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Abstract 

Over the past 75 years, solid-solution strengthened superalloys have been one among 

the most widely used materials for long term applications at elevated temperatures. The 

combination of properties such as high temperature strength, resistance to oxidation and 

corrosion, fabricability, and creep strength make them an unusual class of materials, 

attracting researchers and scientists to explore its full potential. Among this group, the 

nickel superalloys find wide applications in aero engines and land-based gas turbines. 

They are still being modified in chemical composition to meet the increasing demands 

of aircraft and energy producing industry. One such newly developed Ni-base alloy is 

Haynes 282.  

Haynes 282 showed sensitivity to heat treatment temperatures. The heat treatment 

temperatures were varied around the conventional heat treatment and within the typical 

tolerance limits. The microstructural development was systematically studied at 

intermediate stages through microscopy. To understand the influence of microstructural 

change on mechanical properties tensile testing was performed at room temperature. 

The gamma prime (γ׳) morphological change was observed to change from cuboidal to 

spherical to bimodal in three different heat treatment conditions. The carbide 

morphology changes from interconnected to discrete morphology. The strength of the 

material is affected by the size and shape of the cuboidal γ׳ precipitates, while the 

ductility at room temperature seem to be affected by interconnected morphology of the 

carbides at the grain boundaries. 

Haynes 282 are used in different forms such as forgings, bars, sheets in component 

applications. The important aspect of such alloy is to understand the structure/property 

relations at in-service conditions. Haynes 282 in form of forgings showed ductility 

variations in short transverse direction (ST) from 24% to 12% as compared to its 

longitudinal transversal (LT) direction. The lower limit of ductility is close to the design 

tolerance and thus creates a need to understand the variation in ductility. In this part, 

the study is focused to understand ductility variation by microscopic investigations. The 

influence of carbide segregation and banding is seen to influence the ductility when 

oriented perpendicular to the tensile axis. This influence is also qualitatively captured 

through micromechanical modelling.  

Keywords: Haynes 282, anisotropy ductility, heat treatment, microstructure, gamma 

prime, carbides 
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1. Introduction 
 

After the World War II, the gas turbines became an important technology for its application in land 

based power generation, aircraft industry and other industrial processes [1,2] The materials that were 

used earlier in the engine construction could not survive more than few hundred hours at high 

temperatures. This created the need for developing the new alloys to meet the demand for increased 

performance, reliability and emission in gas turbines.  

Gas turbine engines deliver mechanical power using liquid fuel. In this process these components are 

responsible for mixing the air and fuel, create combustion and produce high temperatures up to 1400-

1500 ˚C .This temperature window makes the materials and design for these components very critical 

for such applications.  Thus, such application requires the material to have excellent mechanical 

strength, resistance to thermal creep deformation and fatigue, good surface stability and resistance to 

corrosion and oxidation. This unusual class of material, called superalloys, are attractive to scientists 

and researchers [1-3]. Figure 1 shows the temperature capability of superalloys since the beginning. 

 

 

Figure 1: Temperature capability of superalloys since year of introduction [1] 

Based on the strengthening mechanism superalloys are classified into three groups.  

• Nickel base (solid solution strengthening) 

• Nickel –iron base (precipitation strengthening) 

• Cobalt based (oxide dispersion strengthening) 

Among the above, the nickel alloys find wide application in components used in aircraft engines, 

constituting over 50 % of its weight. The most common components are turbine blades, discs, seals, 

rings and casings of aero engines. The development of manufacturing processes produces alloy with 

uniform properties, less defects and less elemental segregation gives the possibility to improve the 

mechanical properties to a large extent [4]. Thus, the temperature capability of nickel alloys has now 

been improved considerably. 
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Outline of the thesis 
 

This thesis focuses on characterizing a relatively new nickel base superalloy Haynes 282, after heat 

treatment and forging. The organization of this work begins with a general introduction to nickel base 

superalloy followed by introducing Haynes 282 and the research objectives. Thereafter, the experiment 

and characterization tools are described briefly. This is followed by discussion about important results, 

a summary of appended papers and intended future work.  
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2. Nickel-base superalloys 
 

