequency
phenomenon [18, 20]. While an explicit modelling of tread blocks is not necessary, there is an
influence of the presence of voids in the rubber on the tread’s mass and stiffness. This is a global
effect which can be handled by mass and stiffness adjustments of the solid elements forming the
tread layer. In conclusion, the tread pattern is modelled by a spatially varying stiffness in the
tyre/road interaction, and by mass and stiffness adjustments of the tread layer in the tyre model.

A typical tyre profile is shown in Fig. 4(a). It is possible to include such a tread pattern in the
tyre/road contact simulations via the tyre profile ZT in (14). However, the needed spatial discre-
tisation is so fine that computational burden would be extreme; not only for the contact modelling
but also for the tyre response calculations. To keep the numerical effort reasonable, a different
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Figure 5: Sections of the tread pattern (a/c) and the corresponding contact stiffness scaling factors Φe,r (b/d) of the two
tyres. All sections have approximately the same dimensions of 15 cm × 15 cm. Solid white represents a scaling factor of
zero and solid black a factor of one in (b/d).

approach is chosen. Fig. 4(b) shows the main idea in a schematic way. Based on the lateral
and circumferential contact resolution, the whole tread over the tyre width and circumference is
divided into small areas, each representing one individual contact point e in (15). For each of
these areas the surface fraction of rubber can be determined in advance as

Φe,r =
Ae,r

Ae,r + Ae,v
, (18)

where Ae,r and Ae,v denote the rubber and void areas in the contact patch e. Φe,r is then used to
scale the local contact stiffness, i.e. ke is replaced by k′e = keΦe,r in (15). A similar approach has
been successfully used in the SPERoN model [41]. The damping coefficient ce is scaled in the
same way.

The lateral size of a contact patch in the tyre/road interaction calculations is equivalent to the
width of a solid element in the tyre cross-section mesh in Fig. 1(a). By averaging Φe,r over the
circumference a scaling factor for the stiffness and mass of each solid element is obtained. These
scaling factors are applied to the corresponding elements when assembling Akl and M in (5).

2.5. Tyre input data

In [26] rolling resistance measurements were conducted for two different 225/60 R16 tyres:
a Uniroyal Tigerpaw standard reference test tyre (SRTT) and a Continental CPC2 LI98 (CPC).
The tread patterns of these two tyres and the corresponding local stiffness scaling factor profiles
are shown in Fig. 5. As no material input data was available for these two tyres, an existing tyre
model based on a slick Continental 205/55 R16 tyre was used as basis for both tyres in the present
study. This tyre has successfully been validated against measured input and transfer mobilities,
see Fig. 6,2 and rolling noise measurements [24]. Using this tyre is deemed a viable solution
as the study focuses on qualitative effects of tread pattern and road surface. In addition to the
SRTT and the CPC tyres, simulations are also performed for a slick tyre without any profile,
even though no measurement data is available for this tyre. This is done to further evaluate the
influence of the tread pattern on the rolling resistance.

2In [33] more examples for measured and simulated mobilities can be found, albeit using a different damping model
in the simulations.
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Figure 7: Loss factors for the shell (—) and solid (· · ·) elements. Results from half-power bandwidth measurements
marked by ×.

The cross-sectional tyre mesh is shown in Fig. 1(a). It consists of 46 deep shell elements
for the sidewalls and belt, and 20 quadrilateral 9-node Lagrangian solid elements for the tread.
Detailed descriptions of both element types are given in [34]. The rim and the air cavity are
not explicitly modelled, but their effect is included by blocking the tyre motion at the bead
and including the pre-tension due to inflation. The resolution around the tyre circumference
is 1024 steps. Each of the 20 solid elements also acts as a lateral contact track in the contact
simulations. This is a sufficiently high number for rolling tyre simulations [42]. The tread
patterns are not explicitly modelled; they are included in the tyre and contact simulations as
outlined in Section 2.4.

