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Abstract

Plasmons, collective electron density oscillations, provide physicists with
intriguing challenges and possibilities. The inherent many-body properties
of the plasmons together with their ability to localize light into small vol-
umes make the plasmons interesting from both a purely theoretical view-
point and an applications point of view. Graphene, with its rather special
electronic properties, provides the field of plasmonics with a new material
that exhibits large localization of the electric field together with low losses.

In this thesis we cover the basic theory underlying modern theoretical
plasmonics research. We do so in the context of linear response func-
tions and the Random Phase Approximation that are standard tools in
the field. We apply the theory to plasmons in different contexts, trying
to highlight differences and similarities between graphene plasmons, plas-
mons in 2DEG’s and conventional interface plasmons.

We present light scattering results from a nanostructured graphene sur-
face, tailored specifically to allow plasmon excitation. We investigate the
reflection, transmission and absorption of such surfaces and also analyze
the plasmon resonances that arise.

Keywords: Plasmons, plasmonics, graphene, surface plasmon-polaritons,
linear response theory, random phase approximation, surface electrody-
namics.
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Chapter 1

Introduction

In this chapter we discuss the history and current status of graphene re-
search and plasmonics as separate fields of research. We then proceed
to merge the two fields and discuss the rather young field of graphene
plasmonics. We will focus on theoretical developments but we will also
consider experimental demonstrations of graphene plasmons.

1.1 Graphene

Graphene is a single atomic layer of carbon atoms arranged in an hexagonal
honeycomb lattice. The two-dimensional nature of the graphene surface
together with its lattice symmetry gives graphene many special properties.
Graphene is for example one of the strongest materials ever [1], a single
layer graphene of size one by one meter could in fact suspend something as
big as a cat, assuming that the graphene is completely free from defects.
Graphene is also a very good conductor, it has a larger electrical conduc-
tivity than silver [2] and a larger thermal conductivity than diamond [3].

Graphene, in the context of single layer graphite, was first theoretically
considered by Wallace in 1947 using a tight-binding formulation to study
the band structure, see Ref. [4]. Mono-layer graphene was long seen as
an impossibility and thus focus was on producing and investigating thin
graphite films. There are several papers discussing the special transport
properties of thin film graphite, see for instance Ref. [5] and Ref. [6].

In 2004, Novoselov and co-workers managed to isolate a single layer of
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graphene and transfer it onto an SiO2 (silicon dioxide) wafer [2]. This
made it possible to use a microscope and detect a contrast between ar-
eas of monolayer graphene and areas that had no graphene or multilayers
patches. In this paper the graphene was produced using mechanical exfo-
liation and it was shown to be possible to externally gate the sample to
change its properties. Much effort is now being devoted to scaling up the
production of high quality graphene, for which mechanical exfoliation is
not well suited, and to further theoretical investigation of the properties
of graphene. Much of the effort is motivated by the objective to create
new technological devices that harness the previously mentioned proper-
ties of graphene, e.g. the large electrical and thermal conductivity. Since
graphene is also extremely light-weight and very strong it is also interesting
for applications in for example aviation and space flight. The European
Commission has devoted a substantial financial contribution to start a so
called Graphene Flagship that aims to bring graphene from the academic
world to the technological industry. Some of the targeted areas that are
of relevance to this thesis are optoelectronics, high frequency electronics,
energy applications, flexible electronics and sensor applications.

The full band diagram of graphene can be obtained using tight-binding
calculations and it contains two inequivalent points in the Brillouin-zone
where the two energy bands touch. These points are called Dirac points
and they separate the valence band from the conduction band. It is pos-
sible to linearize the band diagram around these two points and obtain a
linear dispersion. Figure 1.1 shows the linearized band structure around
one of the two Dirac points with the Fermi energy in the conduction band,
meaning that the graphene in this case is n-doped, i.e. it has excess neg-
ative charge. The vertical arrow in the figure shows the lowest energy
interband transition within the graphene.

The interband transitions are responsible for the absorption of energy
from radiation by the graphene sheet since the final electron state has a
larger energy than before the excitation. By fairly simple calculations it
is possible to show that a single layer of graphene is able to absorb 2.3%
of the energy of the incoming radiation. Experimentally this was verified
in [7] and considering the extremely small lateral dimension of one atom,
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Conduction band

Valence band

Figure 1.1: Figure showing the linear dispersion of graphene. Here the Fermi energy is in the conduction
band and thus the graphene is n-doped, it has excess negative charge. The vertical arrow depicts the
lowest energy interband transition an electron can make.

≈ 1 Ȧ, this is a large absorption.

Pristine graphene is neutral and has no free charge carriers at zero tem-
perature. Normally however, graphene obtains an excess or deficit charge
due to the fabrication process, this is usually called doped graphene in
reference to its similarity with semiconductors. It turns out that it is also
possible to externally tune this doping level using electrostatic doping by
means of an external gate as shown in [2]. This tunability of graphene
is in contrast to most conventional materials where the doping levels and
thereby frequencies of interest are ”God-given”, or at the very least fixed
for a certain sample. This external tunability opens up the possibility to
create tunable devices of various kinds, for instance tunable optical filters
and modulators but also allows for tunable transport properties when con-
sidering more conventional electronic devices.

1.2 Plasmonics

The field of plasmonics can trace its ancestry all the way back to the be-
ginning of the 20th century. However, examples of the use of what is now
known as plasmonic effects can actually be traced back much further than
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that. Well known examples are for instance the staining of church windows
during medieval times and actually already the romans used plasmonic ef-
fects to color cups. These early uses of plasmonics where however lacking
in their understanding of the underlying physical effects.

The unification of electricity and magnetism was made by Maxwell in
1865 [8], paving the road for investigation of electromagnetism in a wide
range of settings. In 1902, Wood investigated the reflection properties of
metallic gratings on a surface and observed unexplained features in their
spectra [9], this is usually taken to be the first observation of plasmons in
a scientific setting. In 1908, Mie published his theory of light scattering
against spherical particles [10] which is still used to this day. However, a
more fundamental theory of light scattering against charged matter would
have to wait. Langmuir and Tonks experimented with gaseous plasmas in
the 1920’s and found waves in the plasma [11], these are now known as
Langmuir waves. In 1956, Pines realized there was a connection between
Langmuir waves and the electron energy losses in the materials he was
investigating. He published his work on energy losses in materials due to
exciting collective oscillations which he called ”plasmons” [12].

Ritchie was around the same time investigating electron energy losses
in thin films and discovered that the plasmons could exist on or near the
material surface and thus the notion of surface plasmons was born. In
1968, some 60 years after the experiment, Ritchie was able to explain the
strange reflection behavior that Woods had found in terms of surface plas-
mons being excited at the gratings [13].

Somewhat confusingly, within the setting of condensed matter physics,
in 1958 Hopfield introduced the term ”polariton” to mean a coupled os-
cillation of light and electrons in a material [14]. Essentially this was the
same as what was meant with the word plasmon, at least a surface plasmon
that could be interpreted as light being hybridized with the electrons. In
1974, Cunningham and co-workers introduced the term surface-plasmon-
polariton (SPP) to describe these oscillatory modes [15]. In the literature
both the terms surface plasmon and SPP are often used to mean the same
thing, namely oscillatory modes confined to surfaces.
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Perhaps the most recent big advancement in plasmonics is the effect
plasmons can have on the Raman signal. Raman spectroscopy studies the
interaction of light with vibrational modes in a surface and it was discover
by Fleischmann and coworkers that this signal could be enhanced by many
orders of magnitude by using surface plasmons[16]. This is nowadays called
surface enhanced Raman spectroscopy (SERS) and by using the surface
plasmonic field enhancement, the signal may be enhanced by an incredible
10 orders of magnitude [17]. SERS is often used in biosensing applications
and is capable of sensing even single molecules under certain conditions
[17].

Much of the interest in plasmonics stems from the fact that plasmons
have a wavelength smaller than the incident light, leading to localization of
energy in the plasmon modes. This is the cause of the large field enhance-
ments which in turn leads to huge enhancement of interaction strengths
e.g. the Raman enhancement. Also, small wavelengths are an advantage in
the age of miniaturization and one can imagine very small optical devices
such as switches, modulators and filters that currently are limited in size
by the free space wavelength.

However, the wave localization comes at a price. Large localization usu-
ally leads to large losses meaning that the plasmons are highly damped and
have short lifetimes. This limits the effectiveness of devices using plasmons
and has been a general limiting factor within plasmonics for some time.
The conventional material for surface plasmonic purposes is silver as it
has relatively low losses compared with other materials. In silver the sur-
face plasmons may propagate up to 1 mm under the right conditions [18].
However, in this regime the SPP wavelength is only a few percent smaller
than the free space wavelength [19]. This is where graphene and other
two dimensional materials might have a role to play. It turns out that due
to the extreme two dimensional nature of these materials, the losses are
low compared with silver, even though the wave localization in graphene
is larger than in silver and in theory can be of order 100.
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There is also an increasing activity in stacking different two dimensional
materials to create new tailored materials. Perhaps it will be possible to
engineer a stacked material that has even larger wave localization and
lower losses than graphene. These stacked materials can also play a role in
applications where these materials can be combined to suit specific devices.

1.3 Graphene plasmonics

Graphene plasmonics is a rather new field of research that merges the ex-
citing properties of graphene with that of surface plasmon modes. The
first theoretical investigations of plasmons in graphene were performed in
[20, 21] where they obtained the same ω ∝

√
k as normal 2DEG plasmons1

but a scaling in density as ω ∝ n1/4 instead of ω ∝
√
n as the 2DEG plas-

mon. It was realized that using this density dependence the plasmon fre-
quency in graphene (and 2DEG’s) can be tuned by changing the electron
density. This can be achieved by for instance using a back gate to which
a voltage is applied, thus forcing charges onto or off the graphene sheet.
The tunability of the plasmon energy of graphene is one of the advantages
of using graphene as a plasmonic material instead of using more conven-
tional materials such as silver. Other main advantages are, as discussed in
the previous section, the low losses and large wave localization in graphene.

Wave localization means that the wavelength at a specific energy is
smaller for the plasmon than for free space light. Since the wave num-
ber (momentum) is k = 2π/λ this leads to what is known as momentum
mismatch between incident light and the plasmon. This is common for all
plasmons that exhibit wave localization, not only graphene plasmons, but
the mismatch is larger in graphene than for conventional plasmons due
to the larger localization. Normally, this means that incident light does
not couple to the plasmons. There are several methods to overcome this
mismatch and allow incident light to couple to the plasmons. The meth-
ods that exist are based either on the notion of evanescent wave coupling
(evenescent waves need not obey the free space dispersion) or patterning.
Patterning could be done by introducing a single sharp scatterer with some

1With ”normal 2DEG” we mean massive electrons confined in two dimensions, obeying the standard parabolic dispersion

εp = p2

2m
.
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length scale L = 2π/k or by making periodic structures where the period
is d = 2π/k.

Graphene plasmons were first demonstrated in 2012 [22, 23], 8 years
after the isolation of single layer graphene by Geim and Novoselov. In
these papers the plasmons were launched by an SNOM2-tip illuminated by
a laser and the plasmons reflected from the edges and were picked up by
the same tip. The plasmon then radiated light through the tip that could
be detected. The reported wave localization factor was ≈ 30, meaning the
plasmon wavelength was λp = λ0/30, and the propagation distances were
around 5-6 wavelengths. Another method to launch plasmons in graphene
is to illuminate metal antennas, deposited on top of graphene, with a laser
[24]. This method makes it possible to launch plasmons in a specific di-
rection, in contrast to the previously mentioned experiments where the
plasmons are launched in a radial pattern. Both the SNOM-method and
the antenna method are examples of introducing a single scatterer to over-
come the momentum mismatch.

It is also possible to pattern the graphene into microribbon arrays and by
the patterning overcoming the momentum mismatch. This technique very
much resembles the notion of metamaterials where the patterning is done
in order to create materials not found in nature. Patterning graphene into
microribbon arrays can be called a plasmonic metamaterial. Such pattern-
ing has been performed in [25] and they found that at room temperature
the plasmons absorbed 13% of the radiation incident on the surface.

The route followed in this thesis is to consider a nanostructured array,
called a grating, on top of the graphene. The idea is that the grating will
make the perturbation applied by the incoming light periodic in space and
thus induce an effective momentum k = 2π/d [31]. Figure 1.2 shows a
picture of a grating on top of graphene. This will allow us to consider
responses with larger momenta than the incident light and thus explore
a larger parameter space. This larger parameter space contains the plas-
mons.

2Scanning Near-field Optical Microscope
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Figure 1.2: A graphene sheet that is suspended with a grating.

Much of the theory developed for graphene plasmons has treated clean
graphene and at zero temperature. There is now an increased understand-
ing that impurities, grain boundaries and even patches of bilayer graphene
on top of monolayer graphene can have a large influence on the graphene
plasmons and their properties. These effects are now starting to be investi-
gated. Impurity scattering effects on graphene plasmons were investigated
in [26], in which they included an energy independent relaxation time
in a number conserving way using the Mermin result [27]. They found
that with a realistic scattering time the plasmons in graphene would still
exhibit large localization and low losses. The finite temperature RPA re-
sponse was calculated in [28] and was also treated in [29] where they also
considered finite temperature effects on the plasmon dispersion and the
plasmon damping.

The main aim of this thesis is to develop the necessary theory in order
to investigate graphene plasmons. We will work with clean graphene at
zero temperature and we will in the very end consider the effects of a
substrate on the plasmon dispersion. We will compare numerical results of
the plasmons dispersion with an analytic result obtained within a widely
used approximation (long wavelength approximation), pointing out the
range of validity of this approximation.
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1.4 Overview of the thesis

In chapter 2 we develop the necessary theory for treating plasmons in
graphene starting in section 2.1 with a short treatment of the Maxwell
equations and related properties. In section 2.2 we then consider classical
light scattering at an interface, both in the standard case of an interface
between two dielectrics and the case of a conducting sheet sandwiched
between two dielectrics. Next, in section 2.3 we develop the theory of
graphene starting with the tight binding Hamiltonian and its full band
structure, then linearizing and obtaining the standard Dirac approxima-
tion of graphene around the two inequivalent points in the Brillouin zone.
Section 2.4 contains a general treatment of linear response theory with an
application to the specific case of electrical conductivity. We then proceed
in section 2.5 to treat the Random Phase Approximation of the dielectric
function. Section 2.6 treats plasmons and related properties and section
2.7 treats properties of different 2-dimensional electron gases.

Chapter 3 contains the main results obtained in the thesis. Section 3.1
contains reflection, transmission and absorption results for nanostructured
graphene both in the suspended case and for graphene deposited on di-
electric substrates. In section 3.2 we investigate the plasmon resonances
we obtain in the scattering coefficients and discuss plasmon decay and the
Q-factor.

Chapter 4 provides a brief summary of the theory and the results and
we also discuss some possible future directions of research.

This thesis also contains four appendices in which we have placed deriva-
tions that were considered too lengthy to put in the main text but that
were still considered relevant to treat in some detail. Appendix A con-
tains a derivation of the RPA dielectric function using the method of
self-consistent fields. In appendix B we treat Green’s functions for the
Poisson equation in the bulk and also when the charge is confined in a
two-dimensional sheet. Appendix C contains a calculation of the polar-
izability function for a single band, parabolic 2DEG. Last, appendix D
contains a rather lengthy calculation of the polarizability within the Dirac
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approximation of graphene at zero temperature.



Chapter 2

Theory

2.1 Maxwell equations

The basic equations that govern the interaction between light and matter
are the Maxwell equations. The Maxwell equations in their original form

∇ · ~D = ρ (2.1)

∇× ~H − ∂ ~D

∂t
= ~j (2.2)

∇× ~E +
∂ ~B

∂t
= 0 (2.3)

∇ · ~B = 0, (2.4)

contain four fields ( ~E, ~D, ~H, ~B). These are called electric field, displace-
ment field, magnetic field strength and magnetic induction respectively.
In vacuum we have the well known connections ~D = ε0 ~E and ~B = µ0

~H,
where ε0 and µ0 are the vacuum values of the permitivity and permeabil-

ity respectively, also
√

1
ε0µ0

= c. Also, ρ is the charge density and ~j is the

current density.

In a more general situation there might be a medium present that be-
haves in a different way than vacuum. With ”medium” we mean a material
with charges that are bound to the medium. Basically any material fits
this description but we will mostly be considering metals or semiconduc-
tors. The charges in the medium will respond when an external field is
applied, this may alter the connections between the fields. In general, [30]



12 Theory

chap. 4.3,

~D = ε0 ~E + ~P (2.5)

and
~B = µ0

~H + ~M (2.6)

where ~P and ~M are the polarization and magnetization respectively. This
means that we add the polarization field to the vacuum value of the dis-
placement field and likewise the magnetization to the vacuum value of
the magnetic induction. The naming convention for the ~B and ~H fields
changes between different sources in the literature, we will refer to both
fields as the magnetic field in what follows.