Nickel base superalloys are solution/precipitation strengthened alloys containing many alloying 

elements. These are complex engineered materials because they involve precipitation of intermetallic 

phases, called the gamma prime (γʹ) and gamma double prime (γʹʹ), and carbides such as MC (rich in Ti 

and Mo), M23C6 (rich in Cr) and other carbides like M6C (rich in Mo) and M7C3 [5-11]. The superior 

strength, high resistance to oxidation and corrosion, and creep properties of these alloys are essentially 

derived from the presence of these micro constituent phases [5]. The γʹ phase is coherent with gamma 

matrix (γ) and is an important constituent that contributes to the strength, while the carbides are 

incoherent to the matrix and are present at grain boundaries and intragranularly in the nickel alloys [1]. 

The alloying elements determine composition of the superalloy while the heat treatment is important for 

optimizing the properties.  Each of them are subsequently discussed in this section. 

 

2.1 Role of alloying elements  
 

The matrix consists principally of Ni, Co, Cr and refractory metal such as Mo; the relative amounts of 

all these are determined by other elements such as Al, Ti, C and B which react to form precipitating 

phases. Alloying elements and their importance in nickel base superalloys has been reported widely in 

literature and is summarized in Table 1. Some of the critical elements such as Al and Ti are important 

for fabricability [12]. Lower levels of Mo (1 or 2 %) is deleterious as it can affect the creep strength of 

the material, while a minimum of 15-20 % of Cr is desirable for hot corrosion properties [6]. 

Table 1. Role of alloying elements in nickel alloys. 

Element Amount found in Ni-

base/Fe-Ni base alloys 

(wt%) 

Effect  

Cr 5-25 Oxidation and hot corrosion resistance;carbides; solution hardening 

Mo-W 0-12 Carbides solution hardening 

Al-Ti 0-6 Precipitation hardening; carbides 

C 0.02-0.10 Form carbides  

Co 0-20 Affects amount of precipitate, raises γʹ solvus 

Ni rest Stabilizes austenite; forms hardening precipitates 

Ta 0-12 Carbides; solution hardening; oxidation resistance 

Nb 0-4 Carbides; solution hardening; precipitation hardening 
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2.2 Heat treatment of Ni-base superalloys 
 

Microstructure is basic to attain property requirement in superalloys [13]. The relation between 

microstructure and resulting mechanical properties is widely studied in both wrought and cast 

superalloys [14-28]. To derive its high temperature strength, and properties during in-service conditions, 

it is essential to control the microstructure via use of precipitated phases [14].  

Ni-base superalloys are normally supplied in solution treated condition because they have optimum 

combination of properties for room temperature fabrication and elevated temperature service. However, 

by heat treatment it is possible to achieve  

• Precipitation hardening 

• Desired precipitation of carbide 

• Optimum grain size through grain growth (in wrought and cast alloys), and through 

recrystallization and grain growth along with mechanical deformation (forging)  

Figure 2 shows a schematic sketch for heat treatment in general for superalloys.  

 

Figure 2. Schematic sketch of heat treatment steps in superalloys 

In case of wrought Ni-base superalloy, solution treatment is performed to dissolve nearly all γʹ and 

carbides other than the stable MC carbides. Typical solution treatments are in the range of 1050 to 1200 

˚C followed by either air cooling or water quenching. On quenching super saturated solid solution is 

formed. The following two-step aging is done to precipitate γʹ; the first often being carbide stabilization 

while the second for completing the precipitation of γʹ.  

In order to achieve desired properties, the heat treatment process has to be optimized. Factors such as 

cooling rate [15], aging temperatures and time [18], and solutionizing temperatures [25] are some of the 

heat treatment parameters that can alter the morphology of precipitated phases and thereby affect the 

properties of these alloys.  
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2.2.1 Carbide precipitation 
 

One of the basic mechanisms for strengthening of wrought Ni-base alloy is carbide precipitation. The 

type of carbides formed depends on the alloying elements, while its morphology and distribution is 

affected by heat treatment. The temperatures and time for carbide precipitation are often carefully 

considered because these carbides undergo complex reactions, which can generate detrimental and 

beneficial effects by either changing to different forms of carbides or by changing their morphology. 

