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Abstract

In this thesis a novel measurement setup and thru-reflect-line

(TRL) calibration kit for vector network analyser (VNA) mea-

surements at 220GHz to 325GHz (WR-03) is presented. Mea-

surements on passive membrane circuit devices under test (DUTs)

show improvement in the S-parameters compared to a waveguide

integrated membrane circuit setup in previous work, especially in

reducing the ripples and increasing repeatability of the measure-

ments.

VNA measurements provide a challenge when measuring on

waveguide integrated membrane circuit devices at terahertz fre-

quencies. In this setup, phase uncertainty in the measurements,

due to waveguide width tolerance, is reduced by shortening the

access waveguides. Because both waveguide inputs are placed in

the same flange, the access waveguides can be made much shorter.

However, in order to accommodate different DUT and TRL line

lengths, two bends were introduced in each waveguide, and the

trade-off between sharper bends or longer access waveguides ef-

fect on uncertainty, investigated.
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By the use of an adapter block, which puts the VNA extender

outputs in the same flange, phase uncertainty due to cable flex

is eliminated by locking the VNA frequency extenders in position

during the entrire measurement.

Keywords: THz, membrane circuit, TRL, calibration, VNA,

220–325 GHz, WR-03, single-flange 2-port, measurement uncer-

tainty, S-parameter, cable flex, waveguide width error
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Notations and

abbreviations

Notations

α Propagation attenuation constant
a Complex incident traveling wave
β Propagation phase constant
b Complex reflected traveling wave
γ Propagation constant
c Speed of light
η Wave impedance
E Error term
E Electric field
Et Transverse electric field
f Frequency
fc Cutoff frequency
H Magnetic field
Ht Transverse magnetic field
I Current
k Wavenumber
kc Wavenumber at cutoff frequency
λ Wavelength
λ0 Wavelength in free-space
λg Wavelength inside waveguide
ω Angular frequency
P Power

vii



S Scattering parameter
V Voltage
φ Phase
Z Impedance
Zc Characteristic impedance
Zref Reference impedance
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Abbreviations

CPW Coplanar waveguide
DUT Device under test
ESA European Space Agency
HEMT High electron mobility transistor
IL Insertion loss
InP Indium phosphide
JUICE Jupiter Icy Moon Explorer
LO Local oscillator
LRL Line-reflect-line
PECVD Plasma enhanced chemical vapour deposition
RL Return loss
SOLT Short-open-load-through
SNA Scalar network analyzer
TE Transverse electric fields
TEM Transverse electro-magnetic fields
THz Terahertz
THz-TDS Terahertz time-domain spectroscopy
TM Transverse magnetic fields
TMIC Terahertz integrated membrane circuit
TRL Thru-reflect-line
TSM Thru-short-match
TS(RO) Thru-short-radiating-open
VNA Vector network analyzer
VSWR Voltage standing wave ratio
WR-1.5 Rectangular waveguide covering 500–750 GHz
WR-03 Rectangular waveguide covering 220–325 GHz
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Chapter 1

Introduction

This thesis treats the characterisation of waveguide integrated

devices operating in the terahertz (THz) region of the electro-

magnetic spectrum, and the development of a novel setup for im-

proved measurement uncertainty when characterising integrated

membrane circuits.

Terahertz radiation has lower frequency than visible light, but

higher frequency than signals commonly used for radar and wire-

less communication, e.g. mobile phones and Wi-Fi. The term

terahertz waves or terahertz radiation often refers to frequen-

cies within 0.1THz to 10THz, corresponding to wavelengths of

0.03mm to 3mm, including the sub-mm wave region at 0.1mm

to 1mm.

The possibility to determine the existence of gas molecules, by

probing for electro-magnetic radiation in the THz frequency range

in various regions of outer space, has made astronomy, planetary

and Earth science the driving forces behind THz technology for

decades [1,2]. Terahertz wavelengths correspond to rotational and

vibrational energy levels in simple molecules, such as water (H2O),

providing each molecule a unique signature in the THz region of

1



2 Chapter 1. Introduction

the electromagnetic spectrum. First observations of pure rotation

spectra was in 1925, using THz detection [3]. The ESA space ob-

servatory Herschel is one of the latest instruments covering the

far infrared to sub-mm spectrum, with which astronomers were

able to observe star birth within a massive early Universe galaxy

cluster for the first time last year [4]. Moreover future space mis-

sions carrying THz instrumentation are planned, such as JUICE

– ESA’s mission to Jupiter’s icy moons. JUICE will carry a het-

erodyne spectrometer (SWI) operating at 0.53THz to 0.6THz

and 1.08THz to 1.275THz, to investigate the composition of the

moons’ atmospheres [5].

Recently other advantages of terahertz radiation have been

highlighted, such as it’s ability to penetrate materials such as

plastic, paper, and fabric, providing descent resolution for imag-

ing while not being ionising like X-rays. This opens up for new

applications, such as medical imaging or non-invasive product in-

spection.

However, while new areas of applications are emerging, tera-

hertz device technology is still under development. Fundamental

limitations, such as carrier velocity, limits availability of semi-

conductor components in the THz range, and existing sources

provide low power levels [6]. High frequencies also mean that the

effect of parasitic circuit elements (capacitances and inductances)

increases, making it more difficult for the circuit designer to match

the device. Thus there is a need to measure and verify circuit and

device models in the THz regime.

Furthermore, THz device development has been hampered by

the lack of measurement technologies operating at these frequen-

cies, which makes device characterisation and modelling difficult.

By measuring the phase and amplitude response of a device at its

operating frequency, models can be improved for design purposes.

Historically THz measurement techniques were usually broad-



3

band power measurements using direct detectors. These types of

detectors needed to be calibrated with well known sources [7]. A

typical broad band sensor used for far infrared (FIR) and tera-

hertz detection in early research was the thermopile, which took a

great amount of work and time to get thermally stable before mea-

surements could proceed [3, 8]. These detectors were used in the

grating spectroscopy instruments used in the 1920’s. After World

War II the more sensitive and faster pneumatic detector, the Go-

lay cell, was invented, advancing the field [3,8,9]. For the broader

research community, the advent of the Erickson power meter in

2002 was the major break through [10]. Although the power me-

ter is not frequency selective, it provided improved accuracy and

measurement results that could be repeated at different institu-

tions.

