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Aspects of Waiting and Contracting in Game Theory
Peter Helgesson

Abstract

The topic of this thesis concerns two selected problem in game theory; the N-

player War of Attrition and the Principal-Agent problem.
The War of Attrition is a well established game theoretic model that was first

introduced in the 2-player case by John Maynard Smith. Although the original idea
was to describe certain animal behaviour in for example territorial competition the
model has also found interesting applications in economic theory. Following the
results of Maynard Smith, John Haigh and Chris Cannings generalised the War of
Attrition to two different models involving more than 2 players. We have chosen to
call these generalizations the dynamic- and the static model.

In Paper I we study the asymptotic behavior of the N -player models as the num-
ber of players tend to infinity. By a thorough analysis of the dynamic model we find
a connection to the more difficult static model in the infinite regime. This connec-
tion is then confirmed by approaching the limit of infinitely many players also in
the static model. By using these limit results as a source of inspiration for the finite
case, we manage to prove new results concerning existence and non-existence of
an equilibrium strategy in the N -player static case.

Principal-Agent problems constitute a class of models in economics treating op-
timal incentives, often under moral hazard. A typical motivation is for instance
optimal contract formation between employer and employee. In 1987 Bengt Holm-
ström and Paul Milgrom wrote an influential paper on the subject, considering a
discrete time model. This work has served as one of the main references for more
recent studies on continuous time models.

Paper II and Paper III consider aspects of continuous time Principal-Agent prob-
lems by a stochastic maximum principle approach, thus not relying on the dynamic
programming principle. In Paper II we introduce the Hidden Action model and the

Hidden Contract model and characterize optimal contracts in these by following a
scheme of sequential optimization. We also suggest a possible approach for solving
a strong formulation of the Hidden Action model. Paper III generalizes the approach
of Paper II to involve models having time inconsistent utility functions. By doing so
we are able to consider Principal-Agent problems describing a risk averse behaviour,
for instance in the sense of mean-variance.

Keywords: Game Theory, War of Attrition, ESS, N-Player, Principal-Agent Prob-

lem, Stochastic Maximum Principle, Pontryagin’s Maximum Principle, Mean-

Variance, Time Inconsistent Utility Functions
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Introduction

Game theory, when defined in its broadest sense, could be thought of
as a collection of models formulated to study situations of conflict and co-
operation. By analysing these models game theorists try to find answers to
questions concerning best actions for individual decision making, but also
to what mechanisms that could underlie social behaviour. This introduction
aims at giving a concise survey of some fundamental parts of the subject and
present the most central results. We begin by a quick journey in history.

1. Brief History

When writing a text on the history of a specific scientific subject it is in-
evitable not to miss out or to exclude interesting pieces of it, no matter how
hard you try. Game theory is not an exception. It is even difficult to say for
sure when and where it began since, in a wide perspective, strategic think-
ing has always been around. The foundation for what game theory is today
therefor rests in hundreds, and even thousands, of years of history. The first
contribution to mathematical game theory is, however, often credited to the
French mathematician Antoine Augustin Cournot (1801-1877) for his book
Recherches sur les principes mathématiques de la théorie des richesses from
1838. Cournot introduces mathematical tools (functions, probabilities, etc.)
in the context of economic analysis and, most importantly, he constructs a
theory of oligopolistic firms and analyses oligopolistic competition. Thirty
years after its publication these ideas were to have a strong influence on,
what was to become, modern national economy.

One of the first contributions to what we recognise as pure classical game
theory today was made in a series of papers and notes by Émile Borel (1871-
1956) during the period 1921-1927. Borel studied finite symmetric 2-player
games at an abstract and more general level, without having any particu-
lar application in mind. In his work he introduced the concept of "méthode

de jeu" (method of game, strategy) which he used to pose the fundamental
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INTRODUCTION

question of whether it was possible to determine a "méthode de jeu meilleure"
(best method of game) or not, even though it was not properly defined what
a "méthode de jeu meilleure" actually was. Strange as it is, the work of Borel
was not recognised until years after the breakthrough by von Neumann that
was to come. In 1953, while translating Borel’s work to English, the French
mathematician Maurice Fréchet is quoted saying "... in reading these notes
of Borel’s I discovered that in this domain [game theory], as in so many oth-
ers, Borel had been an initiator." (see [F4]).

The first huge impact in the mathematical theory of games came in year
1928 through the works of John von Neumann in [vN]; Zur Theorie der

Gesells- chaftsspiele. In this paper he gives a complete proof of the classi-
cal "minimax theorem" for 2-player zero-sum games, basically saying that
Borel’s "best method of game" indeed always exists in the zero-sum case.
This result is probably the most influential in the history of game theory and
it would not be an overstatement to claim that the subject was born in 1928
through the paper of von Neumann. Apart from the minimax theorem von
Neumann was the first to clearly explain the passing from extensive-form
games to the more useful notion of normal-form games. The normal-form
was to become of great importance not only for game theory, but also for
the shaping of modern economic theory.

In their famous book Theory of games and economic behavior from 1944
von Neumann and Morgenstern present the state of the art theory available
at the time, including cooperative games with definitions of TU-games and
the solution concept of stable sets. A short survey of von Neumann’s contri-
butions to game theory is given in e.g. [F2].

During the 30’s and 40’s much of the research done in game theory was
focused on cooperative games in which players are engaged into coalitions.
Even though this analysis was (and still is) both interesting and important
it was somewhat leading away from other interesting questions of games
where negotiation and individual decision making based on personal infor-
mation is present. This direction gained momentum in the 1950’s thanks
to the contributions of John F. Nash to non-cooperative game theory and
his famous equilibrium theorem. In 1951 Nash published the paper Non-

Cooperative Games in which he defined and proved the general existence
of a "best play" equilibrium strategy, or Nash-equilibrium∗, valid in all finite

∗The concept was actually formulated already by Cournot, but in a much less general
setting. Some scholars have suggested the name Cournot-Nash-equilibrium, or even Cournot-
equilibrium, but most people agree that the depth of the definition is due to Nash.
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INTRODUCTION

normal-form games. This result was the ultimate generalization of von Neu-
mann’s minimax theorem, but it was also the igniting spark for future re-
search in non-cooperative games (even though the impact of the result ini-
tially spread slowly).

Among many significant contributions by Nash (that range even out-
side game theory) he gave strong arguments as to why any theory of games
should be reducible to equilibrium analysis of a normal-form game. He also
gave a beautiful (axiomatic) argument to solve the so called two-person bar-

gaining problem. For a good further reading of the importance that Nash’s
work has had in game theory and economics the text [M] by Myerson is
recommended.

By the mid 50’s and onwards game theory had become a well established
area within the mathematical community and persons like John Harsanyi,
Reinhard Selten, Robert Aumann and Lloyd Shapley, only to mention a few,
made important contributions to the subject.

Considering applications the spectrum was initially rather narrow, mainly
concentrated in economic theory. It would take until the 1970’s for this to
change by the works of two mathematical biologists, John Maynard Smith
and George R. Price, and their definition of evolutionary stable strategy, or
ESS, in "The logic of animal conflict" (see [MSP]). What Maynard Smith and
Price realised was that ideas from game theory could be used to formu-
late a related dynamical theory, potentially useful for describing population
dynamics. The big difference was that the players in this model were not
assumed to act in a rational manner. This was the starting point of what
today is known as evolutionary game theory which, apart from its original
intention of being a tool in theoretical biology, has found applications also
in economy, social science and philosophy.

Ever since its first major breakthrough in 1928 game theory has contin-
ued to expand both in terms of applications and theoretical development.
Today there is a wide range of ongoing research of all kinds in subjects
from classical- and evolutionary game theory to stochastic- and differential
games. As late as in 2006 a new theory (related to differential games) was
developed independently in works by P. L. Lions, J. M. Lasry and P. E. Caines,
M. Huang, R. Malhamé, called mean field game theory, or just MFG. MFG has
attracted lots of attention by opening doors to many potential applications,
but the theory is juvenile and still somewhat under construction (the book
[BFY] by Bensoussan, Frehse and Yam is one of few references to the subject
apart from research papers).
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INTRODUCTION

2. Extensive-Form and Normal-Form games

Games of various kinds have been present in our society for ages in con-
nection to economy and gambling, in strategic decision making and conflict
scenarios, but quite often also just for the sake of fun. One of the most promi-
nent of those games is undoubtedly chess, which has diverted mankind for
centuries. The rules are so simple that one can learn about how to play only
in a few minutes yet, not even a lifetime of practise is enough to fully master
the complexity of the game. The difficulty of playing chess originates from
the enormous number of moves a player can make during a play. Indeed,
if we were to reduce the number of pieces for each player from 16 to 8 the
game would become rather poor. Apart from the matter of "size", theoreti-
cally speaking, chess is actually very simple. Its general structure is common
for a wide range of other 2-player games such as for instance Othello, Nim,
Go etc., which are all typical examples of games that can be represented in a
so called extensive-form. Loosely speaking an extensive-form 2-player game
is a finite directed tree where each node represents a player in a specific po-
sition during a game. There are three different types of nodes; one having
outgoing edges but no incoming called the root, nodes having both outgoing
and incoming edges are intermediate, and nodes having an incoming edge
but no outgoing are called terminal. An edge connecting two nodes repre-
sent a move that the player at the first node can use to get to the second
node. The root of the tree is the starting point of the game. In chess for
instance the white player is in the root from which there are 20 different
moves leading to an intermediate node for the black player. The game is
played via intermediate nodes until it finally reaches a terminal node where
the game ends (checkmate or draw).

The outcome of a play is measured by means of a payoff function which
assigns a 2-vector to each of the terminal nodes. The elements in this vec-
tor represent the payoffs given to each of the players respectively. If we
again use chess as a game of reference we could assign values to each pos-
sible outcome as "win = 1", "draw = 0" and "loose = -1", and hence get
{(1,−1), (−1,1), (0,0)} as the set of possible values of the payoff function.