Damping is implemented by complex stiffness matrices Akl in (5). Contrary to the tyre/road
noise calculations performed for the same tyre in [24], the use of proportional damping is no
longer appropriate. Instead different loss factors η are assigned to the shell and the solid elements.
As no loss factor data was provided by the manufacturer, values for η are determined manually.
Based on half-power bandwidth estimations for resonances in a measured input mobility, the
loss factor can be estimated in the 100 Hz to 300 Hz region. Values outside this region and
the distribution of losses between solid and shell elements is determined by matching simulated
mobilities to measured ones, see Fig. 6. This results in a frequency-dependent loss factor for
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Table 1: Considered road surfaces.

road type abbreviation aggregate size (layer thickness)
artificial smooth surface smooth -
ISO 10844 reference surface [43] ISO -
dense asphalt concrete DAC 0/16
thin-layered asphalt TLA 2/4, 2/6, 4/8
stone mastic asphalt SMA 0/6, 0/8, 0/11, 0/16
porous asphalt concrete PAC 2/4, 2/6, 4/8, 0/11, 8/11 (45mm),

8/11 (200mm), 0/16
surface dressing SD 5/8, 11/16

the shell elements as shown in Fig. 7. For the solid elements representing the highly damped
rubber a constant loss factor of 0.35 is used. The remaining material data was provided by the
manufacturer, details about it can be found in [33].

For the tyre/road interaction modelling a contact spring stiffness of ke = 1.25 · 104 N·m−1

is used as starting value before the adjustment for the tread pattern. This stiffness results in a
contact patch which is of the right size for the considered tyre dimensions, inflation pressure,
and axle load. Since the damping coefficient ce is very difficult to determine experimentally
for a tyre/road contact, an engineering approach was used to estimate it. Looking at the rolling
losses, a ce was chosen which fulfils two conditions. For an artificial, completely smooth surface
without any small-scale roughness, Ptread is required to be zero. Simultaneously, the chosen ce

should lead to rolling resistances which accurately predict the relative differences between the
roughest surfaces, i.e. those for which the influence of the small-scale tread deformations are
strongest. These conditions result in a damping coefficient of c = 3.25 Ns·m−2 before tread
pattern adjustment.

A driving speed of 80 km/h, an axle load of 4100 N, and an inflation pressure of 200 kPa
are assumed. Rolling is calculated for five full tyre revolutions of which the last one is used to
calculate Pin and Ptread from Equations (16) and (17).

3. Road properties

Simulations are performed for the 19 road surfaces given in Tab. 1. All surfaces apart from
the smooth one are test fields at a dedicated test site in Kloosterzande, the Netherlands [25]. For
each surface texture scans were performed at six different positions in the corresponding test
field. The determination of road properties and the rolling resistance calculations are performed
individually for all of the available profile scans for each surface. In the following the average of
these results is typically presented. Comments on variations between scans of the same surface
are made if necessary.

Each scan consists of 20 parallel tracks of length 2.95 m and a lateral spacing of 0.01 m. The
resolution in rolling direction is 0.2 mm for all road surfaces. For the contact simulations, all
surface scans are resampled to match the resolution of the tyre model, giving a circumferential
contact resolution of 1.9 mm.

A single-value characterisation of the road surface profiles is possible by means of the root
mean square deviation of the profile RMS, and the mean profile depth MPD, both of which are
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Figure 8: Average of (a) the road mean square deviations (RMS), and (b) the mean profile depth (MPD) for all road
surfaces. Average based on all measurement positions and all tracks. Errorbars indicate standard deviation.

defined in ISO 13473-2 [44]. Results are shown in Fig. 8. While both parameters seem to cor-
relate approximately with the maximum aggregate size of the road surface, there is considerable
difference in how the SD 5/8 surface ranks with respect to the other surfaces. While it has the
second largest MPD value, the RMS value is only the sixth highest; most of the PAC surfaces
have a higher RMS. Additionally, the MPD has a considerably higher standard deviation for the
rougher surfaces.