While power measurements have been available, the lack of

necessary sources in the THz region, has made vector measure-

ments, i.e. measurement of magnitude and phase, at THz fre-

quencies challenging. Up to the mid-1980’s mostly magnetrons,

klystrons and gas lasers are mentioned for millimetre waves, but

only gas lasers operate at THz frequencies [3]. The terahertz field

was then driven by the photonic research community, and the de-

velopment of the femtosecond laser made phase and amplitude

measurements possible through THz time-domain spectroscopy

(THz-TDS) [11]. The first vector network analyser (VNA) work-

ing up to 1THz was presented as late as in 1989, by Philippe

Goy [12, 13]. However, Goy’s was the only system until the re-

cent development of VNA frequency extenders up to 1.1THz [14].

Access to VNA frequency extenders means evaluation of para-

sitic circuit elements, that has only been simulated before, may

be performed [15], and new frequency dependent effects predicted

in simulation may be verified and modeled [16].

Accurate characterisation at operating frequency is important
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for both active and passive THz circuit components. Still, manu-

facturing tolerances and high uncertainties in calibration provide

a challenge for accurate S-parameter characterisation. This the-

sis started from the need to measure and characterise waveguide

integrated devices, such as devices based on terahertz integrated

membrane circuit technology, see [17]. In this work, a calibration

and measurement setup that reduces measurement uncertainty

due to manufacturing tolerances of the access waveguides, has

been developed. The setup is used for S-parameter characteri-

sation of waveguide integrated membrane circuits, using a VNA

with extenders operating in the WR-03 (220-325 GHz) frequency

band. Calibration is done with a specially developed waveguide

integrated membrane TRL-kit (thru-reflect-line). The setup im-

proved measurement uncertainty of two different measured passive

waveguide devices, with an order of magnitude.

This thesis begins with a brief theoretical background of THz

circuit characterisation in chapter 2. In Chapter 3 the THz VNA

S-parameter measurement method is described, together with cal-

ibration algorithms and the uncertainty model. Finally in chapter

5, the novel TRL-kit is described more in detail.



Chapter 2

THz circuit

characterisation

In this chapter the THz membrane technology, and the modelling

theory related to it described, as well as how THz membrane cir-

cuits can be characterised, by measurement and deembeding.

2.1 Terahertz integrated membrane

circuit technology

Due to the limited available power at terahertz frequencies, wave-

guides providing low loss, such as hollow rectangular waveguides,

see Figure 2.2a, are often preferred over transmission lines to con-

nect THz devices. Planar THz devices such as Schottky diodes

are however implemented in transmission line technology, which

is then integrated in the hollow waveguide [17]. Figure 2.1 shows

for example a Schottky diode membrane THz mixer [18].

Membrane circuits in stripline, or co-planar waveguide (CPW)

mode, see Figure 2.2d and Figure 2.2c, provide several advantages

5



6 Chapter 2. THz circuit characterisation

Figure 2.1: SEM image of a Schottky diode mixer circuit on mem-
brane technology [18]. The membrane is 3 µm thick GaAs, and will
be mounted inside a waveguide block.

over for example microstrip, see Figure 2.2b, in the waveguide

integrated environment. The thin membrane facilitates lower loss

compared to thicker substrates, and the manufacturing process

of membranes provides a better controlled thickness. But more

importantly, membranes reduce the risk of signal leakage via sub-

strate waveguide modes, that may otherwise pass through high

permittivity substrates [19]. In addition, shrinking of enclosing

waveguide dimensions is often necessary to cut off waveguide

modes.

For membrane CPW or stripline mode transmission lines, the

result is often that the field couples not only to the conductor

and ground planes, but also to the waveguide walls, see Figure

2.2c and Figure 2.2d. Therefore, the enclosing waveguide is an

integral part of the device, that also needs to be included in device
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(a) (b)

(c) (d)

Figure 2.2: Image of the E-fields in the first order modes for different type
of waveguides: (a) Rectangular waveguide, (b) microstrip, (c) waveguide
integrated membrane CPW, and (d) waveguide integrated membrane
suspended strip line.

characterisation. Thus making it unsuitable to measure devices

with on-wafer probing.

2.1.1 Waveguide fields and impedance

At high frequencies, where the size of waveguides and circuit com-

ponents are in the same order as the wavelength, the traveling

wave may be described by the propagating electromagnetic fields.

This is advantageous since current and voltages are not easily mea-

sured, and may not even be uniquely defined in the waveguide.

Due to the complexity of the waveguide integrated membrane cir-

cuit, this is often the preferred method of modelling.

The solutions to the boundary value problem of Maxwell’s

equations for a traveling wave is either transverse electromagnetic
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(TEM), transverse electric (TE), or transverse magnetic (TM)

mode. TEM modes propagate on a transmission line, where there

are at least two conductors, and there is no field component par-

allel to the propagation axis of the waveguide. TE and TM modes

are split up in several eigenvalue solutions to the boundary value

problem. For TE there is a magnetic field component in the direc-

tion of propagation, moving the wave forward, and vice versa for

TM waves. With the z-axis in the direction of propagation of the

waveguide the propagating electric and magnetic field waves are

E(x, y, z) = Et(x, y)e
−γz +Et(x, y)e

γz (2.1)

and

H(x, y, z) = Ht(x, y)e
−γz −Ht(x, y)e

γz (2.2)

where γ = α+ jβ is the propagation constant. As can be seen in

Figure 2.2d the electric field of the first order mode of a suspended

stripline on membrane is almost a coaxial mode. If the enclosing

waveguide is narrow, it is the same for the waveguide integrated

CPW on membrane, see Figure 2.2c.

The traveling wave can be described by the wave impedance.

This impedance is mode specific, and defined by the ratio of the

transverse electric Et and magnetic field Ht of this mode. The

wave impedance for mode n then becomes

ηn =
Et,n

Ht,n

. (2.3)

For a plane wave in free space η0 =
√

µ0/ǫ0 ≈ 377 Ω.