At this point we have all the ingredients required to describe the simplest
kinds of 2-player games in extensive-form, namely; a game tree, on which
the game is being played, and a pay-off function, measuring the outcome of
a play. This is indeed a good start, but in order to find a complete theory of
games it is obvious that we should be looking for a more general description.
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INTRODUCTION

Take for instance the game of poker in 4 players. Then we face two new fea-
tures that our simple description can not yet meet. Firstly, the number of
players is greater than two and, secondly, the players are unaware of how
their opponents are playing. One could also think of games having "chance
moves", i.e. random moves that does not connect to any particular player.
The following definition of a game in extensive-form covers all of the above
features and can be found in [O]:

Definition 1. By an n-player game in extensive form we mean

(1) a topological tree Γ with a distinguished node A called the starting

point, or the root, of Γ
(2) a function, called the pay-off function, which assigns an n-vector to

each terminal node of Γ
(3) a partition of the intermediate nodes of Γ into n+1 sets S0,S1, ...,Sn,

called the player sets
(4) a probability distribution, defined at each node of S0, among the

immediate followers of this node
(5) for each i = 1, ..., n a subpartition of Si into subsets S

j

i
, called infor-

mation sets, such that two nodes in the same information set have
the same number of immediate followers and no node can follow
another node in the same information set

(6) for each S
j

i
there is an index set I

j

i
together with a 1-1 mapping of

I
j

i
onto the set of immediate followers of each node in S

j

i
.

As mentioned earlier condition (1) and (2) suffice to describe the sim-
plest games in extensive form like e.g. chess. Condition (3) sets the stage
for the n-player generalization where Si, i 6= 0, should be thought of as the
collection of nodes in Γ from which player i makes a move. The set S0 dif-
fers from S1, ...,Sn in that it contains nodes from which the game proceeds
at random (without any player making a move) to an immediately following
node, i.e. S0 is the collection of chance nodes. Conditions (5) and (6) open
up the possibility of having a "lack of knowledge" in the game. For i 6= 0 one
should think of the nodes in S

j

i
as different positions in the play of player

i that are indistinguishable. In poker for instance every move (that is not
terminal) is followed by a chance move (drawing a card) and the only in-
formation available to a given player i is what cards he has at the moment
and what cards he has decided to discard. No information of the opponents
hands is available so, for a fixed hand, all the possible nodes of player i in
a round j for which the same cards have been discarded by i (in any order)
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is indistinguishable to him. Thus there is a natural partition of Si, for each
i = 1, ..., n, where each S

j

i
in the partition contains several nodes of Γ. A

game in which |S j

i
| = 1 for all i and j, i.e. all nodes are always distinguish-

able, is said to have perfect information. Chess is a typical example of a game
under perfect information.

Using the terminology of Definition 1 we are now ready to introduce the
fundamental concept of strategy.

Definition 2. Let Γ be an n-player game in extensive form and let S
j

i
, for

1 ≤ i ≤ n, be the information sets of a player i. A (pure) strategy of player
i is defined as a function σi from each S

j

i
to any of the edges which follow

a representative node of S
j

i
. The set of all strategies available to player i is

denoted by Σi. An element in the product space Σ1 ×Σ2 × ...×Σn is called
a profile of strategies.

The above definition captures the intuitive idea of what a strategy "should
be", namely; a strategy is a complete plan of how to play in any given situa-
tion. There is, however, also a drawback with Definition 2 since it assumes
the player to have decided about how to play even before the game has
started. One may of course argue that this is unreasonable in many practical
situations. Again chess is a good example since one would not be able to
make up a plan for what to do in more than a few moves ahead. Indeed this
is a practical limitation that we will have to overlook. It will not make the
theory less interesting.

The introduction of strategies is of course of fundamental importance
since they represent the basic elements of what game theory means to study.
We want find out wether there is a best way of choosing strategies or not,
and how to define this property. From the point of view of a player this
would be to pick a strategy which maximises the personal payoff. Given that
the opponents play according to some profile of strategies one would pick a
strategy so that the final position gets as good as possible. For this discus-
sion it is time to introduce some further notation. We can make the notion
of payoff-function in an n -player game precise by declaring it as a function
J : Σ1×Σ2 × ...×Σn→ Rn where

J (σ1, ...,σn) = (J1(σ1, ...,σn), ...,Jn(σ1, ...,σn)),

and Ji is the payoff-function of player i. Note that since Γ may consist of
chance moves one should, in general, interpret J as an expectation.

8
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In many situations, both in theory and in practise and given that ev-
ery player have chosen a strategy, we are only interested in the values
of each individual payoff-function. In principle, given the product space
Σ1 × Σ2 × ... × Σn and the payoff-function J we have a characterisation
of the game which in many ways is sufficient for our needs. Describing a
game by the payoff-function is commonly known as a normal-form repre-
sentation. Every game in extensive form can canonically be represented in
normal form, but not in the converse order. The reason for this being that
a game in extensive form contains information of the game tree Γ which is
lost in the normal form representation. If the number of strategies in each Σi

is finite (which we have assumed) the normal-form representation is simply
given by an n-dimensional array of n-vectors. In the case of a 2-player game
this array reduces to a bimatrix.

Example 1. One of the most famous examples of models in game theory
is undoubtedly The Prisoner’s Dilemma, first introduced in 1950 by Merrill
Flood and Melvin Dresher at the RAND Corporation. The story goes as fol-
lows: Two members of a criminal gang are arrested by the police and impris-
oned in two different rooms without being able to communicate with each
other. Both of them can act in one of the following ways: either choose to
cooperate, i.e. keep quite to the police during the interrogation, or else defect

and choose to testify against the other prisoner. We denote cooperation by
C and defection by D. If the prisoners cooperate they will both go to jail for
two years and if they defect they will get three years in prison. The catch of
the game is that if one of the prisoners choose to cooperate while the other
one defects, then the latter will be released while the cooperative prisoner
will get four years behind the bars. Denoting the prisoners by Player 1 and
Player 2 this game can easily be represented in both extensive- and normal
form as in Fig. 1.
The dashed line in the extensive form representation indicates that the nodes
belong to the same information set. For Player 2 these nodes are indistin-
guishable. Such information is not included in the normal-form representa-
tion.

We are now ready to introduce the notion of Nash-equilibrium.

Definition 3. Given an n-player game Γ we say that an n-tuple of strategies
(σ∗1, ...,σ∗n) ∈ Σ1×Σ2× ...×Σn is a (pure) Nash-equilibrium if and only if for

9
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CD

Player 1

C

(0,4)

D

(3,3)

Player 2

C

(2,2)

D

(4,0)

C D
C 2,2 4,0
D 0,4 3,3

FIGURE 1. The Prisoner’s Dilemma represented in extensive-
and normal form.

any i = 1, ..., n and σi ∈ Σi,

Ji(σ
∗
1, ...,σ∗n)≥ Ji(σ

∗
1, ...,σ∗i−1,σi ,σ

∗
i+1, ...,σ∗n).

Nash-equilibrium is one of the most celebrated definitions in non coop-
erative game theory and serves as the major solution concept. The intu-
itive meaning is clear. Given that all players in the game play according to
their Nash-equilibrium strategy, none of them can get a higher (expected)
payoff by switching to another strategy. Despite its great importance, Nash-
equilibrium is far from being the only solution concept in the litterateur.
Other concepts are for instance subgame perfect equilibrium and evolutionary

stable strategy.
At this point an important question naturally rises; given a finite game Γ,

does there always exist a Nash-equilibrium? A moment’s thought will revile
this to be false. Consider for instance the 2-player normal-form game:

�

(1,−1) (0,0)
(0,0) (1,−1)

�

(2.1)

where, at each entry, either Player 1 or Player 2 can do better by changing
to another strategy. There is, however, more to be said about this matter as
we will see shortly.

We conclude this section with the important notion of symmetric games.

Definition 4. Let Γ be an n-player game given in normal form. We say that
Γ is symmetric if and only if for every i = 1, ..., n and permutation π it holds
that

Ji(σ1,σ2, ...,σn) = Jπ(i)(σπ(1),σπ(2), ...,σπ(n)),
for all (σ1,σ2, ...,σn) ∈ Σ1 ×Σ2 × ...×Σn.

10
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3. Zero-Sum Games

The simplest possible games to study are the so called zero-sum games.
They are characterised by the fact that the sum of the elements of the payoff-
vector at any terminal node always equals to zero. Thus, in a zero-sum
game the winnings of one player has to be paid, in some way or another, by
the other players. If only 2-player zero-sum games are considered, things
simplify even further since the elements of the payoff-vector then have to
be additive inverses of each other. In that case it suffices to give the payoff
of one player, say Player 1. The normal-form bimatrix representation can
therefore be reduced to a matrix representation. For this reason zero-sum
games are sometimes also referred to as matrix games. The game in (2.1) is
a zero-sum game and in the reduced notation of the first player’s payoff we
get the game matrix

�

1 0
0 1

�

.(3.1)

The easy matrix representation makes the 2-player zero-sum games es-
pecially tractable for closer analysis. For instance to answer questions re-
garding the existence of solution strategies. We know that (3.1) does not
admit a pure Nash-equilibrium but maybe we can quantify those matrix
games that have? Consider a general zero-sum game with a pay-off func-
tion J corresponding to a payoff-matrix A= (ai j) ∈ Rn×m. The strategy sets
of Player 1 and Player 2 are Σ1 and Σ2 respectively and both are assumed
to be finite. The pair (σ∗1,σ∗2) ∈ Σ1 ×Σ2 is a pure Nash-equilibrium if and
only if both ai∗ j∗ = maxi ai j∗ and ai∗ j∗ = min j ai∗ j , where J (σ∗1,σ∗2) = ai∗ j∗ .
Such an element, if it exists, is called a saddle point of A. If A lacks saddle
points the game lacks pure Nash-equilibria. What would happen if we were
playing such a game? The goal of Player 1 is to win as much as possible
while minimising the risk of loosing too much. Thus, in each row two ele-
ments are of interest; the greatest (maximal gain) and the least (maximal
loss). A rational choice of strategy for Player 1 would be to pick a strategy
corresponding to the row in A in which the least possible win is maximised.
An analogue argument also holds for Player 2 who preferably would choose
to play a strategy corresponding to the column in which the greatest loss is
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minimised. We define

v := max
σ1∈Σ1

min
σ2∈Σ2

J (σ1,σ2)

v := min
σ2∈Σ2

max
σ1∈Σ1

J (σ1,σ2)

and call v the gain-floor and v the loss-ceiling. By construction we have the
inequality

v ≤ v,(3.2)

and if "=" in (3.2) we say that the game has value v = v = v. Hence, if a zero-
sum game has a value the payoff-matrix has a saddle point and there exists
a pure Nash-equilibrium. If not, then the gain-floor and the loss-ceiling only
represent the best possible win and loss each of the players can hope for.
However, there is a way of playing games without saddle points so that both
players gain from it. That is the concept of mixed strategies, first introduced
by Émile Borel:

Definition 5. Let Γ be an n-player game in normal form with strategy spaces
Σ1,Σ2, ...,Σn and payoff-function J . We say that µi is a mixed strategy of
player i if µi ∈ M1

 

Σi

�

, whereM1
 

Σi

�

is the set of probability measures
over the space Σi.

