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Designing Self-Assembling Structures of Particles and Cells
OSKAR LINDGREN

Department of Energy and Environment, Chalmers University of Technology

Abstract
This thesis presents a series of theoretical results on self-assembly. It includes
explaining why certain two-dimensional patterns are universal, i.e., why they are
expected to emerge for in aggregating two-dimensional particle systems. The
thesis also outlines methods for deriving isotropic interaction potentials causing
self-assembly of crystal lattices, and principles for understanding and designing
self-assembling functional surface patterns, which in turn leads us to the design
of hierarchical self-assembly of patchy particles. Inspired by biological systems,
I also explore the possibility of using bio-inspired cellular growth to design self-
assembling cellular structures from scratch.

Keywords: Self-assembly, patterns, colloids, isotropic interactions, chiral sur-
faces, patchy particles, hierarchical self-assembly, morphogenesis
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Chapter 1
Introduction

Many technological advancements relies on breakthroughs in material science. In
fact, the components used in modern consumer electronics have complex struc-
tures on the nano- and micro-scale. Examples include cell phone batteries [1],
optical circuits [2] and meta materials for limit breaking optics and signalling
[3]. Material science invents more and more complicated structures to satiate the
demand from industry, but traditional production methods become more difficult.
Self-assembly has been suggested as an easily scalable alternative to conven-
tional manufacturing. Instead of arranging the constituent particles by external
influence like etching or by directed forces, we design the particles to arrange
spontaneously into desired structures by free energy minimisation. However, for
self-assembly to compete with other production methods we need methods for
designing constituents that self-assembles into a requested structure. This is a
difficult problem. While significant progress has been made on the experimental
side of self-assembly, there is a dearth of theoretical results.

Carbon is a prime example of the role a material’s structure can have on its
properties. Arranged in a face-centered cubic crystal structure (diamond) car-
bon’s hardness and thermal conductivity rank among the highest of all known
bulk materials while graphite, weakly bound carbon flakes, is used to write with
due to the ease with which these flakes break off and stick to surfaces. Graphene,
a single graphite flake on the other hand, has singular electronic and mechan-
ical properties and carbon nanotubes, rolled up graphene, could in the future
anchor asteroids to the earth and make elevators a viable way to reach space.
At larger length scales we find meta materials designed to exhibit properties not
found in nature, for example materials with negative refractive indices, which
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2 CHAPTER 1. INTRODUCTION

could greatly increase optical resolution beyond what is possible with conven-
tional lenses [4].

From a purely scientific point of view, studying self-assembly is interesting–
emergence of order is a fundamental concept in biology. Indeed life could be con-
sidered the most complex form of self-assembly, but pattern formation is common
in physical and chemical systems as well. A theoretical basis for self-assembly
and emergence is important for understanding patterns and symmetry in nature
and why some shapes are more common than others.

1.1 Universality, comprehensibility and analytical models

One key issue with using self-assembly to grow materials or build small compo-
nents is to find out how the constituents should interact in order to assemble into
the desired structures. There are several examples of experimental research and
simulations on self-assembly [5–7], but little progress has been made on the the-
oretical side on broadly applicable principles and methods for designing which
pattern that self-assembles. And not without reason–predicting and designing tar-
geted self-assembly is difficult. Our starting point should be a model both broad
enough to describe many different interactions accurately, but also compact in its
formulation so that it is easy to treat mathematically. Consider a particle system
where the contributions to the free energy from each particle pair only depend
on the distance between the two particles. The distance dependence is described
by an interaction (or effective interaction) potential, the shape of the potentials
represents how the interactions between colloidal- or nano particles can be tuned
in order to achieve self-assembly. The free energy of this system as a function of
the particle positions will be characterised by several local minima in many di-
mensions. If we want to find a combination of interactions in the entire parameter
space (if any such combination exists at all) that causes a desired particle config-
uration to have the lowest free energy or successfully deduce which configuration
has the lowest free energy from the interaction potential, we must be able to ad-
dress this problem. This is especially true in colloidal physics where there are
numerous ways to influence how the colloids interacts, i.e., a large search space
of complicated interactions [8–10].

Approximate models of self-assembling systems, simplified to such a degree
that analytical tools are applicable but where the system still exhibits non-trivial
behaviour, can be of use to understand and guide design of self-assembly in the
modelled system. This is the central theme of this thesis. I describe the devel-
opment of designed self-assembly of increasingly complicated patterns, with a
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focus on results that fall into one of three broad categories:

1. Universality: We want to understand why some patterns are repeatedly
found in nature. If new classes of interactions were made available in, for
example, chemical or biological systems, should we expect new types of
patterns? Universal patterns can be expected to be obtained more easily,
since the cause of their formation is independent of the particulars of the
interactions in a given system. It is clear that the question of whether or
not a pattern is universal is most easily answered by doing surveys, but to
understand why some patterns are more common, a theoretical model of
some sort is helpful [11]. Paper I addresses universal aggregate structures
in large particle systems with long range interactions. Both the predictions
in Paper V and the design path in Paper VI is based on universal patterns
in a spherical geometry.

2. Predictability: If the pattern formation in a system can be intuitively or
mathematically linked to mechanisms of the self-assembly process, it could
be of great use for designing other self-assembling patterns. Paper VI gives
examples of hierarchical self-assembly of patchy colloids, where the direc-
tion in which patches should connect can be chosen in an intuitive manner
due to a high degree of control over the self-assembling patches them-
selves. The draft paper in Appendix. 6 explores if the growth mechanisms
behind shells and protrusions in a cell model are intuitive.

3. Exactly solvable models: If we desire a target structure, how do we design
interactions that cause self-assembly into that structure? This has previ-
ously been addressed using trial and error schemes [12]. But as the search
space of possible interactions becomes larger, and we desire more complex
target structures, the use of exactly solvable models for the self-assembly
can greatly reduce and sometimes eliminate the need for trial and error.
Paper I through Paper VI are based on Fourier representations of lattices or
particles and draw conclusions about the energy and structural features of
the ground state by using analytically tractable models. This enables us to
design interaction potentials and find model parameters that cause a wide
range of patterns in both two-dimensional and three-dimensional systems
to self-assemble.
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1.2 Overview of the thesis

Chapter 2 discusses recent advances in targeted self-assembly of particles into
crystalline structures, from previous trial and error schemes to experimental fea-
sibility, energy minimisation and the analytical design principle developed in Pa-
per II through Paper IV. The principle is based on expressing the energy of a set
of particles interacting with isotropic interactions in reciprocal space. By treating
the particles not as a set of coordinates but as weight factors for Fourier modes,
it is possible to limit how low the free energy can be for any particle configura-
tion. This is done by imposing constraints on which Fourier modes are allowed,
and translating the constraints to the interaction potential by Fourier transforma-
tion. By extension, it is possible to ensure that a target crystal structure will be
the unique ground state, i.e. that there are no other particle configuration more
energetically favourable for the designed interaction potential. The design prin-
ciple has been demonstrated for two- and three-dimensional crystal structures of
various complexity including chiral structures.

Fourier analysis can also be used to infer large scale features of the ground
state configuration in our model system. In chapter 3 this is used to predict and
explain the alphabet of universal two-dimensional aggregate patterns presented
in Paper I. These patterns are closely tied to Fourier-Bessel series which more
elegantly describes symmetrical patterns around a nucleation point. The spherical
model can be generalised to other geometries like the surface of a sphere and
to include multiple particle types, each with different inter-particle interactions.
When taking into account constraints set by a fixed stoichiometry, it is possible
to predict the ground state of alkanethiol molecules adsorbed on nanoparticles.

Chapter 4 gives examples of hierarchical self-assembly. One is in a model of
nanoparticles coated with different types of molecules capable of self-assembling
into different surface patterns. By combining the methods and principles devel-
oped in the previous chapters, we describe how to find model parameters that
customises the surface pattern. These can in turn be designed so that the patchy
nanoparticles self-assemble into geometrical structures, due to how the patches
of the surface pattern are arranged. Different types of structures can be made:
strings, membranes, lattices or aggregates. Another example of hierarchical self-
assembly is organic life. Biological systems self-assembles on a wide range of
scales, from protein folding to the growth and reproduction of individuals. The
second part of chapter 4 explores the relationship between a simple mechanism
for cell growth and the patterns cells grow in, with the goal of creating a similar
set of tools used in the other articles for designing and predicting the shape of
artificial multicellular life.
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Chapter 5 gives a short summary of the main findings of each article. Chap-
ter 6 gives a summary of the thesis and outlines the progress on our collaborative
work on in vitro nano particle sedimentation, and how to combine the Fourier ap-
proach used successfully for nanoparticle self-assembly models with a more ac-
curate version of the cellular model in order to design more complicated growth
patterns.
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Chapter 2
Self-assembly

Self-assembly is when components arrange themselves into a target pattern based
on how they interact with each other. This could mean designed building blocks
that for example need to be oriented in a desired way to connect or components
repelling each other if they are not supposed to be adjacent. Self-assembly is in
stark contrast to fabricating from blueprints where every piece has to be placed
into its designated position by external guidance.

Broadly speaking, there are two approaches to designing self-assembly. Ei-
ther you consider the time evolution of a system. The design consists of influ-
encing the system in order to steer its steepest descent path through the energy
landscape into a desired meta stable state. Examples can be found in applied
chemistry where e.g. porosity and structure are often obtained by trapping a sys-
tem undergoing spinodal decomposition before it has time to fully relax into its
ground state, or by adding components one type at a time. Making small changes
to a well studied process in order to perturb the end state is relatively easy, but
obtaining completely new behaviour without resorting to trial and error is not
since that would require a good description of large part of the energy landscape.