2.1.2 Impedance in waveguide circuit theory

Although the electromagnetic field solutions are a more accurate

model of the waveguide, there are many similarities between wave-
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Figure 2.3: Waveguide lumped element equivalent circuit.

guide circuits and the electrical circuits that obey Kirchhoff’s laws,

why it is also practical to describe the device in terms of equiva-

lent circuits and impedance [20]. A section of a waveguide may be

modeled as an equivalent circuit of lumped elements, i.e. elements

that are much smaller than the wavelength in size, such that the

voltage and current over the device is constant, see Figure 2.3.

The current and voltages of traveling waves depend on their

definition and normalisation, and are related to the intensities of

the electric and magnetic fields via the characteristic impedance

of the propagating mode [21]. This means that the characteristic

impedance also is determined by how it is defined. Three com-

monly used definitions are these, introduced by Schelkunoff

Zc,V I =
V

I
, Zc,PI =

2P

|I|2 , or Zc,PV =
|V |2
2P ∗

, (2.4)

where the asterisk denotes complex conjugate, V and I voltage

and current respectively, and P the power [20]. The different

impedances are related as

Zc,PIZ
∗

c,PV = |Zc,V I |2, (2.5)

but for TEM waves

Zc,PI = Zc,PV = Zc,V I . (2.6)
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[S] 

a1 

b2 b1 

a2 

Port 1 Port 2

Figure 2.4: 2-port scattering matrix

By introducing the concept of impedance in both electromag-

netic field and waveguide circuit theory, the two theories can be

joined.

2.1.3 S-parameters

In practice neither the fields nor the impedance, voltage or cur-

rents in a wave guiding system are measurable at high frequencies.

Instead if we want to characterise a device in a wave guiding sys-

tem, we are left with measurements of the magnitude and phase

of the transmitted and reflected waves. The transmitted and re-

flected power of a device is most often described by the device

scattering parameters (S-parameters).

Since the currents, voltages and electromagnetic fields are in-

accessible experimentally, the scattering matrix is a very useful

tool when determining the impedance. Pseudo waves at port n

can be defined as [21]

an(Z
n
ref) =

[

|v0|
v0

√

Re(Zn
ref)

2|Zn
ref|

]

(v + iZn
ref) (2.7)

and

bn(Z
n
ref) =

[

|v0|
v0

√

Re(Zn
ref)

2|Zn
ref|

]

(v − iZn
ref), (2.8)

where Zn
ref is the reference impedance at each port, and v and i

the corresponting voltage and current. If Zn
ref = Zn

c , the pseudo

waves become the traveling waves. There are other definitions of
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the same quantities, often also called power waves [22, 23]. Then,

with the incident and reflected waves as in (2.7) and (2.8), the

scattering matrix of a 2-port is

[

b1

b2

]

=

[

S11 S12

S21 S22

][

a1

a2

]

. (2.9)

And if the reference impedance is equal to the characteristic

impedance for each port, the pseudo matrix becomes the regu-

lar scattering matrix.

In addition to determining the impedance, the S-parameters

determine other useful parameters of waveguide components. For

a 2-port we have:

Insertion loss at port 1

IL = −20 log
10

|S21| (2.10)

and return loss at the same port

RL = −20 log
10

|S11|. (2.11)

2.2 Impedance measurements

Traditional impedance measurement technologies, where either

the current-voltage relationship over a device is measured, or

the impedance by tuning out an AC signal with variable known

impedances, commonly known as LCR-meters, are only available

up to about 3 GHz. Above 3 GHz the network analysis method is

used, where instead the incident and reflected waves on the DUT

are measured, with corresponding S-parameters.

In general, one may say that the LCR-meters are available

at frequencies where the devices are considered lumped elements,

while network analysers are used where the waveguide circuit the-
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ory applies. Another method to determine the impedance by mea-

suring the incident and reflected waves at THz frequencies is tera-

hertz time-domain spectroscopy (THz-TDS).

2.2.1 Network analysers

Network analysers are divided into two different categories, scalar

network analysers (SNA) and vector network analysers (VNA).

SNA only measure the amplitude ratio of the incident and re-

flected or transmitted waves. For phase information, one can use

a 6-port reflectometer [24] or a VNA.

Most VNAs for two port measurements have four receivers,

that measure the magnitude and phase of the incident and re-

flected signal att each port. They rely on the availability of mixers

or samplers, and LO-sources operating at THz frequencies. There

are also VNA based on the 6-port reflectometer. The 6-port re-

flectometer in itself uses four direct power detectors to sample the

standing wave, and determine both amplitude and phase of the

ratio of the incoming and reflected waves [25].

2.2.2 THz-TDS

Both amplitude and phase information of the incident and re-

flected wave can also be measured in a THz-TDS system [11,26].

THz-TDS is a photonics technology, based on the femto-second

laser.

2.3 Parameter extraction and

de-embedding

When performing measurements to determine the impedance of a

device, the measurement location is normally separated from the
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One-port 
DUT 

2-port 
Embedding 

network 

Measurement 
plane 

Desired reference 
plane 

Figure 2.5: One port measurement situation, where the actual measure-
ment plane is separated from the desired [27].

Figure 2.6: Planar Schottky diode with equivalent circuit of parasitic
elements. Yellow = gold conductor, blue = semiconductor.

device by some intervening structure, also known as an embedding

structure [27], see Figure 2.5. Often the impedance of the embed-

ding structure needs to be characterised, in order to remove it

from measurements, i.e. de-embedding to the DUT. The embed-

ding structure may also be an integral part of the device, that its

properties need to be known for performance purposes. For exam-

ple for a planar Schottky diode, a change in the size of the anode,

which affects the intrinsic device properties, results in a change of

the contact width, resulting in a higher stray capacitance in the

embedding circuit [28], see Figure 2.6.

Models of active semiconductor devices are based on measure-

ments of these devices under controlled conditions. To obtain the

most accurate model, the devices need to be measured at the op-

erating frequency. Figure 2.5.