Note that in mixed strategies the payoff-function J turns into an ex-
pected payoff-function given by

∫

Σ1×Σ2

J (σ1,σ2)µ1(dσ1)µ2(dσ2),

for (µ1,µ2) ∈ M1(Σ1)×M1(Σ2). For simplicity we stick to the same nota-
tion as for the ordinary payoff-function.

To play a mixed strategy is indeed a bit odd. Practically it means that
instead of using rational reasoning to find a good strategy one would draw a
strategy at random according to some probability distribution. By the inclu-
sion Σi ⊂M1(Σi), there is reason to believe that the mixed strategies enable
us to find values in a wider class of games. The following result is due to
von Neumann in [vN] (1928) and can be considered as the fundamental
theorem of game theory.

Theorem 3.1 (The minimax theorem). Let Γ be a 2-player zero-sum game

with finite strategy spaces Σ1 and Σ2 and payoff-function J . Then there exists

at least one Nash-equilibrium in mixed strategies (µ1,µ2) ∈M1(Σ1)×M1(Σ2)

12
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for which the game has value, i.e.

max
µ1∈M1(Σ1)

min
µ2∈M1(Σ2)

J (µ1,µ2) = min
µ2∈M1(Σ2)

max
µ1∈M1(Σ1)

J (µ1,µ2).

The minimax theorem was the first major breakthrough in what was to
become the theory of games and it has later been generalized by several
authors. John von Neumann himself was quoted as saying "As far as I can
see, there could be no theory of games ... without that theorem ... I thought
there was nothing worth publishing until the minimax theorem was proved"
(see [C2]).

Since we have assumed the number of strategies available to each player
to be finite (n say) any mixed strategy may be represented by a vector x ∈ Rn

such that all x i > 0 and
∑n

i=0 x i = 1. Each element x i is the probability of
getting the pure strategy indexed by i when playing x. The payoff-function
can be written as

J (x,y) = xT Ay, x ∈ Rn,y ∈ Rn.

The minimax theorem is a pure existence result, but there is also another
interesting result saying that equilibrium strategies in symmetric 2-player
zero-sum games can be derived as solutions to a certain ODE-system. The
following theorem can be found in [F1] and is due to von Neumann:

Theorem 3.2. Let A ∈ Rn×m be the payoff-matrix in a 2-player zero-sum game

and define the functions ui(y) = eT
i Ay (where ei denotes the i:th normalized

column vector from the standard basis), for i = 1,2, ..., n, φ(a) = max(0, a)

and Φ(y) =
∑n

i=1φ(ui(y)). For any mixed strategy y0 of Player 2 consider the

following problem:
¨

y ′
j
(t) = φ

�

u j(y(t))
�

−Φ y(t)
�

y j(t)

y j(0) = y0
j

Then, for any positive monotone sequence {tk} growing to infinity any limit

point of {y(tk)} is an equilibrium strategy of Player 2 and, furthermore, there

is a constant C such that eT
i Ay ≤pn/(C + tk).

It should be mentioned that finding the equilibrium solution by means
of ordinary differential equations is not very efficient. Much faster solution
algorithms have been developed using methods from linear programming.

The literature of 2-player zero-sum games is huge, both from a theoretical-
and an applied point of view, and the topic serves as the foundation for
what is called classical game theory. Apart from the 2-player setup there are

13
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also results available for n-player zero-sum games, but not as extensive. A
substantial part of the classical text Theory of games and economic behav-

ior by von Neumann and Morgenstern (see [vNM]) is, however, devoted to
n-player problems.

4. Nash’s Theorem

Following the footsteps of von Neumann the young Princeton mathe-
matician John F. Nash was to give game theory its next major breakthrough
by a beautiful generalisation of the minimax theorem. Based on Nash’s work
in his doctoral thesis the following result can be found in [N]:

Theorem 4.1. Every normal-form n-player game with finitely many strategies

has at least one Nash-equilibrium in mixed strategies.

The proof of Nash’s theorem builds upon an elegant fixed point argu-
ment, preferably using Brouwer’s or Kakutani’s fixed point theorem. The
statement is true even for more general normal-form games having infinite
strategy sets. Ever since its publication in 1951 the result has generated
much attention and has by now created a whole avenue of interesting re-
search in n-player non-cooperative games.

5. Evolutionary Game Theory

Classical non-cooperative game theory typically deals with problems con-
cerning equilibrium analysis. Questions like; Is there a Nash-equilibrium? Is
it unique? What is the expected payoff and what is the risk when playing
a Nash-equilibrium? etc. are fundamental. From a game theorist’s point of
view these questions are of course very natural to ask, but are they equally
natural for the economist or the evolutionary biologist when trying to un-
derstand actual social behaviour? Do agents really play Nash-equilibrium in
a given situation and if they do, which one do they chose if several exist?
These are some of the basic problems of interest in what is called evolution-

ary game theory. In contrast to classical theory, evolutionary games do not
assume players to act in a rational manner. In every day life we are all being
exposed to new situations which, in principle, could be analysed game theo-
retically. However, most often we do not think of such situations in strategic
terms. It is therefore not realistic to assume our behavior to be reflected
by rationality, since what we really use are often just simple strategies, im-
itation, experience and rules of thumb. The best one can hope for is that
rational behaviour, as described by Nash-equilibrium, evolves over time. In
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evolutionary game theory the basic setup is a large population of players
who repeatedly engage in strategic interaction. Change of behaviours in
these populations is driven on an individual level by features such as imita-
tion of more successful behaviours. For a thorough discussion of the passing
from classical- to evolutionary games we recommend [M].

We are now going to present the basic model. Consider a finite popula-
tion of N players and a normal form game admitting a finite set of (pure)
strategies Σ = {σ1,σ2, ...,σn}. For simplicity we are going to assume all the
individual strategy sets to be the same and equal to Σ. A population state x

is a point in the n-dimensional unit simplex X and describes the proportion
of each strategy being used within the population, i.e. x i is the proportion
of players using strategy σi . Note that for N <∞ the values of x are in the
grid XN := X ∩ 1

N
Z

n, embedded in X . A population game is a continuous
vector-valued payoff-function F : X → Rn for which each Fi(x) is the (ex-
pected) payoff to a σi-player given a population state x . In this context a
Nash-equilibrium is a population state x∗ which fulfills the implication

x∗i > 0 ⇒ i ∈ argmax
1≤ j≤n

F j(x
∗),

for all 1≤ i ≤ N (see e.g. [S2]). It is easy to show that the above definition
coincides with the classical Nash-equilibrium if the population game is a fi-
nite symmetric normal-form game.

As we mentioned earlier the goal of evolutionary game theory is to un-
derstand the possible mechanisms driving strategic behaviour within a pop-
ulation. How and why do players switch from one strategy to another and
how do we model it? To deal with this we introduce revision protocols. For-
mally, a revision protocol is a map ρ : Rn×X → Rn×n

+ taking payoff vectors π
(πi is the expected payoff to a σi-player given x) and population states x as
arguments and returns a square matrix having positive elements. The idea
is to consider a population of N individuals, each of them being equipped
identical "alarm clocks". The time durations between two consecutive rings
of a clock are independent and exponentially distributed with exponential
parameter R. As soon a a clock rings the player carrying it gets a chance to
switch to another strategy. The switching process is random and related to ρ
in a way so that the probability of changing from strategy σi to σ j , i 6= j, is
given by ρi j/R. When a switch occurs at a time t the population state vector
also reacts by jumping to a neighbouring point in XN . This jump-process
can be described as a continuous time Markov chain which we denote by
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XN (t). The aim is to study the time evolution of XN (t) and especially its as-
ymptotic behaviour when t →∞. At this point there are two possible routes
to take; either we study XN (t) directly, the so called stochastic dynamics, or
we study the expectation x t := E[XN (t)], the mean dynamics. In this text
we are going to focus on the latter in the case of population games.

Given a revision protocol ρ and a population game F there should be
an equation for x t . To find it we consider the expected differential of XN (t)

over a small time interval [t, t+dt]. In dt units of time the expected number
of revision opportunities for each player is Rdt. Thus, given a population
state x at time t, there will be on average N x iRdt revision opportunities
within the group of σi-players. Therefore, since the probability of changing
strategy is ρi j/R, we expect N x iρi jdt of the players in this group to switch
to σ j in the time interval [t, t + dt]. Adding up the expected number of
immigrants and emigrants to and from strategy σi one finds

N d x i = N







j=n
∑

j=1, j 6=i

x jρ ji(F(x), x)− x i

j=n
∑

j=1, j 6=i

ρi j(F(x), x)





 d t

which yields following differential equation:

ẋ i =

j=n
∑

j=1, j 6=i

x jρ ji(F(x), x)− x i

j=n
∑

j=1, j 6=i

ρi j(F(x), x) =: V F (x),(5.1)

forming a system of n ordinary differential equations called the mean dy-

namic. A population state x such that V F (x) = 0 is called a stationary point.
So far nothing particular has been said about the revision protocol and

its properties. The explicit form of ρ depends on what problem one would
like to study and on what application one has in mind. It must therefore
be constructed on a case to case basis. There is a handful of models in the
literature of certain interest. In the context of evolutionary biology the most
common model by far is the so called replicator dynamics (first introduced
in [TJ] by Taylor and Jonker) which is generated from (5.1) by choosing
ρi j(π, x) = x j[π j − πi]+. The basic idea behind this choice is simple; the
probability of switching from strategy i to strategy j should be proportional
to the proportion of players using σ j (imitation) and to the advantage in
payoff of playing σ j instead of σi (payoff-advantage). If, given x , σ j-players
do worse than σi-player the probability of a switch is zero. Inserting this
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protocol in (5.1) we get the replicator dynamics:

ẋ i = x i






Fi(x)−

n
∑

j=1

x j F j(x)






.(5.2)

Note that the form of (5.2) makes it impossible for strategies that are not
present in the initial population to emerge later on.

