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Abstract
For more efficient railway maintenance there is a need to increase the understanding of
the influence of operational conditions on wheel and rail degradation. To this end, the
chosen primary investigation strategy is to employ dynamic multibody simulations, where
operational conditions are altered, to estimate the influence on material deterioration.
Operational conditions considered are track, wheel and rail geometries; and types of
material deterioration that are considered are rolling contact fatigue (RCF) and wear.

Track geometry, especially the curve radius, has a large influence on wheel/rail
degradation. Smaller curve radii lead to higher degradation. By also considering the
influence of lateral track irregularities in curves, a more complicated relationship emerge.
Large curve radii and a high level of lateral irregularities lead to an increase in RCF over
the length of a curve. For small radius curves, where wear is the dominating damage
mechanism, an increase in the level of lateral irregularities leads to a transition towards a
mixed RCF/wear regime for the outer (high) rail.

The influence of wheel and rail geometries on degradation is studied by parametrisation
of wheel/rail geometries, employing a design of experiments scheme to the multibody
simulations that determine degradation, and finally by deriving meta-models through
regression analysis. The meta-models link estimated degradation magnitudes to key
geometric parameters. The advantage of the meta-models is that degradation magnitudes
can be evaluated with a very low computational cost. This has the benefit that measured
wheel and rail profiles can be ranked based on how detrimental they are. Examples are
presented for altered gauge corner and flange root geometries, and also for hollow worn
wheels.

A field study of RCF of locomotive wheels shows its strong dependence on operational
conditions. Seasonal variations in the number of wheel reprofilings are explained in terms
of seasonal variations in weather conditions, lubrication practices and rail grinding.

Keywords: Rolling contact fatigue, wear, rolling contact, railway, wheel, rail, track
geometry, maintenance
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Nomenclature
β Vector containing the regression parameters (coefficients of meta-models).
γx Longitudinal creep [-].
γy Lateral creep [-].
X Design matrix (each row corresponds to one scenario).
µ Coefficient of friction [-].
θ Inclination of the ellipses describing the hollow worn wheel [rad].
a Major semi-axis of the elliptical contact area [m].
ae1 Major axis of the ellipse on the field side of the hollow worn wheel [m].
ae2 Major axis of the ellipse on the flange side of the hollow worn wheel [m].
ai Coefficient of a general second degree equation, i = {r, w}, where r represents

the rail and w the wheel. Rail and wheel profiles measured in millimetres.
b Minor semi-axis of the elliptical contact area [m].
be Minor axis of the ellipses of the hollow worn wheel [m].
bi Coefficient of a general second degree equation, i = {r, w}, where r represents

the rail and w the wheel. Rail and wheel profiles measured in millimetres.
ci Coefficient of a general second degree equation, i = {r, w}, where r represents

the rail and w the wheel. Rail and wheel profiles measured in millimetres.
di Coefficient of a general second degree equation, i = {r, w}, where r represents

the rail and w the wheel. Rail and wheel profiles measured in millimetres.
ei Coefficient of a general second degree equation, i = {r, w}, where r represents

the rail and w the wheel. Rail and wheel profiles measured in millimetres.
f Traction coefficient [-].
Fx Longitudinal component of the tangential contact force [N].
Fy Lateral component of the tangential contact force [N].
Fz Total contact load in normal direction [N].
fi Coefficient of a general second degree equation, i = {r, w}, where r represents

the rail and w the wheel. Rail and wheel profiles measured in millimetres.
FIsurf Fatigue index for surface initiated rolling contact fatigue [-].
hd Cant deficiency in [m] for Paper C and in [mm] for Paper D.
k Work hardened yield strength in shear [Pa].
Nf Fatigue life in number of load cycles.
p Normal pressure [Pa].
p0 Maximum normal pressure [Pa].
Q0 Static vertical wheel force [kN].
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q0 Maximal traction [Pa].
R1 Radius of the transition circle on field side of the hollow worn wheel [m].
R2 Radius of the transition circle on flange side of the hollow worn wheel [m].
Rc Curve radius [m].
Tγ Dissipated energy, wear number (tangential contact forces multiplied with creep)

[N].
Y2m Track shift force evaluated as a 2 metre moving average [kN].
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Figure i: Nomenclature of parts of the wheel rim and rail head.
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Part I
Extended Summary

1 Introduction

1.1 Background
“Skenornas nötning på jernväg beror på många omständigheter, och kan

endast bestämmas genom gjorda iakttagelser på redan en längre eller kortare
tid begagnade jernvägar. För hvarje 1000:de skålpundfot1 verkställdt mekaniskt
arbete uppkommer vid medelhårdt jern en vigtsförlust af 0,0131 à 0,0164 ort.
Vid vanlig friktion af jern mot jern är, vid långsam rörelse, vigtförlusten 0,0065
à 0,0098 ort för hårdt, och 0,0164 à 0,0197 ort för mjukt jern. Verka ångvagnens
drifhjul häftigt på en och samma del af skenan, och om värmeutveckling tillika
uppstår, så kan förlusten uppgå ända till 0,0196 à 0,0338 ort. ”

The above quote is from a treatise by Nerman [1856] which is in turn based on a work by
Becker [1855]. By no coincidence, the year 1856 is also the year when operation started
of sections of the first main lines in Sweden. Some of the key points of the quote are

• wear of rails depends on many factors and can only be determined by observations
over time

• a measure of energy is linked to the amount of wear
• the amount of wear is related to the hardness of the rail
• thermal effects caused by wheel slip lead to high wear rates.

The present thesis elaborates on the first point and also includes aspects of rolling contact
fatigue (RCF) and wheel damage. The main aims are to identify key (geometrical) factors
that influence degradation of rails and wheels, and to quantify their influence.

The degradation levels of wheels and rails are mainly determined by observations. In
Sweden the track geometry, transversal rail profile, ballast geometry and rail corrugation
are measured at least once a year for most track sections (Trafikverket [2012]). Wayside
wheel profile measuring stations have also made their entrance (Asplund et al. [2014]).
On top of that there are wheel impact force and hot wheel/axle box detectors which are
currently employed in decisions of stopping trains for safety reasons. This means that
there are significant amounts of data which can be employed in maintenance planning,
especially if condition based preventive maintenance is the preferred paradigm. Already
today data of these types are to some extent employed in maintenance planning. For
example in European standards both safety and quality limits are stated where the level
of track geometry degradation decides whether maintenance has to be either planned
(preventive maintenance) or carried out immediately (corrective maintenance), see Sec-
tion 2.2. Another option for preventive maintenance is predetermined maintenance where

1The energy to lift one pound the distance of one foot (pound in Swedish = skålpund = 100 ort =
425.1 grams).
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the maintenance schedule is determined by the passage of a certain amount of time or by
some parameter based on the actual usage. Since many maintenance actions have to be
planned well ahead of time not to cause (excessive) traffic disturbances and also to allow
bundling of different maintenance tasks, it is necessary to be able to predict the level of
degradation of the object.

As noted above, both rail and wheel profile geometries are currently measured. This
gives an opportunity to single out profiles which have high degradation rates. Fröhling,
Spangenberg, and Hettasch [2012] showed that removing 7% of the most detrimental
wheel profiles, eliminated 84% of the studied wheel/rail profile combinations with high
contact stresses. From this, it is clear that it would be useful to have a tool with which
wheel and rail profiles can be ranked from benign to detrimental.

When it comes to prediction of degradation of rails and wheels in service, the focus
has been mainly on wear of wheels see e.g. Braghin et al. [2006], Jendel [2002], and Pearce
and Sherratt [1991]. The previous references have a common approach to predict the
shape of the worn wheel profile, namely that multibody simulations are employed to yield
wheel/rail contact responses which are thereafter employed in a wear model which in turn
updates the wheel profile geometry. These types of simulations are rather complicated
and time consuming. Prediction of rail wear through simulations is not as common, but
there are examples where wear of both wheel and rail are evaluated simultaneously, see
e.g. Ignesti et al. [2014] and Zobory [1997].

1.2 Scope and aim
As mentioned, the main purpose of this thesis is to identify the most significant factors
that influence the degradation of wheels and rails, and to derive models that quantify
their influence. Degradation mechanisms that are considered are rolling contact fatigue
and wear.

To this end, dynamic multibody simulations are employed. Considered operational
parameters relate to track, rail and wheel geometries. To limit the (already extensive)
complexity, all simulations feature a single wagon (i.e. not several wagons coupled together)
and the results are extracted from the leading axle of the first bogie. The robustness
of the approach is finally investigated by comparison to similar analysis where another
vehicle model is employed.

There are of course limitations with this methodology. The railway is an open system
which means that there are many factors, such as weather, train drivers etc., that are
not accounted for in the simulations. An example of how seemingly identical locomotives
have large variations of running distances between wheel reprofilings is seen in Paper E.
This shows that there are operational parameters that greatly influence the degradation
of wheels which are normally not captured in an assessment. Another limitation is that
the influence of different steel grades on degradation has been disregarded. There are
also simplifications when it comes to the level of detail of wheel/rail contact modelling
and contact force calculations. With these limitations in mind, it should be noted that
the results of this thesis are mainly used for comparative purposes. As an example, the
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meta-models derived to quantify degradation magnitudes in Paper C and Paper D are
used to rank profiles from benign to detrimental, rather than to quantify operational lives.

2 Track geometry and track geometry degra-
dation

2.1 Track geometry and irregularities
The geometry of a track can be seen as a nominal geometry with superposed irregularities.
The nominal track geometry consists of vertical curvature, horizontal curvature, gradient
(i.e. slope of track), track gauge and cross level (cant). Track irregularities are defined as
deviations from this nominal (designed) track geometry. Definitions of track geometry
and irregularities are found in CEN [2008]. A selection of the definitions are reiterated
below.