An alternative approach is to design the interactions among the constituents
of a system so that the desired configuration is the ground state. The idea is
that eventually the system will find the global ground state and that local minima
in the energy landscape are avoided by annealing. The benefit to this is that
only one or a few extreme points in the energy landscape have to be considered.
This can make both design and predictions easier since one can take advantage
of properties of the energy landscape that might only be true at those positions.
Paper I through Paper VI focuses on this approach.

7
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Biological processes, of which the self-assembly in the draft paper, Appendix. 6,
is an example, could be considered to be hierarchies of self-assembling or self-
organising systems. On the molecular scale there is for example DNA and protein-
folding that reliably form the most energetically favourable configuration. Con-
versely DNA origami, a recent principle for sequencing DNA strands that fold
into desired patterns only concerns itself with designing the ground state [13]. At
the opposite side of the spectrum we find cellular morphogenesis, the catch-all
term for how organisms develop their shape. At a chemical level these processes
are of course described by thermodynamics and change towards lower chemical
potential. But the behaviour of cells are separated from the chemical processes
by hierarchies of self-assembly, making it much more reasonable to describe cel-
lular morphogenesis using a mechanistic model where cells behave differently
depending on surroundings and history. After all, if you scramble an organism
on any level, it will not rearrange into the same configuration from temperature
annealing. As a side note, there are examples of pattern regulation in nature that
behaves similarly to a system seeking a local energy minima, like the segment
sequencing of insect legs [14] or the extreme generative capabilities of some pla-
narians [15].

2.1 Configuration energy in reciprocal space

Most of the thesis will concern self-assembly in systems where, at some level,
the interactions between the components are isotropic. The energy of a system of
n particles with positions {ri}n

i=1 interacting with an isotropic, pairwise additive
potential V (r) can be expressed as the sum of the contributions from all particle
pairs

E =
1
2 ∑

i6= j
V (|ri− r j|). (2.1)

Trying to find an analytic expression for the configuration that minimises the
energy is very difficult, even for very simple interaction potentials V (r). For
example the ground state for the Lennard-Jones potential is only proven for one-
dimensional systems despite the fact that the Lennard-Jones potential only has a
single minimum at short ranges and is a simple rational function [16]. This could
make it seem even more difficult to design the interaction potential so that the tar-
get particle configuration is guaranteed to be the ground state. After all finding
out the (approximate) ground state is easily done via a simulated annealing of the
particle configuration, but even if one designs a potential that causes the target
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configuration to have low energy, there could still be another configuration with
even lower energy. Since a local minimum in the interaction potential will cause
the particles to prefer that distance to each other, it should be easier to design
self-assembly of structures where a few distances repeats many times. Repeat-
ing distances is the defining property for crystal structures and it turns out that
when crystalline patterns are expressed in terms of Fourier series (the recipro-
cal lattice) it’s possible to compare them energy-wise to any conceivable particle
configuration.

Fourier analysis is applied in solid-state physics to treat properties of ordered
groups of particles. To express a particle configuration in terms of Fourier modes
we need a density function describing how particles are distributed in space, with
Dirac delta functions (in d dimensions) centred at each particles’ position.

ρ(r) =
n

∑
i=1

δd(r− ri) (2.2)

E =
∫

dr1dr2ρ(r1)ρ(r2)V (|r1− r2|). (2.3)

Expressing the energy in terms of the reciprocal lattice, the Fourier transform of
the particle density function gives

ρ(r) =
1√
2π

∫
dkρ̂(r)eikr (2.4)

ρ̂(k) =
1√
2π

∫
drρ(r)e−ikr (2.5)

E =
1

2π

∫
dr1dr2

∫
dk1ρ̂(k1)eik1r1ρ(r2)V (|r1− r2|). (2.6)

(2.7)

After changing the order of integration and substituting r1− r2 = r and taking
advantage of the isotropy of V (r) we get

E =
∫

dk1
1√
2π

∫
dr2eik1r2ρ(r2)

︸ ︷︷ ︸
ρ̂∗(k1)

ρ̂(k1)
∫

drV (|r|)eik1r (2.8)

=
∫

dkρ̂
∗(k)ρ̂(k)

∫
drV (|r|)eikr. (2.9)
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Here we use the fact that the density function ρ(r) is real and thus equal to its
complex conjugate in order to switch between the Fourier transform and its in-
verse. By switching to reciprocal space we have exchanged the double integral
for a quadratic term |ρ̂(k)|2. The energy is now expressed in terms of the Fourier
transform of the particle configuration, which defines the periodicities present
among the particles, and an energy spectrum

E =
∫

dk|ρ̂(k)|2V̂ (k).. (2.10)

The energy spectrum is the Fourier transform of the interaction potential and
describes the energy associated with different periodicities

V̂ (k) =
∫

drV (|r|)eikr. (2.11)

2.2 Targeted self-assembly of lattices

To understand how Eq. 2.10 can be used to design interactions that cause self-
assembly of target crystal structures, one must first turn to solid-state physics
and the description of crystal structures in Fourier space. A crystal is defined by
its Bravais lattice and basis. The lattice describes the periodicity of the crystal
and is given by linearly independent vectors {ai}d

i=1 for which a translation will
leave the d dimensional crystal structure invariant. The crystal lattice is the set of
vertices generated by all linear combinations of the lattice vectors using integer
coefficients. The basis describes how particles are arranged around every vertex
so that the positions of all particles (without counting any particle twice) can
be written as {p j +∑

d
i=1 αiai}αi∈Z and {p j}m

j=1 is the lattice basis consisting of
m particles (see Fig. 2.4 for an illustration). The density function can only be
comprised of Fourier modes that are left invariant under the same translations
as above. The Fourier transform of the density function will be another Bravais
lattice called the reciprocal lattice G, spanned by lattice vectors gi satisfying

gia j = 2πδi j. (2.12)

It is easy to check that a translation along any lattice vector will leave the Fourier
modes of the reciprocal lattice vectors gi unchanged

eig j(r+ak) = eig jreig jak = eig jrei2πδ jk = eig jr. (2.13)
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Since every Fourier mode in the reciprocal lattice can be written as a product of
the gi modes and each term is left invariant under a translation, this holds for all
Fourier modes in the reciprocal lattice.

Consider an energy spectrum V̂ (k), Eq. 2.11, that is positive. Due to the
quadratic dependence in Eq. 2.10 any density function would describe a config-
uration with positive or zero energy. By choosing V̂ (k) ≥ 0, with zeros only at
the radii k where the reciprocal lattice has support, it is possible to guarantee that
the target structure is a ground state with zero energy. Note that the ground state
will be degenerate, which we will come back to soon. Non-crystalline structures
will have small positive energy contributions from all regions of the spectrum and
non space-filling structures will have contributions from (among other) the low k
part of the spectrum, both resulting in positive energy levels. Could there be other
Bravais lattices that compete with the target lattice? The energy spectrum directly
excludes Bravais lattices with different distances between vertices (in reciprocal
space) than in the target, |G|, this ensures that the lattice vector norms are correct.
If the energy spectrum covers a sufficient amount of vertices in reciprocal space
the Bravais lattice will be uniquely determined by triangulation.

This principle allows us to design energy spectra, and by inverse Fourier
transform we obtain interaction potentials that cause self-assembly of Bravais
lattices. Since the basis doesn’t change the periodicity of the crystal structure,
it will have no effect on the support of ρ̂ . This means that any crystal structure
with the correct Bravais lattice will have zero energy, independent of the basis,
and causes the ground state degeneracy mentioned before. In order to design
self-assembly of crystal structures with multiple particles in the basis, we need to
energetically differentiate the target from alternative bases. This can be done by
perturbing the energy spectra, making the desired lattice basis the energetically
favoured one. Consider the lattice basis’s influence on the energy in Eq. 2.10. By
Fourier-transforming the density function we get a complex exponential for each
vertex in the Bravais lattice, but since the basis is repeated at each such vertex we
can separate the influence of the basis from the influence of the lattice

ρ̂(k) =
∫

drρ(r)eikr =

(
m

∑
j=1

eikp j

)

︸ ︷︷ ︸
f (k)

∑
αi∈Z

eik(∑d
i=1 αiai). (2.14)

The lattice terms are simply delta functions coinciding with the vertices of the
reciprocal lattice, but the scaling factor in front stemming from the structure of
the basis will differ for different wave vectors. In solid state physics this term
is called the crystal structure factor f (k) and influences how waves propagate
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through a crystal. The energy for a crystal structure becomes

E = ∑
k∈G
| f (k)|2V̂ (k). (2.15)

Evident from Eq. 2.14 is that the norm of the scaling factor has an upper bound
equal to the number of particles in the basis. A small negative perturbation of
the energy spectra at a k value where the structure factors equal the upper bound
can guarantee that the relative positions of the particles in the basis are correct.
This condition is generally reached when the crystal structure can be thought of
as a Bravais lattice with vacancies, like the Kagome or honeycomb structure or
in three dimensions, the diamond structure. In the Kagome lattice, for example,
a negative perturbation at the third zero in the energy spectrum guarantees that
the Kagome basis has the lowest energy, Fig. 2.1. There are four r values that
maximise these f (k) within the unit cell, and the basis consists of three particles,
but no matter which of the sites are empty, the crystal lattice will still be a Kagome
lattice. For more complicated crystal lattices, multiple negative perturbations
where the structure factor maxes out and positive perturbations where it cancels
out might be necessary to uniquely select for the target crystal structure. The
perturbation does not necessarily have to reside in the energy spectrum either. If
the target configuration is a lattice where the nearest neighbouring particles are
at a set distance from each other the perturbation might be done on the derived
interaction potential instead with a negative perturbation at the nearest neighbour
distance, although the analytical argument for why it is a ground state is lost.