In the case of a linear population game, i.e. F(x) = Ax for some matrix
A ∈ Rn×n, the replicator equation can be written

ẋ i = x i

�

(Ax t)i − x T
t Ax t

�

.(5.3)

The system created from (5.3) satisfy the following properties (see [HS]):

(1) if x is a Nash-equilibrium, then V F (x) = 0
(2) if x is a strict Nash-equilibrium, then it is asymptotically stable
(3) if V F (x) = 0 and x is the limit of an orbit in the interior of the

simplex X as t →∞, then x is a Nash-equilibrium
(4) if V F (x) = 0 and x is stable†, then it is a Nash-equilibrium.

Note, however, that the converse implications of (1) - (4) are all false. The
replicator dynamics does therefore not guarantee convergence of solutions
to a Nash-equilibrium. The following is a simple example of such a situation.

Example 2 (Rock-Paper-Scissor). In the classic game of rock-paper-scissor
there are obviously three pure strategies to chose from. We identify each of
them by the unit vectors in R3: e1, e2 and e3. The game is characterised by
the fact that e1 wins against e2, e2 wins against e3 and e3 wins against e1. In
the general setup the individual payoff of playing ei against e j can be written
like J (ei, e j) = eT

i Ae j where

A=







0 −a2 b3
b1 0 −a3
−a1 b2 0







for any a1, a2, a3, b1, b2, b3 > 0. This game has a unique Nash-equilibrium
x∗ in the interior of the unit simplex X (if for instance a1 = a2 = a3 and
b1 = b2 = b3 it is (1/3,1/3,1/3)) which is asymptotically stable if and
only if det A > 0. In the case det A < 0 the solutions of the replicator

†A point z ∈ X is stable if for every neighbourhood U of z there exists another neighbour-
hood V of z such that if x ∈ V then x(t) ∈ U for all t ≥ 0. Moreover, a state is asymptotically

stable if it is a stable attractor.
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dynamics, when starting at any interior state (not equal to x∗), will spiral to
the boundary of X and never settle at the equilibrium state. This is illustrated
in Fig. 2.

The inability of the replicator dynamics to ensure convergence to a Nash-
equilibrium should not be considered as a flaw. It is merely an indication that
it takes more than imitation of success to reach game theoretic rationality,
which is an interesting observation in itself.

The replicator equation (5.2) is said to be permanent if there is a compact
set K ⊂ int X such that for all x0 ∈ int X there is a T > 0 such that for all
t > T one has x t ∈ K . For such a dynamics (with F linear) we have the
following (see [HS]):

Theorem 5.1. If (5.3) is permanent, then there exists a unique stationary

point z ∈ int X . The time averages along each internal orbit converge to z:

1

T

∫ T

0

x i(t)d t
T →∞−−−→ zi , for i = 1,2, ..., n.

FIGURE 2. Replicator dynamics for the rock-paper-scissor
game with ai = 1 and bi = 0,55 for all i = 1,2,3.

The concept of permanence means, roughly, that if all strategies are
present in the population at time zero, then they will not go extinct (in
the long run). Theorem 3.2 says that the time average of the solution curves
of a permanent replicator dynamics equals to its unique interior stationary
point.

We are now going to introduce the basic solution concept of evolutionary
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game theory, namely that of evolutionary stable strategy or, more commonly,
ESS.

Definition 6. Consider a 2-player symmetric normal form game with strat-
egy set Σ and payoff-function J : Σ×Σ→ R. A mixed strategy µ∗ ∈M1(Σ)

is an ESS if either

J (µ∗,µ∗)> J (µ,µ∗)

for all µ ∈M1(Σ)\{µ∗} or else, if equality in the above for some µ̂,

J (µ∗, µ̂)> J (µ̂, µ̂).

The notion of ESS was first introduced in [MSP] by Maynard Smith and
Price as an alternative to Nash-equilibrium when trying to apply game the-
ory to problems in evolutionary biology. As a concept the ESS is slightly
weaker than a strict Nash-equilibrium, but is nevertheless an equilibrium in
the usual sense. Intuitively, for a strategy to qualify as evolutionary stable
it should, if played by all agents in a population, be resistent to attempts of
invasion by any other strategy. In connection to the replicator dynamics an
ESS is always an asymptotically stable stationary point and moreover, if it is
an interior point of X it is even globally stable.

As we mentioned earlier another interesting path to follow in evolu-
tionary games is that of stochastic evolutionary dynamics, being a "high-
resolution" version of the mean dynamics. Indeed, according to Kurtz’s the-
orem (see [K3]), we have that

lim
N→∞P

�

sup
t∈[0,T]

�

�XN (t)− x t

�

� < ε

�

= 1

for any positive T < ∞ and ε > 0. Apart from questions related to con-
vergence of population states the stochastic dynamical approach is also well
suited to address problems of equilibrium selection in games with multiple
locally stable equilibria. Even though interesting we will not bring up any of
these results in this text, but readily refer to [S1] for a short survey and to
[S3] for a more thorough discussion.

6. Zero-Sum Differential Games

In the aftermath of World War II it was clear that the destructive forces
of modern warfare had evolved in a direction where advances in technology
and cutting edge science were of uttermost importance. One of the most
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decisive (as well as disturbing) examples of such development was undoubt-
edly the construction of the atomic bomb, but other achievements like for
instance RADAR systems, jet engine technology and cryptography also had
a major impact for success in the battle field. As a consequence the RAND
Cooperation (Research ANd Development) was founded in 1948, mainly by
high ranked representatives from the U.S. military forces, as a think tank to
"further and promote scientific, educational, and charitable purposes, all for

the public welfare and security of the United States of America".
The RAND Cooperation attracted a rich variety of prominent researches

in areas ranging from mathematics, physics and engineering to economics,
psychology and philosophy. Among them were Rufus P. Isaacs who joined
the mathematics department in 1948. In parallel with Richard E. Bellman
(fellow researcher at RAND) Isaacs was working on problems related to opti-
mal control and is by now often credited as founder of the subject differential

games (see [B2]).
In layman terms differential games concerns the study of decision mak-

ing and conflict scenarios in continuous time systems driven by differential
equations. Early examples of such models are two player zero-sum games
of so called pursuit-evasion type, where one player is to capture the other
player escaping. Most famous is probably The Homicidal Chauffeur Game

introduced by Isaacs in one of his RAND papers from 1951 (internal RAND
document P-257) as:

"Game I. The Homicidal Chauffeur. P and E move in the plane with speeds

v1 and v2 with v1 > v2. The radius of curvature of P’s path must never be

less than a given fixed R. Time of capture is the payoff." ... "For a prototype,

think of a car whose driver is intent on running down an objecting pedestrian

in a large unobstructed parking lot with the latter’s only hope being delay until

rescue.The capture region is the planform of the car."

It has later been revealed, according to [B2], that the Homicidal Chauffeur
originated in a problem posed by the US Navy to RAND in the 1940’s. In
that version, however, the chauffeur was a torpedo and the pedestrian was
a ship.

Isaacs collected his ideas and results on differential games in the, by
now, classic text "Differential games. A mathematical theory with applications

to warfare and pursuit, control and optimization" published in 1965 (see [I]).
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To mathematically formalize the idea of a general 2-player zero-sum dif-
ferential game requires two main ingredients; a dynamics and a payoff func-

tion. The dynamics describes how the state of the game evolves in time,
most commonly as an ODE:

(6.1)

�

X ′t = f (t, X t ,ut , vt), t ∈ T
X t0
= x0,

for a fixed initial position (t0, x0) ∈ T ×RN and subset T ⊂ R+∪{∞} where
u : T → U and v : T → V represent the controls of Player 1 and Player 2
respectively (both are assumed to be Lebesgue measurable). It is common
to assume U and V to be compact metric spaces and the function f to be
bounded and continuous in all of its variables and Lipschitz continuous in
X t .

For the payoff function a general form is J (T , X (·),u(·), v(·)) where
we adopt the convention that Player 2 is a maximizer and Player 1 is a
minimizer. For the Homicidal Chauffeur game starting at t0 = 0 with X t =

(xC(t), xP(t)), having xC and xP as the states of the pedestrian and the
chauffeur respectively, we would take

J (X (·),uC(·),uP(·)) := inf{t ∈ R+ : xC(t) = xP(t)}.
Another important class of payoff functions are the finite horizon Bolza

problems (i.e. T = [t0, T] for some T > 0), where

(6.2) J (t0, x0,u(·), v(·)) :=

∫ T

t0

g(s, X s,us, vs)ds+ h(XT ).

Just as for the function defining the state dynamics g and h are often as-
sumed to be bounded and continuous in all variables and Lipschitz contin-
uous in the state variable. For the remainder of this introduction we limit
ourselves to only consider the Bolza problem.

One of the most subtle points of differential games as compared to the
classical theory of matrix games is the notion of strategy. Here we have
introduced the control functions u and v as representatives of the possi-
ble actions that each player can make. Therefore, by introducing the space
U (t0) of Lebesgue measurable controls u : [t0, T]× RN → U for Player 1
and, analogously, V (t0) for Player 2 a naive definition of strategy would
simply be any choice of elements in U (t0) and V (t0). Such strategies are
often called open-loop strategies. This notion is, however, unsatisfactory for
two obvious reasons. Firstly it does not respect the fact that the dynamics in
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(6.1) should be solvable regardless the choice of (u, v) and, secondly, it does
not take into account that the strategy chosen by one player may affect the
choice of the other. Given the regularity of f as above the first issue is read-
ily fixed by requiring boundedness (in addition to measurability) of u and
v. In more general situations the conditions required of the controls have to
be sharpened. Any pair (u, v) such that (6.1) allows for a unique solution
is called admissible and we denote the corresponding spaces of admissible
controls by Ū (t0) and V̄ (t0).

To formalize the idea that strategies (as realized by certain controls) may
depend on each other requires some more work. Dependence of strategies
naturally arises when information of one players actions is provided to the
other. In general each player may have access to either full- or partial infor-

mation (including no information), in equal or unequal amounts. If Player
1 and Player 2 receive the same type of information in the same amount
the informational structure is called symmetric, otherwise asymmetric. The
Homicidal Chauffeur is a typical example of a game providing full informa-
tion to both players whereas certain Bolza type games like the Principal-
Agent problem are asymmetric in partial information.