A further characterisation of the road surfaces is possible by the profile amplitude distribu-
tions shown in Fig. 9. Rougher surfaces, i.e. those with higher MPD or RMS, have flatter, broader
amplitude distributions. The peak width seems to better correlate to the MPD than the RMS, cf.
the width of the peak for the SD 5/8 in relation to the width of the PAC distributions. Some of
the TLA, SMA, and PAC surfaces are also characterised by skewed distributions with maxima in
the positive texture amplitude range.

In Fig. 10 the average road surface spectra Ltx (calculated according to ISO 13473-4 [45])
are given. Above some 8 mm the order of the surfaces is similar to the one obtained for the RMS.
The level differences between the spectra reach up to 25 dB for wave lengths larger than 16 mm.
For smaller wave lengths the difference is up to 10 dB, with most surfaces being within 6 dB
of each other. This emphasises the importance of an adequate representation of the small-scale
tyre/road interaction to properly capture the texture differences between the surfaces at smaller
wave lengths.
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Figure 11: Left y-axis (black): rolling resistance for CPC measured (—) and simulated (∘), SRTT measured (· · ·) and
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4. Rolling resistance for conventional road surfaces

Rolling resistance was measured at the same test site where also the road surface profiles
were scanned. A trailer designed by the Technical University of Gdansk was used to directly
measure the rolling resistance coefficient Cr. The measurements were conducted at a speed of
80 km/h and axle load of 4100 N [26].

Calculated and measured rolling resistances for the different road surfaces and tyres are
shown in Fig. 11. For the CPC tyre a generally good agreement with the measurements is
achieved. Absolute values and the relative ranking of the road surfaces are captured well with a
slight underestimation of the measured values for most of the surfaces. Only the Cr values for
the PAC surfaces, apart from the one with aggregate size 2/4, are overestimated by roughly 10 %.
The SD 11/16 in contrast, is underestimated by about the same margin. The measurements for
the SRTT show a very similar behaviour to the CPC results but are around 5 % lower for most of
the surfaces. This is slightly less than in the measurements where the difference between CPC
and SRTT is about 10 %. This is possibly related to the fact that an identical tyre structure with
only minor adjustments for the tread pattern is used to model both tyres. In reality there are
differences in the tyre construction between the SRTT and the CPC, and this affects the rolling
resistance as well.

No measured data is available for the slick tyre. Yet, the different road surfaces have a similar
influence on the rolling resistance as for the two other tyres. However, the rolling resistance is
always higher than for the two tyres with profiles. This agrees with the measurement results
reported for other tyres in [46], and can be explained by the additional rubber material in the
tread of a slick tyre [47]. For all tyres the lowest rolling resistance is obtained for the smooth
surface.

Generally, the biggest difference between simulated and measured values is obtained for
the SD 11/16 surface with an underestimation of the Cr by about 0.2 · 10−2. For the SD 11/16
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Figure 12: Contribution of tyre structure and small-scale tread deformation to the simulated rolling resistance of (a) the
CPC, (b) the SRTT, and (c) the slick tyre (no measurement data available).

the standard deviation of Cr is the highest of all surfaces and of about the same order as the
difference between simulations and measurements. It is not completely clear from [26] how the
six different scans for each road surface and the driving track for the Cr measurements align, and
how the averaging for the latter is done. Accordingly, the higher deviation between simulations
and measurements might be explained by variations of the SD 11/16 surface over the complete
test field. Another aspect which has to be considered is that an identical contact stiffness ke

is used for all road surfaces during the simulations. For most of the surfaces this is a valid
simplification as their RMS or MPD are within the same limited range of values. This is not
the case for the SD 11/16 surface and better match to measurements might be achieved by an
appropriately adjusted contact stiffness.