Carbides present at the grain boundaries in a desired morphology exhibit good creep strength and 

ductility, by inhibiting grain boundary sliding [5, 29]. 

Since carbide precipitation and distribution is very important in Ni-base alloy, the influence of carbide 

morphologies, type and distribution to high temperature properties has been studied and reported in the 

literature [28-49]. The three main forms of carbides reported in literature for Ni-base alloys are MC, 

M23C6 and M6C. (Where M stands for metallic element) Table 2 shows the different morphologies of 

carbides formed in Ni-base alloys. 

Table 2. Morphology of different carbides in Ni-base alloys 

Carbides Morphology 

MC (Ti and Mo rich) Blocky, discrete, script 

M6C(Mo rich) Discrete, acicular , platelets 

M23C6(Cr rich) Film, blocky, cellular, zipper 
 

MC carbides are formed at higher temperatures during melting. They are generally insoluble carbides 

which precipitate in irregular shape and are believed not to influence the properties unless they are 

segregated [38, 48]. On thermal exposure, the carbides can undergo decomposition to form different 

stabilized states. 

�� + � → ��� + �
 ׳

�� + � → ����� + �
 ׳

M6C form of carbides is formed in the intermediate temperature range and enhance the property of the 

material only if present in desired discrete morphology. They are generally preferred instead of M23C6 

form of carbides, because of their stability at higher temperatures. [37] 

 M23C6 usually precipitates at the grain boundaries in chromium rich alloys as irregular and 

discontinuous particles at temperatures between 760-980 ˚C. Continuous films of carbides can affect the 

ductility and, stress rupture of the material are avoided in this form [20, 31]. 

 

2.2.2 Gamma prime precipitation 
 

Gamma prime precipitate is the principal strengthening phase in Ni-base alloys. The γ׳ precipitation is 

generally formed during cooling from the first aging step or during the second aging [29]. Temperature, 

time and cooling rates on heat treatment can affect γ׳ precipitation [50-53]. The morphology, distribution 

and volume fraction of γ׳ plays a very important role not only for strength but also for determining its 

fabricability [5, 12]. They are seen as cuboidal and spherical morphologies in different Ni-base alloys. 

The principal alloying elements that form these precipitates are Al and Ti. The γʹ strengthened alloys 

have increased need for easy fabricability so that it can be readily welded and formed into various shapes. 

Hence, their addition is carefully balanced in order to get better fabricability and optimum hardening 

[29].  
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3. Haynes 282- A new fabricable superalloy 
 

3.1 Introduction to Haynes 282 
 

Haynes 282, is a relatively new wrought γ׳ strengthened alloy which has been attracting interests for 

various applications due to a combination of properties like creep strength, thermal stability and 

fabricability [12,54]. The chemical composition of this alloy is as shown in Table 3. 

Table 3. Chemical Composition (wt %) of Haynes 282 alloy 

Ni Cr Co Mo Ti Al Fe Mn Si C B 

Bal 19.44 10.22 9.42 2.15 1.44 0.92 0.06 0.07 0.067 0.004 

 

The conventional heat treatment of this alloy is 1010 °C/2h/aircooled (AC) and 788 °C/8h/AC. As 

shown in Figure 3, the conventionally heat treated alloy has spherical γ׳ precipitates and discrete carbide 

morphology at the grain boundaries. 

 

(a)                                                       (b) 

Figure 3. Scanning electron microscope (SEM) images of conventional heat treated Haynes 282 

alloy showing (a) carbides (b) γʹ  

Haynes 282, since introduction into the market for high temperature applications, has been explored for 

its full potential. The studies on Haynes 282 include the oxidation and corrosion behavior, weldability, 

creep and fatigue on conventionally heat treated condition [54-57]. However, the effect of heat treatment 

parameters such as temperature, time and cooling rate is under research.  