Chapter 3

THz S-parameter

measurements

In this chapter THz S-parameter measurement technology using

a vector network analyser is described. A brief description of the

VNA itself is followed by a description of on-wafer and waveguide

integrated measurement setups. The VNA error models and dif-

ferent calibration techniques are also described, with focus on the

TRL algorithm, as well as a description of a method for analysing

measurement uncertainty, and examples of what the major sources

of uncertainty are at THz frequencies.

3.1 THz VNA

As mentioned in chapter 2, the VNA measures both amplitude

and phase of the incident, transmitted and reflected waves.

Figure 3.1 shows a simplified block diagram of a 4-sampler

VNA. Directional couplers couple a fraction of the incident signal

to the receiver m1 as a signal reference. The reflected signal from

the DUT, b1 is coupled to and measured at the receiver m2. The

15
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a
1

b
2

b
1

a
2

m
1

m
2

m
3

m
4

DUT

Figure 3.1: Simplified VNA block diagram.

same way, the transmitted signal b2 is coupled to and measured

at receiver m3.

If the incident signal at port 2 is a2 = 0, ideally, the mea-

sured signal ratios would correspond to the incident, reflected and

transmitted signal ratios

m2

m1

=
b1
a1

∣

∣

∣

∣

a2=0

= S11 (3.1)

m3

m1

=
b2
a1

∣

∣

∣

∣

a2=0

= S21. (3.2)

However, in reality this is never the case. The directional cou-

plers are not ideal, and cross coupling of the signal between the

ports will occur. Additionally, connectors, cables and other com-

ponents are not ideal, and will cause reflections, attenuation and

phase distortion. In order to measure our device, we need to char-

acterise the entire system and correct for these effects from the

measurement.
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DUT 

Figure 3.2: Illustration of co-planar on-wafer probes.

The purpose of calibration is to characterise the systematic

errors, from the VNA itself or components such as cables, connec-

tors, etc. Calibration will not take care of random errors, errors

that are time dependent, such as noise, thermal variations, and

connection repeatability.

3.2 Measurements

At THz frequencies there are a few ways to connect the device

under test (DUT), for example on-wafer probing or on waveguide

integrated membrane.

3.2.1 On-wafer probing

On-wafer probed measurements, see Figure 3.2, is the most com-

mon technique at frequencies up to about 110GHz [29]. A big

advantage is that single components can be characterised without

dicing and mounting, allowing for industrial process testing. By

calibration, the measurement reference plane can be put at the

probe tips or on the transmission line, closer to the DUT.

In spite of the many advantages of on-wafer probing, it is only

recently that probes working at THz frequencies have been devel-

oped [30,31]. Moreover, recently published THz on-wafer measure-

ment results (at 325GHz to 508GHz and 325GHz to 750GHz)

shows ripples in the measurement results due to unintentional
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DUT 

Desired  

reference planes 

Connection planes 

(a) (b)

Figure 3.3: (a) WR-03 Waveguide integrated membrane, regular block
[33]. (b) Waveguide integrated membrane with access waveguides in one
flange [Paper A].

propagating substrate modes [31], and phase uncertainty due to

probe misalignment [32].

Both problems arise from the short wavelength of the THz

waves. Substrates need to be thinner in order to avoid substrate

waveguide modes for higher frequencies, and at THz frequencies

the probe misalignment (∆z ≈ 5 µm [32]) and wavelengths become

comparable in size. Thus causing a noticeable phase error.

3.2.2 Waveguide integrated measurements

For suspended stripline technology, or membrane circuit techno-

logy, waveguide integrated measurements are necessary, since the

waveguide itself is part of the device. A setup for using TRL cali-

bration on membrane circuits was proposed in [33,34], see Figure

3.3a. And an alteration of this setup was proposed in [Paper A,

Paper B], see Figure 3.3b.

For characterisation of waveguide integrated components the

calibration reference plane and the connection plane to the mea-

surement device for the device under test (DUT) are separate [33],

see Figure 3.4. In this case an embedding structure is included in

both the DUT and the calibration standards. Here, the circuitry

between one reference plane and the corresponding connection
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Access 
waveguides 

Access 
waveguides 

Thru 

Line 

Connection planes 

Reference planes 

Reflect 

L/2 L/2 l 

Figure 3.4: Thru, Reflect and Line standards where the calibrated refer-
ence planes and connection planes are separated by access waveguides
on each side [Paper A].

plane is called access waveguide. Although the access waveguides

are, in theory, eliminated by the calibration, differences between

the access waveguides in the different calibration standards and

the DUT give rise to calibration uncertainty, [35,36].

It is also possible to calibrate the measurement at the wave-

guide interface. But, the measured result may be much less accu-

rate, since the access waveguides will be included in the measure-

ment.

3.3 VNA error models

Error models are used to describe the systematic errors intro-

duced by the VNA. By determining the terms of the error models

through measurement of known devices, the errors resulting from

the VNA and connecting waveguides, can be removed from the

DUT measurements. There are 8, 12 and 16 term error models for

2-port measurements.

The 8 term error model is the most basic go the Three models,
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Figure 3.5: Deembedding, 8 error term model

where zero leakage between the measurement ports is assumed, see

Figure 3.5. This is usually enough for the waveguide integrated

circuits, where the waveguide cuts of most stray fields coupling

the measurement ports. The S-parameter error boxes are

Ea =

[

E00 E01

E10 E11

]

and Eb =

[

E22 E23

E32 E33

]

(3.3)

In 12-term and 16-term error models, leakage paths are con-

sidered. In the 12 term error model the forward and reverse mea-

surements are modelled separately. The 16-term error model is an

expansion of the 8 error term model, where the error box is one

4-port rather than two 2-port error boxes.

3.4 VNA calibration

Calibration consists of measuring on a set of known standards in

order to determine the terms in the error models, and the sub-

sequent removal of the error terms from the VNA measurements.