We will mainly be interested in the ~D and ~E fields since they are govern-
ing the ability of the medium to conduct electricity. Also, many materials
exhibit a very weak magnetization and from now on we assume that the
magnetization ~M is zero and thus ~B = µ0

~H, i.e. the same as for vacuum.
We will also make a very important simplification of the treatment of elec-
tric fields surrounding materials. We will only consider the linear response
of the material, meaning that the system response, i.e. ~P , is proportional
to the external field ~E. There are different ways to justify this but the
simplest justification is that this behavior is what most systems exhibit in
accessible field strengths. At very high electric fields this assumption may
break down but we will not consider such cases. Consequently we may
now write the polarization ~P = ε0χ~E i.e.

~D = ε0 ~E + ~P = ε0 ~E(1 + χ), (2.7)

where χ is the (electric) susceptibility of the medium. We may now define
a new electric permitivity (compare to the vacuum electric permitivity) as
ε̃ = ε0(1 + χ) and the dielectric function (relative permitivity) as

ε(q, ω) =
ε̃(q, ω)

ε0
= 1 + χ(q, ω) (2.8)

giving us

~D = ε̃ ~E. (2.9)
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The vacuum permitivity has been altered by the susceptible medium and
thus giving rise to a different displacement field. Looking at equation (2.8)
it is obvious that a susceptibility of zero reproduces the vacuum value for
the ~D field. Materials with high relative permitivity are usually called
dielectrics.

Another measurable quantity of interest is the conductivity which in
macroscopic terms is defined through Ohms’s law as

e~j = σ ~E (2.10)

i.e. the conductivity is the proportionality constant which relates the ap-
plied electric field to the current it induces. We have here defined ~j as the
particle current in anticipation of the linear response treatment in section
2.4. In general σ can be a second order tensor, the fact that we only con-
sider a scalar reflects the fact that we consider an isotropic medium. By
looking at the Maxwell equations and the definition of conductivity it is
possible to relate the conductivity and permitivity as [31]

ε(q, ω) = 1 +
iσ(q, ω)

ε0ω
. (2.11)

Combining this with equation (2.8) we obtain a relationship linking the
conductivity and the susceptibility as

σ(q, ω) = −iε0ωχ(q, ω). (2.12)

2.2 Fresnel scattering at an interface

In this section we treat the scattering of radiation upon incidence on an
interface between to media with different dielectric constants ε1 and ε2.
Without loss of generality we will consider the incoming radiation to be
incident from medium 1, with ε1, onto medium 2, with ε2. In the case a
sheet current and a sheet charge are present, they exist on the boundary
between the two media.
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2.2.1 Dielectric interface

For the case of a dielectric interface the following expressions for the an-
gular dependent reflection- and transmission amplitudes can be found in
[30] pp. 304:

E-field parallel to plane of incidence (p-polarization)

r =
ε2 cos(θi)− cos(θt)

√
ε1ε2

cos(θt)
√
ε1ε2 + ε2 cos(θi)

(2.13)

t =
2 cos(θi)

√
ε1ε2

cos(θt)
√
ε1ε2 + ε2 cos(θi)

(2.14)

where ε2 is the dielectric constant of the half space that we are transmit-
ting into.

E-field perpendicular to plane of incidence (s-polarization)

r =

√
ε1 cos θi −

√
ε2 cos θt√

ε1 cos θi +
√
ε2 cos θt

(2.15)

t =
2
√
ε1 cos θi√

ε1 cos θi +
√
ε2 cos(θt)

(2.16)

as above ε2 is the dielectric constant of the half space that we are trans-
mitting into.

It is important to note that equations (2.13)-(2.16) are amplitudes and
in order to calculate the energy flow we must take the modulus square of
the amplitudes and also include a change of group velocity and change in
beam size. This can be obtained by studying the Poynting vector and check
the energy density flow, see [32] pp. 120. Considering this the reflected
and transmitted energy coefficients are

reflected energy, R = |r|2 (2.17)

transmitted energy, T =

√
ε2
ε1

cos θt
cos θi

|t|2 (2.18)

absorbed energy, A = 1−R− T (2.19)
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where θi and θt are the incoming angle and the transmitted angle respec-
tively. The definition of the absorbed energy comes from energy conserva-
tion. The energy that is neither reflected nor transmitted must be absorbed
in the interface. Applying this to the formulas for the transmission- and
reflection coefficients above we would always get A = 0, i.e. no absorption
takes place in ordinary, non-conducting dielectric interfaces.

2.2.2 Dielectric interface with current sheet

We now add a conducting interface to the simple picture above, in our case
this will be a graphene sheet but the formulas themselves are not restricted
to this case. The key difference between this case and the one above is that
the electromagnetic boundary conditions change in the presence of sheet
currents and charges. In [30] pp. 18 we find the well-known boundary
conditions

( ~D2 − ~D1) · ~n = ρs (2.20)

( ~B2 − ~B1) · ~n = 0 (2.21)

~n× ( ~E2 − ~E1) = 0 (2.22)

~n× ( ~H2 − ~H1) = ~js (2.23)

where ρs and ~js are the sheet charge and sheet current respectively. They
are understood to only exist on the boundary between the two media. In
this case the formulas become lengthy so we only consider here the normal
incidence, θi = θr = 0, and print the expressions below.

Normal incidence

reflected energy, R =

∣∣∣∣ε2 + σ(k, ω)−√ε1ε2
ε2 + σ(k, ω) +

√
ε1ε2

∣∣∣∣2 (2.24)

transmitted energy, T =
4ε2
√
ε1ε2∣∣ε2 + σ(k, ω) +
√
ε1ε2
∣∣2 (2.25)

absorbed energy, A =
4
√
ε1ε2 Re [σ(k, ω)]∣∣ε2 + σ(k, ω) +

√
ε1ε2
∣∣2 (2.26)
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For normal incidence both s- and p-polarization scattering reduce to the
same expressions above. In general the conductivity can depend on both
the incoming momentum and the frequency of the incoming light which is
made explicit in the formulas above.

2.3 Graphene

As mentioned in the introduction, graphene is a monolayer of carbon atoms
arranged in what is usually called a ”honeycomb lattice”. There are two
inequivalent atoms in the lattice structure, usually called the A and B
atoms which build up the underlying triangular A and B lattices. The
band structure of an infinite graphene sheet was first treated by Wallace
[4] and the full dispersion (with only nearest-neighbor hopping) is [33]

ε(k) = ±t
√

3 + 2 cos(
√

3kya) + 4 cos(
√

3kya/2) cos(3kxa/2) (2.27)

where a ≈ 1.42 Å is the carbon-carbon distance and t ≈ 2.7 eV is the
nearest neighbor hopping term. This dispersion is plotted in figure 2.1
where we clearly see the points where the two bands touch, these points
are called the Dirac points. Linearizing the dispersion around these points
we obtain the dispersion

ε(k) = ±3ta

2
|k| = ±vF |k| (2.28)

where k now is measured from the Dirac point we are linearizing around
and we have defined the Fermi velocity vF = 3ta/2 ≈ 106 m/s.

Perhaps the most striking property that arises is that the low energy
electrons behave as massless Dirac particles. The linear dispersion rela-
tion resembles the photon dispersion but with the slope, i.e. propagation
speed, of vF instead of c for the photons. The speed vF is approximately
vF/c ≈ 1/300. The linearized dispersion relation is usually considered to
hold for energies below 1 eV, above this energy we would start seeing ef-
fects that are not captured by the linearized equations.

Above we simply linearized the dispersion relation to obtain the linear
dispersion, it is also possible to linearize the Hamiltonian and solve for
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Figure 2.1: Plot of the tight-binding dispersion in equation (2.27).

the eigenenergies and eigenvectors. Below, we closely follow [34] chap. 1.
There are only two inequivalent points in the full dispersion to linearize
around; we call these ~K and ~K ′. The linearized Hamiltonians that one
obtains from the linearization procedure are

Ĥ ~K(~k) = vF

(
0 kx − iky

kx + iky 0

)
= −ivF~σ · ∇ = vF~σ · ~k (2.29)

Ĥ ~K ′(
~k) = vF

(
0 kx + iky

kx − iky 0

)
= −ivF (~σ · ∇)T = vF (~σ · ~k)T (2.30)

where ~σ = (σx, σy) i.e. a vector of Pauli matrices. Now, the Hamiltonian

Ĥ ~K acts on spinors for the ~K valley and Ĥ ~K ′ on the spinors for the ~K ′

valley, i.e.

Ĥ ~K

(
ψKA(~k)

ψKB(~k)

)
= ε(k)

(
ψKA(~k)

ψKB(~k)

)
(2.31)

Ĥ ~K ′

(
ψK ′A(~k)

ψK ′B(~k)

)
= ε(k)

(
ψK ′A(~k)

ψK ′B(~k)

)
(2.32)

where the ψ subscripts denote the valley and A or B sub-lattice that the
wave function belongs to. It may sometimes be convenient to put all this
together in one matrix equation construct and this can be done by putting
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the Hamiltonians in a block diagonal form(
Ĥ ~K 0

0 Ĥ ~K ′

)
Ψ(~k) = ε(k)Ψ(~k) (2.33)

where

Ψ(~k) =


ψK,A(~k)

ψK,B(~k)

ψK ′,A(~k)

ψK ′,B(~k)

 . (2.34)

In the interest of high degree of symmetry in the equations this is some-
times recast in a different form where one rearranges the K ′ spinor so that
it has the same Hamiltonian as the K spinor, we write it as(

Ĥ ~K 0

0 Ĥ ~K

)
ΨR(~k) = vF

(
τ0 ⊗ ~σ · ~k

)
ΨR(~k) = ε(k)ΨR(~k) (2.35)

where

ΨR(~k) =


ψK,A(~k)

ψK,B(~k)

ψK ′,B(~k)

−ψK ′,A(~k)

 (2.36)

denotes the rearranged 4-component vector and τ0 is a unit matrix in val-
ley indices.

Using the forms in equations (2.31) and (2.32) and using the linear
dispersion from equation (2.28) we may determine the momentum space
eigenspinors to be [33]

ψK(k) =

(
ψKA
ψKB

)
=

1√
2

(
e−iθk/2

±eiθk/2
)

(2.37)

ψK ′(k) =

(
ψK ′A
ψK ′B

)
=

1√
2

(
eiθk/2

±e−iθk/2
)

(2.38)

where θk = arctan(kx/ky) and ± means conduction band (+) and valence
band (−) and correspond to the sign in equation (2.28).
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2.4 Linear response theory

Linear response theory is a widely used concept within condensed matter
physics. Simply put, linear response theory considers systems that are
initially in their ground state, which we know how to calculate, and we then
perturb the system away from that ground state. If the perturbation that
we apply is small, then the deviation from the ground state is also in some
sense small. The goal is then to calculate this response in an appropriate
form. The linear response of a system is completely determined by its
ground state properties, this might seem surprising but is in fact quite
natural. In analogy with the Taylor expansion of a function where we
write

f(x) = f(0) + xf ′(0) + ... (2.39)

we may consider the external perturbation as x in the above formula and
f ′(0) would then correspond to the linear response of the system that is
determined by the ground state. This analogy with Taylor expansions also
shows us that there are several (in fact infinitely many) higher order terms
in the total response. Normally such higher order terms are negligible for
small to moderate perturbations but must in some cases be considered to
correctly describe the system in question. Since we are only interested
in the linear response we will neglect higher order terms. These terms
also have the nasty property that they depend on the strength of the ap-
plied perturbation itself and are thus not ground state properties and of
less fundamental interest. Experimentally it is rather straightforward to
know whether the system responds in a linear fashion or not. The linear
response is always oscillating at the same frequency as the applied pertur-
bation, whereas the higher order terms respond at several higher harmonic
frequencies.

2.4.1 Formal development

We will now treat some general theory of linear response functions, this
follows closely the treatment in [35].

Suppose that we have a system described by the time independent
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Hamiltonian H0, suppose also that we are interested in perturbing the
system with some small external field F (t) that is turned on at some time
t0. Furthermore, suppose we know that the field F (t) couples to an oper-
ator B̂(t), the total Hamiltonian of the system is then

Ĥ(t) = Ĥ0 + F (t)B̂ (2.40)

and we are now interested in computing the change that is produced on
the average of another operator Â.

For times t < t0 our assumption was that the system Hamiltonian was
Ĥ0. The system then obeys the Schrödinger equation

ih̄∂t|ψ(t)〉 = Ĥ0|ψ(t)〉 (2.41)

which has a complete set of orthogonal solutions |ψn(t)〉 with associated
eigenenergies εn. We also know that at finite temperatures the occupation
probabilities for the different states are Pn = 1

Ze
−βεn, where β = 1

kBT
and

Z =
∑

n e
−βεn is the partition function which normalizes the probabilities.

For this case we may also compute the expectation value of the operator
Â as

〈Â〉0 =
∑
n

Pn〈ψn|Â|ψn〉0. (2.42)

We now turn our attention to the perturbed Hamiltonian, equation
(2.40), and our goal is now to compute the deviation of the average of
Â from its unperturbed equilibrium value given by equation (2.42). The
system still obeys the Schrödinger equation

ih̄∂t|ψ(t)〉 = Ĥ|ψ(t)〉, (2.43)

now with the initial condition |ψn(t0) = |ψn〉. The solution to the new
Schrödinger equation can be expressed in terms of the unperturbed solu-
tions as

|ψn(t)〉 = Û(t, t0)|ψn〉 (2.44)

where Û(t, t0) is the time evolution operator. This operator evolves the
state from time t0 to t. Inserting equation (2.44) into the Schrödinger
equation, equation (2.43), we obtain an operator equation for the time
evolution operator as

ih̄∂tÛ(t, t0) = ĤÛ(t, t0) (2.45)
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with the initial condition Û(t0, t0) = 1̂. In the absence of any perturbation
we assume the Hamiltonian to be time independent and in that case we
may integrate equation (2.45) once and obtain the solution for the time
evolution operator as

Û(t, t0) = e−
i
h̄Ĥ0(t−t0) (2.46)

which means that the solution to equation (2.41) is

|ψ(t)〉 = e−
i
h̄Ĥ0(t−t0)|ψ(t0)〉 (2.47)

i.e. the time evolution is simply rotating an unmeasurable phase of the
wave functions. Now, in order to add the effect of the time dependent part
to the time evolution operator we write

Û(t, t0) = e−
i
h̄Ĥ0(t−t0)ÛF (t, t0) (2.48)

where ÛF (t, t0) contains the effects of the perturbation. Inserting this def-
inition into equation (2.43) and remembering that Û0(t, t0) obeys equation
(2.45) we may obtain an equation of motion for ÛF (t, t0) as

ih̄∂tÛF (t, t0) = F (t)B̂(t− t0)ÛF (t, t0) (2.49)

where

B̂(t− t0) = Û−1
0 (t, t0)B̂ Û0(t, t0) = e

i
h̄Ĥ0(t−t0)B̂e−

i
h̄Ĥ0(t−t0) (2.50)

is the operator B̂ in the Heisenberg picture. Equation (2.49) is subject to
the initial condition ÛF (t0, t0) = 1̂ and using this we can recast it into an
integral equation on the form

ÛF (t, t0) = 1̂− i

h̄

∫ t

t0

dt′F (t′)B̂(t′ − t0)ÛF (t′, t0) (2.51)

which in general is hard to solve. We can solve it by iteration, i.e. inserting
the total expression for ÛF (t, t0) into the right hand side of the expression
for the same and obtain

ÛF (t, t0) = 1̂− i
h̄

∫ t

t0

dt′F (t′)B̂(t′−t0)

[
1̂− i

h̄

∫ t′

t0

dt′′F (t′′)B̂(t′′ − t0)ÛF (t′′, t0)

]
.

(2.52)
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Doing this in an iterative manner we obtain what is known as a Dyson
series for the operator ÛF (t, t0)

ÛF (t, t0) = 1̂− i

h̄

∫ t

t0

dt′F (t′)B̂(t′ − t0)+

+ (− i
h̄

)2

∫ t

t0

dt′
∫ t′

t0

dt′′F (t′)B̂(t′ − t0)F (t′′)B̂(t′′ − t0) + ...

+ (− i
h̄

)n
∫ t

t0

dt′
∫ t′

t0

dt′′...

∫ tn−1

t0

dtn×

× F (t′)B̂(t′ − t0)F (t′′)B̂(t′′ − t0)....F (tn)B̂(tn − t0)+
... (2.53)

which allows us to obtain the solution to any order in the perturbation
F (t). To first order it is enough to keep only the first two terms and then
using equation (2.48) we obtain the total time evolution operator to linear
order in the perturbation as

Û(t, t0) = e−
i
h̄Ĥ0(t−t0)

(
1̂− i

h̄

∫ t

t0

B̂(t′ − t0)F (t′)dt′
)
. (2.54)

We will also need its hermitian conjugate which is

Û †(t, t0) =

(
1̂ +

i

h̄

∫ t

t0

B̂(t′ − t0)F (t′)dt′
)
e

i
h̄Ĥ0(t−t0) (2.55)

where we have used that (B̂F )† = B̂F since this quantity appears in the
Hamiltonian which needs to be hermitian.