• Longitudinal level or vertical alignment: vertical deviation of the running table1

from the reference line2. Measured for both rails.
• Lateral alignment or alignment: lateral deviation of both rails measured from a

point between 0 to 14 mm below the running surface3, see also Figure 2.1.
• Track gauge: track gauge is the shortest distance between the rails measured between

0 to 14 mm below the running surface, see also Figure 2.2.
• Cross level: cross level is evaluated from the angle between the running surface and

a horizontal reference plane. It is expressed as the vertical distance between the
rails for a hypotenuse of 1500 mm for a nominal gauge of 1435 mm. For curved
tracks cross level is often referred to as cant.

• Twist: the rate of change of cross level.

2.2 Quantification of degraded track geometry
A number of ways of quantifying track geometry degradation are defined in norms and
standards. Historically these norms and standards were specific for each country. In this
section permissible levels for isolated defects and track qualities are given as defined in
European standards (which are, or are in progress to become, national standards for
many European countries). In general the purpose of the permissible levels of the isolated
defects are to ensure that the safety is not jeopardised whilst permissible levels for track
quality are used to ensure that ride comfort does not become unacceptable.

1Upper surface of the rail head.
2Mean position evaluated over different lengths depending on whether isolated defects or track quality

measures are assessed.
3Surface tangential to the running tables of left and right rails.
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2.2.1 Isolated defects
CEN [2010] defines limits on isolated track geometry defects before an action needs to be
taken. The actions are:

• Immediate Action Limit: if the immediate action limit is exceeded, mitigation
actions have to be taken immediately (e.g. immediate tamping, closing of the line,
or reduced speed limits).

• Intervention Limit: if the intervention limit is exceeded, corrective maintenance has
to be performed in order to ensure that the immediate action limit is not reached
before the next inspection.

• Alert Limit: if the alert limit is exceeded, correction of track geometry has to be
considered in the regular planning of maintenance operations.

Of these, only the immediate action limits are given as binding values in the standard.
The other two limits are provided as guidelines for maintenance planning. In Table 2.1
immediate action limits and alert limits for lateral alignment are given. The alert limit
values are roughly half of the immediate action limit values. Derailment risks assessed by

4



multibody simulations in D-RAIL [2013] imply that the immediate action limits may not
be restrictive enough for defects shorter than 8 metres.

Table 2.1: Immediate action limits and alert limits for lateral aligment at an isolated
defect with a wavelength between 3 and 25 metres (CEN [2010]). The mean value should
be calculated over a length of at least 50 metres.

Speed [km/h] Immediate action limit Alert limit
Mean to Peak value [mm] Mean to Peak value [mm]

v ≤ 80 22 12 to 15
80 < v ≤ 120 17 8 to 11
120 < v ≤ 160 14 6 to 9
160 < v ≤ 230 12 5 to 8
230 < v ≤ 300 10 4 to 7

2.2.2 Track quality measures
Track geometry quality is commonly quantified by the standard deviation of irregularities
over a specified length. Maximum permissible values of the standard deviation for track
irregularities are related to the maximum line speed and classification of the track. The
European standard prEN 13848-6, see CEN [2012], presents limits on the standard
deviations for longitudinal level and alignment as presented in Table 2.2. Limits and track
quality classes were obtained by surveying track qualities around Europe.

Table 2.2: Limit of standard deviation of alignment (in [mm]) according to CEN [2012]
(average of the standard deviations of left and right rails).

Speed [km/h] Track quality class
A B C D E

v ≤ 80 < 0.90 1.25 1.95 2.7 > 2.70
80 < v ≤ 120 < 0.50 0.70 1.05 1.45 > 1.45
120 < v ≤ 160 < 0.45 0.55 0.75 1.00 > 1.00
160 < v ≤ 230 < 0.40 0.50 0.70 0.90 > 0.90
230 < v ≤ 300 < 0.35 0.40 0.50 0.65 > 0.65
v > 300 N/A N/A N/A N/A N/A

2.2.3 Track shift forces
The lateral track shift force is the total lateral force induced by the wheelset on the track
(see Figure 2.3). High track shift forces may lead to large permanent deformations of the
track. Therefore a limit criterion has been proposed in UIC [2009]. According to this
criterion the 2 metre moving average of the track shift force Y2m [kN] may not exceed

Y2m ≤ K

(
10 +

2Q0

3

)
(2.1)
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where K = 0.85 for freight wagons and K = 1 for passenger vehicles. Furthermore,
Q0 [kN] is the static vertical wheel force.

Ql

Yl

Yl

Ql

Yr

Qr

Yr

Qr
Y

Y = Yl − Yr

Figure 2.3: Definition of lateral track shift force Y, vertical wheel force (Ql, Qr; left and
right respectively) and lateral wheel force (Yl, Yr). View in the rolling direction of the
wheelset.

2.3 Characteristics of track geometry degradation
Track geometry degradation may be caused by a re-arrangement of ballast particles due
to loads and vibrations from passing train. Tamping restores the track geometry but at
the same time tamping causes damage to the track ballast (Audley and Andrews [2013]).
The loss of angularity of the ballast particles due to tamping actions leads to increased
degradation rates over time since the interlocking between the particles is not as effective
when the ballast stones become more rounded (Paderno [2009]).

The characteristics of track geometry degradation was investigated in ORE [1988].
Some of the conclusions are reiterated below:

• both the vertical and lateral alignment degrade linearly with tonnage or time
between maintenance operations after the first initial settlement. This trend is not
always seen for sections with high degradation rates.

• the rate of degradation is very different from section to section even for apparently
identical sections carrying the same traffic.

The first item in the list above is illustrated in Figure 2.4 which shows how the
deterioration rate becomes more or less linear after an initial period of a high degradation
rate. The first two items have further been demonstrated by Andrade and Teixeira [2011]
for a Portuguese rail line. Furthermore the second item is validated by Arasteh khouy
et al. [2014] where a distribution of longitudinal degradation rates for the Iron Ore Line
in Sweden is presented. Some locations on the line have exceptionally high degradation
rates in comparison to the main part of the line. Seasonal variations in the number of
track geometry faults were also reported.

Measured standard deviations of the longitudinal level are reported in Esveld [2001]
to increase at a mean rate between 0.7 to 2.0 mm per 100 MGT (million gross tonnes).

6
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Figure 2.4: Schematic illustration of track geometry degradation over time.

In comparison, the standard deviation of the lateral alignment increases at a mean
rate between 0.3 to 0.8 mm per 100 MGT. In cases where both the mean vertical and
mean lateral degradation rates are presented (Esveld [2001]), the vertical degradation
rate is between 1.4 to 3.7 times higher than the lateral rate. For the Iron Ore Line in
Sweden similar longitudinal degradation rates have been presented by Arasteh khouy
et al. [2014] although, as mentioned above, some sections of the track may have much
higher longitudinal degradation rates. Also shown in Arasteh khouy et al. [2014] is that
tamping does not restore the track to a perfect nominal geometry, and that there is a
considerable variation in the effectiveness of individual tamping actions.

3 Material deterioration of rails and wheels

3.1 Rolling contact fatigue

3.1.1 Common features of RCF
Fatigue damage development can in general be divided into four phases (Tunna, Sinclair,
and Perez [2007]). The first phase is crack initiation, the second phase early crack
propagation, the third phase extended crack propagation, and the fourth phase final
fracture. After the second phase, surface initiated cracks should be visible to the naked
eye. The fourth phase – final fracture – may imply anything from a small piece of material
detaching to total loss of structural integrity.

The initiation of cracks is dependent on load characteristics, since the material subjected
to rolling contact can respond in four different ways depending on the loading (see Johnson
[1989] and Figure 3.1):

1. Elastic response. If the yield stress of the material is not exceeded the (global)
behaviour will be elastic.
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2. Elastic shakedown. An elastic response is obtained after the yield stress is exceeded
in the initial load cycle(s).

3. Plastic shakedown. A closed plastic stress–strain loop is formed with no net
accumulation of (uni-directional) plastic strain.

4. Ratcheting. Incremental (uni-directional) strain accumulation with each load cycle.

The first item in the above list requires the most number of load cycles to initiate a crack
whereas the last item requires the fewest number of load cycles. However due to the
compressive loading in rolling contact, the number of cycles spent in initiation and early
crack growth may even under ratcheting conditions be a substantial portion of the total
RCF life as demonstrated with twin disk experiments by Garnham and Davis [2011].

If the material in a rolling contact deforms plastically at the initial load cycle, an
elastic response may occur in subsequent load cycles (Johnson [1989]) due to

• protective residual stresses created by the initial plastic deformation that suppresses
subsequent yielding;

• strain hardening which raises the yield stress of the material, and
• geometric changes of the surfaces in contact that may result in a more conform

contact and thereby lowering the intensity of the contacting stress – so-called wear-in.

Strain ε Strain ε Strain ε Strain ε

St
re

ss
σ

Fatigue limit
Yield strength

Elastic shakedown
Plastic shakedown

Ultimate strength

St
re

ss
σ

St
re
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σ
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Figure 3.1: Material responses at different load levels.

Surface initiated RCF cracks

For a frictional contact between wheel and rail, surface initiated RCF cracks are commonly
caused by ratcheting. Due to the accumulation of plastic strain, a crack will form when
the fracture strain is exceeded (ductile fracture). Note that in rolling contact the fracture
strain is significantly higher than in uni-axial tension due to beneficial compressive stresses
(Ekberg and Kabo [2005]). If the tangential contact loads are alternating (i.e. in a case of
bi-directional traffic on a rail, or for contact in the running band of a wheel operating in
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two directions), then no net accumulation of uni-directional plastic strains will occur. In
such cases plastic shakedown may occur and crack initiation mechanism will instead be of
a low-cycle fatigue type.