Previous work on designing isotropic interaction potentials for targeted self-
assembly has focused on minimising energy in real space by matching the in-
teraction potential [17] to the pair correlation function of a series of contesting
crystal structures. The advantage of designing the energy spectrum to match the
reciprocal lattice instead of the interaction potential to match the pair correlation
function is that the lattice structure is completely encoded in the low k region,
the information stored in the high k region of the reciprocal space is just to better
resolve the particles, as seen in Fig. 2.1. Another argument is that in recipro-
cal space the lattice structure and the basis are decoupled. The support of ρ̂(k)
defines the Bravais lattice, and its amplitude defines the basis. If one designs an
interaction potential using the pair correlation function, its support and amplitude
describe both basis and lattice simultaneously. This is the reason our design prin-
ciple allows us to design self-assembly of more complicated crystal structures
(e.g. the snub hexagonal lattice in Paper III) than what have previously been
accomplished.
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Figure 2.3: The crystal is shown with increased resolution, (a)-(c), when taking a larger
part of reciprocal space (d) into account. The numbers signify the structure factors of
the reciprocal lattice. The number of reciprocal lattice points for the crystal images are
7,13 and 19 respectively. The white dots and arrows shows the lattice vectors and basis,
moving one of the basis coordinates to the vacancy would yield another kagome lattice.

vectors for which the Fourier transform is not cancelled out, the support of ρ̂(k),
will form another Bravais lattice Gi. This is the reciprocal lattice of the crystal.
The complex value of ρ̂(k) at these points will be given by the basis.

ρ̂(Gi) =
m

∑
j
eiGir j (2.9)

If the energy spectrum V̂ (k) is positive, any density function would describe a
configuration with positive energy. By choosing V̂ (k) ≥ 0, with zeros coinciding
with the norm of the reciprocal lattice vectors of the target structure |Gi|, it is
possible to guarantee that the target structure is a ground state with zero energy.
In fact, any crystal with the same lattice periodicity, i.e. the same lattice but
arbitrary basis configuration, will have zero energy. Non-crystalline structures
will have small positive energy contributions from all regions of the spectra and
non space-filling structures will have contributions from (among other) the low k
part of the spectrum, both resulting in positive energy levels. Trying to apply the
method on V (r) instead of V̂ (k) would not guarantee a homogeneous systems.
Since a Bravais lattice in two-dimensions is uniquely determinable by the norm
of the three shortest (where none are a multiple of the other two) wave vectors
by triangulation, we only have to design a finite region of the energy spectrum to
obtain any lattice periodicity, Fig. 2.4.

If the basis of the target structure only consists of one particle, there is no
freedom in the arrangement of the basis and subsequently there is no need to
try to energetically distinguish between different bases. The target structure will
emerge as long as the particle density is close to one particle per unit cell. If
the target structure has a non-trivial basis, it is possible to use perturbations of

Figure 2.1: The crystal structure is shown with increased resolution, (a)-(c), when tak-
ing a larger part of reciprocal space (d) into account. The numbers signify the structure
factors of the reciprocal lattice. The number of reciprocal lattice points for the crystal
images are 7,13 and 19 respectively. The white dots and arrows shows the lattice vec-
tors and basis, moving one of the basis coordinates to the vacancy would yield another
Kagome lattice. The norms of the structure factors in (d) are maximised by the basis for
|k| = 2 , a negative perturbation of the energy spectrum at this wavelength ensures that
the correct basis self-assembles.

2.3 Examples of designed self-assembled lattices

The constraints outlined above do not completely determine the energy spectrum.
Since the energy spectrum can take the form in the region where it’s positive, the
design principle describes a whole class of interaction potentials that cause self-
assembly of the target crystal structure. If the goal is to create an interaction
potential that is as simple as possible, one could intend a short range interaction
potential which means it falls off quickly in real space, or a smooth one with few
complicated features, see Fig. 2.2 for an example. Those two are each others’
counterparts after Fourier transforming. A smooth potential is not comprised of
Fourier modes with short wavelengths, the high k region of the energy spectrum
is zero. Since the energy spectrum and the interaction potential are Fourier trans-
forms of each other the inverse follows: a smooth energy spectrum will trans-
late to a short-range interaction potential. More formally, screening a potential
V (r)→ ξV (r) equates to a convolution in reciprocal space

ξ̂V (r) =
∫

dkξ̂ (|k−k|)V̂ (k). (2.16)

The standard uncertainty relation gives the shape of the most efficient screening
function ξ (r) [18] in the form of a limit to how small effect the screening has on
the energy spectrum

var[ξ 2]var[ξ̂ 2]≥ d2

16π2 . (2.17)
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V(r)

V̂(k)

k

r

Figure 2.2: The constraints that guarantees that a target crystal structure (here the di-
amond structure) is the ground state only requires that the energy spectrum V̂ (k) is zero
at the support of the reciprocal lattice. Elsewhere, the shape can be chosen arbitrarily
as long as it is positive. A naive implementation of these constraints results in very com-
plicated interaction potentials (grey). The interaction potential V (r) can gradually be
simplified (blue) using a Gaussian screening and smoothing of the energy spectrum until
the point where further simplification would make it impossible to fulfil the constraints
(red). The optimally simplified interaction potential (red) still causes a particle system
to self-assemble into the target structure, (left inset) shows the diamond structure self-
assembled in a Monte Carlo simulation with simulated annealing, simulation and the
optimal potential are from Paper IV.

The screening function that satisfies the lower bound is the Gaussian function,
corresponding to a heat kernel smoothing in reciprocal space. This means that
for all screening functions with a given level of screening, var[ξ 2] =

∫
drξ (r)2

being constant, the Gaussian screening has the smallest impact on the energy
spectrum. This means that the interaction potential can be screened more without
making it impossible to fulfil the constraints of the design principle. Similarly
a heat kernel smoothing of the interaction potential leaves the energy spectrum
with a large support than other smoothing operations.

Taking everything we have learned into account, the design principle for tar-
geted self-assembly of crystal structures, as described in Paper IV, is as follows.
Create a truncated energy spectrum that covers a bare minimum of the target re-
ciprocal lattice. Add negative-weighted delta functions at k values that coincides
with the support of the reciprocal lattice, and perform a small smoothing of the
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energy spectrum. Gradually increase the smoothing while adjusting the weight
and position of the delta functions to maintain the criterion that ensures the target
lattice is a ground state. When no more smoothing is possible without break-
ing the constraints, add small perturbations of the energy spectrum at k values
where the norm of the structure factors maxes out by tweaking the corresponding
delta functions. Inverse Fourier-transform the energy spectrum in order to obtain
a maximally simplified interaction potential that is guaranteed to have the target
crystal structure as its ground state.

Another example of the design principle, the obtained interaction potentials
and Monte Carlo simulations with the formation of crystal grains and grain bound-
ary diffusion is shown in Fig. 2.3. The simulations was done using local moves
and temperature annealing to verify that they do self-assemble into the desired
crystal structures under realistic conditions. We assume that the self-assembly
occurs at a fixed density that matches that of the target structure and, since any
competing configuration will have positive energy, under pressure. Conversely
it has been proven that the honeycomb structure cannot self-assemble in free
space [19]. This is apparent when looking at the pair correlation function (or the
structure factor) versus closely packed lattices with matching and double the unit
distance. Since the correlation function for the honeycomb structure can be writ-
ten as a linear combination of those of the two closely packed structures it cannot
be energetically favourable to both.

2.4 Breaking the chiral symmetry

A chiral pattern is defined by its lack of symmetry lines, i.e. its non-superposable
with its own mirror image. An example are left and right hands, which are each
other’s mirror images, they are a pair of enantiomers. Since all distances are
preserved in a reflection, it is clear that isotropic interaction potentials cannot be
made to differentiate between enantiomers, the energy of the two configurations
will be identical. But it was previously not known if an interaction potential
could be designed so that the system spontaneously break the chiral symmetry
and self-assembles into one of the enantiomers.

The question is interesting from a theoretical point of view. Many types of
biomolecules exist only as enantiomers, the chiral form shared among all organ-
isms. The common explanation for homochirality is a spontaneous symmetry-
breaking on the microscopic scale leading to a racemic mixture, followed by a
chiral specific catalysis or growth that amplifies a stochastic imbalance until the
minority enantiomer is gone. Racemic mixtures, chiral auto-catalytic activity and



16 CHAPTER 2. SELF-ASSEMBLY2.1. THE SPHERICALMODEL 15

1 2

a b

c

dV̂ (k)

k

V (r)

r

|ρ̂(k)|2dk

4π√
3

t = 0 sweeps t = 2 ·104 sweeps t = 105 sweeps t = 106 sweeps

Figure 2.5: By designing a spectrum (a) in accordance to the method, we obtain a
potential (b) which causes self-assembly of particles into the Kagome lattice (c), (d).
The particles arrange themselves into crystal grains with grain boundaries performing a
random walk, slowly increasing the grain sizes as smaller grains disappears.

corresponds to a screening of the other. For the pair potentials to be as simple as
possible and, we want the non-zero part of the spectrum to be confined to the low
k part, and we want this part to be maximally smooth.

In Fig. 2.5 we apply the design method, using only a bare minimum of the
energy spectrum while trying to keep the energy spectrum smooth as possible
to obtain a Kagome crystal. Colloids have previously been made to assemble
into Kagome crystal using a case specific design with anisotropic potentials. We
show how it can be made from isotropic potentials using a generalized method.
The spectrum is made from Gauss functions with as high σ as possible while
still fulfilling the constraints. The resulting potential is both screened and smooth
while still causing self-assembly into the target structure.

Paper III: Chiral Surfaces Self-Assembling in One-Component Sys-
tems with Isotropic Interactions

With the observation that isotropic interactions can assemble into on one hand
complex particle nuclei and on the other hand be made to form many conceivable
crystals, one might wonder if there is any inherent limitation to one component
systems with isotropic potentials. If such systems are the epiphany of symmetric
systems, could they form structures with no reflectional symmetry present, i.e.