Fig. 12 shows the distribution of the simulated rolling losses between large-scale tyre struc-
ture losses and small-scale tread losses. The contribution of the tyre structure to the rolling
resistance, Cr,tyre, is nearly identical for all road surfaces; the range is in the order of 0.08 · 10−2

for all tyres. The absolute values originating from the tyre structure are slightly higher for the
slick tyre, for which the average Cr,tyre is 0.89 · 10−2, compared to 0.85 · 10−2 and 0.86 · 10−2 for
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Figure 13: Distribution of dissipation over the CPC tyre cross-section. Each (*) marks one shell element, each (�) one
solid element. (· · ·) marks the different tyre regions.

the CPC and the SRTT. This can mostly be explained by the amount of rubber in the tread. Even
though the total contribution of the tyre structure to the rolling resistance is very similar for all
surfaces, there are some differences in which parts of the tyre contribute most. This is shown in
Fig. 13 where the distribution of losses over the different elements in the WFE mesh is shown for
the CPC tyre and the ISO and SD 11/16 surfaces. While the contribution of the bead, sidewall
and shoulder areas is nearly identical, some differences are obtained for the tread region. For
the ISO surface the losses originating from the solid and the shell elements in the tread region
are nearly identical, see Fig. 13(a). For the SD 11/16 surface, in contrast, there is considerably
less contribution from the shell elements, and more contribution from the solid elements, see
Fig. 13(b). Expressed differently, for the ISO surface the tyre contributes more globally with a
deformation of the whole belt/tread structure to the losses. For the rougher surface there is less
global contribution from the tyre structure and more contribution from a local deformation of the
tread rubber by the road surface asperities. This explains why the measured rolling resistance for
the SD 11/16 surface is nearly identical for the SRTT and the CPC tyre as differences between
the two tyre structures become less important.

The minimal variation of Cr,tyre for the different road surfaces implies that the variation of the
rolling resistance for the different road surfaces is mainly explained by a variation of the losses
originating in the small-scale contact deformation Cr,tread. This is confirmed by Fig. 12(a) where
for the CPC tyre the small-scale contribution varies from negligible 0.9 · 10−4 for the ISO surface
to 0.825 · 10−2 for the SD 11/16, which is nearly half of the overall Cr for this surface. Identical
tendencies are visible for the other two tyres in Figures 12(b/c).

It can be concluded that there are two main mechanisms for the rolling resistance: firstly,
there is the global deformation of the tyre structure due to the load. These losses vary only
slightly with road surface texture and contribute with 50 % to 100 % to the overall losses. There
is, however, a variation in which parts of the tyre structure contribute the most to these losses.
Secondly, there are losses due to the small-scale deformation of the tread caused by the road
surface asperities. These losses vary considerably with the surface profile; for smooth surfaces
they are negligible whereas for very rough surfaces nearly 50 % of the losses can be attributed to
them.

In [17] a good correlation between Cr and RMS has been reported. For the data considered in
the present study, this is mostly true as well, see Figures 14(a/b). The correlation is in the order of
r ≈ 0.82 for the measurements and r ≈ 0.91 for the simulations if all road surfaces are considered.
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Figure 14: Correlation between measured (�) and simulated (×) rolling resistance and (a/b) RMS and (c/d) MPD.
(—) fit for simulation, (· · ·) fit for measurement. Fit over all surfaces in blue, fit excluding the SD surfaces in red.

In [17] a better correlation was reported. This can be explained by the fact that in [17] only road
surfaces with RMS < 2.2 mm and Cr < 1.5 · 10−2 have been considered. Limiting the analysis to
the same RMS range as in [17], i.e. excluding the two SD surfaces from the fit, a better correlation
for both measurements (r between 0.93 and 0.96) and simulations (r = 0.96) is achieved. This
does not necessarily indicate that the results for the rough SD surfaces are outliers, it might as
well be a sign that the RMS is not a good predictor of rolling losses for rough surfaces.