The rich variety of possible models makes a general approach towards
strategies in differential games impossible. To proceed we aim at formaliz-
ing a situation in which players play in continuous time and observe each
other continuously. In such a setting it is reasonable to think of strategies
of Player 1 and Player 2 respectively as maps α : V̄ (t0) → Ū (t0) and
β : Ū (t0) → V̄ (t0). That is, from the point of view of Player 1; a strat-
egy α is a plan for how to respond to any admissible control v of Player 2.
Compared to the feedback strategies that allowed for no dependence this
notion is often instead too ambitious. Intuitively we would like to think of
a strategy of one player as a nonanticipative response to the actions of the
other player, i.e. a response that does not rely on the future action of the
opponent. The following definition was suggested by Varaiya in 1967 (see
[V]) and is a good step in the right direction:

Definition 7 (Nonanticipative Strategy). A map α : V̄ (t0) → Ū (t0) is a
nonanticipative strategy (of Player 1) if, for any time t1 > t0 and any con-
trols v1, v2 ∈ V (t0) such that v1 = v2 almost everywhere in [t0, t1] we have
that α(v1) = α(v2) almost everywhere in [t0, t1].

The above definition is indeed appealing and it has been extensively
used in the literature of differential games. It does however carry a defect of
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practical nature with it. When thinking of strategies as response plans one
would like to have a result saying that for any pair (α,β) of nonanticipative
strategies there exists a unique pair (u, v) ∈ Ū (t0)×V̄ (t0) such that α(v) =
u and β(u) = v. As a consequence one would then be able to phrase the
game in normal form (i.e. express the payoff function in terms of strategies
rather than controls). Such a conclusion, however, is unfortunately not true
for nonanticipative strategies‡. To get around this problem one can introduce
the more restrictive notion of delay strategies (see for instance [C1]):

Definition 8 (Delay Strategy). A delay strategy (of Player 1) is a nonantic-
ipating strategy α : V̄ (t0) → Ū (t0) for which there is a delay τ > 0 such
that, for any two controls v1, v2 ∈ V̄ (t0) and any t1 > t0, if v1 = v2 a.e. on
[t0, t1], then α(v1) = α(v2) a.e. on [t0, t1 +τ].

With the rigorous notion of delay strategy at hand we now continue the
study of the Bolza problem. For future reference we denote the set of delay
strategies for Player 1 and Player 2 byAd(t0) andBd(t0).

In analogy with the matrix games in Section 3 it is natural to introduce
the concept of value also for two player zero-sum differential games. For the
Bolza problem with payoff function J as in (6.2) we introduce the upper

value function as

V+(t0, x0) := inf
α∈Ad (t0)

sup
β∈Bd (t0)

J (t0, x0,α,β),

and the lower value function as

V−(t0, x0) := sup
β∈Bd (t0)

inf
α∈Ad (t0)

J (t0, x0,α,β).

By construction V−(t0, x0)≤ V+(t0, x0) for all (t0, x0) ∈ [t0, T]×RN so the
task is to prove equality and characterize the value function V = V+ = V−.
A key result for doing this is stated in the following theorem (see [C1]):

Theorem 6.1 (Dynamic Programming). Let (t0, x0) ∈ [0, T )×RN and τ ∈
(0, T − t0). Then

V+(t0, x0) = inf
α∈Ad (t0)

sup
v∈V̄ (t0)

∫ t0+τ

t0

g(s, X s,α(v)s, vs)ds+V+(t0 +τ, X t0+τ
).

The analogous result for V−(t0, x0) also holds.

‡Take U = V = [−1, 1] and consider the pair of nonanticipating strategies defined by
α(v)(t) = v(t) and β(u)(t) = u(t) for a.e. t ≥ t0,∀(u, v) ∈ Ū (t0)× V̄ (t0). Then all controls
(u, v) ∈ Diag(Ū (t0)× V̄ (t0)) satisfy that α(v) = u and β(u) = v.
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The conclusion in Theorem 6.1 is the well known principle of dynamic
programming. It has two important consequences. First of all it implies
boundedness and Lipschitz continuity of V+ and V− in all variables. This in
turn implies almost everywhere differentiability by Rademacher’s theorem.
Secondly it suggests a possible way characterizing V as the solution to a cer-
tain PDE. In particular, by the dynamic programming principle it is an easy
exercise prove (at least heuristically) that V+ should satisfy the equation

(6.3)

�

∂tφ(t, x) +H +(t, x , Dφ(t, x)) = 0, in (0, T )×RN

φ(T, x) = g(x),

whereH +(t, x , p) = infu∈U supv∈V {〈p, f (t, x ,u, v)〉+ l(t, x ,u, v)}. The anal-
ogous equation for V− reads

(6.4)

�

∂tφ(t, x) +H −(t, x , Dφ(t, x)) = 0, in (0, T )×RN

φ(T, x) = g(x),

whereH −(t, x , p) = supv∈V infu∈U{〈p, f (t, x ,u, v)〉+ l(t, x ,u, v)}. Thus, as-
suming the Isaacs’ condition§, i.e. H + = H − =: H , there is hope to have
existence of a value function since V+ and V− then would solve the same
problem. In that case, given that (6.3) and (6.4) admit unique solutions,
one should be able to find V= V+ = V− as the solution to the PDE

(6.5)

�

∂tV(t, x) +H (t, x , DV(t, x)) = 0, in (0, T )×RN

V(T, x) = g(x),

that is, the celebrated Hamilton-Jacobi-Isaacs equation. Despite the elegance
of this result it is unfortunately not as clear characterization of the value as
it seems. Indeed one can check that V+ solves (6.3) (and similar for V−)
at all points of differentiability. It is however well known that equations of
Hamilton-Jacobi type, in general, do not admit uniqueness in the classical
sense, as the following example from [C1] shows:

Example 3. Consider the Hamilton-Jacobi equation
�

∂tV(t, x) + |DV(t, x)| = 0, for (t, x) ∈ [0, T]×R
V(T, x) = 0.

Then all functions of the form

V(t, x) =

�

0, if |x | ≥ T − t,
k(T − t)− k|x |, if |x |< T − t,

§It is a common feature in mathematics to use the definite article in combination with
a genitive like "the Isaacs’ condition" rather than the more grammatical form "the Isaacs
condition". In [F3] this is described as an example of a "cast-iron idiom".
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for any k ∈ R+, are Lipschitz continuous and satisfy (3) at any point of
differentiability.

To overcome this difficulty Crandall and Lions in 1983 introduced the idea
of viscosity solutions (see [CL]). Even though the importance of this concept
is substantial, it is nonetheless a theory of its own and reaches beyond the
scope of this presentation. We conclude this section with a result on exis-
tence and characterisation of a value function in the viscosity solution sense
(see [C1]).

Theorem 6.2. Under the common regularity conditions on f , l and g stated

in this section and the Isaacs’ condition

H +(t, x , p) =H −(t, x , p), for all (t, x , p) ∈ [0, T]×RN ×RN

the game has a value

V(t, x) = V+(t, x) = V−(t, x), for all (t, x) ∈ [0, T]×RN

where V is the unique viscosity solution of the Hamilton-Jacobi-Isaacs equation

(6.5).

Remark 1. The Isaacs’ condition may seem like an apparent but rather strong
assumption to make in a general situation. Indeed, the problem of existence
and characterization of a value in 2-player zero-sum differential games of
Bolza type without the Isaacs’ condition has recently been studied by Buck-
dahn, Li and Quincampoix in [BLQ]. By introducing a concept of mixed
nonanticipative strategies, much like in the classical theory of matrix games,
they are able to prove the existence of a value function and characterize it
as the unique viscosity solution of a corresponding Hamilton-Jacobi-Isaacs
equation. However, one should keep in mind that allowing for such strate-
gies is a substantial relaxation of the original problem.

7. Stochastic Optimal Control Theory

In light of the presentation in Section 6, a natural generalization of
the Bolza type differential games would arise by introducing random noise.
More precisely, if Wt is a standard N -dimensional Brownian motion (on a
fixed underlying probability space) we can consider the 2-player zero-sum
stochastic differential game, defined by the dynamics

�

dX t = f (t, X t ,ut , vt)d t +σ(t, X t ,ut , vt)dWt , t ∈ [t0, T],
X t0
= x0,
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and the payoff function

J (t0, x0,u(·), v(·)) := E





∫ T

t0

g(s, X s,us, vs)ds+ h(XT )



 .

This problem was first studied rigorously by Fleming and Souganidis in
[FS2] and turns out to be substantially more intricate than the determin-
istic case. One obstacle is the dynamic programming principle, which does
not follow as easily (due to issues of measurability). To prove it one has to
introduce new concepts of strategies like r-strategy and π-admissible strategy

and derive the result by an indirect approach. Having the dynamic pro-
gramming principle at hand the existence of a unique value function can
be established, characterized as the unique viscosity solution of the asso-
ciated Bellman-Isaacs partial differential equation (which in contrast to the
Hamilton-Jacobi-Isaacs equation also contains second order spatial deriva-
tives). As for the deterministic case, this result also relies on the Isaacs’ con-
dition. Since the publication of [FS2] in 1989 stochastic differential games
have been studied by several authors, for instance Buckdahn, Cardaliaguet
and Rainer in [BCR] (for the nonzero sum case), Bayraktar and Poor in [BP]

(in an n-player non-Markovian setting with fractional Brownian noise) and
others.

One of the most important subclasses of stochastic differential games is
undoubtedly the "1-player case", more commonly known as stochastic opti-

mal control theory, which we will consider next. For this discussion, think of
the single player as a controller guiding a process X t described by

(7.1)

�

dX t = f (t, X t ,ut)d t +σ(t, X t ,ut)dWt , t ∈ [0, T],
X (0) = x0,

by means of choosing a proper process ut (control) so that the cost functional

(7.2) J (u(·)) := E





∫ T

0

g(s, X s,us)ds+ h(XT )



 ,

is minimized (here we have suppressed the dependence of x0 in (7.2) and
chosen t0 = 0 for convenience). The objective is to characterize and, if pos-
sible, find optimal choices of ut .