Figure 2.3: By designing an energy spectrum V̂ (k) (a) with zeroes coinciding with the
support of the target reciprocal lattice ρ̂(k) and taking its Fourier transform we arrive at
a potential V (r) (b) that causes particles to self-assemble into a target lattice. (c) Time
evolution of a self-assembling Kagome lattice in a Monte Carlo simulation. The number
of grains diminishes by grain boundary diffusion, a process faster for smaller systems
(d) but where some local defects are still present as the dimensions of the system is not
fine-tuned to fit the lattice. The example is from paper II.

the emergence of homochirality have previously been reported in several cases
[20, 21], but showing it for a highly symmetric system like the one we model
lowered the bar for this to occur. While auto-catalysis is difficult to imagine in
a one-component system, crystal growth and diffusion of grain boundaries are
still a possible way to obtain homochirality. This changes the question into: is
it possible to design a one-component system governed by isotropic interactions
that self-assembles into a homochiral crystal?

For a crystal to be achiral there must be some reflection of the structure that
would leave both the basis (the most symmetric choice of basis) and lattice un-
changed; if there is no such pair of coinciding symmetry lines the crystal is chiral.
The simplest chiral structure is a scalene triangle since with all sides of different
lengths, a reflection would change the order of occurrence of the side lengths.
A Bravais lattice where the smallest occurring triangles are scalene will have no
symmetry lines and could be considered the simplest chiral crystal. In reciprocal
space, this chirality will manifest in the reciprocal lattice points Gi which will be
arranged in a similar (conserved angles) chiral lattice. We have already concluded
in Fig. ?? that any Bravais lattice can be identified and uniquely selected for by a
sufficient number of the smallest vertex-vertex distances, even a chiral one which
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sl sb
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sb
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sb
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Figure 2.4: The axes of symmetry of the Bravais lattice (sl) are highlighted in (a). The
Bravais lattice for the snub hexagonal lattice is closely packed. The axes of symmetry
of the basis (sb), which consists of six particles arranged in a hexagonal pattern, are
highlighted in (c). Since there are no axes of symmetry that align there is no reflection
that keeps the pattern unchanged, therefore the snub hexagonal tiling shown in the figure
is chiral.

we show in Paper III. A less obvious type of chiral lattice is one where the sym-
metry axis of the basis and those of the lattice are unaligned, Fig. 2.4. Now the
chirality must instead manifest in the structure factors in reciprocal space. One
such example is the snub hexagonal tiling, a triangular lattice with a basis of 6
particles, arranged in the shape of a hexagon (both with 12 symmetry lines), this
is also possible using the design principle outlined in this chapter, Fig. 2.5, which
we showed in Paper III.
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12 Π

a
b

c dV̂ (k)

k

V (r)

r

l1 l2
l3

Figure 2.7: Particles are made to self-
assemble (a) into a homochiral lattice
composed of scalene triangles. It’s chi-
ral property, not determined by the po-
tential but by a spontaneous symmetry
break, is illustrated in (b). The energy
spectrum (c) is designed to promote the
target Bravais lattice and the potential is
obtained from the Hankel transform (d).

1

a
b

c dV̂ (k)

k

V (r)

r

ρ̂max

−ε 2π

Figure 2.8: The snub hexagonal tiling
is an example of chirality where the chi-
ral property arises from the orientation
of the basis in relation to the lattice pe-
riodicity. (a)-(d) as in Fig. 2.7. Two
grains with chiral counterparts, color
highlighted, have formed from the same
potential. Note the ε perturbation in (c)
selecting for the target basis configura-
tions.

Figure 2.5: (a) Grains of snub hexagonal lattices, self-assembled from a Monte Carlo
simulation. (b) The emerging chirality can be either left- or right-oriented. (c) By select-
ing for the reciprocal lattice (the red peaks) of the target structure, with a negative per-
turbation ε where ρ̂ is maximised, we obtain a potential (d) which causes self-assembly
into the target structure. The example is taken from Paper III.
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Chapter 3
Fourier modes as universal patterns

There are many theoretical results one can pursue on the topic of targeted self-
assembly. A design path for calculating or deducing interactions that cause self-
assembly of different structures, like DNA origami [13] or the principle presented
in the last chapter, are examples of this type of results. Another is understanding
and identifying universal patterns, wide classes of interactions that cause self-
assembly into only a few types of patterns. From a design perspective, a theo-
retical explanation for a set of universal patterns tells us what kind of structures
one can expect being easy to self-assemble and how to achieve that in the most
efficient way possible.

Calculating the ground state for a system with an arbitrary set of interac-
tions is an unsolved problem, but as we show in Paper I, V and VI an approx-
imate model can yield insight into what features the ground state configuration
is defined by. Here, this approximation takes the form of relaxed constraints on
the density function in reciprocal space ρ̂(k). This makes it possible to predict
and design the self-assembling patterns of particles interacting with long-range
isotropic interactions.

3.1 The spherical model

If we are only interested in the formation of patterns on a scale significantly
larger than that of individual particles (as opposed to when trying to differenti-
ate between, for example, hexagonal closely-packed and cubic packing), using
a finite resolution model resolved on a lattice does not detract from our ability
to describe the system. For a lattice system, where each of N sites at coordinate

19
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ri takes the value ui ∈ {0,1} depending on whether a particle resides there, the
configuration energy becomes

E = ∑
i j

uiu jV (|ri− rj|) = u>Ju (3.1)

where V (r) is the interaction function, and the interaction matrix with elements
Ji j = V (|ri− rj|) describes how particles at different lattice sites interact with
each other. This description of the particle configuration comes with constraints,
namely that the sites can only take values 0 and 1, and that they sum up to n, the
total amount of particles. These constraints can also be formulated in terms of
moments of the lattice vector u

∑
i

um
i = n ∀m ∈ N. (3.2)

While the energy expression is quadratic, we still cannot solve the problem due
to the constraints on the higher order moments. If we relax the constraints to
only include the first two moments, m ≤ 2, the problem becomes quadratic and
exactly solvable. This is the spherical model, Paper I. The model is akin to a low-
resolution picture of the exact system, with "soft" particles as the density limit is
only given by the total number of particles and not by any limit on packing effi-
ciency. The low-resolution equivalence that one obtains from this approximation
exhibits in many cases striking similarities with the behaviour of particle systems.

Edlund and Nilsson Jacobi lay the foundation for how the spherical model
can be used to address self-assembly by noticing that matrices from isotropic
interactions commute [11], and thus share a common eigenbase that diagonalises
the energy expression Jvk = λkvk. In two dimensions with periodic boundaries,
the base is Fourier modes. Just like in the continuum case, this turns the problem
into a tractable one when expanding the configuration in terms of the eigenvectors
u = ∑k ckvk

E = (∑
k

ckvk
>)J(∑

k
ckvk) = ∑

k
λkc2

k (3.3)

since the eigenvectors are orthogonal. λk is the discrete counterpart to the energy
spectrum in the previous chapter and just like in the continuous case it is degen-
erate for a fixed norm of k . The constraints on the first and second moment also
translate well to the eigenbase
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c0 =
n
N

(3.4)

∑
k 6=0

c2
k =

n(N−n)
N2 . (3.5)

Combining Eq. 3.3 and Eq. 3.5 shows that the ground state configuration of the
spherical model is one where all weight is put on Fourier modes with the lowest
eigenvalue (with the exception of c0 = n/N). For almost any long-range interac-
tion potential, the space filling ground state turns out to be striped (or spotty if the
particle density is low), a pattern defined by a single wave length. From a design
perspective the energy spectrum makes it easy to create an interaction potential
that causes a striped pattern with a specific wavelength to self-assemble [11].

The interaction matrix Ji j can be written as a linear combination of discrete
Laplace operators, J = ∑αlm∆l

+∆m
× with ∆+ defined as the discrete Laplace op-

erator on a lattice and ∆× being the diagonal equivalence. The contribution to
J from ∆l

+∆m
× will have a maximum interaction length given by

√
(l +m)2 +m2

lattice distances; by adjusting αlm for all distances on the lattice, starting with the
longest, any isotropic potential can be represented. Fourier modes are eigenvec-
tors to the Laplace operator and therefore also to ∆l

+∆m
× and J. While we knew

before that Fourier modes diagonalises the interaction matrix, this representation
does point to a subtlety; the eigenfunctions f of the Laplace operator ∆ f = λ f
depend on the boundary conditions of the system. By requiring that the sys-
tem should converge towards zero at infinity, the translational invariant Fourier
modes no longer fit the bill, but radial Bessel functions around any finite point
with an angular modulation f = Jω(2πkr)cos(ωθ), both converge at infinity and
are eigenfunctions to the Laplace operator. The generalisation to three dimen-
sions is straightforward, resulting in spherical harmonics. The eigenvalues are
independent of which eigenbase we use.

Since eigenvalues for fixed k value are degenerate, the energy of the spherical
model is minimised once again by a combination of spherical harmonics corre-
sponding to the minimum of the energy spectrum. In order for the constraint on
the first moment to be fulfilled, a mass building term has to be added as well

∞

∑
ω=0

cω,κJω(2πκr)cos(ωθ)+ cmJ0(2πkm) (3.6)

in the limit km→ 0. Just like there are many linear combinations of Fourier modes
that do not look like stripe patterns, the set of solutions to the spherical model



22 CHAPTER 3. FOURIER MODES AS UNIVERSAL PATTERNS

using spherical Bessel functions is too broad. The question is which combinations
are closest to a binary solution. If we do find a solution that is very close to
binary, we can expect it to be a universal pattern since as long as we can rescale
the pattern so that it matches the global minimum of an energy spectrum λkmin ,
the energy will be close to the theoretical lower limit

∑
k

λkc2
k ≥

n(N−n)
N2 λkmin . (3.7)

When expanding a square wave into Fourier modes, overtones are what differ-
entiate the base frequency Fourier mode from its square wave counterpart, see
Fig. ??. Just as for the square waves, overtones in the Bessel base are multiples
of the base frequency, and it turns out that just a few terms of the sum suffice to
recreate most commonly occurring patterns assembled from random interactions,
Fig. 2 in Paper I.