 

3.2 Basis for current research 
 

3.2.1 Issues with heat treatment 
 

In the interest to explore high temperature fatigue life of this new material, first part of the project was 

aimed at studying the low cycle fatigue behavior. However, in this process it was found that Haynes 282 

had lower yield strength and shorter fatigue life at higher temperature than expected. Characterization 

of the tested specimen showed differences in carbide morphology at the grain boundaries. As shown in 
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Figure 3 (a) , the alternative heat treatment , shows  presence of grain boundary carbides as films, while 

in the conventional heat treatment it appears as blocky (brick wall) structure. 

 

 

Figure 4. SEM images showing (a) Grain boundary carbides with film morphology, tested for fatigue 

at higher temperature (alternative heat treatment) (b) Grain boundary carbides with blocky 

morphology (conventional heat treatment) 

Additionally, we see bimodal γ׳ precipitates intragranularly, and γʹ precipitates and discrete carbides at 

the grain boundary. As shown in Figure 5 (a), alternative heat treatment shows presence of bimodal γ׳ 

precipitates and γ׳ at the grain boundaries. While, in the conventional heat treatment, as shown in Figure 

5(b), we see uniform size of γ׳ precipitates intragranularly and grain boundary with discrete carbides. 

 

Figure 5. SEM image showing presence of (a) bimodal precipitation in alternative heat treatment   (b) 

Spherical γʹ prime precipitates. 

Due to lack of enough literature on heat treatment and indications that the material is sensitive to heat 

treatment parameters, the first part of this project was aimed to understand the microstructural 

development of Haynes 282. The important aspect of this study was aimed to correlate the 

microstructural changes to mechanical properties like tensile strength and ductility at room temperature. 

 

3.2.2 Anisotropic ductility  
 

Second part of the work focuses in understanding the ductility variations in Haynes 282 forgings after 

heat treatment. In this study we had the possibility to see microstructures of Haynes 282 forgings, bars 

and sheets. The grain size, and distribution of carbides in different forms are shown in Figure 6. In 

Figure 6(a), the forgings indicate presence of banded structure, with bimodal distribution of grain size 

and carbide stringers.  In case of bar, the grain size is uniform with carbides uniformly distributed, see 

Figure 6(b). While, as shown in Figure 6(c), sheets show presence of carbide stringers in the rolling 

direction with uniformity in grain size. The mechanical test results on forging shows ductility variation 
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from 12 % to 24 % in the short transversal direction, while in the longitudinal direction it was unaffected. 

While, in case of sheets and bars, the ductility shows variations with heat treatment adopted.  

 

Figure 6. Optical microstructures of Haynes 282 (a) forging (b) bar (c) sheet 

 

3.3  Research Objectives  
 

1. To understand the microstructural development in Haynes 282 and its sensitivity to heat treatment 

affecting the room temperature tensile properties. 

2. To identify the cause for variation in ductility of Haynes 282 forgings and sheets. 
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4. Experimental details  

 

4.1 Material 
 

As discussed in Chapter 3, the material used in this study is Haynes 282.  The heat treatments were done 

on mill annealed sheets of 3 mm thickness, and with grain size ASTM 3.5. In the course of anisotropic 

study we also had the possibility to check on other forms such as forgings and bars of Haynes 282. 

 

4.2 Heat treatment 
 

The Haynes 282 sheet, as received, was heat treated in air in a chamber furnace. The sheet was cut into 

small pieces before subjecting it to heat treatment schedules mentioned in Table 4. 

Table 4: Heat treatment schedules 

Referred as  Solution treatment Aging step 1 Aging step 2 

Solution treatment + 
aging (ST+A) 

1120 C/2hr (WQ*) 1010 C/2hr (FC**) 788 C /8hr (FC) 

Mill annealed + 
aging (MA+A) 

- 1010 C/2hr (FC) 788 C /8hr (FC) 

Mill annealed + low 
temperature aging 
(MA+LTA) 

- 996 C/2hr (FC) 788 C /8hr (FC) 

*WQ- water quenched ** FC – furnace cooled 

While, the anisotropy ductility study was done on forged specimens, heat treated according to 

AMS4951. 