There are several calibration algorithms, and they are named after

the standards, that are used in order to determine the error terms.
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The standards are more or less well known devices, for example a

through (T or thru) connection, a delay line (L or line), or a re-

flect standard (R) realised by an open or short circuit. There are

also radiating open (RO) and match (M) standards that provide

a match to the circuit. The algorithm used, determines by which

level the standards need to be known.

3.4.1 Calibration algorithms

A very common calibration algorithm is the thru-reflect-line

(TRL) calibration, first suggested by Engen and Hoer [37]. A big

advantage is that the standards behaviour need only to be partly

known. There exist variations of the TRL algoritm, for example

LRL and LRM, where a second delay line or a match standard

is used instead of the thru connection. They determine the 7 in-

dependently known parameters that must be measured in the 8

error term model.

At high frequencies waveguide calibration becomes sensitive to

fabrication and alignment tolerances. In [38] WR-1.5 rectangular

waveguide thru-reflect-line (TRL) calibrations at 500–750 GHz are

compared with thru-short-match (TSM) and thru-short-radiating-

open (TS(RO)) calibrations. The latter two were shown to be less

sensitive to systematic bias errors that cannot be eliminated by

averaging, than the TRL algorithm.

There also exist calibration algorithms that may be more com-

mon at lower frequencies or when using higher order term error

models, such as SOLT, i.e. short-open-load-thru, presented in [39].

The SOLT standards need to be well known, i.e. each standard’s

behaviour is known through data or models, and are usually re-

alised in coaxial transmission line.
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3.4.2 TRL

As mentioned above, the advantage of the TRL algorithm is that

the standards behaviour need not be fully known. This means

that they are easier to realise. The requirement is that there is

no reflection for the thru and line, i.e. S11 = S22 = 0 for both

standards, and that the reflect standard is equal at both ports.

A consequence of the former requirement is that the TRL cali-

bration automatically sets the system reference impedance to the

characteristic impedance of the line. In addition, it is necessary

to know if the phase delay provided by the line standard is in the

upper or lower half plane on the unit circle, but it must not be

φ = γl = nπ, ∀n ∈ {0, 1, 2, ...}.
The S-matrix of the calibration standards thru ST, reflect SR,

and line SL are [40]

ST =

[

0 1

1 0

]

(3.4)

SR =

[

ΓR 0

0 ΓR

]

(3.5)

SL =

[

0 e−γl

e−γl 0

]

(3.6)

The TRL algorithm may be further improved by the use of

multiple line lengths, which results in a more wide band calibra-

tion and less measurement uncertainty [41,42].

3.5 VNA uncertainty model

The error boxes determined through calibration, can only be es-

timated with a certain amount of uncertainty. A way to account

for uncertainties in the error model is by introducing residual er-

rors [43]. Instead of the ideal error S-parameter matrix in Figure
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Figure 3.6: Uncertainty model of VNA, 8 term error model with residual
errors [36].
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Figure 3.7: Residual error model for S-parameter measurements [44].

3.5, we have an estimated error matrix Êa,b that can be treated as

a residual error matrix ∆Ea in cascade with the true error matrix

Ea,

Êa = Ea ⊗∆Ea (3.7)

where ⊗ denotes a cascade connection, see Figure 3.6. As long as

we don’t know the true error terms, the residual errors can only

be an estimate. However, it is a useful concept in simulations and

analysis of uncertainties caused by known perturbations.

The residual errors are evaluated in terms of residual directiv-

ity, D, match, M , and reflection and transmission tracking, R and
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T , see Figure 3.7. The residual directivity is given by

Da = ∆Ea,11 and Db = ∆Eb,22, (3.8)

and residual match

Ma = ∆Ea,22 and Mb = ∆Eb,11. (3.9)

Reflection tracking

Ra = ∆Ea,12∆Ea,21 and Rb = ∆Eb,12∆Eb,21, (3.10)

and transmission tracking

Ta = ∆Ea,21∆Eb,21 and Tb = ∆Ea,12∆Eb,12, (3.11)

where T = Ta = Tb [36].

There also exists other models for the uncertainty [45].

3.6 Sources of measurement

uncertainty

In waveguide integrated technology there are many sources of mea-

surement uncertainty related to mounting, connection repeatabil-

ity and manufacturing tolerances. These become more evident at

frequencies approaching THz, as the tolerances become compara-

ble to the wavelength in size.

The waveguide width error has been shown to produce a large

uncertainty in the measured phase [35,36]. And for this reason, a

new measurement setup for characterising waveguide integrated

membrane circuits has been presented in [Paper A, Paper B].

Other examples of dimensional errors causing measurement un-

certainties in waveguide integrated measurements are mounting
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misalignment of the membrane circuit or the waveguide block

halves, connecting flange misalignment, membrane and waveguide

manufacturing tolerances.

There are also random sources of measurement uncertainty,

that become particularly important at terahertz, such as phase

errors due to cable flexing of the frequency extender cables to

the VNA [38]. These type of errors can not be corrected for with

calibration, but must be considered in a measurement setup.

3.6.1 Access waveguide width error

In [35] it was shown that the product of the width tolerance

and the length of the access waveguide impacts the phase uncer-

tainty. The most common technique for fabricating waveguides is

by milling the waveguide from a brass block split in half. The split

is along the E-plane in the centre of the rectangular waveguide

long edge. This means that the manufacturing width tolerance is

set by how well the depth of the milling can be defined, and the

depth is often difficult to control and measure.

For rectangular waveguide in TE01 mode the propagation

phase constant is

β =

√

(

2πf

c0

)2

−
(

π

wx

)2

(3.12)

where wx is the waveguide width. Thus a change of the waveguide

width will cause a change in the electrical length of the waveguide.

The phase delay of the TRL line standard with access waveguides

is

φ = βLine(L+ l)− βThruL, (3.13)

where L is the total access waveguide length, and l is the length

of the line standard [35].

And if there is a width difference ±δwx between the access
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Figure 3.8: Waveguide width error.

waveguides for the line and thru standard, a worst case phase

error estimation can be obtained by

φ± δφ =(L+ l)

√

(

2πf

c0

)2

−
(

π

wx ± δwx

)2

−

L

√

(

2πf

c0

)2

−
(

π

wx ∓ δwx

)2

.