∑
n={1,2,3...}

anJnω(2πkminr)cos(nωθ)+ cJ0(2πkm). (3.8)

In Paper I We created an ensemble of solutions on this form of the spherical model
with Dirichlet boundary conditions on a small disk, with km and kmin values cho-
sen so that the eigenvectors satisfied the boundary conditions and mapped them
to binary-valued patterns using a threshold for mapping to 1 to control n. These
were candidates for universal patterns. We generated random continuous piece-
wise linear interaction potentials until we had 1,000 that caused an aggregating
pattern, i.e. where the global minimum was at k = 0, and scaled the interaction
range so that the non-origin minimum in the energy spectrum coincided with
kmin = 1. A few generated patterns stand out as energetically favourable for a
large amount of interaction potentials, Fig. 3.1.
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To summarise the theory predicts that all of these patterns will be low-energy
states for most interaction potentials that cause large-scale aggregate patterns.
The patterns are almost exclusively defined by the characteristic length scale and
their energy therefore close to the theoretical minimum for the spherical model
with relaxed constraints, compared to a binary-valued lattice. Which of the pat-
terns that assembles for a given interaction potential will depend on the number
of particles in combination with how well secondary features of the energy spec-
trum match the different patches. To test this prediction, we ran simulations
of self-assembling particle systems for random interaction potentials (piecewise
linear like before but also generated as third order splines) and looked at how
well typical patterns matched our alphabet. Out of 1200 interaction potentials
that caused aggregation (a global minimum in the energy spectrum at k = 0), ap-
proximately 86% are described by the limited alphabet and 9% of the remaining
self-assembled patterns are described by Eq. 3.8 but require more terms to be rep-
resented accurately than we tested for in our parameter sweep. Typical patterns
that self-assembled in the simulations are shown in Fig. 3.2.

3.2 Generalising to multiple particle types

As a universal pattern, stripes are a commonly occurring phenomenon. One ex-
ample, interesting due to its possible applications in self-assembly, that has been
reported to self-assemble into the type of striped patterns the spherical model de-
scribes so well is that of alkanethiol-coated gold nanoparticles [22]. While the
reliability of the experimental results is debated, detailed simulations of the same
system show that alkanethiol molecules of several different lengths segregate into
patterns of stripes and spots [23]. The stripes and spots are the result of a conflict
between immiscibility of different types of alkanethiols and an entropic mixing
in order to increase the free volume for longer molecules. In Paper V we pre-
dict which combination of stripes and spots would form from the interactions
among the surface constituents. While the binary lattice model discussed previ-
ously could represent two particle types that together are space-filling just as well
as it represents one type in a vacuum, in order to describe three or more types we
need to generalise the model.

The complete orientation of the surface molecules requires too many degrees
of freedom to capture with a lattice model. Since our interest is the relation
between energy and surface pattern, we restrict ourselves to a lattice model de-
scribing where different alkanethiol molecules stick to the nanoparticle surface.
This means that the interaction potential describes the effective interaction (in-
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a b c

Figure 2.2: Examples of low energy states from MC simulations of large particle systems
with randomized interactions. (a) shows typical aggregates predicted by the morphologi-
cal alphabet. (b) shows a hierarchical structure where each part of a predicted structur
work as a nucleation point for another morphological structure. (c) shows structures
that, while being representable by the model, were not predicted in Fig. 2.1.

A diffuse peak in a low resolution picture could in itself signify a high resolution
picture of an effective particle with a smoother potential. When using the model
for designing interactions that causes self-assembly of a target structure, the in-
herent smoothness of the expected low energy state is not necessarily a problem.

The energy contribution from a dk interval is proportional to 2πρ̂∗ρ̂kdk ≥ 0,
from positive regions of the energy spectrum the contribution will always be pos-
itive. To understand how this can be used to design interactions that causes self-
assembly of target lattices, one must first turn to the description of crystals in
Fourier space. A crystal is defined by its Bravais lattice and base. The lattice
describes the periodicity of the crystal, in two-dimensions given by two non-
perpendicular vectors for which a translation will leave the crystal invariant. The
set of vertices generated by all possible translation by the lattice vectors are the
crystal lattice. The basis describes how particles are arranged around the vertices
so that the position of all particles (without counting any particle twice) can be
written as {n1a1+ n2a2 + r j},n1,n2 ∈ Z and {r j}mj=1 is a basis consisting of m
particles. The Fourier transform of the density, with delta peaks signifying parti-
cles, will be zero at k not coinciding with the lattice periodicity. The discret wav

Figure 3.2: Examples of low energy states from Monte Carlo simulations of large parti-
cle systems with randomised interactions. (a) Most interactions cause patterns predicted
by the morphological alphabet. Some exceptions (b) are hierarchical structures where
each part of a predicted pattern work as a nucleation point for another morphologi-
cal structure. (c) some patterns were not predicted in Fig. 3.1, despite that they can be
described by Eq. 3.8.

cluding terms with entropic origin) between molecules attached to the surface, as
a function of the distance between their anchor points. The spherical model is
expanded to encompass a lattice for each type t of alkanethiol molecules (with a
finite number T of distinct types). Then the vector u consists of T segments of
length N, ut , each describing the amount of particles of type t on the different
lattice sites with 1 indicating that the site is occupied by a particle of type t. The
total energy of the system can still be written using matrix multiplication

E =
T

∑
s,t=1

u>t Jtsus = u>Ju. (3.9)

Each of the T ×T blocks in J is an isotropic matrix representing how a pair of
surface types interact, Fig. 3.3. These are diagonalised blockwise by the solutions
to the Laplace equation on a spherical surface; spherical harmonics Y m

l (l and m
are orbital numbers). The sub matrices’ eigenvalues form a T × T matrix Λl
that describes how a superposition of spherical harmonics of the different surface
types is related to the energy. Due to rotational invariance, the eigenvalues are



26 CHAPTER 3. FOURIER MODES AS UNIVERSAL PATTERNS

J
11

11 º J
1N

11 º º J
11

1T º J
1N

1T

» » » »

J
N1

11 º J
NN

11 º º J
N1

1T º J
NN

1T

» » » »

» » » »

J
11

T1 º J
1N

T1 º º J
11

TT º J
1N

TT

» » » »

J
N1

T1 º J
NN

T1 º º J
N1

TT º J
NN

TT

L11 º L1K

» »

LK1 º LKK

L
11

l º L
1K

l

» »

L
K1

l º L
KK

l

»

»
Þ

Figure 3.3: Each part of the interaction matrix describing the interaction between two
particle types are diagonized by spherical harmonic functions. This allows the Hamilto-
nian to be written as a sum over l-degrees (energies associated with equal degrees l but
different orders m are degenerate) and the matrices’ sizes to be limited by the number of
particle types T rather than the spin model resolution.

degenerate with respect to m. The orbital number l defines the length scale of the
harmonics, and as in the two dimensional case, we are primarily interested in the
length scale at which different types will separate.

We can diagonalise Λl individually for each l value. The T eigenvalues to
these matrices form our new energy spectrum. The corresponding eigenvalues
represent which types segregate from the others, e.g. the eigenvalue −1 with the
corresponding eigenvector {1,1,−1,0} of Λl signifies that the first and second
type segregating from a third type (elements with different sign in the eigenvec-
tor) at length scale l is associated with energy −1. For every length scale there
will be T eigenvalues, each representing the energy associated with a segregation
between different constellations of the types. The solution to the spherical model
will simply be one consisting of Y m

l terms where l matches the global minimum
of the energy spectrum (plus a global offset from Y 0

0 ).
The energy spectrum with its multiple branches becomes a powerful tool for

predicting which pattern has the lowest energy, and ultimately for designing that
pattern, when the stoichiometry is fixed. Since we only have to consider patterns
consisting of stripes and spots of wavelengths corresponding to minima in the
energy spectrum. The role of the fixed stoichiometry is to, combined with the en-
ergy spectrum determine which combination of stripes or spots takes precedence.
The global minimum of the energy spectrum still dominates which pattern forms,
but only up to how much the stoichiometry allows. After that at which length
scale the remaining types segregate will be determined by the second (applica-
ble) minimum of the energy spectrum, and so on. Whether a segregation causes
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Figure 3.4: Energy spectra calculated from piecewise constant interaction potentials
with a shallow long range attractive basin and a short range shoulder potential. (a) The
global minimum at l = 1 causes blue to segregate from the other two types since they
have different sign in the eigenvector (inset at 1). The red and yellow region in turn form
a striped pattern with a length scale defined by l = 7 (inset at 7). (b) If the order of the
minima is reversed, the red segregates from the blue and yellow at a length scale defined
by l = 5. Since there is less red than blue and yellow combined, the red type forms spots.
The minimum describing how blue and yellow segregats show that they form a Janus
pattern outside the red spots. The surface patterns were self-assembled by Monte Carlo
simulations with simulated annealing. The examples and energy spectra were taken from
Paper V.

stripes or spots depends on if the segregating quantities are balanced. Fig. 3.4
illustrates an example of a self-assembling surface pattern of three types, red,
yellow and blue, each of equal amount on the surface. If the global minimum of
the energy spectrum is at l = 1 (l = 0 eigenvalues describe how the stoichiometry
influences the energy), with the corresponding eigenvector 1

3{1,2,−1} signify-
ing that the red and yellow will phase-separate from blue, creating a large patch
on one side of the sphere. At the second minimum at l = 7, the correspond-
ing eigenvector has different signs for red and yellow; 1√

14
{3,−2,−1} and thus

determines the length scale of the striped pattern on the red-yellow part of the
sphere. If the order of the minima is reversed the ground state pattern is instead
one with red spots on a yellow-blue Janus sphere1. Red creates a spotty pattern
against a yellow-blue background as there are many fewer red than blue or yellow
types. The second minimum at l = 1 segregates the yellow-blue regions into a
Janus-like pattern.