4.3 Test methods 
 

4.3.1 Mechanical Testing 
 

Tensile specimens were cut by water jet cutting and the room temperature testing was done in MTS 

servo hydraulic machine as per the ASTM standard E8  

Forgings: The tensile testing was done by GKN aerospace as per the ASTM standard E8 

 

4.3.2 Hardness 
 

Hardness measurement were performed to determine the aging of material. The Vickers macrohardness 

test was done at 10kg load as per the ASTM standard E92, and the reported values in thesis are an 

average of 10 indentations.  
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4.3.3 Microscopy 
 

A Leitz DMRX light optical microcopy equipped with Axio-vision software was used to study the 

microstructure on polished and etched samples. Additionally, SEM LEO 1550 was used for fractographic 

analysis and to observe the γ׳ precipitates and carbide morphology under different heat treated condition 
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5. Results  
 

5.1 Heat treatment on Haynes 282 sheet  
 

In order to study the sensitivity of Haynes 282 to heat treatment temperatures and to understand its 

subsequent impact on room temperature properties, the heat treatment schedules as shown in Table 4 

were done on mill annealed specimens.  

After heat treatment, the carbide morphologies at the grain boundaries changed. Figure 7 shows the 

different morphologies of grain boundary carbides. Figure 7(a) shows occasional presence of discrete 

grain boundary carbides in as received condition. On additional solutionizing followed by conventional 

heat treatment (ST+A), grain boundary shows interconnected morphology (Figure 7(b)). While, in 

MA+A condition, grain boundary carbides have discrete morphology, see Figure 7(c).  However, as 

compared to ST+A and MA+A conditions, MA+LTA shows discrete grain boundary carbides and γʹ 

precipitates (cf. Figure 7(d)). 

 

Figure 7. SEM images showing difference in carbide morphologies at the grain boundaries in 

different conditions (a) Carbides in as received condition: occasional presence of discrete grain 

boundary carbides (b) ST+A condition: presence of interconnected grain boundary carbides (c) 

MA+A condition: discrete grain boundary carbides (d) MA+LTA condition: discrete grain boundary 

carbides and coarse γʹ precipitates. 

 

Additionally, γ׳ etching also showed morphological changes, as seen in Figure 8. Figure 8(a) shows no 

presence of γʹ in as received condition. In ST+A i.e. additional solutionizing followed by conventional 



14 

 

heat treatment γʹ precipitates are seen with cuboidal morphology (Figure 8(b)). While, MA+A shows 

presence of fine spherical γʹ, see Figure 7(c).  However, as compared to other conditions, MA+LTA 

shows bimodal γʹ precipitates (cf. Figure 7(d)), spherical and cuboidal morphology. 

 

Figure 8. SEM images showing difference in carbide morphologies at the grain boundaries in 4 

different conditions (a) As received condition: No γ׳ seen (b) ST+A condition: cuboidal γʹ (c)MA+A 

condition: spherical γʹ (d) MA+LTA condition: bimodal γʹ precipitates (small-spherical and coarse-

cuboidal). 

The morphological changes in grain boundary carbides and γʹ precipitate, were tested for its impact on 

room temperature tensile properties and hardness. The tensile test results along with hardness and 

morphological changes in γʹ is summarized in Table 5. 

 

Table 5: Room temperature tensile results and hardness for different heat treated conditions. 

Heat treatment 

condition 

Room temperature 

 

Hardness 

(HV) 
γγγγ´ morphology 

 0.2% 

YS(MPa) 

UTS(MPa) %El %RA   

As received     212 ± 4  

ST+A 650 1100±10 16±1 14 310 ± 6 Cubic (120nm) 

MA+A 760±8 1245±10 32±1 33 358 ± 8 Spherical (20-30nm) 

MA+LTA 765±8 1255±10 32±1 34 327 ± 6 Bimodal(cubic+spherical) 
(120nm+ 20nm)  
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As seen in Table 5, the strength in ST+A condition is lower as compared to other heat treatments. From 

literature it is evident that γʹ precipitation gives strength to the material. A change in size of γʹ precipitates 

to coarse cuboidal morphology of 120 nm is affecting its room temperature YS and UTS. However, in 

MA+A- and MA+LTA- conditions, strength levels are similar.  