Even though the roots of (deterministic) optimal control theory are to
be found in calculus of variations, thus dating back to the seventeenth cen-
tury and the studies of Johann Bernoulli, the igniting spark of the subject
is often credited the work of Lev S. Pontryagin in the 50’s and his group
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at the USSR Steklov Institute. Their studies culminated in the important
(and mathematically rigourous) characterization of optimal controls, which
by now goes under the name of Pontryagin’s maximum principle. It has,
however, been pointed out by for instance Pesch and Plail [PP] that earlier
achievements by Carathéodory and Graves in the 1930’s should be acknowl-
edged as precursors of this result. Also Magnus R. Hestenes at RAND gave
a formulation of the maximum principle for Bolza type problems, slightly
before Pontryagin, but his result is much weaker.

Before we go on presenting the most fundamental achievements in sto-
chastic optimal control we need to specify the problem formulation. Es-
pecially, what type of processes u are we interested in? Assuming an un-
derlying, complete and filtered probability space (Ω,F , {Ft},P) a natural
answer, which is indeed very general, would be to search among the {Ft}-
adapted processes taking values in some predefined subset U ⊂ R (possi-
bly unbounded). For future reference we denote the set of such processes
by U [0, T]. For applications, however, {Ft}-adaptivity is sometimes a too
general assumption since, for instance, the random noise may not be ob-
servable. In such cases it is more suitable to consider processes of the
form ut = u(t, x[0,t]) in the set of natural controls UN[0, T], or of the form
ut = u(t, x t) in the set of feedback (or Markov) controls UM[0, T]. By con-
struction UM[0, T]⊂UN[0, T]⊂U [0, T] so we clearly have

(7.3) inf
u∈UM [0,T]

J (u(·))≥ inf
u∈UN [0,T]

J (u(·))≥ inf
u∈U [0,T]

J (u(·)).

Regardless what type of control to consider, we must assume that for any
u in the set of feasible controls, the SDE in (7.1) admits a unique solution.
Even though existence theory of SDEs is well understood (see for instance
[Ø]) this assumption is rather delicate and not at all innocent. For controls
of feedback type the conditions

| f (t, x ,u(t, x))− f (t, y,u(t, y))| ≤ K |x − y|,
|σ(t, x ,u(t, x))−σ(t, y,u(t, y))| ≤ K |x − y|,
| f (t, x ,u(t, x))|+ |σ(t, x ,u(t, x))| ≤ K(1+ |x |),

for some positive constant K , are sufficient for the existence of a unique
{Ft}-adapted solution of (7.1) with P-a.s. continuous trajectories. We start
in this setup, i.e. minimizing (7.2) over UM[0, T].

As in Section 6 it is natural to introduce a value function, but here we
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do it in a slightly different manner:

(7.4) V (t, x) := inf
u∈UM [0,T]

E





∫ T

t

g(s, X s,us)ds+ h(XT )

�

�

�

�

X t = x



 .

In analogy with Theorem 6.1 V (·, ·) satisfies a dynamic programming prin-
ciple, leading to the important Hamilton-Jacobi-Bellman equation (often ab-
breviated the HJB-equation):

Theorem 7.1 (The HJB-equation). Assume that V ∈ C 1,2 (i.e. continuously

differentiable in t and two times continuously differentiable in x) and that

ū ∈ UM[0, T] is an optimal control. Then V satisfies the HJB-equation

(7.5)

¨

∂t V (t, x) + infu∈U

�

g(t, x ,u) + LuV (t, x)
	

= 0, in (0, T )×RN ,

V (T, x) = h(x),

where Lu denotes the infinitesimal generator of (7.1) given u, i.e.

Lu :=
∑

i

fi(t, x ,u)∂i +
1

2

∑

i, j

(σ(t, x ,u)σ(t, x ,u)>)i, j∂ 2
i j .

Furthermore, for each (t, x) ∈ (0, T )×RN it holds that

ū(t, x) ∈ arginf
u∈U

�

g(t, x ,u) + LuV (t, x)
	

.

One should note that Theorem 7.1 only serves as a characterization of
optimality since the existence of ū is part of the assumptions. Thankfully, the
setting of the problem allows for a Verification Theorem (i.e. sufficient con-
ditions for optimality) where the HJB-equation also acts as the protagonist:

Theorem 7.2 (Verification Theorem). Suppose that φ : (0, T]×RN → R is a

function such that
∫ T

0

E
�∇xφ(s, X s)σ(s, X s,us)

�2
ds <∞,

for any choice of feedback control u ∈ UM[0, T], and that
¨

∂tφ(t, x) + infu∈U

�

g(t, x ,u) + Luφ(t, x)
	

= 0, in (0, T )×RN ,

φ(T, x) = h(x).

Also suppose that ν ∈ UM[0, T] is such that

ν(t, x) = arginf
u∈U

�

g(t, x ,u) + Luφ(t, x)
	

,
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for any fixed pair (t, x). Then the value function in (7.4) equals to φ and there

exists an optimal control ū of feedback type given by ū(t, x) = ν(t, x).

Despite the beauty of the HJB-equation and its consequences to optimal con-
trol, the results presented thus far carry some conceptual drawbacks. The
restriction to consider controls of feedback type is often practical, but it is
also rather heavy. It is therefore natural to ask oneself; is it possible to have
equalities in (7.3) and, if so, under what conditions? The answer to this
question is yes, but the results put further restrictions on the structure of the
problem. We refer to [K2], [FS1] and [Ø] for a more thorough discussion.

Another inconvenience with the HJB-equation is, as we have already
encountered in Section 6, the poor theory of existence and uniqueness for
classical solutions to (7.5). In fact, the assumption of having V ∈ C 1,2 is
only valid in a rather narrow class of problems. In order to get a more com-
prehensive approach one inevitably has to dig into the technical theory of
viscosity solutions. The next method that we are going to discuss, Pontrya-
gin’s maximum principle, neatly resolves both of these issues.

Again, consider the optimal control problem defined by (7.1) and (7.2),
now with respect to the space of adapted controls U [0, T]. To get the the-
ory run smoothly it is common to require f , σ, g and h to be C 2 with
respect to x . Moreover, these functions and all their derivatives up to sec-
ond order with respect to x should be continuous in (x ,u), and bounded.
For a more refined (and technical) discussion of regularity we refer to [YZ].
The goal of the maximum principle is to derive a set of necessary conditions
for characterizing optimality, not relying on the principle of dynamic pro-
gramming. The idea is to start from an optimal control ū, then construct
an adjacent control uε ∈ U [0, T] from it and perform a perturbation anal-
ysis of J (uε)−J (ū) directly by means of a Taylor expansion. One of the
key achievements in this enterprise is the construction of uε by means of
spike variation (or needle variation). That is, for some ε > 0, pick a subset
Eε ⊂ [0, T] such that |Eε| = ε (Lebesgue measure) and consider

uε(t) :=

�

u(t), t ∈ Eε,
ū(t), t ∈ Ec

ε ,

for an arbitrarily chosen control u ∈ U [0, T]. The goal is to prove a relation
of the form

J (uε)−J (ū) = E




∫ T

0

δH (s) ·χEε
(s)ds



+ o(ε),
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where δH (t) :=H (t, X̄ t ,u(t), ·)−H (t, X̄ t , ū(t), ·) for a given functionH ,
and establish a characterization of ū in the limit as ε → 0. The following
result was proven by Peng in 1990 (see [P]):

Theorem 7.3 (Peng’s Stochastic Maximum Principle). For simplicity, con-

sider the case N = 1 and let the previously stated regularity assumptions on

f , σ, g and h hold. If ( x̄(·), ū(·)) is a solution of the optimal control problem

(7.1), (7.2), then we have

(p(·),q(·)), (P(·),Q(·))∈ L2
F (0, T ;R)× L2

F (0, T ;R),

which are respectively solutions to the backward stochastic differential equa-

tions (BSDEs)

(7.6)

�

dp(t) = −Hx(t)d t + q(t)dW (t),
p(T ) = −hx( x̄(T )),

and

(7.7)







dP(t) = −
¦

2 fx(t)P(t) +σ
2
x (t)P(t) + 2σx(t)Q(t) +Hx x (t)

©

d t

+Q(t)dW (t),
P(T ) = −hx x( x̄(T )),

where H(t) := f (t)p(t) +σ(t)q(t)− g(t)¶, such that

(7.8)
H(t, x̄(t),u, p(t),q(t))−H(t, x̄(t), ū(t), p(t),q(t))
+1

2
P(t)(σ(t, x̄(t),u)−σ(t, x̄(t), ū(t)))2 ≤ 0,

for all u ∈ U, a.e. t ∈ [0, T], P-a.s.

Remark 2. If the diffusion coefficient σ does not depend on the control vari-
able, then (7.8) simplifies to the characterization

ū(t) ∈ argmax
u∈U

H(t, x̄(t),u, p(t),q(t)),

making the solution to (7.7) superfluous.

Remark 3. The BSDEs (7.6) and (7.7) are commonly referred to as the first-
and second order adjoint equations. Backward stochastic differential equa-
tions were first introduced by Bismut in [B1] and require, in contrast to
regular SDEs, solutions given as pairs of processes. The reason for this being
to ensure {Ft}-adaptivity, since a simple time reversal would not take the
informational structure into account.

¶Here, for ϕ ∈ { f ,σ, g , h}, we use the simplified notational convention that ϕ(t) :=
ϕ(t , x̄(t), ū(t)).
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In spirit of the Verification Theorem 7.2 for the HJB-equation one can
also turn the maximum principle into a sufficient condition of optimality by
imposing convexity assumptions on the functions h and H(t, ·, ·, p(t),q(t))
and on the space U ⊂ R.

A natural question to ask at this point is; in what way do the HJB-
equation and the maximum principle relate to each other? Indeed, the ap-
pearance of Theorem 7.5 as compared to Theorem 7.3 is seemingly different
but, nevertheless, they both constitute necessary conditions for optimality
of the same underlying control problem. Restricting ourselves to the deter-
ministic case, the answer to this question is (partly) explained by a well-
known construction for solving first order PDEs by means of ODEs, known
as method of characteristics. Without digging into details (thus under suit-
able conditions of regularity) this result states that if there exists a control
ū(·) such that for any (s, y) ∈ [0, T] × RN there exists a pair of solutions
(x s,y(·), ps,y(·)) to the system

(7.9)























ẋ s,y(t) =
∂ H

∂ p
(t), t ∈ [s, T]

ṗs,y(t) = −∂ H

∂ x
(t), t ∈ [s, T]

x s,y(s) = y,
ps,y(s) = −hx(x

s,y(T ))

and

ū(t) ∈ argmax
u∈U

H(s, y,u, ps,y (s)), for all (s, y) ∈ [0, T]×RN ,

then the function

φ(s, y) :=

∫ T

s

g(t, x s,y(t), ū(t))d t + h(x s,y(T )),

solves the HJB-equation. Note that the Hamiltonian system in (7.9) is noth-
ing but a delayed deterministic version of (7.1) and (7.6) from the maximum
principle.