1Technically, the defining property of a Janus sphere is that it’s surface has regions with differ-
ent physical properties. It is commonly used, so also here, to signify a particle with two distinct
parts, half of the particle has one type of surface and the other half another type.
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Chapter 4
Hierarchical self-assembly

Universal patterns can also be utilised in targeted self-assembly. This is often
beneficial since the universal patterns are robust and not sensitive to details of the
interactions. But this also indicates that designing self-assembly of a pattern not
among the universal ones is more difficult. A system that self-assembles into the
same pattern even when system parameters change significantly will inevitably
have fewer regions with distinct behaviours. A possible way to expand the reper-
toire that simultaneously depends on reliability is hierarchical self-assembly: a
system that self-assembles into building blocks that in turn arranges themselves
into more complex structures. The two most recent articles of this thesis con-
cern systems in which the possibility of hierarchies of self-assembly is of central
interest.

4.1 Patchy nanoparticles

Anisotropic colloids show great promise for self-assembly of complicated struc-
tures. More and more fabrication techniques are developed, and these can now
take the shape of for example cubes, rods and ovoids, and even surface carvings
moulded from other nanoparticles [24]. Similarly, glancing angle deposition and
other techniques are used to create patterns of attractive or repulsive patches on
the surface of nanoparticles, allowing us to control how the building blocks are
allowed to connect to each other [25]. However, there are limitations to any fab-
rication technique, and the type of universal striped and spotty patterns discussed
in the previous chapter are quite different from what previous methods are capa-
ble of. The idea of using the spontaneous forming of surface patterns on coated

29
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Figure 4.1: The model’s interaction functions between different particle types consists of
a shoulder potential reaching neighbouring particles, an attractive basin indirectly set
by the relative length of the alkanethiol molecules and a hard core. By using the design
principle presented in Paper VI we find values for the depth of the attractive basin, ε ,
and the reach of the alkanethiol molecules, that causes different functional patterns to
self-assemble..

nanoparticles to obtain patchy colloids, which in turn self-assemble into other
structures is therefore exciting.

The mathematical foundation for how to design hierarchical self-assembly
of coated nanoparticles in Paper VI is not tied to a specific set of interactions,
type of surface or coating, but rather follows a few general criteria. The indi-
vidual molecules or polymers that coat the nanoparticle surface must be able to
rearrange, and behave as if interacting with each other according to an effective
middle-range interaction potential. In a broader sense, the universality of striped
and spotted patterns indicate that when a striped pattern have been observed to
self-assemble, much more interesting surface patterns are also obtainable as long
as one can influence which length scale the striped pattern will prefer and with a
good control of the stoichiometry. The competition between short range immis-
cibility and middle range mixing of two different types of alkanethiol molecules
on gold nanoparticles can be captured by a simple piecewise constant function,
with an attractive basin at middle range and a shoulder potential at short range for
surface constituents, Fig. 4.1. This model leaves us with the same degree of con-
trol over how the coating interacts, and allows the same type of surface patterns
to self-assemble as first principle simulations of this type of system [23]. While
it can’t provide us with actual experimental parameters to test, it serves as an il-
lustration of how this level of control over the surface coating allows functional
patterns to self-assemble into building blocks, which in turn self-assemble into
geometric structures.
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The gist of the spherical model for multiple surface types in Paper V is that we
can calculate an energy spectrum directly from the effective interaction potential
of our model system. The global minimum of the energy spectrum predicts the
length scale at which certain surface types will segregate from each other. With
a fixed stoichiometry the other minima of the energy spectrum will describe how
the remaining types segregate in the order of lowest energy to highest. The fact
that the ground state can be related to the energy spectrum makes it much easier to
design a system that self-assembles into a target system as well. The universality
of patterns consisting of spots and stripes means our target pattern should be of
that form as well.

Say that we want to self-assemble a crystal structure, like the cubic lattice or
a diamond structure. The simplest surface pattern that causes self-assembly into
those structures would be 4 resp. 6 attractive patches evenly distributed on the
surface of the sphere. Expanding the target patterns in terms of spherical har-
monics show that they are defined by length scales l = 3 and l = 4. By tuning the
parameters of the model, in this case the strength of the entropic mixing and the
relative length of the alkanethiol molecules, we find parameters settings where
the energy spectrum of the simplified model exhibits minima at l = 3 and l = 4.
A sufficiently imbalanced stoichiometry will cause the ground state to be a spotty
pattern, which is confirmed in Monte Carlo simulations to form the desired func-
tional surface pattern of 4 or 6 patches. Subsequent Monte Carlo simulations of
patchy particles with the assembled surface pattern, where the spots are attractive,
show that they self-assemble into the intended crystal structures, Fig. 4.2.

For more complicated functional surface patterns, more elaborate energy spec-
tra have to be designed. To self-assemble small cubic aggregates the most effi-
cient surface pattern is three orthogonal red patches against a blue background,
defined by the l = 4 length scale. A minimum at l = 4 is the first necessary feature
in the energy spectrum. We also need a way to localise the three patches to one
side of the nanoparticle. This means a third surface type, yellow, that prefers to
segregate from the components of our patchy pattern at low l values, i.e. promot-
ing the formation of a Janus sphere. In order to make the patches small so that
the nanoparticles must align more perfectly for the patches to stick to each other,
a third feature at around l = 8 in the energy spectrum is added that separates blue
and red regions from each other by the third yellow type, resulting in smaller red
and blue regions (if the stoichiometry is changed to match the energy spectrum),
this is illustrated and verified by simulations in Fig. 4.3. An interesting detail
is that the red-blue patchy region of the Janus sphere is an aggregate pattern,
predicted by the alphabet of universal aggregate patterns in Paper I, Fig. 3.1 j.
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Figure 2: a) Phase separation at l = 3 together with a 4:1 ratio of blue:red surface constituents
causes the ground state configuration to have four equally separated patches (solid line, left inset in a),
Lred − Lblue = 1.33 radii, ε = 0.05). With the minimum at l = 4 and a blue:red ratio of 3:1, the coating
self-assembles into 6 patches instead (dashed line, right inset in a), Lred − Lblue = 1. radii, ε = 0.1).
On the colloidal scale, the small changes makes the difference between a self-assembling diamond lattice
b) or a cubic lattice c). Both surface patterns and the colloidal structures are obtained from Monte Carlo
simulations using simulated annealing.

tive, the nano particles will instead form mem-
branes. Fig. 3 shows how this construction
cause hierarchical self-assembly of string and
membranes.

VI. Various degree of
immiscibility coupled with
stoichiometric constraints

By controlling the strength of the energetic
drive towards segregation, we can also cause
hierarchical self-assembly of vesicles. A thin,
circular, attractive band causes colloids to self-
assemble into vesicles, where the distance
from the equatorial to the stripe determines
the curvature of the vesicles. If the energy
associated to the interface between a type red
and a type blue is twice as large as the inter-
faces with type yellow, the yellow constituent
will form a stripe separating the others. The
features are represented in the energy spec-
trum as a large minimum at a low l value, forc-
ing two types to segregate to opposing sides
and a much smaller minimum at the length
scale corresponding to the width of the band
that separates the two sides, see Fig. 3. Since
the low l minimum is an order of magnitude
larger than the second minimum, the ground
state configuration will be one where type blue
and red are separated as much as possible.

This differentiates the target pattern from e.g.
one where blue and red forms a janus sphere
with yellow as an overlapping spotty pattern
as can be seen in Fig. 2 C. The position of
the attractive yellow stripe is only dependent
on the stoichiometry and by adjusting the ra-
tio between the surface constituents we can
choose between vesicles with different curva-
tures, see Fig. 3.

VII. Multiple minima in the
energy spectrum

We identify parameters in the SAM model
that cause self-assembly into colloidal parti-
cles with three attractive patches separated
by 90◦, which will cause the colloids to self-
assemble into cubes. It turns out that this
target requires a more complicated construc-
tion than the previous. The patches of the de-
sired pattern are primarily described by l =
4 modes. With two polymer types, Lred −
Lblue = 1. radii, the surface pattern will form
6 patches separated by 90◦ for stoichiometries
7:1 to 2:1. To only obtain 3 patches, a third
type is introduced with the intention of cre-
ating a janus sphere with the patches on one
of the two sides. The third polymer length is
chosen so that the energy spectrum exhibits a
minimum at l = 0 that separates the third type
from the previous two. An important prop-
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Figure 4.2: (a) A phase separation at l = 3 together with a 4:1 ratio of blue:red surface
constituents causes the ground state configuration to have four equally separated patches
(solid line, left inset in a). With the minimum at l = 4 and a blue:red ratio of 3:1, the
types self-assembles into 6 patches instead (dashed line, right inset in a). On the colloidal
scale, the small changes make the difference between a self-assembling diamond lattice
(b) or a cubic lattice (c). Both surface patterns and the colloidal structures are obtained
from Monte Carlo simulations using simulated annealing. The parameters in the model,
Fig. 4.1, the details of the Monte Carlo simulations can be found in Paper VI.