We are now in a position to calculate the expectation value of operators
when the perturbation is applied. The starting point is the usual expression
for the expectation value

〈Â(t)〉 =
∑
n

Pn〈ψn(t)|Â|ψn(t)〉 =
∑
n

Pn〈ψn|Û †(t, t0) Â Û(t, t0)|ψn〉

(2.56)
and inserting the expressions for time evolution operator from equations
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(2.54) and (2.55) we obtain

〈Â(t)〉 =
∑
n

Pn〈ψn|
(

1̂ +
i

h̄

∫ t

t0

B̂(t′ − t0)F (t′)dt′
)
e

i
h̄Ĥ0(t−t0) Â×

×e−
i
h̄Ĥ0(t−t0)

(
1̂− i

h̄

∫ t

t0

B̂(t′ − t0)F (t′)dt′
)
|ψn〉 =

=
∑
n

Pn〈ψn|e
i
h̄Ĥ0(t−t0)Âe−

i
h̄Ĥ0(t−t0)|ψn〉+

+
∑
n

Pn〈ψn
(
i

h̄

∫ t

t0

B̂(t′ − t0)F (t′)dt′Â(t− t0)−

− i
h̄
Â(t− t0)

∫ t

t0

B̂(t′ − t0)F (t′)dt′
)
|ψn〉−

−(
i

h̄
)2

∫ t

t0

B̂(t′ − t0)F (t′)dt′Â(t− t0)
∫ t

t0

B̂(t′ − t0)F (t′)dt′ (2.57)

where the first term in the last expression is the average of Â in the absence
of the perturbation, and the last term is quadratic in the perturbation and
is dropped since we are considering the linear response. Introducing the
notation

∑
n Pn〈ψn|...|ψn〉 = 〈...〉0, we are left with

〈Â(t)〉 − 〈Â〉0 =
i

h̄

∫ t

t0

dt′ F (t′)〈
(
B̂(t′ − t0)Â(t− t0)−

−Â(t− t0)B̂(t′ − t0)
)
〉0 =

=
i

h̄

∫ t

t0

dt′F (t′)〈
(
B̂(t′ − t0)Â(t− t0)− Â(t− t0)B̂(t′ − t0)

)
〉0 =

= − i
h̄

∫ t

t0

〈[Â(t− t0), B̂(t′ − t0)]〉0F (t′)dt′ (2.58)

Next, we realize that since the average, 〈...〉0, is taken with respect to
the ground state which is time independent we may shift both times in the
commutator above and obtain

〈Â(t)〉 − 〈Â〉0 = − i
h̄

∫ t

t0

〈[Â(t), B̂(t′)]〉0F (t′)dt′ (2.59)

where we have assumed t ≥ t0. Equation (2.59) is an important result as it
allows us to calculate the deviation of the operator Â from its equilibrium
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value due to the applied perturbation. We define the function

χA,B(t, t′) = − i
h̄
〈[Â(t), B̂(t′)]〉0 (2.60)

which is known as a susceptibility or a response function.

We may now rewrite the above result into standard notation. Using our
knowledge that the unperturbed Hamiltonian is time independent we can
perform a change of variables, τ = t− t′, and rewrite equation (2.60) into

χA,B(τ) = − i
h̄
θ(τ)〈[Â(τ), B̂]〉0. (2.61)

and with this definition equation (2.59) becomes

〈Â(t)〉 − 〈Â〉0 =

∫ t−t0

0

χA,B(τ)F (t− τ)dτ. (2.62)

Let us now consider the t0 in equation (2.59) which represents the time
when the perturbation is turned on. We are interested in treating this time
as very far in the past and thus we send t0 → −∞. The final expression
for the deviation of the operator Â is then

〈Â(t)〉 − 〈Â〉0 =

∫ ∞
0

χA,B(τ)F (t− τ)dτ. (2.63)

We will often be interested in the response to a periodic perturbation. In
this case the perturbation can be written as

F (t) = Fωe
−iωt + F ∗ωe

iωt (2.64)

or possibly a sum of such terms. There is however a problem with such a
perturbation and that is that it does not vanish as t → −∞ as required
by the machinery developed above. In order to fix this we need to add the
term eηt to the perturbation, this is equivalent to adding a small imaginary
part iη to the frequency of the perturbation so that it becomes

F (t) = Fωe
−i(ω+iη)t + F ∗ωe

i(ω−iη)t. (2.65)

As long as η is positive this perturbation will always tend to zero at
t → −∞. η is known as a convergence factor and is related to an adi-
abatic switching on of the perturbation. Physically this means that the
turning on of the perturbation happens at a time scale 1/η much longer



2.4 Linear response theory 25

than the period of the perturbation and the memory of the system of the
turning on is erased. In order to ensure that the η is small enough we will
send it to zero η → 0+ in the end of the calculation.

Inserting equation (2.65) into (2.63) we get

〈Â(t)〉 − 〈Â〉0 = − i
h̄

lim
η→0+

∫ ∞
0

dτ〈[Â(τ), B̂]〉0ei(ω+iη)τFωe
−iωt + c.c (2.66)

and defining

χAB(ω) = − i
h̄

lim
η→0+

∫ ∞
0

dτ〈[Â(τ), B̂]〉0ei(ω+iη)τ (2.67)

we write

〈Â(t)〉 − 〈Â〉0 = χAB(ω)Fωe
−iωt + c.c (2.68)

and performing a Fourier transform of both sides we get

〈Â(ω)〉 = χAB(ω) (Fω + F ∗ω) (2.69)

where we have used that χAB(−ω) = χ∗AB(ω). Equation (2.69) repre-
sents the final answer for periodic perturbations and it implies that the
deviation of Â from its equilibrium value oscillates at the same frequency
as the applied perturbation and that the magnitude of the deviation is
determined by the strength of the perturbation. That this dependency
is linear is an effect of us throwing away all higher order terms with the
motivation that if the perturbation F is small then the linear response will
dominate.

2.4.2 External electric field: conductivity and dielectric function

To make things more explicit we now consider an example of linear re-
sponse theory. We will consider the perturbation to be an harmonic elec-
tric field at a single frequency and in this case we may compute the objects
discussed in section 2.1 such as the conductivity and dielectric function.

We stated earlier that the system has a known Hamiltonian in the ab-
sence of the perturbation, we call it Ĥ0. We now couple this Hamiltonian
to an electric field, i.e. the perturbation field. We will here consider only
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longitudinal fields, i.e. fields that can be written as potentials but linear
response theory can be be applied to the more general case of transverse
fields as well. In the case of longitudinal fields the Hamiltonian of the
perturbed system is

Ĥ = Ĥ0 + e

∫
d~r V (~r)n̂(~r) (2.70)

where n̂(~r) =
∑

i δ(~r − ~̂ri) is the electron density operator. The potential
V (~r), which can always be found for longitudinal fields, couples to the elec-
tron density and thus changes the energy in response to the perturbation.

The task now is to compute some macroscopic property, we will chose
the electrical current ~j, and then relate our microscopic expression i.e.
the expression obtained from our linear response treatment, to the macro-
scopic properties in section 2.1. The longitudinal current in response to a
longitudinal vector potential is [35]

~jL =
e

c
χL(q, ω) ~A(q, ω) (2.71)

where ~A is the longitudinal vector potential and χL means current-current
susceptibility. We also know from Ohm’s law that

e~j = σE, (2.72)

where the extra e comes from the fact that we have defined ~j as the current
density instead of the electrical current density. Now, using ~E = 1

c∂t
~A =

iωc
~A we can identify

σ(q, ω) = −ie
2

ω
χL(q, ω). (2.73)

We may in the longitudinal case, using the continuity equation, relate χL
to the density-density response. The continuity equation in its original
form expresses charge conservation as

∂tn+∇ ·~j = 0 (2.74)

where n is the electron density and ~j is the current density. Performing a
Fourier transform we obtain the continuity equation in Fourier space as

ωn = qj (2.75)
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where we have used the fact that we deal with longitudinal fields, ~q || ~j,
so that ~q · ~j=qj. Remembering that the current-current susceptibility is

written as the expectation value of a commutator in the form 〈[~̂j,~̂j]〉0, see
equation (2.67), we can use equation 2.75 and relate

〈[~̂j,~̂j]〉0 =
ω2

q2
〈[n̂, n̂]〉0 (2.76)

meaning that we can relate the susceptibilities as

χL =
ω2

q2
χnn. (2.77)

This expression lets us rewrite the conductivity in equation 2.73 in terms
of the density-density susceptibility as

σ(q, ω) = −ie
2ω

q2
χnn(q, ω). (2.78)

Of course, equations 2.73 and 2.78 are equivalent but we will find it con-
venient to work with the density-density response rather than the current-
current response. The density-density susceptibility is sometimes called
the polarizability and is then denoted Π. We will use this notation in
some of what follows below.

Note that what we have called conductivity above will in the case of 2-
dimensional electron gases become sheet conductivities. This means that
equation (2.11), relating conductivity and dielectric function, does not
hold, it only holds for 3-dimensional gases. In order to determine the two
dimensional dielectric function we turn to the Random Phase Approxima-
tion in the next section.

2.5 Random phase approximation

For a derivation of the RPA dielectric function we refer to Appendix A.
In the present section we will only state the final results and consider the
effects of dimensionality of sheets.

Since we are interested in the graphene response to perturbations it is
important to remember that graphene is 2-dimensional whereas the sur-



28 Theory

rounding space is 3-dimensional. This point might seem trivial but is
actually important to remember and as stated in the end of the previous
section this forbids us to use equation (2.11) to relate conductivity and
dielectric function. It is also important to realize that the perturbing po-
tential is not entirely confined to the graphene but may have an extension
into the surrounding space. The potential will be assumed to have the
harmonic form ei~x·~q−β|z| where ~x and ~q are in the graphene plane , z is the
direction perpendicular to the plane and β =

√
q2 − ω2/c2. This describes

a wave propagating in the graphene plane and is exponentially decaying
in the z-direction.

The RPA result for the dielectric function in a graphene sheet is, see
equation (A.18),

ε(q, ω) = 1 +
2πe2β

q2εr
Π(q, ω) (2.79)

where εr is the relative permitivity of the surrounding medium and the
polarizability Π(q, ω) is given by equation (A.20). In the case of different
media on either side of the graphene we choose εr as the average of the
two, i.e. εr = ε1+ε2

2 .

Notice that if q >> ω/c then β ≈ q and the result for the dielectric
function becomes

ε(q, ω) = 1 +
2πe2

qεr
Π(q, ω) (2.80)

which is usually referred to as the 2-d dielectric function.

Equation (2.79) is the RPA result for the dielectric function of a surface
but the simplified version in equation (2.80) is very often used instead.
The reason is that very often when considering plasmons in graphene the
two different dielectric functions coincide, i.e. q >> ω/c, and the form in
(2.80) is more convenient to work with analytically.

2.6 Plasmons and related quantities

The simplest way to describe plasmons is to say that they are collective
charge density oscillations in a medium. As this will produce a net charge



2.6 Plasmons and related quantities 29

separation it means that there will also be an associated electric field to
the density oscillation. Under the right conditions this oscillation becomes
self-sustaining and may propagate in the medium.

An important remark is that there are different kinds of plasmons and
the nomenclature is not entirely well defined. There are localized plasmons,
transverse plasmons and longitudinal plasmons. There is also a distinction
between bulk plasmons and surface plasmons. The transverse and longitu-
dinal plasmons are often referred to as plasmon-polaritons where the word
”polariton” means that the plasmon is a mixture, or a hybridization, of
light and charge. Localized plasmons usually occur around metal objects
deposited on metallic surfaces and are often treated within Mie theory. We
will not consider such plasmon modes.

Transverse plasmons are propagating with the electric field polarized
perpendicular to the propagation direction. In this sense they behave
much like photons and it turns out that the transverse plasmons and their
behavior play a significant role in the behavior of metals and their reflective
properties. The transverse plasmons are sometimes called Transverse Elec-
tric (TE) modes. Longitudinal plasmons have an associated electric field
that is parallel to the direction of propagation. Such modes are sometimes
called Transverse Magnetic (TM) modes since their associated magnetic
field is perpendicular to the direction of propagation.

2.6.1 Surface plasmon polaritons in metal-dielectric interfaces

The conventional surface plasmon-polaritons exist at the interface between
a metal and a dielectric. Let us consider the case of two half spaces where
the half-space z > 0 is a dielectric (insulating) material and the half space
z < 0 is a metal. In order to treat this case we combine equations (2.2)
and (2.3) we get the equation

∇×∇× ~E = −µ0
∂2 ~D

∂t2
(2.81)

which can be rewritten into (c=1)

∇2 ~E − ε∂
2 ~E

∂t2
= 0 (2.82)
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where we have assumed that ε(x) does not vary too much over one wave-
length in distance. Rather than spending much time on analyzing the
possible solutions to equation (2.82) and its analogue for the magnetic
field around the metal-dielectric interface we will simply state the result
of such an analysis and refer to [31] for further details.

The analysis considers modes that are assumed to be propagating at the
interface along the x-direction with wave vector k and we furthermore con-
sider the mode to be exponentially decaying in the z-direction into both
the metal and the dielectric. Such a configuration seems natural for a
mode confined at the interface. Two important results of such an analysis
are worth pointing out. First, it turns out that confined surface modes can
only exist at interfaces between materials with opposite signs of the real
part of their dielectric functions. This is why we in our treatment initially
assumed a metal-dielectric interface. Metals exhibit negative real part of
the dielectric functions whereas dielectrics have a real positive dielectric
constant. Second, the interface modes can only exist with electric field
parallel to the propagation direction and magnetic field perpendicular to
it. Such modes are referred to as TM (transverse magnetic) or longitudinal
modes (the electric field is longitudinal).

The final expression for the dispersion of the longitudinal modes at the
interface is

k = ω

√
ε1(ω)ε2(ω)

ε1(ω) + ε2(ω)
. (2.83)

As stated earlier we have the requirement of opposite signs of the real
parts of the dielectric functions in order to have confined modes. Looking
at equation (2.83) we see that this implies that in order for the mode to
be propagating, i.e. k is real, we need Re ε1(ω) + Re ε2(ω) < 0. The
dispersion of the interface modes will be considered further in section 2.7.

2.6.2 Surface plasmon polaritons in two-dimensional sheets

Plasmons in two-dimensional sheets, e.g. graphene, are electron density
oscillations in the graphene sheet rather than being interface modes. In
contrast to the interface modes considered in the previous section there is
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no constraint on the properties of the surrounding space. However, usu-
ally the graphene sheet is deposited on top of a dielectric substrate and
the other side is subjected to air or the graphene could be ”sandwiched”
between two dielectric substrates.

Following [26] we consider the longitudinal mode in the graphene, sur-
rounded by half spaces with dielectric constants with ε1 and ε2 respectively.
Assuming as previously that we have modes that decay away from the
graphene sheet and now also including the conductivity of the graphene
when matching boundary conditions of the Maxwell equations we arrive
at [26]

q =
ε1 + ε2

2

2iω

σ(q, ω)
(2.84)

where q is the in-plane wave vector. Inserting the definition of the conduc-
tivity from equation (2.78)

σ(q, ω) = −iωe
2

q2
Π(q, ω) (2.85)

we arrive at the equation

ε1 + ε2
2

+
e2

2q
Π(q, ω) = 0. (2.86)

This resembles our definition of the dielectric function in equation (2.80),
but is lacking a factor 4π in front of the Π(q, ω). We attribute this to dif-
ferent normalization conventions in the Fourier transforms and k−space
integrals. So, inserting an extra factor of 4π, this is nothing but the state-
ment that the 2-d dielectric function from equation (2.80) equals zero, i.e.

ε(q, ω) = 0. (2.87)

Solving equation (2.87) we obtain the plasmon dispersion ωp(q). In section
2.7 we will investigate the plasmon dispersion for some different models of
the electron gas.

2.6.3 Wave localization

A common feature for the solutions to equation (2.83) and equation (2.87)
is that they will have a shorter wavelength than free space light at the same
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frequency. Since the wavenumber k = 2π
λ is inversely proportional to the

wavelength, shorter wavelength is equivalent to having larger wavenumber.

Wave localization is the reason for the need of sub-wavelength pattern-
ing of the surface where we want to excite plasmons. The sub-wavelength
patterning allows for the interaction between the modes with different
wavelength that would otherwise be strongly suppressed due to the big
momentum mismatch.

The wave localization is conveniently quantified by λ0/λp which mea-
sures how many wavelengths of the plasmon mode that can fit in the size
of the free space wavelength at the same energy. An interesting property
of wave localization is that it usually comes together with an enhancement
of the electric field strength. As we discussed in the introduction this can
lead to large enhancements of signatures that are otherwise too weak to
measure.

2.7 Two-dimensional electron gases

Drude gas

The simplest type of electron gas is the Drude gas in which the electrons do
not interact amongst themselves but only interact with impurities and/or
the lattice that surrounds them and the typical time between two such
interactions is τ . τ is called the relaxation time of the gas and its inverse
γ = 1/τ is the collision frequency. In the Drude model the electrons are
subject to an external electric field that applies a force on the electrons
and they are also damped with the frequency γ. The equation of motion
for the electrons is

m~̈x = −mγ~̇x− e ~E (2.88)

and assuming a common harmonic time dependence e−iωt we get

−mω2~x = imγω~x− e ~E (2.89)

which has the solution

~x =
e

m(ω2 + iγω)
~E. (2.90)
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The macroscopic polarization field is given by ~P = −ne~x and we have
a linear response ~P = χ~E so that χ = − ne2

m(ω2+iγω) . We also know that
ε = 1 + χ so that

ε(ω) = ε0 −
ne2

m(ω2 + iγω)
. (2.91)

The plasma frequency of the free electron gas is defined as ω2
p = ne2

ε0m
,

inserting this we get

Re ε(ω)/ε0 = 1−
ω2
p

ω2 + γ2
(2.92)

Im ε(ω)/ε0 =
ω2
pγ

ω(ω2 + γ2)
. (2.93)

We now turn to the case of negligible damping and the dielectric constant
becomes

ε(ω)/ε0 = 1−
ω2
p

ω2
. (2.94)

Let us recall the discussion about interface plasmons in section 2.6. We
will assign the dielectric function in equation (2.94) to the metal in the
half space z < 0 and for simplicity we will use air as the insulator with
which the metal-dielectric interface is created. Inserting this into equation
(2.83) we obtain two positive frequency solutions for every wave vector k.
In figure 2.2 we plot both frequency branches versus wave vector k and we
also add the light line ω = k.