Propagation of surface initiated cracks caused by ratcheting is highly influenced by the
orientation of the deformed microstructure, see Ekberg and Sotkovszki [2001] and Schilke,
Larijani, and Persson [2014]. This commonly means that the crack initially propagates at
a shallow angle to the surface and thereafter deviates towards a direction perpendicular
to the surface. In wheels, the perpendicular (radial) cracks typically deviate or branch
to propagate in a circumferential direction at a depth of 0.5 to 3 mm below the surface
(Ekberg and Kabo [2005]). Final fracture occurs when the crack joins adjacent crack(s)
whereby a piece of the tread material may be broken off.

Extended crack propagation is believed to be driven by shear stresses with aid from
hydraulic mechanisms (Fletcher, Franklin, and Kapoor [2009]). For shear stress driven
(mode II propagation, see Figure 3.2) the passing contact load induces shear loads at the
crack which will drive crack propagation. Presence of liquids, will lower the crack face
friction and may add hydraulic pressurisation, which causes additional mode I loading of
the crack. Bower [1988] describes the fluid entrapment and hydraulic pressure transmission
mechanisms; a squeeze film fluid mechanism is described by Bogdañski [2002].

Mode I Mode II Mode III

Figure 3.2: Modes of crack propagation. Mode I is the tensile opening mode, mode II is
the (in-plane) shearing mode and mode III the tearing mode.

Sub-surface initiated RCF cracks

Sub-surface cracks initiate 4 to 25 mm below the surface (Ekberg [2009]). Maximum
shear stresses are located below the surface if the coefficient of friction low. Large shear
stresses together with material imperfections determines critical crack initiation locations.
It should be remembered that the initiation takes place under a multi-axial state of stress.
Sub-surface initiated RCF is mainly a high cycle fatigue phenomenon since limited plastic
deformation takes place. Cracks initiated deep below the surface are more related to
vertical load magnitudes and material defect sizes whereas cracks initiated closer to the
surface are more related to contact conditions (Ekberg, Kabo, and Andersson [2002]).
Sub-surface initiated RCF cracks are not considered in the current thesis. The interested
reader is referred to Ekberg [2000] and references therein.
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3.1.2 RCF of rails
The most common form of surface initiated RCF damage to rails are head checks. Head
check cracks are manifested as closely spaced cracks of similar direction and size on
the gauge corner (UIC [2002]). They are caused by a combination of high normal
and tangential stresses at the wheel/rail contact. The stresses cause severe shearing of
the surface layer of the rail that leads to fatigue and/or exhaustion of the ductility of
the material (ratcheting). The initial microscopic cracks propagate at a shallow angle
through the plastically deformed (anisotropic) material of the surface layer. The depth of
this anisotropic surface layer has been shown experimentally to be between 1 to 5 mm
depending on the hardness of the rail (Jaiswal [2009]). When the crack has grown to a
depth where there is no significant plastic deformation of the (isotropic) material, crack
propagation may continue in different directions. If the cracks branch towards the surface
(or merge with other cracks), parts of the surface material may detach. This is commonly
called spalling and is regarded as a relatively harmless form of damage. If instead the
crack grows and propagates downwards the end result may be a transverse failure of
the rail, see Figure 3.3. Needless to say, such a failure may have serious consequences
especially if several transverse fractures occur within a limited section of the track. This
was the case for the severe accident at Hatfield, see Smith [2003].

Head checks at the gauge corner are also referred to as gauge corner cracks. Crack
mouths are generally oriented perpendicular to the acting creep forces (Magel [2011]). The
cracks may occur on long stretches of the rail (e.g. throughout a curve) or found in clusters
(e.g. due to track irregularities). The spacing between cracks have been experimentally
shown by Stock and Pippan [2014] to decrease with increasing hardness of the rail material.
It was also reported that the cracks become more fragmented with increasing hardness.

Figure 3.3: On the left, a rail break caused by a downwards propagating crack (Image
courtesy of Jan-Olof Yxell, Chalmers). On the right, gauge corner of the same rail with
head checks and spalling (Image courtesy of Magnus Ekh, Chalmers).

On the Iron Ore Line in Sweden (with 30 tonnes axle loads) eddy current measurements
have been performed for sections of the track between 2008 and 2011, see Gustafsson
[2012]. Head checks were found basically at every curve with a radius below 700 metres.
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At that time grinding was performed once a year for an annual traffic of 30 MGT. On
Canadian railways it has been found that head checks may appear after 15 MGT of traffic
on newly laid rails (Magel et al. [2003]). On German railways it is reported in Heyder and
Brehmer [2014] that head checks are formed after 5 to 10 MGT of traffic . Also the depth
of head check cracks is found to increase at a rate of 0.8–2.8 mm/100 MGT for R2601 rail
steels and 0.1–1.2 mm/100 MGT for R350HT2 rail steels (Heyder and Brehmer [2014]).

Another type of a surface initiated RCF damage is a squat. Squats and squat-type
defects have from the outside an appearance of a dark spot, which has the shape of two
lungs with surface breaking cracks of V,U,Y or circular shapes. Furthermore, there is
a widening of the running band, see Steenbergen and Dollevoet [2013] and UIC [2002].
There are usually two cracks evolving into the rail, one longer crack propagating in the
main direction of train operation and one shorter crack propagating in the opposite
direction. A distinction is made between squats and squat-type defects by Grassie [2012].
A squat is a surface-initiated RCF defect originating from the plastically deformed surface
layer close to or at the gauge corner. A squat-type defect (denoted a stud in Grassie et al.
[2012]) is either associated with a white etching layer acting as a initiator or believed to
be initiated by high dynamic loads resulting from isolated irregularities on the rail crown.
For both squats and squat-type defects the driving traction of the trains have been linked
as a possible cause of formation. According to Grassie [2012] it takes only few tens of
MGT of traffic to initiate a squat but at least a total of 100 MGT of traffic is required
for a squat that is detectable by ultrasonic testing. On the heavy haul Iron Ore Line in
Sweden, squat-type defects have been found on the inner rail of curves with a radius of
500 metres and smaller, see Gustafsson [2012]3.

Sub-surface fatigue damage in rails, such as tache ovale (kidney-shaped fatigue) cracks
are nowadays rare due to improved steel cleanliness (Fletcher, Franklin, and Kapoor
[2009]). The fatigue crack initiation is commonly due to hydrogen embrittlement and/or
due to inclusions in the material (Stone [2004]).

3.1.3 RCF of wheels
Surface-initiated RCF cracks are commonly classified based on their appearance and
location on the wheel, see e.g. Deuce [2007]. Initially surface initiated RCF damage
consists of closely spaced cracks at an angle determined by the loading etc. At later stages
pieces of material may break loose due to cracks merging. Zone 1 (field side of the tread)
RCF cracks are the most common form of wheel RCF. An example of zone 1 RCF cracks
is shown in Figure 3.4. Zone 1 RCF cracks are caused when the wheel is running on the
inner rail in curves. The crack mouths are oriented perpendicular to the direction of the
resulting tangential contact force during curving. This usually means an orientation of
some 30− 45 degrees towards the wheel axis, see Deuce [2007] and Stone [2004]. Due to
the relatively constant longitudinal and lateral contact forces, the material of the wheel
at zone 1 experiences uni-directional strain accumulation which may cause ratcheting.

1With a minimum ultimate strength of 880 MPa.
2Head hardened rail with a minimum ultimate strength of 1175 MPa.
3The defects in the source are called squats but since the defects occur at the inner rail of a heavy

haul line the defects are here classified as squat-type defects following Grassie [2012].
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The inner wheel of the leading axle commonly experiences a braking moment in a curve
which promotes faster crack propagation rates due to hydraulic mechanisms (Kalousek
[2005]). Zone 2 (flange and flange root) RCF cracks are less common than RCF cracks in
zone 1. Zone 2 RCF cracks are formed by contact between the flange or flange root and
the gauge corner of the rail. For a leading axle, this contact imposes a tractive force that
tends to close the cracks and making crack propagation aided by hydraulic mechanisms
unlikely. Zone 2 cracks are commonly oriented some 30− 60 degrees towards the wheel
axis (Deuce [2007] and Stone [2004]). Zone 3 (centre of tread) RCF cracks are caused
by braking (and traction) on tangent track. RCF cracks at zone 3 are mainly oriented
parallel to the wheel axis although there is some scatter in their orientation, see Figure 3.4.

Figure 3.4: RCF on a locomotive wheel. Zone 1 RCF cracks are seen approximately
between 2 to 5 centimetres from the rim face (to the left) and zone 3 RCF cracks between
5 to 7 centimetres. Image courtesy of Anders Ekberg.