The elongation is affected in ST+A condition and can be considered to be the effect of interconnected 

morphology of carbides at grain boundaries. The discrete carbide morphology does not affect the tensile 

ductility in MA+A and MA+LTA conditions, which is a consistent with observations reported in 

literature. Hardness values are high for MA+A condition with fine spherical γʹ as compared to the coarse 

cuboidal precipitates in ST+A condition. However, the bimodal precipitate morphology for MA+LTA 

shows hardness in between the two conditions. 

 

5.2. Ductility in forgings  
 

In the ductility of forgings study, mechanical test on specimens from Haynes 282 forgings, shows similar 

values for YS, while their ductility and to some extent UTS changed. In this section, observations from 

representative samples are discussed. The fractography of tensile test specimens show intergranular 

failure as seen in Figure 9. Figure 9(a), shows a sample with intergranular failure and Figure 9(b) with 

presence of cracked MC carbide at grain boundaries, and presence of dimpled features on fractured 

surface indicating ductile matrix.  

 

(a)      (b) 

Figure 9 .Fractographs of tensile specimen showing (a) Intergranular failure (b) Presence of dimpled 

features, intergranular failure and cracked MC carbide at the grain boundary. 
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(a)      (b) 

Figure 10. Fractographs showing presence of segregated carbides (a) M6C carbides (b) MC carbides  

The fracture surface also showed presence of segregated M6C and MC carbides as shown in Figure 10. 

In order to understand the segregation of carbides and their distribution, longitudinal sections of 

specimens were cut, polished and etched for microscopy. Figure 11(a) shows the longitudinal section of 

a sample just below the fracture surface, indicating cracks along a segregated carbide region. A region 

with segregated carbides, shows presence of M6C, MC carbides and carbo nitrides, as seen in Figure 

9(b). These stringers were observed to be either 90 ˚, inclined or along the tensile axis direction in  

investigated specimens.  

 

 

(a)            (b)        (c) 

Figure 11. SEM images of longitudinal section of fractured specimen showing (a) Cracks in carbides 

just below the fracture surface (b) Segregation of carbides within a band of carbide stringer (c) MC 

carbides as large as the smaller grains. Presence of a crack in MC carbide at grain boundary   

Figure 11(c) shows carbides of size almost similar to the size of smaller grains. As shown in Figure 12, 

γʹ precipitates are seen to be distributed uniformly in matrix. Figure 12(a) shows presence of bimodal 

distribution of γʹ; coarse- intragranularly, and fine close to grain boundaries. It also shows presence of 

cracked MC carbide at the grain boundary. While, in one of the forgings heat treated conventionally, γʹ 

is uniformly distributed in size and shape intragranularly and near grain boundaries, see Figure 12(b). 

 



17 

 

 

(a)      (b) 

Figure 12. SEM images showing (a) Uniform distribution of spherical γʹ and crack in MC carbide at 

the grain boundary in forging (heat treated according to AMS 5951) (b) Distribution of very fine γʹ 

near grain boundary and intragranularly (conventional heat treatment). 

 

(a)      (b) 

Figure 13. Optical microscopic images showing carbide stringer and bimodal distribution of grains 

in specimens from short transversal (ST) direction (a) Specimen with 12 % elongation: showing 

carbides perpendicular (white arrow) to tensile axis direction (black arrow) (b) Specimen with 16 % 

elongation: showing carbides along (white arrow) the tensile axis direction (black arrow) 

The optical microscopy of specimen shows presence of smaller grains in regions where carbide 

segregations are observed while regions outside of carbide segregation are coarse grains, see Figure 13. 

Figure 13(a) is an optical image from a specimen in ST direction from forging, and measured ductility 

of 12 %. The carbide distribution were seen 90 ˚ to the tensile axis (black). In Figure 13(b), a specimen 

with 16 % elongation shows presence of carbide stringers along the tensile axis direction.  While 

specimens from LT direction had uniformly distributed carbides along the tensile axis direction, see 

Figure 14.  
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Figure 14. Optical microscopic image showing the carbide stringer and bimodal distribution of grains 

in specimens from LT direction with 24 % elongation: showing carbides uniformly distributed in the 

matrix along the tensile axis direction (black arrow) 

 

5.3 Summary of appended papers 
 

This section is aimed to summarize the results in appended papers. Paper 1 deals with the heat treatment 

on Haynes 282 sheet material. Paper 2 and Paper 3 are about forgings studied for their anisotropic 

ductility through microscopic investigation.  