Figure 2.2 shows two modes, since k = 2π
λ the red, high energy mode

has a longer wavelength than the free space light at the same frequency.
Correspondingly, the blue mode has a shorter wavelength than the free
space light for any given frequency. Figure 2.3 shows the wave localization
for the confined mode (blue line). We see in the figure that the localiza-
tion seems to increase as we increase the wavenumber. However, this is
an effect of our assumption of no imaginary part (losses) of the dielectric
function. Including losses the confinement would at some point exhibit a
maximum and then decrease. Also, in figure 2.2 we see that the group
velocity ∂ω

∂k approaches zero when the confinement is large, meaning that
these modes eventually are not propagating at all but are stationary modes
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Figure 2.2: The two positive frequency branches for the interface modes between a dielectric and a metal
described by the simple Drude dielectric function. Also plotted in the middle green line is the light line
ω = k.

at the interface.

Parabolic two-dimensional electron gas

We now turn to a more microscopic picture and consider a 2-dimensional
electron gas with parabolic dispersion and with only one band. Even
though real systems often will contain multiple bands and thus also have
interband transitions, which are of course absent in the single band model,
it is nevertheless instructive to investigate the simplest case.

The unperturbed Hamiltonian for massive electrons is

Ĥ0 =
p̂2

2m
(2.95)

where m is the effective band mass and need not be the bare electron mass.
The 2-dimensional dielectric function for the parabolic band at T = 0 was
first calculated by Stern [36] in 1967 and the calculation can be found
in Appendix C of this thesis. The 2-dimensional dielectric function is
sometimes referred to as the 2-dimensional Lindhard function after Jens
Lindhard who first computed the 3-dimensional counterpart in 1954 [37].
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Figure 2.3: The wave localization of the confined mode in figure 2.2.

From [36] we also get that the long wavelength (small k) plasmon dis-
persion for the 2DEG is

ωp =

√
2πe2nk

ε∗rε0m
(2.96)

where ε∗r = (ε1+ε2)/2 is the average of the relative permitivity of the media
surrounding the 2DEG, m is the effective band mass and n is the electron
density. Notice the ω ∝

√
k behavior that is typical for 2-dimensional

plasmons and also the dependence on
√
n.

Dirac two-dimensional gas

The physics of the two dimensional Dirac electron gas was treated in sec-
tion 2.3 and we here only reprint the Hamiltonian for a single valley and
single spin, equation (2.29)

ĤD =

(
0 kx − iky

kx + iky 0

)
. (2.97)

This Hamiltonian describes particles with a linear dispersion relation and
has a two band structure that touches at zero energy. The band dispersion
is ε~k,s = svF |~k| where s = {+,−} is the band index and denotes either
the valence band (-) or the conduction band (+). Performing the same
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Figure 2.4: The plasmon dispersion in graphene for three different dielectric environments. Solid lines
are full numerical solutions and the dashed lines are the long wavelength solutions from equation (2.98).
All cases have vacuum on one side of the graphene, the other side is vacuum (blue lines), dielectric with
εr = 4 (red lines) and dielectric with εr = 10 (green lines). The black dashed lines represent a triangle
within which the imaginary part of the polarizability is zero and the plasmons are undamped.

calculation as for the parabolic 2DEG but now with the linear dispersion
in the polarizability the answer at T = 0 can be found in Appendix D.
This calculation was first performed in [20, 21].

Performing an expansion of Π(q, ω) at small k and solving the plas-
mon condition, equation (2.87), we obtain the long wavelength plasmon
dispersion

ωp =

√
e2εFk

2πε∗rε0
=

√
h̄vFe2

√
nk

2
√
πε∗rε0

, (2.98)

see appendix D. Here ε∗r = (ε1 + ε2)/2 is the average of the relative permi-
tivity of the surrounding media. Comparing this with the long-wavelength
(small k) answer for the 2DEG plasmons in equation (2.96) we see that
they both are proportional to

√
k but the density dependence is for the

Dirac case ωp ∝ n1/4 instead of ωp ∝
√
n as in the 2DEG case.

Figure 2.4 shows the numerical dispersion, full lines, and the long wave-
length dispersion from equation (2.98) (dashed lines) for three different
dielectric environments (see figure caption). It is clear that the analytic
plasmon dispersion is only valid at small k/kF and for higher values of
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Figure 2.5: The wave localization in graphene obtained from the numerical solutions for the three
dielectric environments in figure 2.4. All cases have vacuum on one side of the graphene, the other
side is vacuum (blue line), dielectric with εr = 4 (red line) and dielectric with εr = 10 (green line).

k/kF there are clear deviations from the numerical results. Interestingly
the deviation depends on the dielectric environment and at some value
of ε∗r the analytic expression crosses over from mainly overestimating the
energy (blue dashed line) for a certain k/kF to instead mainly underesti-
mating the energy (green dashed line) of the plasmon.

From the dispersion curves shown in figure 2.4 it is possible to com-
pute the wave localization obtained in graphene. This is shown in figure
2.5. Comparing with the localization for the interface plasmons within
the Drude model, see figure 2.3, we see that we can obtain much larger
localization using the graphene plasmons. In the interface plasmons the
localization is of order 10 whereas in graphene the localization is of order
100, one order of magnitude in difference.





Chapter 3

Scattering Results

In this chapter we consider a graphene sheet with nanostructuring on top,
to create an in-plane lattice constant, depicted in figure 3.4. As alluded
to previously in the thesis, the nanostructuring is necessary to allow plas-
mon excitation in the graphene surface. Using the scattering results from
section 2.2 together with the graphene conductivity from section 2.6 we
may investigate the reflection, transmission and absorption of a graphene
surface.

We start out by briefly considering a graphene surface without any
nanostructuring, this can be thought of as k/kF = 0. This is because we
are considering normal incidence of light so the wave vector of the light is
perpendicular to the surface, and k denotes in-plane momentum. Figures
3.1-3.3 show the reflection, transmission and absorption of an ungrated
graphene surface. Our results agree with those in [38]. The sheet is reflec-
tive for very low energies and then becomes almost perfectly transmissive.
At twice the Fermi energy it becomes possible to excite electron-hole pairs
that may absorb energy, see figure 1.1. This leads to the non-zero ab-
sorption and we get a corresponding lowering of the transmission while
the reflection remains low. Notice that we reproduce the experimentally
verified value of 2.3% absorption.

We now proceed to investigate light scattering of a nanostructured
graphene surface.
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Figure 3.1: Reflection of an ungrated and suspended
graphene sheet.
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Figure 3.2: Transmission of an ungrated and sus-
pended graphene sheet.
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Figure 3.3: Absorption of an ungrated and sus-
pended graphene sheet. The dashed line is 2.3% .

3.1 Light scattering results of a nanostructured graphene sur-
face

An illustration of a graphene sheet with nanostructuring is shown in figure
3.4. Such a nanostructure is called a grating, the distance d in the figure
is called the grating distance and should match the wavelength of the
plasmons. The grating distance is related to the induced momentum via
[31]

k =
2π

d
. (3.1)

In order to investigate the light scattering properties of a graphene sheet
with nanostructuring we make vertical cuts in the dispersion plots, see fig-
ures 3.8, 3.12 and 3.16. Physically, one such cut means that we fix the grat-
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Figure 3.4: A nanostructured graphene sheet that is suspended. This is a reprint of figure 1.2 in the
introduction.

ing distance and the Fermi energy 1 and making several such cuts means
that we are considering several physical implementations (Fermi energy
and grating distance) for the cases of suspended graphene and graphene
on the two different dielectric substrates. We point out that the resonances
occur when the energy cut crosses the plasmon dispersion. We are always
considering normal incidence of the light.

We will see that at zero temperature, which we are considering, the
relevant energy scale for the light scattering behavior at the plasmon reso-
nance is the crossing of the black dashed triangle in the dispersion plots in
figures 3.8, 3.12 and 3.16. This triangle signifies the transition between the
region without particle-hole damping of the plasmon (inside triangle) and
the region with particle-hole damping (outside triangle). Inside the trian-
gle there is an absence of damping from particle-hole excitations because
the excitation of such states is forbidden due to energy and momentum
conservation.

3.1.1 Suspended graphene

The first case we consider is light scattering from a suspended graphene
sheet with vacuum on both sides. Figures 3.5-3.7 show the light scattering
results, the differently colored lines correspond to the cut with the same
color in figure 3.8. We point out the quite obvious fact that in the absence
of the graphene sheet (and grating) the transmission should be unity. This

1Actually we fix the ratio k/kF = 2πvF
dεF

so it is d · εF that is fixed.
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is also what we observe in the results, except when we are close to reso-
nance with the plasmons. When the plasmon resonance lies inside the
triangle in figure 3.8 (blue dashed cut and yellow dashed cut) we observe
an enhancement of the reflection and outside the triangle the reflection
peaks are suppressed and we get some absorption (green dashed cut and
red dashed cut). This absorption is quite high in a narrow energy range.
When the plasmon resonance is located far from the triangle we see that
the transmission on the resonance is getting larger and we seem to regain
full transmission even at the plasmon resonance.
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Figure 3.5: Reflection of suspended graphene.
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Figure 3.6: Transmission of suspended graphene.
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Figure 3.7: Absorption of suspended graphene.
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Figure 3.8: Dispersion cuts for suspended graphene.

3.1.2 Graphene on dielectric substrate with εr = 4

We now consider the graphene to be deposited on top of a dielectric sub-
strate with εr = 4. In contrast to the suspended case the transmission is
not unity in the absence of the graphene. Using our formulas for transmis-
sion and reflection in section 2.2 with no graphene we obtain for normal
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incidence

R =
1

9
≈ 0.11 (3.2)

T =
8

9
≈ 0.89 (3.3)

and the absorption in this case must be zero. Figures 3.9-3.11 show the
light scattering results for the case of the graphene present. The colored
lines correspond to the cuts with the same color in figure 3.12. We see
that off resonance we obtain the values in equations (3.2) and (3.3) for the
reflection and transmission.

The behavior in figures 3.9-3.11 is much the same as the suspended case
on resonance, with peaks in the reflection and dips in the transmission.
There are also peaks in the absorption when the plasmon resonances are
outside of the triangle (green dashed cut and red dashed cut).

3.1.3 Graphene on dielectric substrate with εr = 10

For the case of a substrate with εr = 10 we get that without the graphene
we have

R ≈ 0.27 (3.4)

T ≈ 0.73. (3.5)

In figures 3.13-3.15 we show the scattering results with the nanostructured
graphene present. The colored lines correspond to the cuts with the same
color in figure 3.16. The results behave more or less in the same manner
as the previous case for graphene on a dielectric substrate.

3.2 Investigation of scattering resonances

In the previous section we investigated scattering coefficients for energy
cuts at some specific values of k/kF . We clearly saw that the scattering
behavior changed between when the plasmon resonance was inside the
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Figure 3.9: Reflection of graphene on a substrate
with εr = 4.
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Figure 3.10: Transmission of graphene on a substrate
with εr = 4.
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Figure 3.11: Absorption of graphene on a substrate
with εr = 4.
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Figure 3.12: Dispersion cuts for graphene on a sub-
strate with εr = 4.

triangle and when the resonance was outside it. In order to investigate the
scattering in more detail we here plot the scattering coefficients along the
plasmon dispersion, i.e. we fix the relationship between ω and k so that
we are always on the plasmon dispersion curve. This is done in order to
look at the maximum plasmon response. We also look at the widths of the
resonance peaks along the dispersion.

3.2.1 Scattering coefficients along the plasmon dispersion

Figures 3.17-3.19 show the scattering coefficients along the plasmons dis-
persions, i.e. the peak/dip heights, for suspended graphene, graphene on a
substrate with εr = 4 and εr = 10. In these figures we clearly see that the
plasmons exhibit three distinctively different behaviors. For low energies
the plasmon makes the sheet very reflective on resonance but as the energy
of the plasmon increases to just cross out of the triangle we obtain a rather
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Figure 3.13: Reflection of graphene on a substrate
with εr = 10.
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Figure 3.14: Transmission of graphene on a substrate
with εr = 10.
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Figure 3.15: Absorption of graphene on a substrate
with εr = 10.
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Figure 3.16: Dispersion cuts for graphene on a sub-
strate with εr = 10.

large absorption of up to 50%. As we further increase the energy the ab-
sorption quickly subsides and we see that on resonance the transmission
becomes large. This transmissive behavior is the same behavior as the
sheet has when we are far off resonance, this implies that as we increase
the energy of the plasmons to lie far above the Fermi energy, the effect
of the plasmons becomes small. In fact, we can see in figures 3.17-3.19
that around ω/EF = 1.5 the reflection, transmission and absorption on
resonance tend towards the off-resonant values.

3.2.2 Resonance widths

Figures 3.20-3.22 show the widths of the plasmon resonance peaks as a
function of the peak position in frequency (plasmon resonance frequency).
We always measure the full width at half maximum (FWHM), we denote it
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Figure 3.17: Reflection along the plasmon disper-
sion in graphene. Suspended graphene (blue line),
graphene on substrate with εr = 4 (yellow) and
graphene on substrate with εr = 10 (green).
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Figure 3.18: Transmission along the plasmon disper-
sion in graphene. Suspended graphene (blue line),
graphene on substrate with εr = 4 (yellow) and
graphene on substrate with εr = 10 (green).
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Figure 3.19: Absorption along the plasmon disper-
sion in graphene. Suspended graphene (blue line),
graphene on substrate with εr = 4 (yellow) and
graphene on substrate with εr = 10 (green).

with γ. In all three figures we observe a sharp transition that represent the
transition from the inside of the triangle to the outside. We see that inside
the triangle (low energies) the reflection width and transmission width are
the same, this comes from the the fact that in this region R + T = 1 so a
peak in reflection must come together with an equal dip in transmission.
Figure 3.22 shows that inside the triangle the absorption width is zero,
this is natural since there is no absorption peak at all in this case, this
can be seen in figure 3.19 where the absorption is exactly zero for energies
inside the triangle.

Inside the triangle the interpretation we make is that the width rep-
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resents the coupling between the electromagnetic field and the plasmon
resonance. This interaction is created by the presence of the grating that
allows for a momentum matching between the incoming radiation and the
plasmon. When the plasmon dispersion crosses out from the triangle we
obtain a second width, the absorption width. This new decay channel rep-
resents plasmon decay into electron hole pairs, as previously stated this
can only happen outside the triangle.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.00

0.01

0.02

0.03

0.04

0.05

ωp/EF

γ
/E

F

Figure 3.20: Reflection peak width of graphene. Sus-
pended graphene (blue line), graphene on substrate
with εr = 4 (yellow) and graphene on substrate with
εr = 10 (green).
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Figure 3.21: Transmission peak width of graphene.
Suspended graphene (blue line), graphene on sub-
strate with εr = 4 (yellow) and graphene on sub-
strate with εr = 10 (green).
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Figure 3.22: Absorption peak width of graphene.
Suspended graphene (blue line), graphene on sub-
strate with εr = 4 (yellow) and graphene on sub-
strate with εr = 10 (green).

Using the obtained values for the widths of the resonance peaks we may
also compute the Q-factor of the resonances. We have chosen to work with
the reflection in this case, using instead the transmission we would obtain
a very similar result. Figure 3.23 shows the Q-factor as a function of the
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Figure 3.23: The Q-factor of the plasmon resonances obtained in the reflection. Suspended graphene
(blue line), graphene on dielectric substrate with εr = 4 (yellow line) and graphene on dielectric substrate
with εr = 10 (green line).

resonance frequency for the three cases we have considered. The definition
of the Q-factor that we have used is

Q =
ωr
∆ω

(3.6)

where ωr is the resonance frequency and ∆ω is the resonance width. The
Q-factor is a measure of the energy loss per oscillation cycle in the system.
Small Q-factor means large energy loss per cycle and large Q-factor means
small energy loss per cycle. Figure 3.23 shows that the smallest energy
loss per oscillation cycle (largest Q-factor) is obtained just before crossing
out of the triangle. Outside the triangle the appearance of the new decay
channel into electron-hole pairs is the reason for the rapid lowering of the
Q-factor in this region. The figure also clearly shows that the substrate
with the highest dielectric constant gives the largest Q-factor.



Chapter 4

Summary and Outlook

In summary, this thesis has covered the necessary basic theory for in-
vestigating graphene plasmons. Having done so, we have tried to make
comparisons with conventional interface plasmons at metal-dielectric in-
terfaces. The graphene plasmons were treated within the Random Phase
Approximation and the dispersion relation was investigated both numer-
ically and analytically. We computed and highlighted the large wave lo-
calization obtained from the graphene plasmons. This is compared to the
more modest localization in the metal-dielectric interface plasmons.