4.2 Self-assembly in biology

One of the main issues with technological advances using designed self-assembly
is that when a large part of the material composition is designed to cause a de-
sired pattern to self-assemble, there is less opportunity to obtain desired material
properties. And many types of materials rely on a scale too small to allow for
much design at all; the mechanical properties of diamonds stem from the atomic
structure, and the resolution on experimental silica circuits are quickly getting
close to the limit set by atomic scale [26]. One type of systems with already
built-in and tuneable mechanisms for complicated interactions governing self-
assembly are biological systems. How cells divide, rearrange and form structure
is a type of self-assembly on many levels, from protein and DNA-folding to cel-
lular morphogenesis, and with sufficient understanding of these processes we can
influence and design the outcome by making changes in the genetic code. There
are also a wide range of existing traits and properties in nature that we already
imitate (biomimetics) or transfer over species barriers (genetic engineering) like
chemical factories [27] in cells, the stickiness of gecko feet [28], the super (wa-
ter) repellent surface of lotus leaves [29] or even growing replacement organs and
tissues in medical science [30].

In line with our work on self-assembling particles into structures, my lat-
est work on self-assembly concerns the possibility of designing self-assembling
structures by encoding for simple growth rules in cells. While cellular morpho-
genesis is governed by many mechanisms like cell motility, cell specialisation
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Figure 5: With greater control over the energy
spectrum, more complex functional patterns can be
made to self-assemble. Here three minima in the en-
ergy spectrum together encode for a pattern where
three red patches with high specificity are separated
by 90◦. The first minimum concentrates red and
blue to one side. The second minimum causes red
patches to be separated by blue regions with a de-
sired distance. The last minimum causes red and
blue regions to be separated by yellow, allowing
for a higher specificity. Surface patterns and cubic
aggregates obtained from Monte Carlo simulations
with simulated annealing.

VIII. Conclusions

We introduce a design path for self-assembly
of target patterns on the surface of spherical
colloids. We utilize that self-assembling sys-
tems have a strong tendency to form patterns
with stripes and/or spots [15], which are used
as functional patches on the next level when
the colloids self-assemble into target geome-
tries. The central idea behind the the first step
in the design path is to match the essential fea-
tures (the minima) of the Fourier spectrum of
the target surface pattern, to the same features
in the energy spectrum of the interactions. By

doing this the interactions are tuned to cause
self-assembly of the target surface morphol-
ogy. What structures can be made to self-
assemble depend on the degree of influence
we have over the interactions between surface
constituents and the stoichiometry of the sur-
face coating. A simple model for alkanethoil
molecules on gold nano particles shows that
only a few parameters is sufficient for hierar-
chical self-assembly of a wide range of geome-
tries, for example diamond lattices, vesicles,
and cubic aggregates.
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Figure 4.3: With greater control over the energy spectrum, more complex functional
patterns can be made to self-assemble. (a) Here three minima in the energy spectrum
together encode for a pattern of three orthogonal red patches with high specificity. The
first minimum concentrates red and blue to one side. The second minimum causes red
patches to be separated by blue regions with a desired distance. The last minimum causes
red and blue regions to be separated by yellow, allowing for a higher specificity. b) Hi-
erarchical self-assembly of cubic aggregates when the red patches are attractive. Both
the surface pattern and the patchy particle configuration were obtained by Monte Carlo
simulations with temperature annealing. Interestingly, the red-blue pattern is an aggre-
gate pattern, and was predicted by Paper I, see Fig. 3.1 j. The energy spectrum and the
simulations are taken from Paper VI, more details can be found in the paper.
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etc., my goal is not primarily to recreate how existing organisms and cell colonies
grow but rather to build a framework for controlling growth patterns using as few
mechanisms as possible. Contrary to particle self-assembly, cellular morphogen-
esis does not find the molecular ground state configuration. While the system on
all hierarchies change along the energy gradient the many hierarchies of reactions
in a cell makes it much more natural to describe the growth in terms of cell be-
haviour, i.e. in what situations cells grow and how cell growth and cell division
alter the cell structure.

The draft paper in the Appendix uses a spring network model to describe how
cells move around and change shape under the influence of external forces, a kind
of model that previously has been used to explain local cell structures [31], see
Fig. 1 in the draft paper in the Appendix. The mechanism behind cell division
is described by internal timers counting down towards the next cell division at a
rate determined by the types of the surrounding cells. The article focuses on what
kind of growth patterns of one or two different cell types the growth mechanism
can sustain. The growth rules are encoded for with a series of scalar values and
could for example signify that green cells grow in the vicinity of red cells but
never on their own, or that red cells grow quicker the more red cells to which
they are adjacent to. The model is, despite its simplicity, rooted in reality.

It turns out that the growth rules make a wide range of patterns accessible,
Fig. 4.4 (right). Of special interest is the formation of protrusions, shells and
strongly mixed regions of the two cell types as they could be considered building
blocks for more complicated patterns and are the most basic forms of function-
ality: reach, protection and surface area. By analysing random growth rules that
cause the cell cluster to form any of the three interesting patterns and compar-
ing them to what surroundings the different cells experience, it is possible to
understand the mechanism behind these growth patterns. For example, the most
efficient way to cause cells of one type to form a protective shell around another
cell type turns out to be a set of growth rules where the interior cells grow when
exposed to the protective shell. The shell in turn grows as a consequence of the
cells in the shell being stretched thin by the growing interior, Fig. 4.4 (right). For
the growth of thin protrusions, the rules should instead promote growth only for
cells that are exposed the most to the outside, i.e. on the tip of the protrusion,
in combination with a high cell adhesion in order to keep the growing protrusion
centred. As of now, the model has no built in mechanism for ending or chang-
ing the growth once a certain size is reached or time has elapsed. But once the
growth rules have been tied to a gene regulatory network (or another mechanism
rooted in biology) we should be able to design hierarchical self-assembly in the
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very interesting as they encode for growth pro-
cesses where the cells’ shape do not have a
chance to adjust before the next cell division
occurs. Similarly, k = 3 internal timers is suf-
ficient to define growth rate functions where
the cell growth rate could be either uniform
in an interval or vary depending on its close-
ness to the ideal surrounding. I have similarly
focused on the interplay between one or two
cell types and the exterior; after running sim-
ulations with larger values for n and k, I have
yet to find any distinctively different growth
patterns.

The morphological space of patterns avail-
able to the model is large. Fig. 3 shows some
of the more visual patterns after a set amount
of time. There are mechanisms that causes
growth of both protrusions, as well as shells of
one cell type surrounding another. Since many
patterns can be understood in terms of com-
binations of protrusion and shells and since
they are basic functional patterns in biology
my analysis of the growth mechanisms focuses
on this type of growth.

Figure 3: Examples of growth patterns caused by
randomly generated growth rules. Among these are
shells of various thickness, growth along the surface
of other cell types and different mechanisms for pro-
trusion growth; using a single green cell as catalyst
for growth or protrusions with a shell.

III. A mechanisms for limb growth

After running 35000 growth simulations start-
ing from 5 cells of one type, with random
growth proportionality constants, I identify
limb growth configurations by the relation be-
tween circumference C squared and the area
A,

µlimb =
C2

4pA
(2)

A circular cell cluster has a value close to
1 while a cluster with protrusions will have
a measure larger the longer and thinner the
protrusions are. Fig. 4 (left) shows the simu-
lations sorted according to the measure µ for
growth of protrusions. Fig. 4 (mid) compares
the growth function of the 50 with the high-
est ranking measure to the probability density
function of the fraction of a cell’s membrane
that does not face other cells for cell clusters
showing limb growth. The most efficient rule
for protrusion growth is when only the cells at
the utmost tip of the protrusion grow. If the
growth function causes growth for cells with a
higher fraction of their membrane facing other
cells, the result is a large cell cluster with pro-
trusions on the surface, Fig. 4 (left, a). If the
growth rate is too low in relation to the cell
plasticity the cell at the tip of a growing pro-
trusion will not be kept centred, Right Fig. 4,
the direction of growth cannot be maintained
and the protrusion will turn or halt completely,
Fig. 4 (left, b).

There are other mechanisms for the growth
of protrusions; two examples can be found in
Fig. 3. One is a growth process similar to the
one above but with the addition of a surface
layer of another cell type. The other is one
where "red" cells grow only when adjacent to
a green cell, pushing the catalysing green cell
in front of the growing protrusion.

IV. A mechanism for shell growth

Similarly to how the limb growth mechanism is
intuitive by looking at in which circumstances
cells grow, the most efficient mechanism for
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Figure 6: Examples of growth patterns possible
when the tension in the cell membrane, the cell ad-
hesion, varies depending on the types of cells the
membrane separate: slowly curving protrusions,
more robust shell growth and patterns with mixed
cell types.

V. discussion and conclusion

While only focusing on one of the many mech-
anisms behind morphogenesis, growth where
cell division is governed solely by the types of
adjacent cells can take a wide range of forms.
Two of the more fundamental growth patterns
which many more complicated patterns seem

to be combinations or variations of are shells
and protrusions. The mechanism behind these
patterns are intuitive which makes the model
and growth mechanism suitable for designing
growth patterns in artificial life. The minimal-
ism of the model makes it unsuitable for ex-
plaining patterns in real organisms with possi-
ble exceptions among bacteria colonies, funghi
and other simple forms of life.
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Figure 4.4: (left) Examples of growth patterns caused by randomly generated growth
rules. Among these are shells of various thickness, growth along the surface of other
cell types and alternative mechanisms for protrusion growth; using a single green cell
as catalyst for growth or protrusions with a shell. (right) A time series of a cell growth
simulation that forms a shell. Green cells exposed to the interior of the shell divide, when
the shell is stretched thin, the red cells divide. The examples are from the draft paper in
the Appendix.

cell model as well.
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Chapter 5
Overview of scientific results

The theme of this dissertation is designing and predicting self-assembling sys-
tems without resorting to trial and error schemes, which would become more and
more time-consuming as the complexity of the system increases. The articles
describe different approaches or tools to circumvent or reduce the need to test a
self-assembling process in order to evaluate the feasibility of the assembly pro-
cess. All but the last of the articles are based on representing a self-assembling
system in terms of Fourier modes in order to analytically calculate features re-
lated to a ground state.