(3.14)

And in terms of residual errors, i.e. residual reflection and trans-

mission tracking, R and T , the phase error is

∠Ra,b ≈ −2
√
2πL

w2
xF

δwx (3.15)

and

∠Ta,b ≈ −2
√
2πL

w2
xF

δwx (3.16)

where F =

√

(

f
fc

)2

− 1, [36]. The error becomes larger closer to

the cutoff frequency.

It becomes evident that the access waveguides length needs to

be as short as possible, and width tolerances as tight as possible,
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Figure 3.9: (a) Membrane circuit alignment in rectangular waveguide.
(b) Waveguide block halves misalignment.

to minimise the phase uncertainty. For the setup in [36], with the

same width tolerance, the total length of the access waveguides

need to be shortened by a factor 6 for the uncertainty contribution

to be in the same order as other contributions investigated. That

means the total length would have to be reduced from 20mm to

3mm in WR-03 waveguides. This was accomplished in [Paper A,

Paper B]

3.6.2 Flanges

THz waveguide measurements rely on the repeatability of the

connection between the different calibration standards and DUT.

Much effort is put into investigating the interface and repeatabil-

ity, for example in [38,46,47].

The waveguide displacement at the interface and repeatability

has shown that axial displacement cause less error than displace-

ment in x-y [46,48]. An that the displacement along the waveguide

height has the most influence on measurement uncertainty [36,48]
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3.6.3 Mounting related errors in waveguide

integrated membrane technology

The assembling of membrane circuits in waveguides is subject to

mounting tolerances, that affect the calibration and measurement

result. The uncertainty, caused by misalignment of the waveguide

block halves and membrane probes and circuit, see Figure 3.9,

in the calibration standards, propagated through the TRL algo-

rithm, has been investigated by Stenarson et. al. in [36]. In their

setup they use E-plane split blocks with E-plane probes as tran-

sition between the WR-03 rectangular waveguide and the mem-

brane circuit. The membrane in plane misalignment only gave rise

to small changes in the return loss, while block half misalignment

perpendicular to the membrane waveguide channel was notica-

ble [36].

3.6.4 Test port cable flex

A known prominent source of measurement uncertainty is flexing

of the test port cables connecting the VNA to the DUT or fre-

quency extender [38, 49, 50]. In [38] it was shown that the phase

of the signal changed, when the cables connecting the VNA to

the frequency extenders were moved, and that the phase error

persisted even after repositioning the extenders and cables.

Since the error caused by cable flex is mostly random, rather

than systematic, it will not be eliminated by calibration. On the

contrary, an error is added with each change of calibration stan-

dard.

Various techniques have been suggested to increase repeatabil-

ity, and thereby the systematic behaviour, by for example limiting

cable movement in different directions [38, 49, 50]. However, the

best way to limit the measurement errors due to cable flex is by

not moving the cables at all, as suggested in [Paper A, Paper B].



Chapter 4

New TRL-kit design and

realisation

In this work a new TRL-kit and measurement setup was devel-

oped, in which the calibration standards and DUT are put in

waveguide blocks with both ports in the same flange, i.e. a single

flange 2-port, see Figure 4.1 [Paper A, Paper B].

As previously mentioned, the access waveguides need to be

shortened to reduce the phase uncertainty caused by manufac-

turing tolerances. Conventional waveguide blocks, put the inputs

in different flanges on opposing sides of the waveguide block. For

lower frequencies the waveguides can be made relatively short (a

couple of wavelengths) without the block becoming unpractically

thin. However for THz frequencies the sizes shrink rapidly, for

WR-03 the flange to flange distance would have to be only a cou-

ple of millimetres.

A way to circumvent this is by putting the two waveguide

ports in the same flange, which allows for short access waveguides

without affecting the outer dimensions of the waveguide block.

The DUT and standards are connected to the VNA frequency

29
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DUT

DUT

VNA Extender VNA Extender

VNA Extender VNA Extender

Extender movement Extender movement

No extender movement with adapter block

Traditional setup

[Paper A] and [Paper B]

(a)

(b) (c)

Figure 4.1: (a) Traditional vs. new setup. In the traditional setup, VNA
extenders were moved when changing the DUT fixture (pink). In the
new setup, an adapter block (yellow) connects the extenders to the
DUT, and the DUT fixture can thereby be exchanged without any
extender movement.
And the new TRL kit, consisting of: (b) Adapter block with a 2-port
output in a single flange. (c) Intergangeable 2-port single flange DUT
fixture that contains either DUT or the different calibration standards
in Figure 4.2.
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extenders via an adapter block, which also keeps the extenders

locked in position, thereby also eliminating the effects of extender

cable flex.

4.1 Design

In the new single flange 2-port design, the waveguide inputs at the

interface must be at the same distance for all blocks. This forces

us to introduce bends in the access waveguides, to accommodate

DUTs and TRL standards of different lengths. By a proper choice

of line and DUT lengths, we can have the same bends in all stan-

dards, only with different orientations, see Figure 4.2. Without

this consideration, the access waveguides would have been dif-

ferent between the calibration standards, causing large residual

errors.

4.1.1 Line length

In the TRL algorithm, the desired phase change that the line

standard produces in the transmission coefficient is 90° at the

center frequency, relative the thru standard. This corresponds to

the line length l = λ/4. However, the algorithm works well with

line lengths providing other values of the phase change as long

as multiples of λ/2, where the algorithm is ill conditioned, are

avoided. A rule of thumb is that the phase change should lie within

20° to 160°, see Figure 4.3. Higher order multiples of λ/4 may also

be used, so that l = (2n + 1)λ/4. But the longer lines result in

a more narrow frequency range to be covered within the allowed

phase change [51].