We treated a general theory of linear response and applied it to the
electron gas and its conductivity. The conductivity together with the Fres-
nel scattering theory allowed us to investigate light scattering properties
of graphene sheets in different dielectric environments. In chapter 3 we
showed the scattering results for a nanostructured graphene sheet in dif-
ferent dielectric environments. We discussed the coupling between the
plasmons and the electromagnetic field and also discussed the plasmon
resonance Q-factor.

There are numerous possible extensions to the work presented here. On-
going at the moment is the generalization to finite temperatures, all the
results shown in the thesis are obtained at zero temperature. Graphene
plasmons are known to exist at room temperature and depending on the
doping level of the graphene the energy of the plasmons can be compara-
ble to kBT for room temperature i.e. ≈ 26 meV. This implies that finite
temperature can in some cases play a considerable role, especially for low
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doping levels.

Another possible extension is to instead of monolayer plasmons consider
bilayer graphene plasmons. The plasmons in bilayer are quite different,
less studied in the literature and have more freedom in the sense of model
parameters. For example, it is possible to apply an electric field perpen-
dicular to the bilayer surface and open up a gap in the bilayer graphene
band diagram. This is in stark contrast to the intrinsic ungapped nature
of monolayer graphene considered in this thesis.
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Appendix A

Derivation of the RPA dielectric
function using the method of
self-consistent fields

In this note we go through the necessary steps in order to arrive at the
RPA result for the dielectric function using the method of self consistent
fields. This was first done in [39] which we will follow rather closely in
what follows below.

A.1 Electrodynamics

In order to compute the dielectric function or the polarizability within the
self consistent field method, or any other method for that matter, we need
to know how it is defined. Whenever we are disturbing a system with an
electric field it responds to linear order with a polarization field created
by the rearranging of charges in the material, the relationship between
applied electric field and polarization field is

4πP (q, ω) = (ε(q, ω)− 1)E0(q, ω). (A.1)

Here E0 is the externally applied field and P is the polarization field. We
know from Maxwells equations that the polarization field is related to the
screening charge via ∇ · P (x, t) = ens(x, t) and we know that E(x, t) =
−∇V (x, t). Using Fourier analysis we can arrive at iqP (q, ω) = ens(q, ω)
and E0(q, ω) = −iqV0(q, ω) which we insert into equation (A.1) and get

4πe

q
ns(q, ω) = (ε(q, ω)− 1) qV0(q, ω). (A.2)
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This can be rewritten into

ε(q, ω) = 1 +
4πe

q2

ns(q, ω)

V0(q, ω)
= 1 +

Vs(q, ω)

V0(q, ω)
=
VTot(q, ω)

V0(q, ω)
(A.3)

where in the last step we used that 4πe/q2 is the Green’s function for
the Poisson equation so that Vs(q, ω) = 4πe

q2 ns(q, ω), also VTot = V0 + Vs.
Equation (A.3) tells us that the dielectric constant is determined by the
screening potential of the system divided by the applied potential. The
aim of the next section is thus to find the screening potential induced by
the external potential.

A.2 Self consistent field method

The basic idea here is to use a density matrix for the system in its ground
state ρ0 and allow it to be perturbed so that the full density matrix is
ρ = ρ0 + ρ1. The fundamental equation that governs the time evolution of
the density matrix is the Liouville equation (von Neumann equation)

ih̄∂tρ = [H, ρ]. (A.4)

The Hamiltonian in our case is H = H0 + eV where ih̄∂tρ0 = [H0, ρ0]
i.e. the ground state satisfies the Liouville equation. Now, turning on the
perturbation V in the Hamiltonian we must allow the density matrix to
deviate from its ground state ρ0 so we add the perturbed part ρ1 and insert
into equation (A.4) and get

ih̄∂tρ0 + ih̄∂tρ1 = [H0 + eV, ρ0 +ρ1] = [H0, ρ0] + [H0, ρ1] + [eV, ρ0] + [eV, ρ1].
(A.5)

Since we are only interested in the linear response of the system we ne-
glect the term [eV, ρ1] which is the potential correction from the density
response, this would be a higher order term. We also know that H0 and
ρ0 satisfy equation (A.4) so these terms will cancel each other in our ex-
pression. Thus we are left with

ih̄∂tρ1 = [H0, ρ1] + [eV, ρ0], (A.6)

we bracket this equation between 〈k| and |k + q〉 and obtain

ih̄∂t〈k|ρ1|k + q〉 = 〈k|[H0, ρ1]|k + q〉+ 〈k|[eV, ρ0]|k + q〉. (A.7)
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We know the action of the ground state Hamiltonian and density matrix
on the state vectors i.e. H0|k〉 = εk|k〉 and ρ0|k〉 = fk|k〉. Expanding the
commutators and using these equalities we are left with

ih̄∂t〈k|ρ1|k+q〉 = (εk − εk+q) 〈k|ρ1|k+q〉+(fk+q − fk) 〈k|eV |k+q〉. (A.8)

The idea is now to think of V in this equation as an external perturba-
tion, let us call this external perturbation V0 and we will assume it has a
harmonic time dependence eiωt. Now, assuming that ρ1 acquires the same
time dependence, which is quite natural (at least in the linear response
regime), we obtain

〈k|ρ1|k + q〉 =
fk+q − fk

εk+q − εk − h̄ω
eV0(q), (A.9)

where V0(q) = 〈k|V0|k+ q〉. This equation tells us that the response of the
system, ρ1, is proportional to the external perturbation. Thus, by applying
an external perturbation we automatically obtain a system response. We
know that this system response will in turn generate its own potential (a
screening potential), let us call this new potential Vs. We know that a
potential is generated by a density and this is governed by the Poisson
equation

∇2V (~x) = −4πen(~x), (A.10)

so we need to convert the density matrix response ρ1 into a screening
electron density ns that we then can use to obtain the screening potential.
The way to obtain the electron density is through the formula

ns(~x) = Tr{ρ1(~x, ~x)} = Tr{〈~x|ρ1|~x〉} =

=

∫
dk

∫
dk′〈x|k〉〈k|ρ1|k′〉〈k′|x〉 =

∫
dk

∫
dk′ei(k−k

′)x〈k|ρ1|k′〉.

(A.11)

Now, consider the Fourier transform of the electron density i.e.

ns(~q) =

∫
dxeixqns(~x) =

∫
dx

∫
dk

∫
dk′ei(k+q−k′)x〈k|ρ1|k′〉 =

=

∫
dk

∫
dk′δ(k + q − k′)〈k|ρ1|k′〉 =

∫
dk〈k|ρ1|k + q〉. (A.12)

Also, a convenient way of solving the Poisson equation is by using Green’s
functions

Vs(~x) =

∫
ddx′G(x− x′)n(~x′) (A.13)
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where the superscript d is signaling that we need to remember the dimen-
sionality of the problem and n(x′) is the electron density (we use n instead
of the more conventional ρ to avoid confusion with the density matrix).
When Fourier transforming the above equation, due to the properties of
the convolution under the transform, we get the simple looking identity

Vs(~q) = Gd(q)n(~q) (A.14)

where the d-superscript now sits on the Green’s function. See Appendix
B for a treatment of Green’s functions. Using the 3-dimensional Green’s
function and inserting equation (A.12) for the electron density we get

Vs(q) =
4πe

q2

∑
k′

〈k′|ρ1|k′ + q〉. (A.15)

So it turns out that the screening potential is proportional to the sum over
all k vectors of ρ1 with q fixed. We now remember that we already have
an expression for 〈k|ρ1|k+q〉, namely equation (A.9). We insert (A.9) into
the expression for the screening potential, equation (A.15), and obtain

Vs(q) =
4πe2

q2

∑
k

fk+q − fk
εk+q − εk − h̄ω

V0(q). (A.16)

This is then the linear response of the system to the external perturbation
V0. Now, looking back to equation (A.3) we easily see that

ε3d(q, ω) = 1 +
4πe2

q2

∑
k

fk+q − fk
εk+q − εk − h̄ω

(A.17)

which represents the answer for 3-dimensional quantities. We will be in-
terested in quantities confined to a surface and thus we use the Green’s
function from equation (B.10) representing the Green’s function of a con-
fined potential on the surface and decaying in the direction perpendicular
to the surface. With this choice inserted as Gd(q) we get the dielectric
function

εβ(q, ω) = 1 +
2πe2β

q2

∑
k

fk+q − fk
εk+q − εk − h̄ω

(A.18)

or if we would have chosen the 2d Green’s function we would get the
dielectric function
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ε2d(q, ω) = 1 +
2πe2

q

∑
k

fk+q − fk
εk+q − εk − h̄ω

. (A.19)

We define the polarizability, Π(q, ω), as

Π(q, ω) =
∑
k

fk+q − fk
εk+q − εk − h̄ω

(A.20)

and here the expression is the same regardless of dimensionality (even
though we need to remember how many dimensions the sum runs through).
The polarizability is the function that ”dresses” the bare Coulomb inter-
action, if the polarizability is 1 then the interactions are completely un-
screened and if it is 0 it is completely screened.





Appendix B

Green’s function for quantities
confined to surfaces

B.1 Bulk Green’s function for the Poisson equation

The ”normal” bulk Green’s function for the Poisson equation is easily ob-
tained. We start by writing the equation for the Green’s function in a
standard manner as

∇2G(~r) = −4πeδ(~r). (B.1)

Then, inserting that G(~r) and δ(~r) can be written as their Fourier trans-
forms we obtain

∇2

∫
d3kG(k)ei

~k·~r = −4πe

∫
d3kei

~k·~r (B.2)

and letting the derivative act under the integration we get

−
∫
d3kk2G(k)ei

~k·~r = −4πe

∫
d3kei

~k·~r (B.3)

which immediately gives

G(k) =
4πe

k2
(B.4)

which could be called the 3d Green’s function, bulk Green’s function or
simply Green’s function for the Poisson equation.

B.2 Surface Green’s functions for the Poisson equation

Quantities that are confined to a surface have a wave form of the type
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ei~x·~q−β|z| (B.5)

with β =
√
q2 − ω2/c2 being the decay parameter in the z-direction.

Using the Poisson equation and remembering that the charge distribu-
tion in graphene is confined to a single sheet and is essentially a delta
function in the z-direction we get the differential equation

∇2V (~x, z, t) = −4πe n(~x, t)δ(z) (B.6)

where the graphene sheet is the plane z = 0, V is the potential and n(~x, t)
is the charge density in the graphene plane. We seek the Green’s function
to this equation and in order to make sense of this equation we need to
integrate the z-direction and we get∫ ∞

−∞
dz∇2G(~x) = −4πe

∫ ∞
−∞

dzδ(~x)δ(z) (B.7)

and inserting the Fourier transforms of G(~x) and δ(~x) we obtain∫ ∞
−∞

dz(∇2
~x +∇2

z)

∫
d2qG(~q)ei~q·~x−β|z| = −4πe

∫
d2qei~q·~x (B.8)

where we also performed the trivial integration of the right hand side.
The integral over ∇2

z is only going to be a boundary term that vanishes at
infinity and performing the z integral and applying ∇2

~x we get

−
∫
d2qG(q)ei~q·~x

2q2

β
= −4πe

∫
d2qei~q·~x (B.9)

which gives

G(q) =
2πeβ

q2
. (B.10)

Notice that if q >> ω/c then β ≈ q and the Green’s function becomes

G(q) =
2πe

q
(B.11)

which is usually referred to as the 2-d Green’s function. This name comes
from the fact that the wave is in this case confined to the surface and
decays rapidly in the perpendicular direction.
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Calculation of the polarizability
Π(q, ω) for a 2DEG with parabolic
dispersion at zero temperature

This note presents a thorough calculation of the polarizability for a 2-
DEG with parabolic dispersion first published by Stern in [36]. The first
section contains important formulas and identities used in the calculation
and section 2 contains the actual calculation of the polarizability. Section
3 presents the results in their final form.

C.1 Preliminaries

The main object of discussion in this note is the polarizability from which
one can derive numerous properties of the system in question.

C.1.1 Formulas and Identities

The expression for the polarizability is [40][41]

Π(q, ω) =
1

Ω

∑
~k

G~k G~k+~q (C.1)

where G is the non-interacting Green’s function and Ω is the normalization
area. This expression can be rewritten into [36][40][41]
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Π(q, ω) =
1

Ω
lim
η→0

∑
~k

f0(ε~k)− f0(ε~k+~q)

ε~k+~q − ε~k − h̄ω − iη
. (C.2)

The goal of this note is to calculate this object and simplify as far as pos-
sible. We will make use of some identities and theorems from complex
calculus and we also make use of certain primitives, these are listed below.

Whenever we have a limiting procedure on an integral and it takes the
form

lim
η→0+

∫
dx

f(x)

x+ iη
, (C.3)

a convenient way to evaluate it is to use the Sokhotski-Plemelj theorem:

lim
η→0+

∫
dx

f(x)

x+ iη
= lim

η→0+

∫
dx

f(x)(x− iη)

x2 + η2
=

= lim
η→0+

∫
dx

f(x)x

x2 + η2
− i lim

η→0+

∫
dx

f(x)η

x2 + η2
=

= P
∫
dx

f(x)

x
− iπ

∫
dx δ(x)f(x) = P

∫
dx

f(x)

x
− iπf(0). (C.4)

where P denotes (Cauchy) principal value. This allows us to interpret the
original integral as a sum of its real and imaginary parts which are both
non-singular. It basically tells us that the singularity can be avoided if we
compensate with a corresponding imaginary part evaluated at the singu-
larity. The above holds if the integration covers the singularity (x = 0 in
this case).

We will encounter integrals of the type

P
∫ ∞
−∞

dt
1

t2 + α
, (C.5)

where α is a real number. We can evaluate this integral using the method
of residues. Since there are no oscillations (exponential functions) we can
chose to close in either the upper or lower complex half plane. We will
always close the contours in the upper half plane. It is important to note
that the P tells us to ignore poles that are on the line of integration, i.e.
the real axis. This tells us that only imaginary poles will give a non zero
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contribution, i.e. only when α > 0. The residue theorem from complex
analysis states that the value of the real line integral is equal to the sum
if its poles, i.e.

∫ ∞
−∞

= 2πi
∑

enclosed poles

. (C.6)

The above holds if the integral over the semicircle that closes the contour
goes to zero, which in our case it does since the denominator has two
powers more than the nominator. Evaluating the residue yields

P
∫ ∞
−∞

dt
1

t2 + α
=

{
2πi Rest=i√α

[
1

(t+i
√
α)(t−i

√
α)

]
= 2πi 1

2i
√
α

= π√
α
, α > 0

0, α ≤ 0,

(C.7)
where the 0 for α ≤ 0 comes from the fact that we take the principal value.

We are also going to encounter integrals of the type∫
dk

k√
A2 − k2

(C.8)

which have a simple primitive∫
dk

k√
A2 − k2

= −
√
A2 − k2. (C.9)

Also we will encounter the similar integral and primitive∫
dk

k√
k2 − A2

=
√
k2 − A2. (C.10)

We will also need the well known identity

δ (g (x)) =
∑
xi

δ (x− xi)
|g′ (xi)|

(C.11)

where xi are the zeros of g(x).
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C.2 Calculation

We now start with the expression for the polarizability within the RPA

Π(q, ω) =
1

Ω
lim
η→0

∑
~k

f0(ε~k)− f0(ε~k+~q)

ε~k+~q − ε~k − h̄ω − iη
(C.12)

where Ω is the normalization area. The first thing we want to do is to con-
vert the sum to an integral and then rewrite the expression into something
that is easier to manipulate (here we use ~k′ = ~k + ~q and ~k′′ = ~k − ~q)

1

Ω
lim
η→0

∑
~k

f0(ε~k)− f0(ε~k′)

ε~k′ − ε~k − h̄ω − iη
=
{
~k′ = ~k + ~q, d~k′ = d~k

}
=

= lim
η→0

(∫
d~k

(2π)2

f0(ε~k)

ε~k′ − ε~k − h̄ω − Iη
−
∫

d~k′

(2π)2

f0(ε~k′)

ε~k′ − ε~k′−~q − h̄ω − iη

)
=

=
{

relabel ~k′ to ~k in the second integral
}

=

= lim
η→0

∫
d~k

(2π)2
f0(ε~k)

(
1

ε~k′ − ε~k − h̄ω − iη
− 1

ε~k − ε ~k′′ − h̄ω − Iη

)
.