Thermal cracks are caused by heating and subsequent cooling of the wheel. Heating of
the wheel can be caused by e.g. tread braking or large-scale wheel slip/sliding. Thermal
cracks are formed by the material being plastically deformed due to restrained thermal
expansion. When the surface of the wheel subsequently cools, tensile residual stresses are
induced, which may cause cracking (Ekberg [2009]). Thermal damage is often (but not
always) associated with martensite formation. For martensite to form, temperatures have
to have been sufficiently high for austenite to form (i.e. over 700◦C) followed by rapid
cooling. The martensite and the surrounding heat affected zone may act as initiation
areas for fatigue cracks (Ekberg and Kabo [2005]). A milder form of thermal damage is
the formation of ”brick” or ”crocodile skin” patterns. Thermal cracks and thermal effects
are not considered in the current thesis. The interested reader is referred to Caprioli
[2014] and references therein.
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3.2 Wear

3.2.1 Wear processes
The broadest definition of wear is the loss (or displacement) of material from a contacting
surface (Nilsson [2005]). This broad definition would include RCF as a wear mechanism in
cases where RCF leads to spalling. Wear is defined by Johnson [1989] as a steady removal
of material from the surface in the form of relatively small particles. Lewis, Dwyer-Joyce,
et al. [2010] classify a ratcheting process together with subsequent material removal as a
wear phenomenon. Regardless of the exact definition it is clear that RCF and wear are
closely related phenomena.

Wear mechanisms for sliding contacts

Contact conditions (e.g. contact pressure and sliding velocity), the (potential) presence of
debris, and the material properties of the contacting surfaces, govern which wear process
will take place.

Oxidative wear is a wear process where a oxide layer of the material is detached from
the surface (Lewis and Olofsson [2009]). Once the oxide has broken off, a new oxide layer
starts forming, which will in time be broken away. Oxidative wear takes place under low
contact pressures. Wear rates are generally low for oxidative wear.

Adhesive wear is a wear process where contact between surfaces occurs at discrete
points corresponding to microscopic surface asperities (Lewis and Olofsson [2009]). When
the surfaces move relative to each other, the material is broken away at discrete points
either by brittle or ductile fracture. After the material at the original points of contact
has broken, contact will occur at new surface asperities.

Abrasive wear is a wear process where damage to a surface is caused by a harder
surface or by hard particles (Lewis and Olofsson [2009]). The harder surface/particle acts
as a “plough” whereby grooves are formed on the softer surface. If the wear damage to a
softer surface is caused by asperities on the harder surface it is referred to as two-body
abrasive wear. If hard particles are trapped between the surfaces it is referred to as
three-body abrasive.

Delamination wear is a process where cracks nucleate at the plastically deformed
surface layer. These cracks propagate parallel to the surface and may merge with other
cracks. Eventually material detaches in the form of thin flake-like sheets of wear debris
(Suh [1973]).

Thermal wear processes are caused by frictional heating of the surfaces (Lewis and
Olofsson [2009]). The heating of the surfaces leads to softening or even melting of the
material. The heated material can thereafter be displaced as a viscous fluid.

Classification of wear

Wear is often classified into regimes differentiated by sudden jumps in wear rates. Com-
monly wear is divided into mild, severe or catastrophic regimes. Mild wear is usually
associated with oxidative wear. Severe wear is commonly associated with adhesive or
thermal wear mechanisms (Lewis and Olofsson [2009]) and with delamination wear (Lewis,
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Dwyer-Joyce, et al. [2010]). The wear rate may be pushed into the catastrophic wear
regime e.g. by increasing temperatures at the contact and subsequent thermal softening.

The transition between mild and severe wear has been linked by Beagley [1976], with
the aid of shakedown diagrams, to the yield strength in shear of the material when the
friction is low (below 0.3) and to the fracture strength in shear for high friction cases.
The transitions between mild and severe wear have also been shown to correlate with a
transition from partial slip to full slip conditions, see Lewis and Dwyer-Joyce [2004] and
Lewis, Dwyer-Joyce, et al. [2010].

3.2.2 Wear of rails
Wear of rails in Sweden is quantified by two measures, vertical and horizontal wear
(Banverket [1998]). Vertical wear is defined as the vertical difference between an unworn
rail and a worn rail at the centreline of the rail. Horizontal wear is defined as horizontal
difference between a worn and a nominal rail at a height of 14 millimetres below the top of
the head of the worn rail. Examples of worn high rail profiles are presented in Figure 3.5.

A field study by Olofsson and Telliskivi [2003] showed that the measured wear rate of
the gauge face (approx. horizontal wear) could be ten times greater than for the top of
the rail (vertical wear). The wear of the gauge face was classified as severe whereas the
wear of the top of rail was classified as mild. In Lewis and Olofsson [2004] mechanical
contact conditions derived from GENSYS simulations are linked to the wear regimes.
Mild to severe wear is expected for contacts between the top of rail and the wheel tread
whereas severe to catastrophic wear is expected for contacts between the rail gauge and
wheel flange.
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Figure 3.5: Examples of worn high rail profiles. Note that the profiles are aligned at the
field side of the rails.
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3.2.3 Wear of wheels
Currently there are a number of measures which are employed in describing a worn wheel
profile as shown in Figure 3.6. There are three commonly used measures of the flange
geometry: flange height Sh, flange thickness Sd and flange gradient qR. Hollow wear of
the tread is defined by H which is the difference in radius between the smallest radius
of the tread (close to the running band) and the largest radius close to the field side.
Examples of worn wheel profiles are presented in Figure 3.7.
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Figure 3.6: Measures of a worn wheel that are currently employed in maintanence/safety
decisions.
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Figure 3.7: Examples of worn wheel profiles. Profiles measured by Björn Pålsson, see
Pålsson and Nielsen [2012] for details.
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4 Numerical investigations

4.1 Wheel/rail contact modelling
The theory of elastic contact by Hertz [1882] is still a commonly used and valuable tool.
Setting out from two bodies which come in contact with each other, the origin is set as
the point where the first contact occurs. If both bodies are approximated by quadratic
functions close to the origin and brought into contact, then the contact area is elliptical.
The pressure distribution on the elliptic area, C, with semi-axes a and b is presumed to
be described by

p(x, y) = p0

√
1−

(x
a

)2

−
(y
b

)2

, (x, y) ∈ C (4.1)

where p0 is the maximum pressure, and x and y coordinates within the elliptic area.
The presumptions that need to be fulfilled for the Hertz theory of contact to be valid

and their consequences can be summarised as:

• linear elastic materials implying small strains;
• contacting bodies assumed to be half spaces i.e. the size of the contact area (a and

b) is much smaller than dimensions and radii of the contacting bodies, which implies
that the contact is non-conformal;

• constant curvature of the contacting bodies in the vicinity of the contact;
• smooth surfaces of the contacting bodies;
• frictionless contact or quasi-identity (see Kalker [1990]) is required to decouple the

normal contact problem from the tangential contact problem.

When a wheel in rolling contact is exerting traction, some creep will occur. This was
shown by Carter [1926] for a rolling cylinder. It was further shown that an area at the
leading edge of the wheel contact area has no relative motion against the rail contact
area, i.e. the areas will stick. For the trailing edge of the contact the bodies slide relative
to each other, i.e there will be slip between the contacting bodies. The slip portion of the
contact area increases as the creep increases until full slip is obtained. At full slip the
tractive force can be presumed to be limited by Coulomb’s law (normal force multiplied
with the coefficient of friction). An example of how stick and slip regions of the contact
area evolve with increasing tractive force is given in Figure 4.1.

At the wheel/rail contact where both longitudinal, lateral and spin creep is present
the situation becomes more complex. Kalker has proposed several theories from “exact”
solutions with the so-called complete theory of rolling contact to approximate solutions
with the linear and simplified theories, see Kalker [1979, 1991]. The complete theory with
its implementation CONTACT has the constitutive relation derived from the theory of
elasticity (thus called an ”exact” theory) with the simplifications of half-space assumption
and Coulomb friction. The simplified theory and its implementation FASTSIM (Kalker
[1982]) is based on the assumptions that the displacement of the surface is proportional to
the traction (i.e. can be considered as a set of elastic springs which displace independently),
and that Coulomb friction is occurring. FASTSIM is commonly used in railway multibody
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Figure 4.1: Traction curve and the evolution of stick and slip regions of the contact area
for increasing creepage.

simulation packages due to the low computational cost. The accuracy of FASTSIM is
adequate for many cases when compared to CONTACT, see Vollebregt, Iwnicki, et al.
[2012].

In cases of conformal contact the half-space assumption is generally not valid. For such
conformal contacts a method is presented by Li [2002] where a quarter-space assumption
is employed. Differences in results between half-space and quarter-space assumptions for
conformal contacts are presented by Vollebregt and Segal [2014]. The contact area is
found to be some 30–35% smaller with a quarter-space assumption. Contact pressures
increase correspondingly.

All of the wheel/rail contact theories that have been mentioned so far rely on linear
elastic material models. To account for plastic deformations, mainly finite element (FE)
analyses have been performed. Telliskivi and Olofsson [2001] have compared solutions of
wheel/rail contact for elastic-plastic finite element analysis, CONTACT and a Hertzian
method. It is shown that for gauge corner contact the FE solution produces a considerably
larger contact area than CONTACT and Hertz solution. Consequently, the maximum
contact pressure is considerably smaller for the FE solution. For contact between the
crown of the rail and the tread of the wheel the differences between the three methods
were found to be much smaller. FE-analysis of such contacts have been presented by Zhao
and Li [2015]. It is shown how the contact area becomes larger with an elastic-plastic
material response than with an elastic material response. Moreover, the contact area
becomes more egg shaped when plastic effects are considered. Generally for FE-analyses
of wheel/rail contact, surface penetration has to be controlled, cf. Kabo et al. [2010].
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4.2 Multibody dynamics simulations
GENSYS is a multibody dynamics simulation package specialised on train/track dynamics
(GENSYS [2010, 2014]1). Quasi-static, modal, frequency-response and time-domain
analyses can be performed. In this thesis mainly time-domain analyses were performed
(sometimes with an initial quasi-static analysis to serve as an input to a subsequent
time-domain analysis). The simulation package also includes supporting programs, e.g.
for the generation of wheel/rail geometric functions and generation of track irregularity
input files from measured irregularities. The track irregularity input files used in this
thesis were however generated by in-house Matlab scripts. Furthermore, post-processing
of results was performed in MATLAB [2011].