Draft paper: Shape self-regulation of basic cell patterns interacting
via cell adhesion

The draft paper in the Appendix is one step removed from the previous arti-
cles that consider models with interactions reasonable in colloidal systems. Con-
sidering that life is a form of self-assembly, this article explores the possibilities
of designing cell growth patterns assuming one could influence and tune the re-
quirements for cell division. The article focuses on two fundamental patterns,
protrusions and shells, and explains the most efficient mechanism behind the
growth of these patterns. The most interesting is the mechanism behind shell
growth, where cells divide along the interior of the surface shell causing it to
stretch. The stretching of the surface layer triggers cell division leading to a one
cell layer thick shell that adjusts its growth rate to the cells inside the shell.
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Paper I: Novel Self-Assembled Morphologies from Isotropic Interac-
tions

In Paper I we expand the theory explaining universality of stripes to con-
sider small systems where space-filling morphologies are excluded due to the
limited number of particles available. This is used to obtain a series of morpholo-
gies that can be considered universal for large-scale nucleating (two-dimensional)
systems with isotropic interactions. The morphologies are discrete approxima-
tions to spherical Bessel functions with angular modulation, a set of functions
that solve Laplace’s equation just like Fourier modes, with the difference being
that the Bessel functions are localised. An investigation of randomised interac-
tions supports the claim of a predicted alphabet of universal patterns. A universal
alphabet of available patterns can be expected to be valid for other models or
systems than the one used for validation, as well as tell us something important
about limitations to self-assembly in whole class’s of systems.

Paper II: Designing Isotropic Interactions for Self-Assembly of Com-
plex Lattices

Paper II uses Fourier analysis to obtain a direct method for finding isotropic
interactions that cause self-assembly into target crystal structures. The recipro-
cal representation of a crystal structure will only consist of Fourier modes with
wavelengths that coincide with the periodicity of the lattice. By creating an inter-
action function that has higher energy for configuration with any other periodicity
present, one can guarantee that the target lattice is the ground state. As long as the
lattice basis is not too complicated, small perturbations of the interaction function
allow the target crystal to become the ground state. The method is applied to a
series of crystal structures as examples chosen for their varying complexity and
occurrence in recent publications.

Paper III: Chiral Surfaces Self-Assembling in One-Component Sys-
tems with Isotropic Interactions

In the third paper, Paper III, we prove that the mirror symmetry can be bro-
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ken without relying on anisotropy of the constituent particles, further pushing the
boundaries for what is considered achievable with isotropic interactions. There
are two types of chiral crystals, either the Bravais lattice that defines the periodic-
ity is chiral in itself, or the base of the lattice is the cause of chirality. The article
brings up an example from both categories as well as investigates the effects of
perturbations from the derived interaction potential.

Paper IV: Using the uncertainty principle to design simple interac-
tions for targeted self-assembly

Paper IV provides theoretical arguments for how to make the derived class of
interaction potentials from the previous two articles as short-range and smooth
as possible, while still ensuring that the target lattice is a ground state. Optical
properties of a material are closely tied to its reciprocal representation and by
penalising certain length scales in a model solution, it is possible to create an
optical band gap in the solution. The width and quality of the optical band gap is
also related to the complexity of the interaction function that caused it.

Paper V: Predicting self-assembled patterns on spheres with multi-
component coatings

Paper V is a generalisation of the theory underlying Paper I and [11], to in-
clude multiple particle types. The paper describes a principle for deducing the
combination of stripes and spots assembled on the surface of spheres when the
stoichiometry is fixed. The principles are general, but the model used for vali-
dation and confirmation is a minimalistic representation of alkanethiol molecules
adsorbed to gold nanoparticles. Diagonalisation of the Hamiltonian provides an
energy spectrum stating at which length scale the different surface constituents
prefer to segregate. The ground state is a combination of stripes and spots from
these segregations, where the most energetically preferred segregation dominates
and constrains the subsequent segregating constituent types.

Paper VI: A design path for hierarchical self-assembly of patchy col-
loids
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Paper VI combines the principles of all the previous articles in order to de-
sign hierarchical self-assembly. The interaction between different surface con-
stituents on spherical particles is designed so that they self-assemble into func-
tional patterns, with patches oriented in directions that allow for self-assembly of
the spherical particles themselves into geometrical structures. An example could
be a surface coating of three types on nanoparticles, one segregating from the
others forming a Janus sphere, the other two segregating on a shorter length scale
causing an aggregate pattern from among those published in Paper I, a pattern
including three patches now separated at right angles from each other. If those
patches can be made attractive, they cause self-assembly of cubical aggregates of
the nanoparticles.



Chapter 6
Summary and outlook

This thesis outlines a theoretical framework for addressing problems of self-
assembly of particle systems with isotropic interactions. It is based on expressing
the energy of particle configurations in terms of an orthogonal base, which due
to the symmetry of the interactions are independent of the interaction potential.
Prediction and design becomes easier in this basis because the energy contri-
butions from different wavelengths are independent. The interaction potential
instead determines the energy associated to different wavelengths, creating an
energy spectrum of which the minimum almost completely defines what kind of
pattern the interactions will cause. Paper I expands on a previous article [11]
that explains the universality of striped patterns. The eigenfunctions changes
for different boundary conditions and similarly to how planar waves describes
the space filling and universal striped pattern, switching to polar coordinates with
Dirichlet boundary conditions give a base much more suitable to describe particle
patterns that aggregate around a nucleation point: spherical Bessel functions with
angular oscillations. With this new perspective we predicted a set of universal ag-
gregate patterns that was in good agreement with simulated self-assembly from
randomised interactions. The universality of these patterns means that they are
expected to be obtainable patterns in vastly different systems, but it also means
that patterns not found among those of the predicated alphabet are very unlikely
to self-assemble.

The eigenbase consists of Fourier modes when the boundary conditions are
periodic, also, they also ideal for describing crystal structures. A natural goal for
targeted self-assembly is to be able to design interaction potentials causing crystal
structures to self-assemble. Paper II presents a design scheme that guarantees that
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an interaction potential satisfying a series of constraints will have a target crystal
structure as its ground state. Paper III and Paper IV gradually expands on what
can be made to self-assemble using the design scheme, and how to use the nature
of the necessary constraints to minimise the complexity of the derived interaction
potentials. The design principle was verified for different crystal structures, the
Kagome lattice, the diamond structure and chiral crystals for example.

The last part of the thesis discusses Hierarchical self-assembly. If there ex-
ist universal patterns that easily self-assembles for many different interactions,
it means that it is less likely for other structures to be obtainable. One way
to expand the repertoire of structures that can reliably form is to consider self-
assembly of structures or building blocks that in turn self-assembles into a target
structure. A real world system where this might be feasible is alkanethiol-coated
gold nanoparticles. By designing the stripe- and spot-pattern that is formed by
different surface molecules, it is possible to make the nanoparticles have patches
in many different directions and of many different shapes. Paper V and Paper VI
are a generalisation of the earlier work to multiple particle (representing alka-
nethiol heads connecting the molecules to the surface) types, self-assembling on
a spherical geometry. The isotropic interactions represents effective interactions
between alkanethiol molecules and the reach of the molecules is the cause for
the long range of the interaction potential. For a fixed stoichiometry of surface
types, different parts of the ground state configuration coincides with different
minima of the energy spectrum, allowing us to extract more information (as op-
posed to just one length scale the one component systems are defined by) from
the energy spectrum as well as making a larger morphological space available.
Paper V describes how to predict the composition of stripes and spots that self-
assembles from the effective interactions among the surface molecules. Paper VI
uses the connection between energy spectrum and ground state configuration to
design functional self-assembled surface pattern, with patches oriented in a way
that causes the coated nano-particles themselves to self-assemble into different
geometric structures.

As a final note I explore another self-assembling system, a two-dimensional
model organism with a few distinct cell types where cell division is governed
by the immediate surrounding of the cell. Just like how we started out with the
self-assembling particle systems, the first step have been to explore what type of
patterns that can emerge from the model mechanisms, and explain those patterns.
Unlike the particle system there is no universal cell patterns that emerge from
wide ranges of cell behaviour, the model has a rich morphological space. In the
draft paper in the Appendix, I focus on a few distinct functional patters: shells,
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protrusions and cell interweaving as they can be considered building blocks for
more complicated cell structures. The mechanism behind shell growth for exam-
ple, is in this model when the cells beneath the shell divide as a consequence of
their immediate vicinity to the shell. In turn, the cells of the shell divide when the
shell is stretched thin, increasing the interface towards the enclosed cells as well
as the exterior. The growth of the shell is self-regulated.

Initially the our design principles required very complicated interactions, far
removed from what is realistic for micro- and nano-scale systems. But gradually
we have bridged the gap between theory and experiments, with principles for how
to simplify the designed interaction potentials and the alkanethiol on gold model
that while not an exact representation is no more complex than its real world
counterpart. We are currently collaborating with experimentalists on sedimenting
silica particles, where the goal is to develop a framework for testing and verifying
our approach to designed self-assembly against experiments.

The cell model in the draft paper in the Appendix is also an abstraction of how
real cells behave. Now that I know how to link growth criteria with emerging cell
structures, the next step is to make the growth criteria more realistic, for example
by linking it to gene regulatory networks. Interestingly, the reaction diffusion that
describes gene regulatory networks is another example where Fourier analysis is
can be used to describe and explain emerging patterns. I hope that eventually, our
work on designed self-assembly in particle systems will be a foundation for de-
signing hierarchical self-assembly of cell structures. This hierarchy would consist
of a gene regulatory network designed to activate cell growth in cells in specific
situations, which in turn would make the organism grow to desired shapes.
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