(C.13)

We now apply the Sokhotski-Plemelj theorem from equation (C.4), this
allows us to convert the limit of the integral into its real- and imaginary
parts;

Π(q, ω) =
1

(2π)2

(
P
∫
d~kf0(ε~k)

(
1

ε~k′ − ε~k − h̄ω
− 1

ε~k − ε ~k′′ − h̄ω

)
−iπ

∫
d~kf0(ε~k)

(
δ
(
ε~k′ − ε~k − h̄ω

)
− δ

(
ε~k − ε ~k′′ − h̄ω

))) (C.14)

Notice that the above expression is very general; we have made no assump-
tions of dimensionality or dispersion. It is the general simplified expression
of the RPA polarization in (C.2). If we wanted to we could include real
self energies in the expression above, since they could be considered as a
shift of the ε’s, but if the self energies have a finite imaginary part one
would need to redo the simplification above.
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Imaginary part
We start out by calculating the imaginary part of the polarization. This
looks very simple, it is simply a double integral over two delta functions.
The important thing to recognize is that the delta functions are one dimen-
sional whereas the integral is two dimensional. This means that when per-
forming one of the integrals we may get some constraints on the other. We
now make explicit that we are considering a parabolic dispersion ε~k = h̄2

2mk
2,

where k = |~k|, and we start out by writing the imaginary part in polar

coordinates. Notice that ε~k+~q = h̄2

2m

∣∣∣~k + ~q
∣∣∣2 = h̄2

2m

(
k2 + q2 + 2kq cos θ

)
and

ε~k−~q = h̄2

2m

∣∣∣~k − ~q∣∣∣2 = h̄2

2m

(
k2 + q2 − 2kq cos θ

)
. Also note that at T = 0,

f0(εk) becomes a step function.We get

− i 1

4π

∫
d~kf0(ε~k)

(
δ
(
ε~k′ − ε~k − h̄ω

)
− δ

(
ε~k − ε ~k′′ − h̄ω

))
=

= −i 1

4π

∫ ∞
0

dk

∫ 2π

0

dθ kf0(εk)

[
δ

(
h̄2

2m

(
q2 − 2kq cos θ

)
+ h̄ω

)
−

− δ
(
h̄2

2m

(
q2 + 2kq cos θ

)
− h̄ω

)]
=

= −i 1

4π

∫ kF

0

dk

∫ 2π

0

dθ k

[
δ

(
h̄2

2m

(
q2 − 2kq cos θ + ω̃

))
−

− δ
(
h̄2

2m

(
q2 + 2kq cos θ − ω̃

))]
, (C.15)

where we have used the step function in f0 to truncate the integral and
we have introduced ω̃ = 2m

h̄ ω. We now exchange the order of integration
and use equation (C.11) to rewrite our expression into

−i m

2πh̄2

∫ 2π

0

dθ

∫ kF

0

dk
k

2q| cos θ|
(δ (k − k1)− δ (k − k2)) , (C.16)

where k1 = q2+ω̃
2q cos θ , k2 = ω̃−q2

2q cos θ are the zeros of their respective delta
function. Now, doing the k-integral is simple and we obtain

−i m

4πh̄2q

(∫
k1<kF

dθ
k1

cos θ
−
∫
k2<kF

dθ′
k2

cos θ′

)
. (C.17)
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Notice that this puts a constraint on the θ-integrals. This expression
is only valid if the k-integration that we did covers k1, k2 respectively.
Since we know the constraint on the integrals in k1, and k2 space and we
have an explicit relationship between the ki’s and the θ’s from above it
is natural to convert the angle integral into integrals over k1, k2. From
the explicit expressions for k1 and k2 above we get dk1 = q2+ω̃

2q
sin θ

cos2 θdθ,

dk2 = ω̃−q2

2q
sin θ′

cos2 θ′dθ
′, cos θ = ω̃+q2

2qk1
which gives sin θ =

√
1−

(
ω̃+q2

2qk1

)2

and

cos θ′ = ω̃−q2

2qk2
which gives sin θ′ =

√
1−

(
ω̃−q2

2qk2

)2

. We also see that as

functions of the angles k1 >
ω̃+q2

2q and k2 >
ω̃−q2

2q , but still the largest k we
can have is kF . We also need to remember that there are two angles for
which the substitution ki = A/ cos θ that lie in our region of integration,
so we add a factor of 2 in front of our expression to compensate. We can
now rewrite the angle integrals above as integrals in the ki variables as

− i m

2πh̄2q

(
2q

q2 + ω̃

∫ kF

ω̃+q2

2q

dk1 k1
cos θ

sin θ
− 2q

ω̃ − q2

∫ kF

ω̃−q2

2q

dk2 k2
cos θ′

sin θ′

)
=

= −i m

2πh̄2q

(
2q

q2 + ω̃

∫ kF

ω̃+q2

2q

dk1 k1

ω̃+q2

2qk1√
1−

(
ω̃+q2

2qk1

)2
−

− 2q

ω̃ − q2

∫ kF

ω̃−q2

2q

dk2 k2

ω̃−q2

2qk2√
1−

(
ω̃−q2

2qk2

)2

)
=

= −i m

2πh̄2q

(∫ kF

ω̃+q2

2q

dk1
2qk1√

(2qk1)2 − (ω̃ + q2)2
−
∫ kF

ω̃−q2

2q

dk2
2qk2√

(2qk2)2 − (ω̃ − q2)2

)
(C.18)

and by using the primitive from equation (C.10) we obtain
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− i m

2πh̄2q

([
1

2q

√
(2qk1)2 − (ω̃ + q2)2

]k1=kF

k1= ω̃+q2

2q

−

−
[

1

2q

√
(2qk2)2 − (ω̃ − q2)2

]k2=kF

k2= ω̃−q2

2q

)
=

= −i mkF
2πh̄2q

D+

√
1−

(
ω̃ + q2

2qkF

)2

−D−

√
1−

(
ω̃ − q2

2qkF

)2
 =

= i
D0kF
q

−D+

√
1−

(
ω

qvF
+

q

2kF

)2

+D−

√
1−

(
ω

qvF
− q

2kF

)2
 .

(C.19)

where vF = h̄kF
m and D0 = m

2πh̄2 is the density of states for a 2DEG. D+ = 1
for 1 > ω

qvF
+ q

2kF
, D+ = 0 otherwise. Also D− = 1 for 1 > | ωqvF −

q
2kF
|,

D− = 0 otherwise. The conditions on D± come from the requirement that
the upper limit on the integrands must be larger than the lower limit. This
represents the final form of the imaginary part of the polarization.

Real part
We now take the real part of equation (C.14), write it in polar coordinates
and insert our parabolic dispersion which gives us

P
∫

d~k

(2π)2
f0(ε~k)

(
1

ε~k′ − ε~k − h̄ω
− 1

ε~k − ε ~k′′ − h̄ω

)
=

= − m

h̄22π2
P
∫ ∞

0

dk

∫ 2π

0

dθ kf(ε~k)

(
1

ω̃ − q2 − 2kq cos θ
− 1

ω̃ + q2 − 2kq cos θ

)
=

= − m

h̄22π2
P
∫ kF

0

dk

∫ 2π

0

dθ k

(
1

ω̃ − q2 − 2kq cos θ
− 1

ω̃ + q2 − 2kq cos θ

)
(C.20)

where we have used the Fermi-Dirac step function behavior (we work at
T = 0) to truncate the infinite k-integral. To calculate the angular integral
we employ ”tan(θ/2)-substitution” which transforms an angular integral
into an integral over the entire real line. The (relevant) substitutions are
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cos θ = 1−t2
1+t2 and dθ = 2

1+t2dt and we get

− m

h̄22π2
P
∫ kF

0

dk

∫ ∞
−∞

dt
2k

1 + t2

(
1

ω̃ − q2 − 2kq 1−t2
1+t2

− 1

ω̃ + q2 − 2kq 1−t2
1+t2

)
=

= − m

h̄2π2
P
∫ kF

0

dk

∫ ∞
−∞

dt k

(
1

t2(ω̃ − q2 + 2kq) + ω̃ − q2 − 2kq

− 1

t2(ω̃ + q2 + 2kq) + ω̃ + q2 − 2kq

)
=

= − m

h̄2q2π2
P
∫ kF

0

dk

∫ ∞
−∞

dt k

(
1

t2(A− + k) + A− − k
− 1

t2(A+ + k) + A+ − k

)
=

= − m

h̄2q2π2
P
∫ kF

0

dk

∫ ∞
−∞

dt k

 1

(A− + k)

1(
t2 + A−−k

A−+k

) − 1

(A+ + k)

1(
t2 + A+−k

A++k

)


(C.21)

where we have introduced A+ = ω̃+q2

2q and A− = ω̃−q2

2q . We recognize the
form of the above integral from equation (C.5) and its value depends on
the sign of the terms A−−k

A−+k and A+−k
A++k in the denominators. Only if at least

one of these terms is positive the answer is non zero. We see from their
definitions that A+ is always positive whereas A− can be both negative
and positive depending on the sign of ω̃ − q2.

We start with the term with A+ since it is the simplest one. In order
for A+−k

A++k to be positive we need k < A+ which means that we need to

restrict our k-integral to
∫ A+

0 dk because the pole does not contribute1 if k

is larger. Only if A+ > kF may we keep the integration limits as
∫ kF

0 dk.
We now introduce L = min(A+, kF ) to label the appropriate upper limit
on the integration when we use residues and proceed to calculate the A+

contribution

1This is because it lies on the real line we are taking the principal value which tells us to disregard poles on the integration
contour.
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m

h̄2q2π2
P
∫ kF

0

dk

∫ ∞
−∞

dt k
1

(A+ + k)

1(
t2 + A+−k

A++k

) =

=
m

h̄2q2π2
P
∫ L

0

dk

∫ ∞
−∞

dt k
1

(A+ + k)

1(
t+ i

√
A+−k
A++k

)(
t− i

√
A+−k
A++k

) =

=

{
Close contour in the upper complex half plane

}
=

=
m

h̄2q2π2

∫ L

0

dk k2πi Res
t=i
√

A+−k
A++k

1

(A+ + k)

1(
t+ i

√
A+−k
A++k

)(
t− i

√
A+−k
A++k

) =

=
m

h̄2q2π2

∫ L

0

dk k
1

(A+ + k)
2πi

1

2i
√

A+−k
A++k

=
2mn

h̄2qk2
F

∫ L

0

dk
k√

A2
+ − k2

=

= − m

h̄2q2π

[√
A2

+ − k2

]L
0

=
2mn

h̄2qk2
F

(
A+ −

√
A2

+ − L2

)
. (C.22)

Now, inserting the proper L we see that if A+ < kF then L = A+ and
the square root vanishes. If instead kF < A+ then the square root remains.
In conclusion the A+ term gives the contribution

m

h̄2q2π

(
A+ − C+

√
A2

+ − k2
F

)
(C.23)

where C+ = 1 if kF < A+ and C+ = 0 otherwise.

We now turn to the A− contribution in equation (C.21). We now need to

keep track on whether A− = ω̃−q2

2q is positive or negative which happens on

either side of ω̃ = q2. We will now introduce ± and ∓ in our calculations
where the upper sign is to be used when A− > 0 and the lower sign when
A− < 0. In the same manner as above we will need to restrict the k integral
and we will call the appropriate limit L as above and now we define it as
L = min(±A−, kF ).
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− m

h̄2q2π2
P
∫ kF

0

dk

∫ ∞
−∞

dt k
1

(A− + k)

1(
t2 + A−−k

A−+k

) =

= − m

h̄2q2π2
P
∫ L

0

dk

∫ ∞
−∞

dt k
1

(A− + k)

1

(t+ i
√

A−−k
k+A−

)(t− i
√

A−−k
k+A−

)
=

=

{
same residue calculations as above

}
= −2mne2

h̄2q3k2
F

∫ L

0

dk
k

A− + k

1√
A−−k
A−+k

=

= ∓ m

h̄2q2π

∫ L

0

dk
k√

(A− + k)2A−−k
A−+k

(C.24)

where the ∓ in front comes from the fact that when A− < 0 we have to lift
− 1
A−+k inside the square root in order to lift in something that is positive.

This sign is squared away inside the square root and is only important
outside. We now get

∓ m

h̄2q2π

∫ L

0

dk
k√

A2
− − k2

= ± 2mn

h̄2qk2
F

[√
A2
− − k2

]L
0

=

= ± 2mn

h̄2qk2
F

(√
A2
− − L2 − |A−|

)
(C.25)

and we can see that the ± in front gets canceled by the modulus on the
last term so we get

m

h̄2q2π

(
±
√
A2
− − L2 − A−

)
. (C.26)

We also remember that L = min(±A−, kF ) so the answer becomes

m

h̄2q2π

(
C−

√
A2
− − k2

F − A−
)

(C.27)

where C− = sign(ω̃ − q2) if kF < |A−| and C− = 0 otherwise.

Now, summing equations (C.23) and (C.27) together to obtain the total
answer we get
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m

h̄2q2π

(
A+ − A− − C+

√
A2

+ − k2
F + C−

√
A2
− − k2

F

)
(C.28)

and inserting the definitions of A± and ω̃ we obtain

m

h̄2q2π

ω̃ + q2

2q
− ω̃ − q2

2q
− C+

√(
ω̃ + q2

2q

)2

− k2
F + C−

√(
ω̃ − q2

2q

)2

− k2
F

 =

=
mkF

h̄2q2π

 q

kF
− C+

√(
mω

h̄qkF
+

q

2kF

)2

− 1 + C−

√(
mω

h̄qkF
− q

2kF

)2

− 1

 =

=
D0kF
q

 q

kF
− C+

√(
ω

qvF
+

q

2kF

)2

− 1 + C−

√(
ω

qvF
− q

2kF

)2

− 1


(C.29)

where vF = h̄kF/m, D0 = m
2πh̄2 and C+ = 1 if 1 < ω

qvF
+ q

2kF
and C+ = 0

otherwise. Also, C− = sign( ω
qvF
− q

2kF
) if 1 < | ωqvF −

q
2kF
| and C− = 0

otherwise.
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C.3 Results and analysis

We now take the final forms of the real and imaginary part of Π(q, ω) from
equations (C.19) and (C.29) and list them below. Remember that for a
2DEG (without spin) kF =

√
4πn, and that the density of states at the

Fermi surface (everywhere actually since it is constant) D0 = m
πh̄2 . We also

replace the C± and D± with step functions making the expressions easier
to read. The final polarization is

Im Π(q, ω) = D0
kF
q

(
θ(1− | ω

qvF
− q

2kF
|)

√
1−

(
ω

qvF
− q

2kF

)2

−

− θ(1− ω

qvF
− q

2kF
)

√
1−

(
ω

qvF
+

q

2kF

)2)
(C.30)

Re Π(q, ω) = D0

(
1− θ( ω

qvF
+

q

2kF
− 1)

kF
q

√(
ω

qvF
+

q

2kF

)2

− 1

+ θ(| ω
qvF
− q

2kF
| − 1)sign(

ω

vF q
− q

2kF
)
kF
q

√(
ω

qvF
− q

2kF

)2

− 1

)
.

(C.31)

This matches the polarizability result in [36].
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Figure C.1: Real part of the polarizability, the
parabolic dispersion is clearly visible as the val-
ley in the middle.

Figure C.2: Imaginary part of the polarizabil-
ity, notice the flat part to the left of the ridge
where it is zero. This is where the plasmon lives
and because the imaginary part of the polariza-
tion is zero the plasmon should have an infinite
lifetime.





Appendix D

Calculation of the polarizability,
Π(q, ω) for graphene at zero
temperature

This note presents the calculations needed to obtain the expression for
the polarizability of graphene calculated in [20] and [21]. The first section
contains some preliminary results needed and sections 2 and 3 contain the
actual calculations and a summary of the results respectively.

D.1 Preliminaries

An important relation we will use is the so called Kramers-Kronig rela-
tions, these relate the real part of an analytic function to its imaginary
part and vice-versa. It turns out that for the function Π− defined below,
it is easy to compute the imaginary part and then use Kramers-Kronigs
relations to obtain the real part. The starting point of the Kramers-Kronig
relations is the Cauchy residue theorem which states that∮

dω′
f(ω′)

ω′ − ω
= 0, (D.1)

where f(ω) is analytic within the integration contour. In the case of re-
sponse functions causality dictates they need to be analytic in the upper
half plane, this makes the application of the residue theorem with the con-
tour closed upwards ideal. Choosing the contour to be the real axis (with
a small semi circle going above the pole at ω) and closing with an infinitely
big semi-circle upwards we obtain
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P
∫ ∞
−∞

dω′
f(ω′)

ω′ − ω
− iπf(ω) +

∫
_

dω′
f(ω′)

ω′ − ω
= 0, (D.2)

where
∫
_ dω

′ denotes integration over the semicircle that closes the con-
tour. In the case of physical response functions it is usually the case that
they approach zero as ω →∞, the physical reason for this is that the sys-
tem in question cannot respond to changes that occur much, much faster
than its ”typical time scale”. If we assume that f(ω)→ 0 as ω →∞ then
the integral over the semi-circle is zero1, using this and collecting real and
imaginary parts we obtain the final form of the Kramers-Kronig relations

Re f(ω) =
1

π
P
∫ ∞
−∞

dω′
Im f(ω′)

ω′ − ω

Im f(ω) = −1

π
P
∫ ∞
−∞

dω′
Re f(ω′)

ω′ − ω
. (D.3)

The expression for the RPA polarizability for graphene is more compli-
cated than for the 2DEG since we now have two different bands that the
electrons (holes) can make transitions within and between (we ignore inter-
valley transitions). The polarizability is the sum of all inter- and intraband
transitions and looks like [20]

Π(q, ω) = −gsgv
Ω

lim
η→0+

∑
~kss′

fs~k − fs′~k′
h̄ω + εs~k − εs′~k′ + iη

Fss′(~k, ~k′) (D.4)

where ~k′ = ~k+~q, gs and gv are the spin- and valley degeneracy respectively,
Ω is the normalization area, s, s′ = +,− denote band indices, ε~ks = sh̄vF |~k|
is the dispersion , Fss′(~k, ~k′) = (1+ss′ cos θ)/2, where θ is the angle between
~k and ~k′, is the overlap of states and fs~k are the Fermi distribution functions
for the bands.