In Papers A to D, wheel/rail creep forces were determined by a lookup table calculated
by FASTSIM (Kalker [1982]). In the employed GENSYS contact algorithm there can be
up to three contact points in simultaneous contact.

4.3 Vehicles included in the study

4.3.1 Freight wagon with Y25 bogies
The freight wagon is modelled after a steel ingot transport wagon. The maximum axle
load is 25 tons and the maximum speed when fully loaded is 100 km/h. The bogies are
modified Y25 bogies (Y25-TTV) and the main parts are (see also Figure 4.2):

1. Bogie frame
2. Centre-pivot – Transfers the main part of the loads from the carbody to the bogie.

The centre-pivot can be regarded as a spherical plain bearing which enables rotation
in all directions between the bogie and carbody.

3. Side bearer – Carries some of the load from the car body. Increases the stability of
the vehicle through increased damping in the longitudinal direction. Furthermore
side bearers reduce carbody roll.

4. Primary suspension – Load dependent vertical damping is provided by the so called
Lenoir link.

5. Wheelset.

See Table 4.1 for additional properties.
The numerical model was originally developed and verified by Jendel [1997]. Since then

the model has been modified to take advantage of new functionalities of the simulation
package GENSYS. The freight wagon model is employed in Paper A, Paper B, Paper C
and Paper D.

1Release 1009 was used in Papers A to C, and release 1410 in Paper D.
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Figure 4.2: Y25-bogie of the freight wagon. See text for an explanation of the parts (picture
courtesy of Igor Antolovic at Kockums Industrier AB).

Table 4.1: Vehicle properties.

Iron ore wagon Freight wagon Generic locomo-
tive

Designation Kockums Industrier
Fammoorr050

Kockums Industrier
Smmnps951

GENSYS

Length between centre
line of couplers 10 300 mm 14 240 mm N/A
Bogie type three-piece Y25-TTV N/A
Bogie c/c distance 6 744 mm 9 200 mm 13 000 mm
Axle bogie distance 1 778 mm 1 800 mm 3 000 mm
Wheel diameter 915 mm 920 mm 1 000 mm
Total height 3 640 mm 1 800 mm N/A
Tare weight 21.6 tons 20.3 tons total 80 tonsLoad capacity 102 tons 79.7 tons
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4.3.2 Iron ore wagon
The iron ore wagon is a specialised wagon for the Iron Ore Line in northern Sweden.
The maximum axle load is 30 tonnes. The maximum speed is 70 km/h at tare weight
and 60 km/h at laden weight. The iron ore wagon has the three-piece bogies M976
Motion Control® by Amsted Rails. The main parts of the three-piece bogie are (following
numbering in Figure 4.3):

1. Side frame – Connected to the bolster (2) with the coil spring assembly (5) and to
the wheelset (7) with the adapter (6).

2. Bolster – The central plate on the bolster connects the bogie to the carbody.
3. Side bearer – Carries some of the load from the car body. Increases the stability of

the vehicle due to increased damping in the longitudinal direction.
4. Friction wedge – Wedge between bolster and side frame which by friction provides

damping.
5. Coil spring assembly – The main suspension of the bogie.
6. Adapter – Connects the wheelset (via a bearing) with the side frame and provides

an elastic coupling in lateral and longitudinal directions.
7. Wheelset.

See Table 4.1 for additional properties.
The numerical model of the vehicle was developed by Bogojević, Dirks, et al. [2011] and

Bogojević, Jönsson, and Stichel [2011]. The iron ore wagon model is used in Paper A.

Figure 4.3: Assembly of a three-piece bogie used in the iron ore wagon. See text for a
description of the numbered parts. From Bogojević, Dirks, et al. [2011].

20



4.3.3 Iron ore locomotive
The iron ore (IORE) locomotive is not employed in any simulations reported in this
thesis but plays a central role in Paper E. A locomotive section has two three-axle
bogies (Co-Co configuration, see Figure 4.4) and an axle load of 30 tons (total weight
of 180 tons per locomotive section), see Bombardier [2008]. The starting tractive effort
is 600 kN. These locomotives are always used in pairs which mean that each train has
two coupled locomotive sections. The total length of a locomotive section is almost 23
metres, the bogie has a wheelbase of 1.92 metres and the bogie centre distance is 12.9
metres. The locomotives have regenerative braking which is employed in descents to
recover energy. Commonly regenerative braking is employed to brake the entire train of
68 wagons, corresponding to a train weight of more than 8000 tonnes.

Figure 4.4: IORE locomotive.

4.4 Description of the track model
In the multibody simulations presented in Paper A to Paper D the vehicle model is
connected via the wheel/rail interface to a track structure which in turn is connected
to the ground. Each wheelset is coupled to a moving track model. The track model in
Figure 4.5 mimics the properties of a track section on a Swedish main line with UIC60
rails and concrete sleepers. Spring stiffness, damping coefficients, and masses can be
found in the documentation of GENSYS [2014]. For details on the track section and on
the measurement of track properties see Chaar [2007]. It should be noted that the spring
connecting the rail to the track (kz,rt) has a stiffness that varies along the track to mimic
the variation in the rail stiffness due to sleeper spacing.
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Figure 4.5: Track model with designations of springs and dampers between parts.

4.5 Models for prediction of RCF and wear

4.5.1 RCF prediction
Shakedown map based analysis

A prediction model for surface initiated RCF is presented by Ekberg, Kabo, and Andersson
[2002]. The RCF prediction model sets out from the shakedown map by Johnson [1989]
where surface initiated RCF is linked to the plastic deformation of the contact surface.
Following Hertz theory the maximum pressure (p0) from Eq. 4.1 can be expressed as (see
e.g. Johnson [1985])

p0 =
3

2

Fz

πab
(4.2)

where Fz is the normal force. A maximum inter-facial shear stress at the contact area
can, for full slip conditions, be expressed as

q0 = fp0 (4.3)

where f =
√

F 2
x + F 2

y /
√
F 2

z is the traction coefficient with the tangential longitudinal
Fx and lateral Fy wheel/rail contact forces (coordinate system is shown in Figure 2.1).
Ratcheting at the contact surface is assumed to occur if the cyclic yield stress in shear (k)
is exceeded, i.e.

q0 > k. (4.4)
In this thesis k is taken as 300 MPa. Combining Eq. 4.2–4.4 gives

f − 2πabk

3Fz
> 0 (4.5)

from where it is clear that plastic deformation will occur only if the traction coefficient is
greater than the cyclic yield limit in shear divided by the peak normal pressure. Ekberg,
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Kabo, and Andersson [2002] formulate an RCF index as:

FIsurf ≡ f − 2πabk

3Fz.
(4.6)

Eq. 4.6 quantifies the horizontal distance between the utilised friction coefficient and
the cyclic yield stress in shear divided by the maximum normal contact stress in the
shakedown map (see Figure 4.6). Ratcheting is assumed to occur if FIsurf > 0.
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Figure 4.6: Definition of FIsurf in the shakedown map (after Ekberg, Kabo, and Andersson
[2002]).

Comparisons made by Kabo et al. [2010] of predicted FIsurf values and experimentally
found fatigue lives (from a full-scale roller rig, a full-scale linear test rig, and a twin-disc
machine) indicated a Wöhler-like relationship

FIsurf = 1.78(Nf)
−0.25 (4.7)

where Nf is the fatigue life to RCF crack initiation. Equation 4.7 can be reformulated to
quantify (surface initiated) RCF damage per cycle

D ≡ 1

Nf
=

(FIsurf)
4

10
∀FIsurf ≥ 0. (4.8)

FIsurf according to Eq. 4.6 is used in all appended papers whereas damage evaluation
according to Eq. 4.8 is used in Paper A.
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Tγ based analysis

A model predicting RCF damage has been proposed by Burstow [2004]. Here an index
Tγ is calculated as

Tγ = Fxγx + Fyγy (4.9)

where γx and γy are creepages in longitudinal and lateral directions. Note that spin
creep is not explicitly considered when evaluating Tγ.

The RCF damage function is derived by Burstow [2004] by comparing actual RCF
damage locations on rails to predictions featuring multibody simulations at four different
locations in the UK. The studied curves have radii between 400 and 3000 metres. The
traffic at the locations were mainly electric multiple units (i.e. commuter trains). The
function relating RCF damage to Tγ is presented in Figure 4.7. It can be seen that the
damage function has a maximum value for Tγ = 65N. Thereafter the damage function
decreases to negative damage magnitudes. This can be interpreted as wear becoming the
dominant damage mechanism and RCF cracks are truncated as shown in Figure 4.8. An
accumulated damage of unity is presumed to correspond to a crack with a surface length
of 2 millimetres (Burstow [2004]).

The Tγ model according to Eq. 4.9 and Figure 4.7 is employed in Paper A and
Paper B.
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Figure 4.7: Wear number based damage function following Burstow [2004].

4.5.2 Wear prediction
Archard’s wear equation

Archard [1953] proposed an equation relating the wear rate to the load, the radius of
a single surface asperity in contact and a probability factor. Later the hardness of the
material was included in the wear model. The volume of the worn-off material, V , can be
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Material removed by wear

Truncation of crack due to wear

Figure 4.8: Truncation of a crack due to wear.

predicted as
V = KPs

H
(4.10)

where K is a non-dimensional wear coefficient, P [N] is the normal load, s [m] is the sliding
distance and H [N/m2] is the hardness of the material. The rate of wear is obtained by
replacing the sliding distance with the sliding velocity in Eq. 4.10. Calculation of wear
rates according to Eq. 4.10 are not considered in the current thesis.