For the stochastic optimal control problem the situation is rather differ-
ent. Then, since the HJB-equation is a second order PDE, a connection to
the maximum principle by the method of characteristics cannot be estab-
lished. However, under suitable regularity one can find interesting relations
between the value function V (t, x) and the adjoint processes p(t) and q(t).
We refer to [YZ] for a thorough discussion of these matters and conclude
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this introduction by a few referential remarks.
The initial work in stochastic optimal control theory by means of the

maximum principle was done by Kushner in [K4], published in 1972. He
considered a problem in which the diffusion coefficient in (7.1) did not de-
pend on the control variable and where the optimization was subject to a
set of state constraints. This study was later generalized by Bismut [B1],
which in turn was methodologically simplified, from stochastic convex anal-
ysis to perturbation theory, by Bensoussan in [B2]. Since the important
contributions by Peng [P] the subject of stochastic maximum principles has
continued to attract scientific interest, both within pure mathematical re-
search and various fields of application. Recent contributions by Andersson
and Djehiche in [AD] and Buckdahn, Djehiche and Li in [BDL] are a good
examples of such a development, where Theorem 7.3 is generalized to cer-
tain problems of mean-field type. Also methods of dynamic programming
and HJB-equations has ever since the studies of Bellman in the 50’s (see e.g.
[B1]) continued to break new ground, not least within mean field games
and contributions by Lasry and Lions [LL1], [LL1] and Caines, Huang and
Malhamé [HMC]. As for the fields of stochastic optimal control and game
theory, the interplay between them and their relevance in applications, many
challenging and important problems remain to be solved, paving for new ex-
citing discoveries to be made.

8. Summary of papers

We end this introduction by a brief description of each paper appended
to the thesis.

8.1. Paper I. The first paper of this thesis treats asymptotic properties of
two different N -player models of the classical game The War of Attrition,
introduced by Haigh and Cannings in [HC], as the number of players grows
to infinity. By analysing the models in the limit regime we gain insights of
the large scale characteristics of the games that are used to establish new
results for one of the finite models.

The War of Attrition was first introduced by John Maynard Smith in
1974 in the well known paper Theory of games and the evolution of animal

conflicts (see [MS]). The game considers two identical players competing
for one prize V of positive value by observing each other and waiting for the
opponent to quit. The first player to do so looses the competition and leaves
the prize to the remaining opponent. In the classical setup there is a cost of
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waiting which is linear in time, i.e. by waiting t units of time the player gets
the possibility of winning the prize V > 0, but he will also be obligated to
pay t units in time cost. If Player X and Player Y choose waiting times τx

and τy respectively, the payoff function of Player X can be written:

JX (τx ,τy) :=







V −τy , if τx > τy

V/2−τx , if τx = τy

−τx , if τx < τy .

Note that the winning player pays the same time cost as that of the loosing
player since he can observe his opponent leaving the game.

Equilibrium analysis of the 2-player game was done by Bishop and Can-
nings in 1976 who proved that the War of Attrition admits a unique ESS in
mixed strategies, given by an exponential distribution of mean V (see [BC]).

In 1989 Haigh and Cannings constructed two canonical N -player gener-
alisations of The War of Attrition; the dynamic model and the static model.
The dynamic model is an N -player repetitive game having a sequence of
prizes {Vk}Nk=1 ⊂ R+ at stake and is played in N − 1 rounds. The first round
begins by letting all players choose individual waiting times (independently
of each other). The player having the least waiting time wins the prize V1,
pays his time cost (still linear in time) and leaves the game. The players
remaining pay the same time cost as the player leaving and enter the second
round which proceeds just as the first, having the prize V2 at stake. The
final (N − 1)’th round thus becomes a normal 2-player War of Attrition. For
increasing prize sequences, i.e. V1 < V2 < ... < VN , it is proven in [HC] that
the dynamic model, just as the 2-player War of Attrition and in each round
k, admits a unique mixed ESS given by an exponential distribution, but with
mean (N − k)(Vk+1 − Vk). Also the general case of arbitrary sequences is
analysed, still having the existence of a unique ESS as a result (however not
as explicit as in the case of increasing sequences).

The static model differs from the dynamic model in being a one-shot
game rather than a repetitive, that is, the game finishes in one turn. Just
as in the dynamic model the static model starts by letting each participating
player pick a waiting time (independently). The results are then presented
and prizes are handed out in the natural order, i.e. the player having the
least waiting time receives V1, the player having the second least receives V2
and so forth. All players pay their individual time cost except for the "last"
player who pays the time cost of the second last player (so that, for N = 2,
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we get back to the original 2-player War of Attrition).
The equilibrium analysis of the static model is a bit more intricate than

in the dynamic model since all players, in a sense, are competing for all
prizes in {Vk}Nk=1 at once. In [HC] it is proven that the static model admits a
unique ESS for prize sequences such that Vk+1 − Vk = c > 0. For more gen-
eral sequences however, the question of existence and uniqueness is unclear.
For instance, the 3-player game generated by the prize sequence {1,4,6}
admits a unique mixed Nash-equilibrium which is not an ESS. There are
even games in the static model that lack Nash-equilibria, like for example
the game generated by {1,2,1}. The goal of this paper is to study asymp-
totic behaviors in the dynamic- and the static model of the N -player War of
Attrition as N →∞.

In Section 2 of the paper we present a heuristic approach for analysing
the limiting behaviour of the dynamic model as the number of players tend
to infinity. To maintain regularity in the limit we introduce the concept of
prize function V (x), defined on the compact unit interval, to replace prize
sequences by making the assumption that Vk = V (k/N), 1≤ k ≤ N . We also
assume V (x) to be an increasing function in C 1[0,1]. In the limit we find
that the fraction of players q that has left the game at time t (after game
start at t = 0) is given by the equation V (q(t)) = t−V (0) and, in particular,
if V (0) = 0 then q(t) = V−1(t).

The results from Section 2 are rigourously studied in Section 3 where we
proceed with the asymptotic analysis of the dynamic model. Considering N

players we introduce the continuous time Markov chain X (t) (suppressing
the index N) counting the fraction of players that have left the game at time
t. Given a prize function V (x) such that V (0) = 0 it is, by the results from
Section 2, natural to believe that "X → V−1" in some sense. Indeed, in Corol-
lary 3.3 we prove that limN→∞E[X (t)] = V−1(t) and limN→∞Var(X (t)) = 0
on the time interval t ∈ [0, V (1)). In addition to the result of convergence
in mean of X (t) we also manage to prove in Theorem 3.6 that (in a sense)
the limit dynamic model behaves like a static model with players using the
mixed strategy q̇(t) = d/d t(V−1)(t). We therefore have a good reason to
proceed by analysing the asymptotic properties of the static model.

Section 4 is devoted to convergence properties in the static model of
the War of Attrition. In [HC] one can find a necessary condition for a
smooth probability density to be a static model ESS, stated as a nonlinear au-
tonomous ODE-problem of its CDF. For a general prize sequence {Vk}Nk=1 this
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ODE might be singular, but under the assumption of monotonicity (increas-
ing) the right hand side is always well defined. By well known properties
of asymptotic stability in autonomous equations we give an argument (valid
for any increasing prize sequence) for the existence and uniqueness of a
solution and for why the solution is the CDF of a probability density. Fur-
thermore, by introducing a prize function V (x) just as we did in Section 2
and Section 3, we are able to prove Proposition 4.2 saying that the solution
converges uniformly to q(t) = V−1(t) on t ∈ [0, V (1)) as N → ∞. Hence
the dynamic- and the static model "coincide" in the limit of infinitely many
players.

Section 4 explained to us that the only candidate ESS in the N -player
limit of the static model is given by the density function q̇(t) = d/d t(V−1(t)).
In Section 5 we analyse wether q̇(t) is an ESS or not and establish new re-
sults for the static model in finitely many players. By introducing theory
of normal form games with a continuum of players (according to [B]) we
define the notion of ESS (Appendix C). Assuming the prize function to be
in C 2[0,1] rather than in C 1[0,1] (still increasing and normalised so that
V (0) = 0) it is an easy task to prove by direct calculation that q̇(t) is an
ESS in the continuum model if and only if V (x) is strictly convex. Moreover,
if V (x) is concave the q̇-strategy is not an ESS. The importance of convex-
ity/concavity of {Vk}Nk=1 is not obvious in the N -player static model, but it is
reasonable to believe that the conclusions made in the continuum limit also
should hold in the finite case for large N . Surprisingly enough we can prove
as a corollary to Theorem 5.3 that the static model does admit a unique ESS,
not only for N large enough, but for for all N ≥ 2 if the prize sequence (not
necessarily connected to a prize function) is convex. The concave case turns
out to be a bit more difficult, but in Theorem 5.5 we manage to prove that
if V (x) := xα, for any 0 < α < 1, (hence V is concave) and Vk = V (k/N ),
then, for any N large enough, the static model lacks an ESS.

8.2. Paper II. This paper presents an approach for characterizing optimal
contracts in a continuous time Principal-Agent problem (from here on PA).
Using the powerful machinery of Pontryagin’s maximum principle we are
able to consider a very general class of models, for instance non-Markovian
settings where the dynamic programming principle fails to be fulfilled.

The main source of inspiration for much of recent years progress in
continuous time versions of PA is Holmström and Milgrom [HM]. They
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rigourously study a discrete time model in T periods involving two partic-
ipants, one agent and one principal. For simplicity we refer to them as A
and P respectively. The goal of P is to hire A for managing a project deliver-
ing a certain observable (noisy) output x i after each period i ∈ {1,2, ..., T}.
To compensate A for his/her efforts P suggests an incentive scheme (salary)
paying s(XT ) at the end of the last period. Here XT = (x1, ..., xT ), i.e. the
history of output. An important feature is the structure of s, which is sup-
posed to depend on output only, and not on A’s effort which is considered
hidden information. Both A and P are supposed value wealth/cost accord-
ing to exponential utility functions with fixed (but different) absolute risk
aversions. Furthermore, A will only accept s and start working for P if it
meets a certain participation constraint, in short a contract, ensuring A the
possibility to earn a fixed minimal amount (utility wise) from the project.
The problem of P is to tailor an incentive scheme and suggest a work load
(that is; how much effort to put into the project) which mutually optimizes
the utility functions of A and P, and respects the participation constraint. A
celebrated result in [HM] is a theorem characterizing optimality of s by lin-
earity (see Theorem 5 p. 314).