D.2 Calculation

Starting with the polarizability
1This can easily be seen by substituting ω′ = Reiθ and dω′ = iRθeiθ, the integral over the semi circle then becomes

i
∫ π
0 dθ

f(Reiθ)θReiθ

Reiθ−ω , where for large R the integrand goes as f(Reiθ). We then see that the condition for the integral to

vanish is that f vanishes at infinity in the entire upper half plane.
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Π(q, ω) = −gsgv
Ω

lim
η→0+

∑
~kss′

fs~k − fs′~k′
h̄ω + εs~k − εs′~k′ + iη

Fss′(~k, ~k′), (D.5)

where the notation is explained in the previous section. We can perform
the s, s′ summations in a straightforward way and we note that this will
give us terms that contain distribution functions for the + band and for the
− band, we group these together in what we call Π+(q, ω) and Π−(q, ω)
respectively. Consequently we split the original polarizability into two
parts so that

Π(q, ω) = Π+(q, ω) + Π−(q, ω) (D.6)

where

Π+(q, ω) = −gsgv
2Ω

lim
η→0+

∑
~k

(
(f~k+ − f~k′+)(1 + cos θ)

h̄ω + ε~k+ − ε~k′+ + iη
+

f~k+(1− cos θ)

h̄ω + ε~k+ − ε~k′− + iη
−

−
f~k′+(1− cos θ)

h̄ω + ε~k− − ε~k′+ + iη

)
, (D.7)

Π−(q, ω) = −gsgv
2Ω

lim
η→0+

∑
~k

(
(f~k− − f~k′−)(1 + cos θ)

h̄ω + ε~k− − ε~k′− + iη
+

f~k−(1− cos θ)

h̄ω + ε~k− − ε~k′+ + iη
−

−
f~k′−(1− cos θ)

h̄ω + ε~k+ − ε~k′− + iη

)
. (D.8)

D.2.1 Π−(q, ω)

Now, making explicit that we work at T = 0 and we assume that εF ≥ 0
i.e. the valence band is always completely filled, then Π−(q, ω) takes a
particularly simple form, namely

Π−(q, ω) = −gsgv
2Ω

lim
η→0+

∑
~k

(
f~k−(1− cos θ)

h̄ω + ε~k− − ε~k′+ + iη
−

f~k′−(1− cos θ)

h̄ω + ε~k+ − ε~k′− + iη

)
(D.9)

since the the first term in the original expression cancels. By using the
Sokhotski-Plemelj theorem this can be further manipulated into
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Π−(q, ω) = −gsgv
2

lim
η→0+

∫
d2k

(2π)2

[
(1− cos θ)

(
1

h̄ω + ε~k− − ε~k′+ + iη
−

− 1

h̄ω + ε~k+ − ε~k′− + Iη

)]
=

= −gsgv
2
P
∫

d2k

(2π)2

[
(1− cos θ)

(
1

h̄ω + ε~k− − ε~k′+
− 1

h̄ω + ε~k+ − ε~k′−

)]
+

+i
gsgvπ

2

∫
d2k

(2π)2

[
(1− cos θ)

(
δ(h̄ω + ε~k− − ε~k′+)− δ(h̄ω + ε~k+ − ε~k′−)

)]
(D.10)

Imaginary part

We start out by computing the imaginary part of the answer, starting
with writing out the integral in polar coordinates and obtain

Im Π−(q, ω) =
gsgv
8π

∫ ∞
0

dk

∫ 2π

0

dθkq

[
k (1− cos θkk′)×

×
(
δ(h̄ω + ε~k− − ε~k′+)− δ(h̄ω + ε~k+ − ε~k′−)

) ]
(D.11)

where the integration variable θkq is the angle between ~k and ~q and the
original θ has been relabeled θkk′ for clarity. Using the law of cosines twice
we can obtain cos θkk′ =

k+q cos θkq√
k2+q2+2kq cos θkq

, inserting this and the linear

dispersion we get

Im Π−(q, ω) =
gsgv
8π

∫ ∞
0

dk

∫ 2π

0

dθkq

[
k

(
1− k + q cos θkq√

k2 + q2 + 2kq cos θkq

)
×

×
(
δ(h̄ω − h̄vFk − h̄vF

√
k2 + q2 + 2kq cos θkq)−

−δ(h̄ω + h̄vFk + h̄vF

√
k2 + q2 + 2kq cos θkq)

)]
.

(D.12)

We see that the argument in the second delta function is always positive
so it will never contribute to the integral and can be dropped2. Finding
the zero of the remaining delta function is easy; the equation to solve is

2Strictly this is only true as long as ω is positive. Later we will need ω for also negative values, we will then use physical
arguments to make the function odd in ω, keeping the second delta function we can see that it actually is an odd function
in ω. For brevity we will drop it anyway in the calculations.
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ω − vFk
vF

=
√
k2 + q2 + 2kq cos θkq (D.13)

and the solution is

k1 =
ω2 − v2

F q
2

2vF (ω + vF q cos θkq)
. (D.14)

We see that since the k-integral extends only over the positive real line
this implies3

ω > vF q

in order for the integration to cover the zero of the delta function. Naming
the entire argument of the delta function g(k) and performing a derivative
we get

g′(k) = −h̄vF

(
1 +

k + q cos θkq√
k2 + q2 + 2kq cos θkq

)
(D.15)

and using equation (D.13) we get

g′(k1) = −h̄vF
(

1 + vF
k1 + q cos θkq
ω − vFk1

)
= −h̄vF

ω + q cos θkq
ω − vFk1

. (D.16)

3This condition comes from that the nominator and denominator should be positive, one could also imagine that ω < vF q
and both nominator and denominator be negative. However, going back to the argument of the delta function which this
is supposed to be a zero of we can see that for ω < vF q we can never accomplish this.
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Using this in our expression for the polarization we get

Im Π−(q, ω) =
gsgv
8π

∫ ∞
0

dk

∫ 2π

0

dθkq×

×
[
k

(
1− k + q cos θkq√

k2 + q2 + 2kq cos θkq

)
δ(k − k1)

|g′(k1)|

]
=

=
gsgv
8π

∫ 2π

0

dθkq

[
k1

(
1− k1 + q cos θkq√

k2
1 + q2 + 2k1q cos θkq

)
1

|g′(k1)|

]
=

=
{

using equations (D.13) and (D.16)
}

=

=
gsgv

8πh̄vF

∫ 2π

0

dθkq

[
k1

(
1− vF (k1 + q cos θkq)

ω − vFk1

)
ω − vFk1

ω + q cos θkq

]
=

=
gsgv

8πh̄vF

∫ 2π

0

dθkq

[
k1

ω + q cos θkq
(ω − 2vFk1 − vF q cos θkq)

]
=

=

{
using equation (D.14)

}
=

=
gsgv

16πh̄v2
F

(
ω2 − v2

F q
2
) ∫ 2π

0

dθkq

[
ω − vF q cos θkq

(ω + vF q cos θkq)
2 −

ω2 − v2
F q

2

(ω + vF q cos θkq)
3

]
.

(D.17)

This integral can be calculated4 and the answer is

Im Π−(q, ω) =
gsgv
16h̄

q2√
ω2 − v2

F q
2
θ(ω − vF q). (D.18)

Also rewriting the prefactor into D0 = gsgvkF
2πh̄vF

which is the density of states
at the Fermi energy we get

Im Π−(q, ω) =
D0π

8

vF
kF

q2√
ω2 − v2

F q
2
θ(ω − vF q). (D.19)

Real part

We now proceed to calculate the real part of Π−(q, ω). Instead of tack-
ling the real part of equation (D.10) head on, we will use the Kramers-

4Mathematica does it easily using Integrate with the assumption that ω > vF q which we know from earlier. The integral
can also be looked up in [42] pp. 172, the answer is given in a recursive fashion due to the high power in the denominator.
This could in principle also be done by a ”tan θ

2
substitution” followed by a residue calculation but this seems tedious.
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Kronig relations, equation (D.3), to obtain the real part from the previ-
ously computed imaginary part, this seems to be easier. The expression
we get is

Re Π−(q, ω) =
1

π
P
∫ ∞
−∞

dω′
Im Π−(q, ω′)

ω′ − ω
. (D.20)

As we mentioned earlier we have only considered ω > 0, which is the
physical regime, but we now see that we need its values for ω < 0 in order
to get the real part of the function. The simplest thing would be to just
extend equation (D.19) to negative values of ω i.e. it would become an
even function in ω. However, remember that in equation (D.12) we saw
that Π−(q, ω) was an odd function in ω, this also makes physical sense since
Π−(q, ω) is the Fourier transform of the quantity Π−(x, t−t′) that connects
the macroscopic bare potential to the macroscopic dressed potential felt
by a test charge. This quantity is by necessity real which implies that the
real part of its Fourier transform is even and the imaginary part is odd.
So, making (D.19) an odd function, by inserting a sign(ω), we can write
equation (D.20) as

Re Π−(q, ω) =
1

π
P
∫ ∞
−∞

dω′
Im Π−(q, ω′)

ω′ − ω
=

=
D0q

2

8

vF
kF
P
∫ ∞
−∞

dω′
θ(|ω′| − vF q)sign (ω′)

(ω′ − ω)
√
ω′2 − v2

F q
2

=

=
D0q

2

8

vF
kF

(
P
∫ vF q

−∞
dω′

sign (ω′)

(ω′ − ω)
√
ω′2 − v2

F q
2
+

+P
∫ ∞
vF q

dω′
sign (ω′)

(ω′ − ω)
√
ω′2 − v2

F q
2

)
=

=
D0q

2π

8

vF
kF
P
∫ ∞
vF q

dω′
1√

ω′2 − v2
F q

2

(
1

ω′ + ω
+

1

ω′ − ω

)
. (D.21)

This integral can be computed to be5

Re Π−(q, ω) =
D0π

8

vF
kF

q2√
v2
F q

2 − ω2
θ(vF q − ω). (D.22)

5The last integral can be done in Mathematica or with proper change of variables it can be looked up in [42] pp. 101.
This is a little bit tricky and requires some effort but can be done.
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Here we must remember that this is an even function in ω so the step
function is really θ(vF q−|ω|) but normally we only use this expression for
ω > 0 so that this does not matter6.

D.2.2 Π+(q, ω)

We start by rewriting equation (D.7) into

Π+(q, ω) = −gsgv
2Ω

lim
η→0+

∑
~k

[
f~k+

(
1 + cos θkk′

h̄ω + ε~k+ − ε~k′+ + iη
+

1− cos θkk′

h̄ω + ε~k+ − ε~k′− + iη

)
−f~k′+

(
1 + cos θkk′

h̄ω + ε~k+ − ε~k′+ + iη
+

1− cos θkk′

h̄ω + ε~k− − ε~k′+ + iη

)]
(D.23)

where θkk′ is the angle previously labeled as θ. By writing the sum as an
integral and using that d2k = d2k′ we can change the integration variable
on the f~k′+ term. We then relabel ~k′ → ~k and ~k → ~k′′ = ~k − ~q, also
~k′ = ~k + ~q. The integration limits stay the same since the integral is
between ±∞. We end up with an expression involving only f~k+

Π+(q, ω) = −gsgv
2

lim
η→0+

∫
d2k

(2π)2
f~k+

(
1 + cos θkk′

h̄ω + ε~k+ − ε~k′+ + iη
+

1− cos θkk′

h̄ω + ε~k+ − ε~k′− + iη

− 1 + cos θk′′k
h̄ω + ε ~k′′+ − ε~k+ + iη

− 1− cos θk′′k
h̄ω + ε ~k′′− − ε~k+ + iη

)
. (D.24)

Using Sokothski-Plemelj we can perform the limit and thus separate this
into its real- and imaginary parts as

Re Π+(q, ω) = −gsgv
8π2
P
∫
d2k f~k+

(
1 + cos θkk′

h̄ω + ε~k+ − ε~k′+
+

1− cos θkk′

h̄ω + ε~k+ − ε~k′−
−

− 1 + cos θk′′k
h̄ω + ε ~k′′+ − ε~k+

− 1− cos θk′′k
h̄ω + ε ~k′′− − ε~k+

)
(D.25)

6It is nice to note that remembering the even nature of this function we can plug this expression back into the Kramers-
Kronig relations and obtain the imaginary part (with the sign(ω)) of the expression that we started out with.
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Im Π+(q, ω) =
gsgv
8π2

∫
d2k f~k+×

×
[
(1 + cos θkk′)δ(h̄ω + ε~k+ − ε~k′+) + (1− cos θkk′)δ(h̄ω + ε~k+ − ε~k′−)−

− (1 + cos θk′′k)δ(h̄ω + ε ~k′′+ − ε~k+)− (1− cos θk′′k)δ(h̄ω + ε ~k′′− − ε~k+)

]
(D.26)

where by using the law of cosines we know

cos θkk′ =
k + q cos θkq

k′
(D.27)

cos θk′′k =
k − q cos θkq

k′′
(D.28)

and θkq is the angle between the vectors ~k and ~q.

Imaginary part

We now proceed to the imaginary part of the polarizability, i.e. equation
(D.26). We use the Fermi function to truncate the integral, insert the
dispersion relations and use polar coordinates and obtain

Im Π+(q, ω) =
gsgv
8π2

∫ kF

0

dk

∫ π

−π
dθkqk

[
(1 + cos θkk′)δ(h̄ω + h̄vFk − h̄vFk′)

+(1− cos θkk′)δ(h̄ω + h̄vFk + h̄vFk
′)− (1 + cos θk′′k)δ(h̄ω − h̄vFk + h̄vFk

′′)

−(1− cos θk′′k)δ(h̄ω − h̄vFk − h̄vFk′′)
]

(D.29)

where

k′ = |~k + ~q| =
√
k2 + q2 + 2kq cos θkq

and

k′′ = |~k − ~q| =
√
k2 + q2 − 2kq cos θkq.

We see that the argument of the second delta function is always a posi-
tive number regardless of k, k′. Thus this will never contribute when we
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perform the integral and it can be dropped. We call the arguments of the
three remaining delta functions gi i.e.

g1(k) = h̄ω + h̄vFk − h̄vFk′ (D.30)

g2(k) = h̄ω − h̄vFk + h̄vFk
′′ (D.31)

g3(k) = h̄ω − h̄vFk − h̄vFk′′. (D.32)

We now find the zeros of these functions and obtain

k1 =
v2
F q

2 − ω2

2vF (ω − vF q cos θkq)
, vF q > ω, cos θkq <

ω

vF q
(D.33)

k2 =
v2
F q

2 − ω2

2vF (vF q cos θkq − ω)
, vF q > ω, cos θkq >

ω

vF q
(D.34)

k3 =
ω2 − v2

F q
2

2vF (ω − vF q cos θkq)
, ω > vF q. (D.35)

The conditions for the different k’s come from careful investigation of when
the arguments become zero, since there is a square root involved the signs
of things are tricky. First one should investigate the condition for the
ω, vF q and then one may extract the condition on θkq by demanding the
resulting solution to be positive (since we are only integrating over positive
k these are the only ones that can contribute). We also need the derivatives
of the gi so we compute them and get

g′1(k) = h̄vF

(
1− k + q cos θkq

k′

)
(D.36)

g′2(k) = h̄vF

(
−1 +

k − q cos θkq

k′′

)
(D.37)

g′3(k) = −h̄vF
(

1 +
k − q cos θkq

k′′

)
. (D.38)

Furthermore we need |gi(ki)| and after some simplifications we get

|g′1(k1)| = h̄vF
ω − vF q cos θkq
ω + vFk1

(D.39)

|g′2(k2)| = h̄vF
vF q cos θkq − ω
vFk2 − ω

(D.40)

|g′3(k3)| = h̄vF
ω − vF q cos θkq
ω − vFk3

. (D.41)
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Now we want to perform the k-integral, this will introduce an additional
constrain on the θkq integral since we now must take care not to integrate
over θkq’s that make ki > kF . We also introduce the dimensionless variables
x = q

2kF
and ν = ω

vF q
and get the constraints

First term: k1 < kF ⇒ cos θkq > ν − x(1− ν2), 1 > x(1− ν) (D.42)

Second term: k2 < kF ⇒ cos θkq < ν + x(1− ν2), 1 > x(1 + ν) (D.43)

Third term: k3 < kF ⇒

{
cos θkq > ν − x(ν2 − 1), 1 > x(ν − 1), 1 < x(ν + 1)

no constraint on θkq, 1 > x(ν + 1)

(D.44)

where the constraints that does not include θkq come from requiring the
constraints to be within [−1, 1] in order for cos θkq to be able to fulfill them.
We also note that these new constraints are more severe than the old ones
and thus also fulfill the old constraints in equations (D.33) - (D.35). We
now perform the k-integral, use the dimensionless variables to rewrite the
polarizability and we insert the above constraints on the θkq-integral and
obtain

Im Π+(q, ω) =
gsgv
4π2

[
θ(1− ν)×

×
{
θ(1− x(1− ν))

∫ π

cos θkq=ν−x(1−ν2)

dθkq
k1(1 + cos θk1k′1

)

|g′1(k1)|

−θ(1− x(1 + ν))