A considerably better fit is achieved when Cr is plotted against the MPD, see Figures 14(c/d).
The fit quality is between r = 0.94 (measurements) and r = 0.99 (simulations), indicating an
excellent correlation between Cr and MPD, regardless of whether the SD surfaces are excluded
from the fit or not. In Section 3 it was observed that when comparing RMS and MPD for the
different road surfaces there is a variation in the ranking of the SD 5/8 surface, cf. Fig. 8. It can
now be concluded that the road surface ranking based on the MPD is a more accurate descriptor
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of the rolling resistance behaviour of the road surfaces than the RMS. Averaging over both tyres,
and including all road surfaces, every millimetre increase in MPD raises the rolling resistance
coefficient by circa 0.16 · 10−2 in the simulations and circa 0.19 · 10−2 in the measurements. This
is in very good agreement with [48], where Cr ∝ 0.0020 ·MPD was identified as giving excellent
correlation. The lower slope of the simulation fit is mainly caused by the underestimation of the
SD surfaces as is shown in Fig. 14.

Finally, it does not seem possible to establish a simple relation between the rolling resistance
coefficient and the profile amplitude distributions shown in Fig. 9, or the average road surface
spectra Ltx in Fig. 10. This does not mean that no such connection exists; a deeper investigation
of a possible relation was simply not within the scope of this study.

An important remark has to be made with respect to the good quantitative agreement between
simulations and the measurements: this cannot be taken as an indicator that the proposed method
is capable of giving a precise prediction of the rolling resistance for an individual tyre/road
combination. This is partly due to simplifications in the model, e.g. the omission of friction,
but mostly due to a large uncertainty in the rolling resistance measurements. In a round robin
study [46] differences of up to 15 % between different measurement methods were observed.
In this respect the quantitative agreement between simulations and measurements might have
been worse if another measurement system had been used in [26]. However, another conclusion
in [46] is that the measurement systems determine nearly identical relative differences between
different tyres or road surfaces. This is of great importance as it implies that the very accurate
prediction of relative differences which is obtained from the simulations does not depend on the
used measurement system. Simulated rankings of tread patterns or road surfaces with respect to
the rolling resistance should accordingly be realistic.

5. Rolling resistance for rubberised surfaces

In addition to the traditional road surfaces described in Section 3 also rubberised road sur-
faces were measured in [25, 26]. Due to their special properties these are not included in the
rolling resistance simulations presented in Section 4. Instead a concise evaluation of five of these
surfaces, three poroelastic road surfaces (PERS) and two experimental surfaces (termed R1 and
R2 in the following), and their properties follows here. Only data for the CPC tyre is presented
as results the two other tyres are very similar.

In Fig. 15 the MPD is shown for all five road surfaces. Values are generally low, and for all
cases apart from R1 the MPD is comparable to those of the TLA 2/6 and 4/8 surfaces in Fig. 8(b).
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Surface R1 is extremely smooth, it has an MPD of 0.28 mm. For comparison, the ISO surface in
Fig. 8(b) has an MPD of 0.36 mm.

The measured and calculated rolling resistances for the CPC tyre are shown in Fig. 16. For
surface R1 a nearly perfect match between measurements and simulation is achieved. For all
other surfaces, however, the simulations underestimate the measurements by up to 30 %. The
losses in the tyre structure are on a similar level as in Fig. 12. Accordingly, either the losses
due to the small-scale tread deformation are too small for these surfaces, or there is another
mechanism for rolling losses which is not covered by the simulations. A possible problem with
the contact losses is that the contact formulation presented in Section 2.2, and with it the values
for ke and ce, is based on the assumption of a completely rigid road. While this simplification
is generally applicable for most traditional roads, it no longer holds for the rubberised surfaces.
Yet, this does not fully explain why a good agreement between simulations and measurements is
achieved for surface R1.