In our TRL-kit design, there are two possible line lengths, de-

pending on if only one or both access waveguide bends are turned

outwards, see Figure 4.2. The Line 2 standard will add double the
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(a) (b)

(c) (d)

Figure 4.2: TRL calibration standards: (a) Thru, (b) Reflect, (c) Line 1,
and (d) Line 2.
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-90°

-134°

-340°-200°

-160° -20°

Figure 4.3: Phase delay of line standards Line 1 and Line 2 at 220GHz
to 325GHz in [Paper A] and [Paper B]. Picture also illustrates the “ill
conditioned” and optimum points for phase delay of generic TRL line
standards.

length of Line 1, compared to the Thru standard. We chose the

line lengths so that they both produce a phase change that lies

within 20° to 160°, for the entire WR-03 frequency band, and that

the average phase shift was 90°. Since the Thru has zero length,

the resulting line lengths were 142 µm and 284 µm. For Line 1 this

corresponds to a phase change within 45° to 67°, and for Line 2

90° to 134°, see Figure 4.3 and [Paper A]. This means that the

two bends introduced in the access waveguides, must produce a

142 µm length difference in the lines.

4.1.2 Access waveguide design

According to the previous discussion, the bends need to introduce

a line length difference of 142 µm while keeping the input flange

holes distance constant, and the access waveguides as short as

possible. The sharper the bends, i.e. the smaller the bend radius,
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r

Figure 4.4: Bend radius of right and left bent access waveguides.

the shorter the access waveguides will be, see Figure 4.4. But the

sharper bends introduce larger reflections and phase difference

at the waveguide to membrane transition. These reflections differ

slightly depending on the orientation of the bends, thus causing

residual errors. A trade-off must be made between waveguide bend

radius and phase error due to waveguide width error, which in-

creases for longer access waveguide lengths.

This trade-off was investigated by deembedding the transition

paramter S21 of the different access waveguide variations from one

another

∆S21 = S
21,jkl(Xj ,∆wx,k, rl) · S−1

21,pqr(Xp,∆wx,q, rr), (4.1)

The S-parameters in (4.1) were acquired from 3D FEM high

frequency EM simulations, see Figure 4.5, where three different

bend radius and width errors, for bends X ∈ {Left,Right}, were

introduced: ∆wx ∈ {0 µm,±10 µm}, r ∈ {0.6wy, 6wy, 10wy}. wx is

the waveguide width and wy the waveguide height. The signal is

coupled from the rectangular waveguide to the membrane circuit

via an E-plane probe, at a distance from the waveguide back short

where there is a standing wave power maximum. In order to com-

pare the new TRL-kit with the setup in [33,34,36], the waveguide
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Figure 4.5: Access waveguide model 3D setup for full EM simulations in
FEM solver, with E-field plotted at the ports.

to membrane transition is exactly the same in both setups. The

exported S-parameters were then de-embedded using a Python

script.

Of the three different bend radius investigated in [Paper B] it

was determined that a waveguide bend radius of 6wy was optimal.

This results in a total access waveguide length of about 2.6mm,

which would have been very difficult to realise in the traditional

setup, with access waveguides on opposing sides of the waveguide

block.
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4.1.3 Residual error simulation

The membrane circuit sections containing the thru, reflect, and

two lines, were also simulated in the 3D FEM high frequency EM

solver, and the exported S-parameters cascaded with the access

waveguides to achieve all possible standard variations, see Figure

4.2, for the bend radius of 6wy. An “ideal” set of standards was

also formed, where all have the same access waveguides.

Next, the calibration algorithm was run, using all different

standard variations, to determine the calibration error matrixes

in (3.3). The residual errors could then be determined through

comparison with the error terms of the ideal set, according to (3.7).

And residual directivity, match, and reflection and transmission

tracking computed with (3.8), (3.9), (3.10) and (3.11).

The phase of the reflection tracking was estimated to lie within

−8° to 12°, see Figure 3 in [Paper B].

4.1.4 Block design

The TRL-kit and adapter block was manufactured in brass blocks,

using high precision milling, and plated with gold. Detailed draw-

ings of the block are presented in Figure 4.6 and Figure 4.7.

The 2-port flange design was inspired by recommendations for

ALMA [48].
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Figure 4.6: Lower half of DUT waveguide block. (Waveguide dimensions
in mm.)





 


























































 








































 





 





Figure 4.7: Detail A: Line 2, Reflect, DUT. Detail B: Line 1, DUT.
Detail C: Thru. Waveguide straight sections are parallel, and the bends
continue tangentially to the previous section. (Waveguide dimensions
in mm.)
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4.2 Terahertz integrated membrane cir-

cuit processing

The membrane circuits were manufactured in an in-house clean

room process. The 3 µm thick GaAs membrane is epitaxially grown

on an GaAs (100) substrate, with a thin (nm) etch-stop-layer of

AlGaAs inbetween, see Figure 4.8a. The etch-stop layer is used on

both front- and back side process, for defining the membrane and

releasing it from the substrate. Since the layer thickness can be

determined with great accuracy in the epitaxial growth process,

this ensures an accurate membrane thickness.

The shape of the membrane that the circuit will rest on is

defined in a photolithography step and then wet etched, see Figure

4.8b and Figure 4.8c. A wet etch consisting of citric acid and H2O2

was used to etch away all membrane layer material except the

areas protected by the resist. This wet etch is used for its selective

etching properties, etching GaAs much faster than AlxGa1−xAs

[52–54].

The GaAs surface is protected from sputtered gold using a thin

layer of SiN. The SiN is grown in a plasma enhanced chemical

vapour deposition (PECVD) process with a deposited thickness

of 230 nm. Next, a dry etching step in order to open windows in

the SiN where the circuit metal will be deposited, was performed.

The edges of the membrane was protected by a thick layer of

photoresist, which was patterned and then a reflow process was

used to give the layer a soft profile. Next, a seed layer for the

electro plating was formed from a thin layer of Ti/Au, deposited

by plasma sputtering, see Figure 4.8d. Photolithography was used

to pattern the circuit, which was electro plated with a 2 µm layer

of gold, see Figure 4.8e. After electro plating, the photoresist was

removed, and the metal seed layer between the circuits removed

by ion milling, see Figure 4.8f.
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Figure 4.8: Cross section of the membrane process in order: (a) GaAs
substrate with epitaxial AlGaAs etch stop and GaAs membrane layers.
(b) Pattern membrane with photo-resist. (c) Wet-etch membrane layer.
(d) Protect membrane edges with photo-resist, reflow resist, deposit
Ti/Au seed layer in sputter. (e) Pattern circuit with photo-resist, then
deposit gold through electro-plating. (f) Remove resist, then use ion-
milling to remove Ti/Au seed layer. (g) Attach Si-wafer on front side
with melted wax, then lapp down back side. (h) Wet etch all of the
substrate from back, then rinse and release membrane circuits from
Si-wafer.
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In order to release the membrane circuit from the substrate,

the front side was waxed onto a silicon substrate, see Figure 4.8g.