Wear models based on dissipated energy

Energy dissipated in the contact patch has been employed as a measure to identify wear
regimes and wear rates. It should be remembered that especially the transition in wear
regime between severe and catastrophic wear is dependent on the steel grade (Lewis,
Dwyer-Joyce, et al. [2010]). Simulations of wheel wear by Pombo et al. [2011] show that
only small variations are found in results between global and local wheel/rail contact
models and wear functions. A global wear function presented in Pearce and Sherratt
[1991] is classified by Pombo et al. [2011] into the different wear regimes as: mild wear for
Tγ < 100 N, severe wear for 100 ≤ Tγ < 200 N and catastrophic wear for Tγ ≥ 200 N.
This classification is used in Paper C and Paper D.

4.6 Design of experiments
In Paper C and Paper D, a design of experiments method is employed to analyse the
influence of the involved parameters. In Paper C a hollow wheel profile is parametrised
whereas in Paper D both the gauge corner of the rail and flange root of the wheel are
parametrised. Also some track geometry features are here considered as parameters. In
both papers nearly orthogonal and space-filling Latin hypercube (NOLH) sampling is used
to create different scenarios which are subsequently employed in multibody simulations.
The results of multibody simulations featuring these scenarios provide degradation indices
which are subjected to regression analysis to derive meta-models.

25



4.6.1 Nearly orthogonal and space-filling Latin hypercubes
Cioppa and Lucas [2007] describe a method to produce design matrices which are both
space-filling and (nearly) orthogonal, so-called nearly orthogonal and space-filling Latin
hypercubes (NOLH). By slightly relaxing the orthogonality requirement the space-filling
properties of the designs are improved. The advantage with a space-filling design is that
the design points are scattered throughout the whole experimental region. Orthogonality
implies that the different input parameters (columns of a design matrix) are uncorrelated.
This is a desirable feature since it facilitates the decision of whether a parameter should
be kept in the meta-model. It further makes it easier to separate the contribution of
each parameter to a meta-model fit. An example of the distribution of design points over
a design space is shown in Figure 4.9. A further introduction to designing simulation
experiments and an outline of the difference to “classic” design of experiments can be
found in Kleijnen et al. [2005].

4.6.2 Regression analysis
A meta-model with linear, quadratic and bilinear terms can be expressed as

y(xr) = β0 +

u∑
s=1

βsxs +

2u∑
s=u+1

βsx
2
s +

u−1∑
s=1

u∑
t>s

βs, txsxt (4.11)

where y(xr) is the response for the r:th scenario for the design points xr = (x1, x2, . . . , xp−1)
and β are the regression parameters. The total number of parameters of the above meta-
model is

p = 1 + u+ u+

(
u

2

)
= 1 + 2u+

u(u− 1)

2
(4.12)

where
(
u
2

)
is the binomial coefficient2. Non-significant terms are discarded, which means

that not all of the input parameters are necessarily present in the final meta-model.
The regression coefficients are estimated by linear least squares fitting where the

residual sum-of-squares are minimised. If the response and regression parameters are
gathered in vectors (y and β) and the design points for the scenarios are collected into a
matrix (X), then the residual sum-of-squares can be written

RSS(β) = (y − Xβ)T (y − Xβ). (4.13)

Differentiation with respect to β and setting the derivative to zero yields

XT (y − Xβ) = 0. (4.14)

The optimal regression parameters in a least squares sense can thus be obtained from

β̂ = (XT X)−1XT y. (4.15)

With β̂ established, the response can be evaluated as

ŷ = Xβ̂ (4.16)

2(n
k

)
=

n!

k!(n− k)!
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Figure 4.9: Scatter plots between the five first parameters (x1 to x5) of the design matrix
used in Paper D.

4.6.3 Fitting of conics
In Paper D the coefficients of the general second degree equation for a parabolic solution
(as described below, see Eq. 5.1) are identified for measured wheel and rail profiles. The
coefficients are identified with a direct method of fitting a specific type of conic section to
scattered data presented in Harker, O’Leary, and Zsombor-Murray [2008]. This method
is computationally effective.
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5 Summary of appended papers
In this section brief outlines of the appended papers are given. The main geometric
parameters that are considered in each paper are illustrated in Table 5.1.

Table 5.1: Scope of the appended papers.

Paper A Paper B Paper C Paper D Paper E
Track geometry X X X X X
Track irregularities X X (X) X
Wheel profile geometry X X X
Rail profile geometry X X

Paper A is a study of how lateral track irregularities influence track shift forces (see
Section 2.2.3) and evaluated RCF indices (see Section 4.5.1). Measured track geometry
including irregularities from twelve curves at the Iron Ore Line in Sweden are employed in
multibody dynamics simulations. The curve radii range between 390 to 1655 metres. Two
different vehicle models (an iron ore wagon with three-piece bogies and a freight wagon
with Y25 bogies) are employed in the simulations. Measured lateral irregularities are
scaled to mimic different states of a laterally deteriorated track geometry. The wheel/rail
friction coefficient is varied between 0.3 and 0.6. It is shown that standard deviations of
lateral irregularities and track shift forces have a roughly linear relationship. Furthermore,
the track shift forces are not significantly influenced by a variation of the wheel/rail
friction coefficient. Two RCF indices are employed in the study, a shakedown map based
criterion (Eq. 4.6) and a wear number based criterion (Eq. 4.9 together with Figure 4.7).
At sharp curves the damage shifts from pure wear for low levels of lateral irregularities to
a mix of wear and RCF for higher levels of lateral irregularities. For shallow curves the
length of rail affected by RCF increases for increasing levels of lateral irregularities. An
increase of the friction coefficient generally leads to higher RCF damage magnitudes.

Paper B is a continuation of the previous paper. Both single lateral irregularities
and lateral irregularities generated from power spectral densities (PSD) are employed
in multibody simulations featuring a freight wagon with Y25 bogies. Single lateral ir-
regularities are applied to a straight track to study which irregularity amplitude and
length that will cause RCF. For curves between 500 and 3000 metres in radius, generated
random lateral irregularities are applied. Similar results are obtained as in Paper A i.e.
for shallow curves (radii larger than 1250 metres) the length of track affected by RCF
increases with increasing levels of lateral irregularities. The 95th percentile magnitude of
FIsurf is not significantly affected by an increase in the level of lateral irregularities for
curves with a radii of 2000 metres or less. Furthermore, lateral irregularities in wavelength
spans (2–10 metres, 10–25 metres and 10–50 metres) are amplified and employed in
multibody simulations. For curves larger than 1250 metres it is found that amplification
of irregularities in the longer wavelength spans results in the highest increase of RCF
index magnitudes (both in terms of length of track affected and the 95th percentile of
FIsurf). Also a correlation study between predicted tangential wheel forces in the track
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plane and lateral irregularities (amplitudes of the irregularities, first order derivatives and
second order derivatives) is conducted. No significant correlation is found.

Paper C presents a methodology where parameters describing a hollow worn wheel
profile can be linked to degradation indices. The wheel profile is parametrised with
segments of ellipses and circles as shown in Figure 5.1. In short, the hollow worn tread
is approximated by two ellipses which are superposed to the nominal tread of a S1002
wheel profile. Transitions from the ellipses to the nominal wheel profile are made smooth
by applying a circular geometries. It should here be noted that the validity of the
parametrisation has only been tested for rather a few number of measured wheel profiles.
In addition to wheel geometry parameters, curve radii and cant deficiency are included as
parameters. Scenarios are created with NOLH sampling, see Section 4.6.1. Wheel profiles
and track geometries corresponding to the different scenarios are employed in multibody
simulations featuring a freight wagon with Y25 bogies. Median FIsurf and Tγ magnitudes
are evaluated from the multibody simulations. These are subsequently subjected to a
regression analysis. The end results are meta-models linking wheel profile parameters to
degradation index magnitudes.
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Figure 5.1: Generation of a single false flange hollow worn profile with geometric shapes
from a nominal S1002 wheel profile.

Paper D employs a similar methodology as presented in Paper C. In this paper
the gauge corner and flange root geometries are parametrised by fitting a general two-
dimensional second order equation (i.e. a conic section)

aiy
2 + biyz + ciz

2 + diy + eiz + fi = 0 (5.1)

where y and z are the lateral and vertical coordinates, respectively; and i = {r, w},
where r represents the rail and w the wheel. The solutions are forced to become parabolic
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by prescribing the discriminant bi − 4aici = 0. They are further normalised so that
ai + ci = 1. The gauge face and the flange face are both approximated by straight lines.
Measured wheel and rail profiles are analysed to establish parametric ranges for the
geometric parameters. In addition to wheel and rail geometry parameters, also curve
radii and cant deficiency are included as parameters. Scenarios are created with NOLH
sampling. These are then employed in multibody simulations featuring a freight wagon
with Y25 bogies. Median FIsurf and Tγ magnitudes are evaluated and subsequently
subjected to a regression analysis. The end results are meta-models linking the parameters
to the degradation index magnitudes.
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Figure 5.2: Parametrisation of the gauge corner of the rail profile (left) and flange of the
wheel profile (right). The black dashed lines represent the parabolas and the grey dashed
lines represent the straight lines.