Recent studies have found rolling losses on poroelastic surfaces not to be higher than on
comparable traditional road surfaces [49]. However, for the measurement results shown here, Cr

values are obviously higher for the poroelastic surfaces. This is exemplified by comparing the
correlation between the measured Cr and MPD in Fig. 17 with the one in Fig. 14(c). The slope
of the fit for the rubberised surfaces is considerably higher than the one for the conventional
surfaces. Therefore, for all MPD larger than approximately 0.18 mm the rolling resistance is
(considerably) larger for the rubber surfaces. This might be explained by advancements in the
construction of PERS between the time of the creation of the test sections for the AOT project and
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the recent studies [49]. It is for example conceivable that friction or adhesion processes which
can constitute additional rolling loss mechanisms are relevant for the three PERS considered here,
but are of lesser importance for newer poroelastic surfaces.

6. Conclusions

A waveguide finite element tyre model and a non-linear tyre/road interaction model have
been used to calculate the rolling resistance of a free rolling tyre on a real road surface. An
effective way to handle the influence of the tread pattern has been introduced. Measured and
simulated rolling resistances have been compared for combinations of three different tyres and
19 conventional road surfaces and five non-traditional rubberised road surfaces. The agreement
between measured and simulated rolling resistance coefficients is very good for the traditional
road surfaces. The influence of different tread patterns is adequately captured; some limitations
compared to measurements on different tyres are given by the fact that only the different tread
patterns but not the different tyre structures have been modelled. In the simulations the influence
of the road surface texture on the rolling resistance is very similar to the measurements. With
respect to the comparison between measurements and simulations it has to be pointed out that
the overall level of quantitative agreement might depend on the used measurement technique.
This does, however, not affect the faithful prediction of relative differences. Supporting recent
findings in literature [48], the mean profile depth is identified to correlate very well with rolling
resistance.

It was found that rolling resistance can be split into two parts: one part originating from the
large-scale tyre structure deformations, and the other part arising from small-scale tread indenta-
tions. The contribution of the tyre structure to the overall rolling resistance is nearly identical for
all road surfaces. However, variations of the distribution of losses between the belt package and
the tread rubber could be observed, with the tread contributing more for rougher surfaces.

The losses due to small-scale tread deformations are highly texture depending and range
from being 0 % to 25 % of the overall losses for smoother surfaces, and up to 50 % for the rough
surface dressings. Summarising, it can be concluded that for smooth surfaces rolling resistance is
mainly due to a global deformation of the tyre structure, whereas for rougher surfaces significant
contributions are made by local deformations of the tread due to roughness asperities. The latter
also leads to slightly less global deformation of the tyre, meaning that the tyre structure is of
lesser importance for the rolling resistance on rougher road surfaces.

For the non-traditional rubberised surfaces the calculations could, with one exception, not
accurately predict the measured rolling resistance. This is possibly related to modelling the
road surface as rigid in the tyre/road interaction or a significant contribution of friction or ad-
hesion mechanisms which are of lesser relevance for traditional road surfaces. A more precise
assessment of possible reasons for the mismatch needs a broader set of data and should include
simulations for newer rubberised surfaces which have been reported to have rolling resistance
more equal to traditional surfaces.

Additional data might also be helpful for a further analysis of the results for traditional road
surfaces: because of a lack of road texture scans so far only very few surfaces with an MPD >
2.5 mm (i.e. rougher surfaces) have been included in the analysis. While it is desirable for future
work to include more surfaces, especially of “rougher” type, this might be difficult to realise as
not only texture scans are needed, but also rolling resistance measurements which are comparable
to those which have been used in this study.
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It is conceivable that the results for both conventional and rubberised surfaces would benefit
from a contact stiffness k which is scaled in relation to the actual road roughness profile. This
will be a topic of future research.

In conclusion, the proposed method is very well suited for qualitative and quantitative studies
of the rolling resistance of a free rolling tyre on traditional road surfaces. Due to its numerical
efficiency, it is particularly useful for extended parameter studies, e.g. regarding road surface
properties or tread pattern influence. For the present study 376 different cases could be calcu-
lated with reasonable numerical effort: on a 2012 workstation with six 3.2 GHz cores and 32 GB
memory two cases could be solved in parallel in approximately two hours.
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