∫ cos θkq=ν+x(1−ν2)

0

dθkq
k2(1 + cos θk′′2k2

)

|g′2(k2)|

}
−θ(ν − 1)

{
θ(1− x(ν − 1))θ(x(ν + 1)− 1)

∫ π

cos θkq=ν−x(ν2−1)

dθkq
k3(1− cos θk′′3k3

)

|g′3(k3)|

+θ(1− x(ν + 1))

∫ π

0

dθkq
k3(1− cos θk′′3k3

)

|g′3(k3)|

}]
(D.45)

where we integrate over the upper half circle and have compensated with
a factor of 2 because of the even nature of the integrals. The notation
cos θkik′i means that we are supposed to insert the corresponding ki in the
expression for cosine of the angle, see equations (D.27) and (D.28), doing
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this and simplifying we obtain

1 + cos θk1k′1
=
ω + vF q cos θkq + 2vFk1

ω + vFk1
(D.46)

1 + cos θk′′2k2
=
−ω − vF q cos θkq + 2vFk2

vFk2 − ω
(D.47)

1− cos θk′′3k3
=
ω + vF q cos kq − 2vFk3

ω − vFk3
. (D.48)

We now insert the modulus of the gi’s and our expressions for the an-
gles into equation (D.45) and we get the following expression (when all is
converted to the variables x and ν)

Im Π+(q, ω) =
gsgvq

8πh̄vF

[
θ(1− ν)×

×
{
θ(1− x(1− ν))

∫ π

cos θkq=ν−x(1−ν2)

dθkq

(
(1− ν2)

ν + cos θkq
(ν − cos θkq)2

+
(1− ν2)2

(ν − cos θkq)3

)
−θ(1− x(1 + ν))

∫ cos θkq=ν+x(1−ν2)

0

dθkq×

×
(
−(1− ν2)

ν + cos θkq
(cos θkq − ν)2

+
(1− ν2)2

(cos θkq − ν)3

)}
−θ(ν − 1)

{
θ(1− x(ν − 1))θ(x(ν + 1)− 1)

∫ π

cos θkq=ν−x(ν2−1)

dθkq×

×
(

(ν2 − 1)
ν + cos θkq

(ν − cos θkq)2
− (ν2 − 1)2

(ν − cos θkq)3

)
+

+θ(1− x(ν + 1))

∫ π

0

dθkq

(
(ν2 − 1)

ν + cos θkq
(ν − cos θkq)2

− (ν2 − 1)2

(ν − cos θkq)3

)}]
(D.49)

These primitives can be looked up in [42] pp. 172 or be done in Mathemat-
ica. After inserting the proper limits in all the primitives and simplifying
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the answer becomes

Im Π+(q, ω) =
gsgvq

8πh̄vF

[
θ(1− ν)√

1− ν2

{
θ(1− x(1− ν))×

×
(
− arctanh

(√
1− 2x

1 + x(1 + ν)

)
+

(1 + xν)
√

1− (ν − x(1− ν2))2

2x2
√

1− ν2

)
+

+θ(1− x(1 + ν))×

×

(
arccoth

(√
1 + x(1− ν)

1− x(1 + ν)

)
−

(1− xν)
√

1− (ν + x(1− ν2))2

2x2
√

1− ν2

)}

−θ(ν − 1)θ(1− x(ν − 1))√
ν2 − 1

{
π

2
+ θ(x(ν + 1)− 1)

(
− arccot

(√
1− x(ν − 1)

x(ν + 1)− 1

)

+
(1− xν)

√
1− (ν − x(ν2 − 1))2

2x2
√
ν2 − 1

)}]
. (D.50)

We now convert back to the variables q and ω and obtain finally

Im Π+(q, ω) =
D0

4

vF
kF

[
θ(vF q − ω)√
v2
F q

2 − ω2

{
θ(2kFvF − (vF q − ω))×

×
(
− q2arctanh

(√
1− 2vF q

2kFvF + vF q + ω

)
+ f(q, ω)/2

)
+θ(2kFvF − (vF q + ω))×

×

(
q2arccoth

(√
1 +

2vF q

2vFkF − (vF q + ω)

)
− f(q,−ω)/2

)}
−θ(ω − vF q)θ(2kFvF − (ω − vF q))√

ω2 − v2
F q

2

{
πq2

2
+ θ((ω + vF q)− 2kFvF )×

×
(
− q2arccot

(√
2vF q

ω + vF q − 2kFvF
− 1

)
+ f(q,−ω)/2

)}]
(D.51)

with

f(q, ω) =
(2kFvF + ω)

v2
F

√
|(2kFvF + ω)2 − v2

F q
2|. (D.52)

Real part

The expression for the imaginary part is rather complicated and instead
of using the Kramers-Kronig relations we now compute the real part head
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on. We insert the dispersion relations into equation (D.25) and use polar
coordinates and the real part takes the form

Re Π+(q, ω) = − gsgv
8π2h̄

P
∫ ∞

0

dk

∫ π

−π
dθkq kf~k+

(
1 + cos θkk′

ω + vFk − vFk′
+

1− cos θkk′

ω + vFk + vFk′

− 1 + cos θk′′k
ω + vFk′′ − vFk

− 1− cos θk′′k
ω − vFk′′ − vFk

)
(D.53)

where k = |~k|, k′ = |~k + ~q| and k′′ = |~k − ~q|. We now write the two first
terms and the two last terms over the same denominator respectively and
get

Re Π+(q, ω) = − gsgv
4π2h̄

P
∫ kF

0

dk

∫ π

−π
dθkq k×

×
(
ω + 2vFk + vF q cos θkq

(ω + vFk)2 − v2
Fk
′2 − ω − 2vFk + vF q cos θkq

(ω − vFk)2 − v2
Fk
′′2

)
(D.54)

where we have used the Fermi function to truncate the k integral. We now
perform a ”tan θ

2-substitution”, i.e.
∫ π
−π dθkq →

∫∞
−∞ dt 2

1+t2 and cos θkq →
1−t2
1+t2 . Inserting this and simplifying we obtain

Re Π+(q, ω) = − gsgv
2π2h̄

∫ kF

0

dkP
∫ ∞
−∞

dt
k

1 + t2
×

×
(

t2(ω + 2vFk − vF q) + (ω + 2vFk + vF q)

t2(ω2 − v2
F q

2 + 2vFk(ω + vF q)) + (ω2 − v2
F + 2vFk(ω − vF q))

−

− t2(ω − 2vFk − vF q) + (ω − 2vFk + vF q)

t2(ω2 − v2
F q

2 − 2vFk(ω + vF q)) + (ω2 − v2
F − 2vFk(ω − vF q))

)
.

(D.55)

In this form it is obvious that it is convenient to evaluate the t-integral
using the method of residues, i.e.

∫∞
−∞ dt = 2πI

∑
enclosed residues. Whenever

the poles lie on the real axis we are instructed by the principal value, P , to
ignore the pole. Thus we need only include terms in the upper half plane7

and we proceed to find the poles of our integrand.

7We could equally well choose to enclose the lower half plane, this would mean to sum the poles in the negative half
plane.
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For the first term we need to solve

t2(ω2 − v2
F q

2 + 2vFk(ω + vF q)) + (ω2 − v2
F + 2vFk(ω − vF q)) = 0 (D.56)

which has the solutions

t1 = ±i

√
ω2 − v2

F q
2 + 2vFk(ω − vF q)

ω2 − v2
F q

2 + 2vFk(ω + vF q)
. (D.57)

Similarily the second term has the poles

t2 = ±i

√
ω2 − v2

F q
2 − 2vFk(ω − vF q)

ω2 − v2
F q

2 − 2vFk(ω + vF q)
. (D.58)

Because of the common prefactor, both terms also have poles at

t = ±i. (D.59)

It is now a matter of studying when these poles are in the upper half plane
and when they are on the real line and should be excluded. In order to
be included the expressions under the square root should be positive, this
requirement may restrict the outer k-integral to not go all the way to its
upper limit kF . We start by factorizing the first term

ω2 − v2
F q

2 + 2vFk(ω − vF q)
ω2 − v2

F q
2 + 2vFk(ω + vF q)

=
(ω − vF q)(ω + vF q + 2vFk)

(ω + vF q)(ω − vF q + 2vFk)
. (D.60)

We see that for ω > vF q this expression is always > 0 and should always
be included. For the case ω < vF q we see that the nominator is always
negative which means that the denominator must also be negative to con-
tribute. This is true if 2vFk < vF q−ω, this means that if 2vFkF < vF q−ω
then the integral remains limited by kF but if 2vFkF > vF q − ω then the
k-integral is restricted to kmax = vF q−ω

2vF
.

We now turn our attention to the second term and the expression under
the square root that must be positive is

ω2 − v2
F q

2 − 2vFk(ω − vF q)
ω2 − v2

F q
2 − 2vFk(ω + vF q)

=
(ω − vF q)(ω + vF q − 2vFk)

(ω + vF q)(ω − vF q + 2vFk)
. (D.61)

If ω > vF q then both the nominator and the denominator may become
negative. In order for the term to be positive we either need both positive
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or both negative. Both are positive if 2vFk < ω − vF q (because this au-
tomatically means that 2vFk < ω + vF q). This means that if kF <

ω−vF q
2vF

we may integrate to kF but if kF > ω−vF q
2vF

we must restrict ourselves to

kmax = ω−vF q
2vF

. Both terms are negative if 2vFk > ω+ vF q, this means that

for 2vFkF > ω + vF q our integration ranges from kmin = ω+vF q
2 vF to kF .

If ω < vF q we see that the denominator is always negative so the nomi-
nator also needs to be negative i.e. 2vFk > ω+ vF q. This means that only
if 2vFkF > ω + vF q we get a contribution and the integration goes from
kmin = ω+vF q

2vF
to kF .

So finally we get for the first term

ω > vF q always

∫ kF

0

dk

ω < vF q kF <
vF q − ω

2vF

∫ kF

0

dk

kF >
vF q − ω

2vF

∫ vF q−ω
2vF

0

dk

and for the second term

ω > vF q kF <
ω − vF q

2vF

∫ kF

0

dk

kF >
ω − vF q

2vF

∫ ω−vF q

2vF

0

dk

kF >
ω + vF q

2vF

∫ kF

ω+vF q

2vF

dk

ω < vF q kF <
vF q + ω

2vF
0

kF >
vF q + ω

2vF

∫ kF

vF q+ω

2vF

dk

The residues are now evaluated at t = i and t = t1 for the first term in
equation (D.55) and at t = i and t = t2 for the second term in equation
(D.55). Starting by evaluating the residue of both terms at t = i, taking the
difference (because of the minus sign between the terms) and integrating
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over k, gives a contribution

−πkF
vF

. (D.62)

Now, evaluating the residue of the first term at t = t1 and integrat-
ing to get the primitive we get two different functions depending on the
relationship between ω and q,

F1a(k) =
π

8v2
F

√
ω2 − v2

F q
2

(
(2kvF + ω)

√
(2kvF + ω)2 − v2

F q
2−

−v2
F q

2 log

(
2kvF + ω +

√
(2kvF + ω)2 − v2

F q
2

))
(D.63)

F1b(k) =
π

8v2
F

√
v2
F q

2 − ω2

(
(2kvF + ω)

√
v2
F q

2 − (2kvF + ω)2+

+v2
F q

2 arctan

(
2kvF + ω√

v2
F q

2 − (2kvF + ω)2

))
(D.64)

where F1a(k) is valid for ω > vF q and F1b(k) is valid for ω < vF q. Pro-
ceeding to the second term and finding the primitive in the two regimes
gives us8

F2a(k) = sign(2kvF − (ω + vF q))
π

8v2
F

√
ω2 − v2

F q
2
×

×
(

(2kvF − ω)
√

(2kvF − ω)2 − v2
F q

2−

−v2
F q

2 log

(
2kvF − ω +

√
(2kvF − ω)2 − v2

F q
2

))
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F2b(k) = − π

8v2
F

√
v2
F q

2 − ω2

(
(2kvF − ω)

√
v2
F q

2 − (2kvF − ω)2+

+v2
F q

2 arctan

(
2kvF − ω√

v2
F q

2 − (2kvF − ω)2

))
(D.66)

where F2a(k) is valid for ω > vF q and F2b(k) is valid for ω < vF q. Now,
using all the residues we can evaluate the integrals in equation (D.55) and

8The notation with the sign function is not ideal, we will later enter a value of k that will make the argument 0, the
sign function is defined as 0 in this case. This is not what we are after, we want to have the sign determined by the rest of
the integration range, we keep this in mind for later.



92 Calculation of the polarizability, Π(q, ω) for graphene at zero temperature

the unsimplified result is

Re Π+(q, ω) = − gsgv
2π2h̄

[
− πkF

vF
+ θ(ω − vF q)×

×
{
F1a(kF )− F1a(0)− θ(ω − vF q − 2kFvF ) (F2a(kF )− F2a(0))−
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(
F2a(
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2vF

)− F2a(0)

)
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2vF
)

)}
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−
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−θ(2kFvF − (vF q + ω))

(
F2b(

vF q + ω

2vF
)− F2b(0)

)}]
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which can be simplified to

Re Π+(q, ω) = − gsgv
2π2h̄

[
− πkF

vF
+ θ(ω − vF q)

{
F1a(kF )− F1a(0) + F2a(0)

−θ(ω − vF q − 2kFvF )F2a(kF )− θ(2kFvF − (ω − vF q))F2a(
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2vF
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−θ(vF q + ω − 2kFvF )F2b(kF )− θ(2kFvF − (vF q + ω))F2b(
vF q + ω

2vF
)

}]
.

(D.68)

Also this expression is a bit cumbersome to work with, by inserting the
arguments for k in the F -functions (remembering our convention with the
sign-function in F2a) and picking up all minus signs inside our logarithms
and cancel the resulting imaginary parts we can obtain an answer that is
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simpler. We define the functions (f(q, ω) is defined as before)

f(q, ω) =
(2kFvF + ω)

v2
F

√
|(2kFvF + ω)2 − v2

F q
2| (D.69)

g(q, ω) = q2 log(

∣∣∣∣∣2kFvF + ω +
√
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F q
2|

vF q

∣∣∣∣∣) (D.70)

h(q, ω) = q2 arctan

(
2kFvF + ω√

|(2kFvF + ω)2 − v2
F q

2|

)
(D.71)

and the real part can then finally be written as

Re Π+(q, ω) = −D0

8

vF
kF

(
− 8kF

vF
+

θ(ω − vF q)√
ω2 − v2

F q
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)})
(D.72)
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D.3 Summary of results

In summary, the graphene polarizability can be written as

Π(q, ω) = Π+(q, ω) + Π−(q, ω) (D.73)

where the contribution from the valence band is

Π−(q, ω) =
D0π

8

vF
kF

(
q2√

v2
F q

2 − ω2
θ(vF q − ω) + i

q2√
ω2 − v2

F q
2
θ(ω − vF q)

)
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and D0 = gsgvkF
2πh̄vF

. The contribution from the conduction band is

Re Π+(q, ω) = D0
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(D.75)
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Im Π+(q, ω) =
D0
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where

f(q, ω) =
(2kFvF + ω)

v2
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F q
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g(q, ω) = q2 log(
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h(q, ω) = q2 arctan
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|(2kFvF + ω)2 − v2
F q

2|

)
. (D.79)

D.4 Long wavelength expansion of the polarizability

The above form of the polarizability is rather cumbersome; but in order
to get the plasmon dispersion we only need the long wavelength behavior
of the real part. Thus we make a series expansion around q = 0 (in
Mathematica) and we obtain

Π(q → 0, ω) = −D0
vF q

2

2ωkF

(
vFkF
ω

+
1

2
log

(
2kFvF − ω
2kFvF + ω

))
(D.80)
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valid for ω < 2vFkF and ω > vF q which is the relevant conditions for
plasmons. This can be seen in the plot of the imaginary part of Π, the fact
that it is 0 in this region means that the plasmon is undamped here and
may thus propagate. Putting the above expression for the long wavelength
behavior of Π, neglecting the logarithmic correction term, into the plasmon
condition ε(q, ω) = 0 yields the plasmon dispersion

ωp(q) =

√
gαgεFvF q

4
(D.81)

where αg is the fine structure constant of graphene αg = e2

ε∗rvF
and ε∗r =

(ε1 +ε2)/2 is the average relative permitivity of the two media surrounding
the graphene. Here we clearly see the typical two-dimensional

√
q behavior

and the relativistic n1/4 behavior (since n ∝ ε2F ).

Figure D.1: Real part of the polarizability, the
linear dispersion is clearly visible as the valley
in the middle. From this function it is possible
to find the dispersion of the (longitudinal) plas-
mons using the criterion ε(q, ω) = 0. The fact
that the polarizability goes to zero for large fre-
quency is signaling that the electron plasma is
not effective at screening EM-radiation at high
frequencies, the plasma behaves more like the
vacuum.

Figure D.2: Imaginary part of the polarizabil-
ity, notice the flat part on the left side of the
ridge where it is zero. This is where the plas-
mon lives and because the imaginary part of the
polarization is zero the plasmon should have an
infinite lifetime. In the parts where the func-
tion is non-zero the plasmons would be Landau
damped and very quickly give off its energy to
the single particle continuum, thus acquiring a
very short lifetime.
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