 

5.3.1 Paper 1  
 

In this study, Haynes 282 shows sensitivity to heat treatment temperatures by forming different 

morphologies of grain boundary carbides and γʹ precipitates as seen in Figure 7 and Figure 8 

respectively. The conventional heat treatment for Haynes 282 (1010 °C/2h/AC) and (788 °C/8h/AC) 

produces a microstructure with fine γʹ precipitates as shown in Figure 3.  

For the standard heat treatment (i.e. MA+A condition), the γʹ precipitates were fine and of spherical 

morphology. Additional solutionizing (i.e. ST+A) leads to an increase in size of γʹ precipitates, and an 

associated change to cuboidal shape, which lowers the YS and UTS of the material. The change to 

cuboidal morphology, could be due to the fact that longer solutionzing time at 1120 ˚C, reduced the 

density of dislocations after recovery process which has led to fewer nucleation points and coarser 

precipitates. By reducing the temperature to 996 °C during the first aging step (i.e. MA+LTA), a bimodal 

distribution of γʹ with two different morphologies was observed – small spherical and large cuboidal. 

This is because 996 °C is below the γʹ solvus temperature for Haynes 282, and hence nucleates γʹ 

precipitates at this temperature and on further cooling they grow to cuboidal shape. On subsequent aging 

at lower temperatures further nucleation of smaller γʹ with spherical morphology occurs.  

When adding the solutionizing step, the grain boundary carbide changes from discrete particulate 

morphology  seen after standard treatment, to an interconnected structure, which led to a significant drop 

in room temperature tensile ductility. The secondary carbides are brittle and being interconnected makes 

it even more detrimental. On cracking of grain boundary carbides, its interconnected morphology further 

accelerates the crack propagation thereby leading to premature failure. On lower ageing temperature, 

produced a mix of carbide and γʹ at the grain boundaries, but the secondary carbides still seen with their 

discrete morphology and therefore does not affect the room temperature tensile properties. Thus this 
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study shows that slight variations in aging temperature influence mechanical properties due to 

microstructural changes. 

 

5.3.2 Paper 2 and 3  
 

In this study, tensile test results show that ductility changes from 12 % to 24 %. The fractography shows 
intergranular failure and presence of segregated MC and M6C carbides which are brittle, see Figure 9 
and 10. Metallographic investigations show presence carbide stringers and bimodal grain size 
distribution. Figures 13 and 14 show preferential orientation of the carbide bands with respect of tensile 
axis direction.  
The γʹ precipitates are uniformly distributed in size and morphology, so the heat treatment adopted gives 
similar YS. While, UTS also shows anisotropy to some extent. The formation of carbide stringers during 
forging and subsequent heat treatment is due to local elemental segregation in the ingot. The MC and 
M6C carbides are brittle. These brittle carbides initiates and propagates crack under loading conditions. 
They also pin the grain boundaries and gives bimodal grain size distribution. The preferential alignment 
of carbide stringers and bimodal distribution are the microstructural inhomogeneity, which influences 
the measured tensile ductility. Measured ductility is thus anisotropic and inhomogeneous due to the 
preferential orientation of carbide stringers, which is also qualitatively confirmed in the modelling 
attempt, where the orientation of carbides 45 ˚ to the tensile axis shows maximum ductility as compared 
to that inclined at 90˚.  
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6. Suggestions for future work 
 

From the heat treatment and forging study we see that Haynes 282 is sensitive to heat treatment 

temperatures, which changes both carbide morphologies and γʹ precipitation. The microstructural 

changes are also seen to affect the room temperature properties. Therefore, we aim to develop a better 

understanding on the microstructural development by varying few heat treatment parameters such as: 

• Solutionizing temperature, time and cooling rate 

• Aging temperature, time and cooling rate  

And also to study their effects on room and high temperature mechanical properties like strength, 

ductility both at room temperature and high temperature. 

We also aim to understand the secondary carbides formed at grain boundaries and their influence 

ductility. 
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