Paper E gives an explanation of root causes behind RCF damage found on locomotive
wheels operating on the Iron Ore Line in Northern Sweden. It is noted that the highest
number of wheel reprofilings due to RCF are made in the last five months of the year. The
formation and evolution of RCF are explained in terms of seasonal variations in climate,
rail profile geometries and lubrication. The hypothesis is that during the winter months
(when most wheels have been reprofiled) crack formation is occurring at a moderate rate.
During spring, track based lubrication is turned on and a more humid climate decreases
the propencity for crack initiation, but causes initiated cracks to propagate faster. During
the summer months the rails are ground, which introduces a profile mismatch. This will
increase both the initiation and propagation rates of crack growth. During autumn and
winter the profile mismatch is gradually decreasing and the wheels will be subjected to
lower stress and damage magnitudes. It is also shown that the operational distance be-
tween reprofilings for different locomotive sections can vary as much as by a factor of 2 to 3.
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6 Analyses and results
In this section selected results from the appended papers are discussed. Results from
the appended papers are tied and in some cases are further explained. Moreover, results
from the literature which relate or give further explanation to the discussed topics are
highlighted.

6.1 Track geometry and irregularities
As demonstrated in Paper A to D, the most important factor (of the factors investigated
in this thesis) regarding wheel/rail degradation is the curve radius. Paper A and
Paper B show that FIsurf > 0 along a greater length of the curve when the curve radius
decreases. This is shown in Figure 6.1 where results for the freight wagon with Y25 bogies
are presented.
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Figure 6.1: Top: Percentage of rail length with predicted RCF. Bottom: 95th percentile of
FIsurf over the curve. Results from simulations featuring a freight wagon with Y25 bogies.
Figure from Paper B.

The high and low level of lateral irregularities in Figure 6.1 are (generated) lateral
irregularities according to ERRI [1989] that correspond to standard deviations of about
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1.1 mm and 0.65 mm, respectively, in the 3 to 25 metre wavelength span. These standard
deviations can be compared to the limits given in Table 2.2.

Also seen in Figure 6.1 is that lateral irregularities influence the portion of the curve
where FIsurf > 0 differently depending on the curve radius. For curves with a small radius,
lateral irregularities decrease the portion of the track affected by RCF (as estimated
by FIsurf). The opposite is seen for large radius curves where the portion of the curve
where FIsurf > 0 increases when the level of lateral irregularities are increased. The
95th percentile of FIsurf is more influenced by irregularities for larger curve radii than
small. This means that for large radius curves RCF defects may initiate at a few large
irregularities. A further explanation is given by Figure 6.2 where results are presented for
FIsurf and Tγ based RCF damage criteria. For the 438 metre radius curve and no lateral
irregularities (Figure 6.2a), FIsurf predicts RCF damage for along almost the entire curve
whereas the Tγ based criterion predicts mainly wear. When lateral irregularities are
introduced, FIsurf damage magnitudes decrease locally along the curve whereas Tγ based
criterion predicts both wear and RCF. The 1578 metre curve in Figure 6.2b corresponds
to the curve range for the high rail where a transition from long to short lengths of track
affected by RCF is seen in Figure 6.1. For the 1578 metre radius curve an increase of
lateral irregularities decreases the length of track with predicted RCF damage. Moreover
the lateral position of the contact point towards the flange of the wheel in Figure 6.2b
corresponds to the same locations where the largest RCF damage occur. This implies that
single large irregularities (causing contact closer towards the flange) may be the cause of
head check clusters in curves. Similar conclusions have been drawn in RSSB [2010] where
an improvement of lateral track quality is considered as the primary remediation action
to reduce RCF for curves more shallow than 1800 metres. Since local variations in lateral
track quality may cause RCF, RSSB [2010] recommends a limit on the amplitude of the
irregularities rather than a limit on the standard deviation of the lateral irregularities.

Paper C includes an initial example of a meta-model estimating median FIsurf
magnitudes with lateral track irregularities as a parameter. The meta-model for the inner
hollow worn wheel of a freight wagon with Y25 bogies is

F̂ ILI =0.461− 6.59 ae1 + 24.0 be − 10.8 θ +
12.8

Rc

(
1.0 + 230 θ + 4.12Lat3

)
− 0.366hd

− 0.128Lat (6.1)

where Rc is the curve radius in metres, hd is the cant deficiency in metres and Lat is
a scaling factor between 0 (no irregularities) and 1 (high level acc. to ERRI B176) for
lateral track irregularities. The scaling factor of the lateral irregularities is included in
the meta-model as a negative linear term and as a positive bilinear term together with
the curvature of the curve. This is a reflection of the results shown in Figure 6.1 for the
low rail (inner wheel). However when only considering the curve radius and the scaling
factor of lateral irregularities, the relatively simple response surface (see Figure 6.3a)
does not seem to capture the response presented in Figure 6.1a. Instead the part of the
meta-model considering only curve radius and lateral irregularities should rather be of
the following general type

R0 −Rc

Rη
c

(Lat0 − Lat) (6.2)
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(a) Simulation featuring a 438 metre radius curve with no lateral irregularities
(top) and lateral irregularities with a standard deviation of 2.94 mm (bottom).
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(b) Simulation featuring a 1578 metre radius curve with no lateral irregularites
(top) and lateral irregularities with a standard deviation of 2.58 mm (bottom).

Figure 6.2: Predicted response of the leading outer wheel (high rail) of a freight wagon
with Y25 bogies. RCF damage as quantified by Eq. 4.7 (solid curve, left vertical axis),
lateral contact point position on the rail (larger values closer to the gauge corner, dashed
curve, right vertical axis) and grey area indicates wheather the Tγ criterion (Eq. 4.9 and
Figure 4.7) predicts RCF (positive) or wear (negative). Figures from Paper A.
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where R0, Lat0 and η are constants. Eq. 6.2 creates a twisted response surface as shown
in Figure 6.3b. The response following (6.2) decreases with increasing level of lateral
irregularities for curves with small radii and increases with increasing level of lateral
irregularities for larger curve radii. The drawback with a response surface following
Eq. 6.2 is that non-linear regression has to be employed. Cant deficiency, hd, is also
included in Eq. 6.1 as a parameter. Increase in the cant deficiency will give lower F̂ ILI
magnitudes. This is an indication that RCF damage can be reduced by introducing some
cant deficiency. For the iron ore wagon similar results have been presented by Hossein Nia,
Jönsson, and Stichel [2014] where the probability of RCF of inner wheels is reduced by
increasing the cant deficiency. However, the benefit was limited to curve radii smaller
than 450 metres whereas for curve radii in the 450 to 650 metre range the cant deficiency
had no significant effect. RSSB [2010] reports that increasing the cant deficiency for
curves between 1000 and 1800 metres in radius may be employed to mitigate RCF. As
stated in RSSB [2010], the influence of cant deficiency depends on vehicle parameters
such as primary yaw stiffness, suspension arrangement of the vehicle etc. Based the above
discussion, it seems that the effect of cant deficiency on wheel and rail degradation can
only be determined on a case by case basis.

500
750

1000
12500

0.5

1

−0.1

0

0.1

Rc [m] Lat [-]

F̂
I

L
I

[-]

500
750

1000
12500

0.5

1
−1

0

1

2

3

·10−3

Rc [m] Lat [-]

Figure 6.3: Left: Influence of curve radius (Rc) and scaling factor of lateral irregularities
(Lat) on F̂ ILI following Eq. 6.1 with: ae1 = 55×10−3 m, be = 6×10−3 m, θ = 35×10−3 rad
and hd = 0. Right: Example of an alternative response surface following (6.2) with
R0 = 875m, η = 2 and Lat0 = 2.

The influence of lateral irregularities on predicted RCF at different wavelengths is
also studied in Paper B. Lateral irregularities were generated to from power spectral
densities in ERRI [1989] corresponding to low and high levels of irregularities. Low level
irregularities were amplified to the high level of irregularities in three wavelength spans
(2 to 10 metres, 10 to 25 metres and 10 to 50 metres). For curves with a radius of 1250
metres and larger, amplification of lateral irregularities in the two longer wavelength
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spans increased the length of rail affected by RCF (as defined by FIsurf > 0) almost to
the same length as found for the high level of lateral irregularities. An amplification in
the 2 to 10 metre wavelength span had no significant influence for curves with a radius of
1250 metres and larger. In general, the results for low and high level of irregularities can
be seen as bounds within which results for the amplified lateral irregularities fall.

6.2 RCF and wear of wheels
In Paper E root causes behind observed wheel damage are sought. Paper E sets
out from observed seasonal variations of the number of wheel reprofilings and damage
patters on Iron ore locomotive wheels. The number of reprofiling of wheels due to RCF
damage is found to be larger for the last quarter of the year. This is assumed to be
related to a mismatch between wheel and rail profiles since grinding of rail profiles is
performed between June to August. The mismatch is believed to increase the contact
stress magnitudes which promotes both crack initiation and growth. Over the last quarter
of the year the mismatch between rails and wheel profiles decrease due to wear and
plastic deformation. After a peak in reprofilings during late autumn/early winter, the new
year starts with a relatively low number of reprofilings. When spring comes, the climate
becomes more humid and rail lubrication is turned on. This may lead to accelerated crack
propagation of wheels reprofiled in autumn assisted by hydraulic mechanisms which leads
to a slight peak in reprofilings during spring.

Also shown in Paper E is that a change in operational conditions may lead to
unforeseen consequences. One such change was finalised in 2011 with the increase from 52
to 68 wagons in a train set. The consequence was an increased number of reprofilings of
locomotive wheels due RCF. To reduce the number of reprofilings due to the more severe
loading at wheel/rail interface caused by the longer trains, the contact conditions were
made less severe with the introduction of an improved low rail profile.