Inspired mainly by Williams [W] and Cvitanić and Zhang [CZ], both
studying continuous time versions of [HM] using a maximum principle ap-
proach, Paper II employs a sequential optimization scheme, divided into
the Agent’s problem and the Principal’s problem, to characterize optimal con-
tracts. The Agent’s problem is about characterizing optimal choice of effort
e(·) and the Principal’s problem characterizes optimal cash-flow (or incen-
tive scheme) s(·). In this context we consider two different settings of the
PA problem; the Hidden Action model and the Hidden Contract model.

The common feature in both of these models, from a methodological
point of view, is that the Agent’s- and the Principal’s problem both can be
formulated as nonlinear problems of stochastic optimal control, coupled to
each other by the agent’s effort and the continuously running cash-flow as
separate controls. The Agent’s problem is standard, having a dynamics (i.e.
output) defined by an SDE, whereas the Principal’s problem is a state con-
strained control problem with an FBSDE-dynamics.

The Hidden Action model is a natural generalization of the discrete time
model in [HM]. Here the principal suggests a cash-flow s(·) adapted to the
filtration generated by output x . In order to get the Agent’s problem mathe-
matically tractable we consider a Girsanov transformation and, in line with
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[W] and [CZ], declare the density of output (i.e. the Radon-Nikodym deriv-
ative of the involved probability measures) Γ(·) as the controlled dynamics
rather than x(·). We can then characterize optimal effort of the agent by
a standard stochastic maximum principle argument. The next step is to in-
sert this characterisation into the Principal’s problem, which is slightly more
difficult for a couple of reasons. First of all, the dynamics to control is a
FBSDE-system consisting of the density of output SDE coupled to the first
order adjoint equation from the Agent’s problem. Secondly, the problem is
constrained due to the participation constraint. In order to handle such a
control problem we consult recent results in the theory of FBSDEs and prove
the state constrained version of the maximum principle. A full characteriza-
tion of optimality in the Hidden Action model is then established in Section
3.

The Hidden Contract model can be seen as a relaxation of the Hidden
Action model. By enlarging the informational structure of the principal, from
the filtration generated by output to the filtration generated by the Brownian
noise, the Agent’s problem becomes a feasible control problem even without
applying a Girsanov transformation. Accepting such a setup we are able to
state a full characterization of optimality in the same manner as described
above, that is, a sequential chain of control problems. We also consider an
explicit example in a linear quadratic setting which we are able to fully solve.
It turns out that the optimal contract is characterized by processes which are
adapted to the filtration generated by x(·).

In Section 5 we have made an attempt to consider a Hidden Action
model in the strong formulation, i.e. without the Girsanov transformation.
To get a tractable problem we restrict ourselves to consider cash-flows of
feedback type s(t, x(t)). In particular we study an interesting example of
linear quadratic nature. It turns out that optimal effort in the Agent’s prob-
lem then is characterized as the unique solution to an associated nonho-
mogeneous Burgers’ equation. Such equations admit explicit solutions by
an ingenious transformation known as the Hopf-Cole transformation. The
resulting problem for the principal, however, is a non standard problem of
optimal control and resembles the intractable Agent’s problem in the full
Hidden Action model. We have neither been able to solve this problem, nor
have we been able to derive a clear characterization of optimality. The prob-
lem has therefore been left for a future study.

An Open Problem. As presented in Section 5 of Paper II (Example 5.1)
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the unique characterization of optimal effort in the Hidden Action model
with a feedback type cash-flow is

ϕ(t, x , s.) = σ2

∫ T

t

∫

R

ξ−x

σ2(τ−t)
G(x ,ξ,τ− t)s(τ,ξ)dξdτ

1+
∫ T

t

∫

R
G(x ,ξ,τ− t)s(τ,ξ)dξdτ

,

where G denotes the heat kernel. The Principal’s problem then reads as fol-
lows:

Problem. Minimize

JP(s(·)) := E





∫ T

0

s(t)d t − x(T )



 ,

over the set of feedback controls s, subject to the state constraint

(8.1) E





∫ T

0

ϕ(t, x(t), s.)2

2
− s(t, x(t))d t



 <W0,

for some W0 < 0, and the dynamics

(8.2)

�

d x(t) = ϕ(t, x(t), s.)d t +σdWt ,
x(0) = 0.

It is for the moment unclear wether the problem stated above has got a
solution or not. Even though it seems difficult, or even impossible, to find
an explicit solution, it would be interesting to find a good characterisation of
optimality. One approach would certainly be to consider a weak formulation
in which the stochastic dynamics (8.2) is exchanged for the Fokker-Planck
equation describing the time evolution of the density of x . The problem
then becomes a deterministic optimal control problem with respect to a PDE.
Following the lines of Bensoussan [B] (and neglecting the state constraint
(8.1)) one indeed finds a necessary condition for optimality as

ϕs(t, x , s.)(v) ≥ − v(t, x)

∂x p(t, x)
,

for any v in a proper set of test functions. Here ϕs denotes the Gâteaux
derivative of ϕ with respect to s and p is the solution to a corresponding
adjoint equation, namely

¨

∂t p(t, x) = −σ2

2
∂ 2

x p(t, x) + (s(t, x)− ∂xϕ(t, x , s.)),
p(T, x) = x .
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This characterization of optimality is, however, very complex and nonintu-
itive. It would be desirable to find a more practical condition, for instance
in the form of a PDE. The existence of such a characterization still remains
an open question.

8.3. Paper III. A modeling disadvantage in the Hidden Contract setup, where
the agent merely reacts to a cash-flow adapted to the noise, is the possibility
of being exposed to high levels of risk, despite an acceptable participation
constraint. Questions of risk can also be brought up naturally in the Hidden
Action model, for instance by declaring the principal risk averse. Paper III
is a follow-up paper of Paper II where we address these problems and find
necessary conditions of optimal contracts by means of stochastic maximum
principles. This has, to the best of our knowledge, not been studied before
in the context of PA problems.

As our main theoretical reference we use [BDL] in which a so called gen-
eral maximum principle of mean-field type is found. Just as in Paper III we
can extend this result to a state constrained FBSDE-system, also of mean-
field type, and formulate the Agent’s problem and the Principal’s problem
separately. In the Hidden Action model, as compared to Paper II, we gen-
eralize the cost functional of the principal to a mean-variance utility with
a given constant risk aversion parameter. To remedy the agent’s exposure
to risk in the Hidden Contract model we extend the participation constraint
to involve a statement of an upper limit for acceptable variance. The main
results of the paper are presented in Section 4 as maximum principles for
optimality characterization. We also consider an explicit example in Section
5 of Hidden Contract type which we are able to solve completely.

References

[AD] D. Andersson and B. Djehiche, A maximum principle for SDEs of mean-field type, Appl.
Math. Optim. 63 (2011), no. 3, 341–356.

[B] E. J. Balder, A unifying approach to existence of Nash equilibria, Internat. J. Game
Theory 24 (1995), no. 1, 79–94.

[BP] E. Bayraktar and H. V. Poor, Stochastic differential games in a non-Markovian setting,
SIAM J. Control Optim. 43 (2005), no. 5, 1737–1756.

[B1] R. Bellman, Dynamic programming, Princeton Landmarks in Mathematics, Prince-
ton University Press, Princeton, NJ, 2010. Reprint of the 1957 edition; With a new
introduction by Stuart Dreyfus. MR2641641 (2011b:90002)

[B2] A. Bensoussan, Lectures on stochastic control, Nonlinear filtering and stochastic con-
trol (Cortona, 1981), Lecture Notes in Math., vol. 972, Springer, Berlin-New York,
1982, pp. 1–62.

39



INTRODUCTION

[BFY] A. Bensoussan, J. Frehse, and P. Yam, Mean field games and mean field type control

theory, Springer Briefs in Mathematics, Springer, New York, 2013.
[B] A. Bensoussan, Stochastic maximum principle for distributed parameter systems, J.

Franklin Inst. 315 (1983), no. 5-6, 387–406.
[BC] D. T. Bishop and C. Cannings, Models of animal conflict, Adv. Appl. Prob. 8 (1976),

616–621.
[B1] J.-M. Bismut, An introductory approach to duality in optimal stochastic control, SIAM

Rev. 20 (1978), no. 1, 62–78.
[B2] M. H. Breitner, The genesis of differential games in light of Isaacs’ contributions, J.

Optim. Theory Appl. 124 (2005), no. 3, 523–559.
[BCR] R. Buckdahn, P. Cardaliaguet, and C. Rainer, Nash equilibrium payoffs for nonzero-

sum stochastic differential games, SIAM J. Control Optim. 43 (2004), no. 2, 624–642
(electronic).

[BDL] R. Buckdahn, B. Djehiche, and J. Li, A general stochastic maximum principle for SDEs

of mean-field type, Appl. Math. Optim. 64 (2011), no. 2, 197–216.
[BLQ] R. Buckdahn, J. Li, and M. Quincampoix, Value function of differential games without

Isaacs conditions. An approach with nonanticipative mixed strategies, Internat. J. Game
Theory 42 (2013), no. 4, 989–1020.

[HMC] M. Huang, R. P. Malhamé, and P. E. Caines, Large population stochastic dynamic

games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle,
Commun. Inf. Syst. 6 (2006), no. 3, 221–251.

[C1] P. Cardaliaguet, Introduction to differential games, Pierre
Cardaliaguet’s Home Page, Université Paris-Dauphine [Online],
https://www.ceremade.dauphine.fr/∼cardalia/ . Acessed April 1 2015. (2010).

[C2] J. L. Casti, Five golden rules: great theories of 20th-century mathematics and why they

matter, Wiley & Sons, 1996.
[CL] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.

Amer. Math. Soc. 277 (1983), no. 1, 1–42.
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