The wax protects the front side during the back side processing,

and the silicon serves as a carrier substrate after the GaAs sub-

strate has been removed. The GaAs substrate is removed in two

steps, first it is thinned down by lapping, then the remaining sub-

strate is removed in a wet etch process. Finally the membrane

circuits were released from the Si-carrier and ready for assembly

in the waveguide block, see Figure 4.8h.

4.3 Circuit measurement results

Two different devices were measured, a ring resonator circuit and

a shorted stub circuit, and the result was presented in [Paper A].

In Figure 4.9a and Figure 4.9b S12 and S11, of the double stub

structure in the new setup is plotted together with simulation

results and measurements of the same structure in the old setup

[36]. The ripples in the measurement are visibly reduced.

The higher losses compared to simulation can be due to poor

electrical contact between beam leads and waveguide block.
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Figure 4.9: S21 and S11 of shorted stub circuit measurement in [Paper A]
compared with the previous work and simulations.





Chapter 5

Conclusion and future

outlook

The main driver in this thesis has been to reduce the phase uncer-

tainty, due to access waveguide width tolerance iof the calibration

standard and DUT blocks. A novel single-flange 2-port TRL cal-

ibration kit and S-parameter measurement setup with drastically

shortened access waveguides was presented, that improved results

compared to previous work. The uncertainty was investigated with

simulations, however, it is difficult to measure the uncertainty. In-

stead we rely on measurements on DUTs, and the quality of those

measurements, for proof of concept.

The measurements performed using the presented setup and

TRL-kit on two different DUTs, a ring resonator circuit, and a

shorted stub structure, proved good connection repeatability in

both amplitude and phase. The repeatability between the mea-

sured sets were between 0° and 10°, which is in the same order

as the stability of the frequency extenders, of ±8° [55]. More-

over, the ripples seen in measurements performed with the con-

ventional setup, was eliminated with this setup, and the measured
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S-parameters were in agreement with simulation results.

All other things being equal, the introduction of the adapter

block also improved uncertainty, by eliminating the cable flex.

It also made it easier to reconnect the block, compared to the

conventional setup, where it was difficult to reach screws and screw

holes, and align the waveguide flanges without gaps. The change

time was shortened as well by this, improving phase uncertainty

due to VNA drift.

A major drawback with the presented setup, if one wants to

measure on different devices, is that the distance between the

inputs in the same flange is constant. This means that in order to

measure on a longer device, such as a filter structure with multiple

impedance sections, one must manufacture a new test set of both

adapter, calibration and DUT blocks.

The presented TRL-kit has potential for further development

in the future. Future works include scaling the setup up in fre-

quency, and including bias circuitry to analyse active devices, such

as Schottky diodes. By adding bias circuitry, active two-terminal

devices, such as Schottky diodes, can be characterised. The im-

proved measurement uncertainty will aid in being able to measure

and extract an accurate model of the device and it’s parasitic el-

ements. However, the effect of the bias circuitry on measurement

uncertainty need to be investigated.

There is also a need for measurements at higher frequencies,

where there may be an advantage to perform waveguide integrated

measurements, rather than on-wafer probing. Potential difficulties

when moving up in frequency is the scaling of error with the scal-

ing of the dimensions of the access waveguides. Since access wave-

guide width tolerance is equally large for higher frequencies, the

phase error scales as T ∝ (1/λ2) for a constant waveguide length,

which means that the access waveguides need to be even shorter

at higher frequencies, to provide the same phase uncertainty.
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We have shown that by investigating the trade-offs between

sources of uncertainty, they can be improved even though another

error is introduced. The measurement uncertainty introduced by

the waveguide bends was compensated for by the reduction of ac-

cess waveguide length and the adapter block keeping the VNA ex-

tender cables locked in position. The setup enables measurements

with drastically improved uncertainty, which will be necessary for

characterising active THz integrated membrane devices, such as

Schottky diodes at THz frequencies.





Chapter 6

Summary of appended

papers

Paper A

Single-flange 2-port TRL calibration for accu-

rate THz S-parameter measurements of waveguide

integrated circuits

In this paper a new setup for S-parameter measurements on pas-

sive waveguide integrated membrane circuit components, using

TRL calibration is described and tested at 220-325 GHz. The

setup consists of two waveguide blocks, where the first block take

the two inputs from the VNA and put them in the same flange.

This block stays fixed during the measurements, also keeping the

two VNA extenders locked in position. The second block is in-

terchangeable, containing the calibration circuits and the DUT.

Since the in- and output is put in one single flange, the access

waveguides can be very short. This, together with the block lock-

ing the VNA in position, improves the measurement uncertainty
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due to extender cable flex and waveguide block manufacturing

tolerances greatly.

My contribution: Writing the paper, main idea, waveguide

block designs, membrane circuit manufacturing and circuit mount-

ing, measurements. Calibration and analysis was performed in

close collaboration with Dr. J. Stenarson and Dr. K. Yhland.

Paper B

Single flange 2-port design for THz integrated cir-

cuit S-parameter characterization

This paper focus on the design of the above setup. In particular on

the trade-off between measurement uncertainty caused by longer

access waveguides compared to shorter bend radius, for different

introduced waveguide width errors. It was found that the phase

uncertainty is within −8° to 12° for a bend radius r = 6wy, and a

±10 µm width tolerance.

My contribution: Writing the paper, main idea (in collaboration

with Dr. P. Sobis and Dr. T. Bryllert), 3D EM FEM model and

simulations.
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