Hollow worn wheels are studied in Paper C. For the generated hollow worn wheel
profiles, the correlation between measures employed in maintenance (H, qR and Sd in
Figure 3.6) and resulting FIsurf magnitudes were low for both the inner and outer wheel.
Somewhat higher correlations were found between the maintenance measures of the
wheel and Tγ magnitudes for the inner wheel for a 500 metre curve radius. However, the
correlation becomes lower for larger curve radii. A meta-model based on a parametrisation
of the hollow worn part of the wheel profile (see Figure 5.1) improves the correlation
significantly. An example of such meta-model has already been presented in Eq. 6.1.

6.3 RCF and wear of rails
In Paper D meta-models are derived which estimate degradation index magnitudes for
different gauge corner and flange root geometries. The main inputs to the meta-models
are coefficients of the general second degree equation (Eq. 5.1), curve radii and cant
deficiency. Three types of meta-models are derived:
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1. A meta-model predicting whether contact between the wheel profile and gauge
corner region as defined in Figure 6.4 occurs. This evaluation is employed as a
decision boundary, see Eq. 6.3 below.

2. A meta-model estimating median FIsurf magnitudes which is valid when contact
occurs at the gauge corner. See Eq. 6.4 below.

3. A meta-model estimating median Tγ magnitudes which is valid when contact occurs
at the gauge corner. See Eq. 6.5 below.
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Figure 6.4: Definition of the gauge corner contact region for the decision boundary in
Eq. 6.3. The gauge corner contact region is between lateral coordinates 2.5 and 27.5 mm
(represented by the dashed lines) when the rail profile has it’s lateral origin at the gauge
measuring point (14 mm below top of rail).

For easier interpretation of the meta-models, Figure 6.5 shows how variations of some
coefficients of Eq. 5.1 alter the shape of the gauge corner. An increase of ar leads to
a clockwise rotation of the parabola, an increase of dr leads to a lateral scaling of the
parabola, an increase of er leads instead to a vertical scaling and finally an increase of fr
leads to a scaling in both directions. Since the wheel profile is parametrised in the same
way as the rail profile, the changes to the wheel profile by an alteration of the coefficients
are analogous to the rail profile.

The decision boundary presented in Paper D is

DB = −0.75− 11 ar − 0.13 dr + 6.6× 10−2er + 19 aw + 0.14 dw − 3.9 × 10−2ew (6.3)

where all coefficients are assumed to be derived for wheel and rail profiles measured in
millimetres. If DB < 0.5, it is expected that contact on the rail shoulder will occur. By
studying Figure 6.5 it is clear that Eq. 6.3 seems to be a sound decision bound. This can
be exemplified by regarding an increase of ar which makes contact more likely according to
Eq. 6.3. Further, an increase of ar rotates the gauge corner clockwise in Figure 6.5 which
also should increase the likelihood of gauge corner contact. Also presented in Paper D
is the meta-model for predicting median FIsurf

F̂ I =− 0.15 + 16 ar + 4.3× 10−2dr − 1.7× 10−2er − 16 aw − 5.1× 10−2dw

+ 1.3× 10−2ew − 1.7× 10−4Rc − 87 a2r + 101 araw (6.4)

where the curve radius Rc is in metres. By regarding the linear terms of the meta-model
and their influence on the geometry (Figure 6.5), it seems that high F̂ I magnitudes are
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Figure 6.5: Influence of an increase of a single coefficient of the parabolic solution to
the general second degree equation (Eq. 5.1) on the gauge corner geometry. The arrows
indicate how the shape of the parabola is influenced by an increase of the coefficient.

promoted by contact low on the gauge corner (i.e closer to the gauge face). Furthermore,
presented in Paper D is a meta-model predicting median Tγ

T̂γ = 327 + 405 ar + 10 dr − 3.6 er − 14 dw − 0.36Rc − 0.34hd + 1.1× 10−4R2
c (6.5)

where the cant deficiency hd is in millimetres.
To find out the generality of the meta-models presented in Paper D similar meta-

models have been derived for a different vehicle model using the same method. The
employed vehicle model is a generic locomotive which comes bundled with the multibody
simulation package GENSYS. Some basic properties of the locomotive are presented in
Table 4.1. The decision bound for the generic locomotive is the same as for the freight
wagon given in Eq. 6.3. This is not surprising since the same wheel and rail profiles
were used. The meta-model predicting surface initiated RCF becomes for the generic

37



locomotive

F̂ I =− 0.26 + 23 ar + 6.3× 10−2 dr − 2.8× 10−2 er − 18 aw − 7.2× 10−2 dw

+ 2.0× 10−2 ew − 8.2× 10−5 Rc − 114 a2r + 108 araw. (6.6)

The meta-model predicting Tγ is

T̂ γ = 504 + 1307 ar + 31 dr − 13 er − 40 dw − 0.38Rc − 0.25hd + 1.2× 10−4 R2
c . (6.7)

In Eq. 6.7 the terms hd and R2
c may be not significant since their 95% significance intervals

contain zero, however the significance intervals only just contain zero. Comparing the
meta-models derived for a freight wagon and for a generic locomotive (i.e. Eq. 6.4 to
Eq. 6.6; and Eq. 6.5 to Eq. 6.7) it is clear that the general appearance of meta-models
is the same i.e. the signs of the coefficients are the same regardless of the vehicle model.
Dividing the coefficients of the meta-models estimating F̂ I for the freight wagon with
the corresponding coefficients of the meta-model for the generic locomotive (e.g. ar from
Eq. 6.4 divided by ar from Eq. 6.6 etc.) reveals that the coefficients for rail and wheel
geometries give quotients between 0.65 and 0.94 whereas the quotient for the curve
radius is 2.1. This shows that the vehicle type has a rather large influence on all of the
coefficients of the meta-model. The effect the non-equal wheel geometry quotients have
on the rankings of wheel profiles based on Eq. 6.4 and Eq. 6.6 is presented in Figure 6.6.
The lowest and highest ranked wheel profiles roughly keep their ranking regardless of
the vehicle type. For profiles ranked in the range of 20 to 45 there are differences in
the ranking depending on the vehicle type. However, the distribution of F̂ I magnitudes
shows that intermediate magnitudes are the most common meaning that a small change
in the F̂ I magnitude may lead to a large difference in ranking. Note that for maintenance
planning purposes only the highest ranked profiles are of importance.

0 10 20 30 40 50 60 70
Eq. 6.4

Eq. 6.6

Rank

Figure 6.6: Ranking of wheel profiles based on F̂ I magnitudes from Eq. 6.4 and Eq. 6.6.
The lowest rank is given for lowest F̂ I magnitudes. A vertical line indicates that both
equations rank the wheel profile equally.

For the meta-models estimating T̂ γ (Eq. 6.5 and Eq. 6.7), the quotients of the rail
and wheel coefficients are between 0.27 and 0.35. The quotients for the curve radius
coefficients are 0.91 and 0.95, and the quotient for the cant deficiency coefficient is 1.36.
This indicates that a meta-model derived for one vehicle type can be used qualitatively
for another vehicle types.
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An anti head check rail profile has been designed by Dollevoet [2010] to mitigate
problems caused by head checks. One of the main features of the profile is that no contact
occur at the gauge corner and thereby preventing head check formation. When the anti
head check profile wears, the probability increases of contact occurring at the gauge
corner. Decision bounds of the same type as Eq. 6.3 can here be used alone as an aid in
maintenance decision making for track sections where anti head check profiles are installed.
If a representative set of wheel profile parameters is available then a maintenance limit
could e.g. be based on the percentage of wheels for which contact occurs at the gauge
corner.

It should be noted that in the derivation of the meta-models (Eqs. 6.4 to 6.7), the
contact areas are presumed to be (multi-point) Hertzian and resulting creep forces are
evaluated with FASTSIM. The wheel/rail contact at the gauge corner may be conformal
which violates assumptions of the Hertzian contact theory, see Section 4.1.

7 Main conclusions and future outlook
The thesis studies the degradation of wheels and rails mainly through dynamic multi-
body simulations. In addition, operational damage patterns on locomotive wheels are
investigated.

The following main conclusions can been drawn:

• Operational locomotive wheel damage and root causes
- For the studied wheels RCF on the field side of the tread was most frequent.
- Peak in the winter for reprofiling of wagon wheels was found, whereas for

locomotive wheels the peak shifted to after rail grinding (late autumn to early
winter). This indicates a profile mismatch introduced by grinding.

- Additional root causes were identified as
→ Increased number of wagons in a train.
→ Higher braking efforts of locomotives.
→ Seasonal variations in climate, grinding and lubrication.

- An improved rail profile was introduced and preliminary results show some
positive effects.

• Influence of track geometry on wheel/rail degradation
→ For large radius curves an increase of the level of lateral track irregularities

leads to an increase in RCF on both the high rail and the inner wheel.
→ For small radius curves wear is likely to be the dominant form of damage on

the high rail. An increase of lateral irregularities shifts the response to a mixed
wear/RCF regime.

→ Lateral irregularities in the wavelength span 10 to 50 metres have the largest
influence on increasing RCF.
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• Influence of wheel and rail profile geometries on wheel/rail degradation
- Parametrisations schemes for wheel and rail profile geometries are presented.

→ More compact storage of raw data.
→ Parameters may be employed in comparisons of profiles.

- Estimation of RCF and wear through meta-models.
→ Most influential parameters are determined.
→ Wheel and rail profiles can be ranked based on their ability to induce

deterioration.
→ Deterioration of profiles over time can be quantified from profile geometry

measurements.
One of the main topics that should be considered for further research is to calibrate

meta-models against observed wheel and rail damage magnitudes. After such a calibration,
the intended use of the meta-models could be broadened to prediction of operational lives.
Moreover, to incorporate track irregularities more thoroughly into the meta-models would
be an interesting topic to pursue.
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