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Characterization and Applications of Vector

Phase-Sensitive Amplifiers

Abel Lorences-Riesgo

Photonics Laboratory
Department of Microtechnology and Nanoscience - MC2

Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

Abstract
This work is devoted to the characterization of vector phase-sensitive amplifiers
and processors. A detailed analysis of degenerate vector phase-sensitive ampli-
fier (PSA) is performed. The gain and phase-sensitive extinction ratio are the-
oretically analyzed using three-wave theory. Experiments and simulation results
confirm the validity of this three-wave theory. The influence of polarization-mode
dispersion is also evaluated, showing that aligning the pump polarizations at the
fiber input is essential in order to achieve the theoretically predicted results. The
scheme is also compared to the degenerate scalar PSA scheme. At the same pump
power, the vector PSA has lower gain but also less influence from higher-order
idlers and lower pump depletion due to four-wave mixing (FWM) between the
pumps.

Using the degenerate vector PSA, phase-sensitive (PS) amplification of dual-
polarization (DP) binary phase-shift keying (BPSK) signals was demonstrated.
To the best of our knowledge, this was the first demonstration of a DP-modulated
signal with large net phase-sensitive gain. Furthermore, we also demonstrated
that this scheme can phase regenerate the signal. The same scheme was also used
for a different purpose: quadrature decomposition into two cross-polarized waves.
We demonstrated demultiplexing of quadrature phase-shift keying (QPSK) signal
into two cross-polarized BPSK signals by the operating the amplifier in phase-
insensitive mode. The design of a novel phase-locked loop scheme enabled stable
operation and negligible penalty in the decomposition.

Keywords: fiber nonlinearities, four-wave mixing, parametric amplification, phase-
sensitive amplification, all-optical processing
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Chapter 1

Introduction

During the last decades, fiber-optic communications systems have revolutionized
the communication network by enabling large signal bandwidth and large trans-
mission distances. Since the optical fiber was proposed in 1966 [1], fiber-optic com-
munications systems have been evolving in order to meet the steadily increasing
traffic demand. In this evolution, a key technology which significantly contributed
to the capacity growth in fiber-optic communication system was the erbium-doped
fiber amplifier (EDFA). Demonstrated in 1987 [2], the implementation of EDFAs
in commercial systems in late 90s increased the traffic rate beyond 1 Tb/s. This
increase highlights the importance of technologies for light amplification in today’s
optical network in which, despite the low loss of optical fibers (current record of
0.146 dB/km [3]), amplification is necessary after about 100 km of transmission.
Apart from EDFAs, many other technologies have been proposed in order to per-
form light amplification, including semiconductor optical amplifiers (SOAs) [4, 5],
Raman amplifiers [6, 7] and parametric amplifiers [8].

Among these amplifier technologies, parametric amplifiers have unique proper-
ties. Unlike EDFAs or other rare-earth doped amplifiers in which the bandwidth is
dictated by the material, the bandwidth of a parametric amplifier can be tailored
by designing the nonlinear medium. Gain bandwidth of about 155 nm with gain
over 20 dB has been demonstrated [9]. Such a bandwidth is much higher than the
typical EDFAs bandwidth of 35 nm. Moreover, 70 dB gain fiber optical parametric
amplifier (FOPA) has been achieved [10]. An important property of parametric
amplifiers is that they can be implemented in phase-sensitive (PS) mode, which
means that the gain depends on the phases of the optical input waves. Phase-
sensitive amplifiers (PSAs) are unique amplifiers since they can perform noiseless
amplification. In contrast to phase-insensitive amplifiers (PIAs), such as EDFAs,
SOAs, Raman amplifiers or parametric amplifiers operating in phase-insensitive
(PI) moide, which have a quantum limited NF of 3 dB (assuming large gain), PSAs
have a quantum-limited noise figure of 0 dB in the high-gain limit [11]. In other
words, the signal-to-noise ratio (SNR) is not degraded in the case of PSAs whereas
is halved in the case of PIAs. Such noiseless amplification is achieved by amplifying
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correlated photons. In one-mode PSAs, one signal quadrature is amplified whereas
the other quadrature is attenuated. In two-mode PSAs, amplification/attenuation
is provided by the phase relation between the two non-degenerate input modes,
known as the signal and the idler.

PSAs were experimentally demonstrated in second-order non-linear, χ2, ma-
terials [12, 13] and third-order non-linear, χ(3), materials [14] already in the 90s.
Despite these demonstrations, not much attention was given to PSAs until about
10 years ago when the use of more advance modulation formats, the possibility to
control the phase of the waves and the improvement in nonlinear fibers has made
PSAs more practical, although still more complicated to implement than EDFAs
or Raman amplifiers. In 2010, a PSA with 1.1 dB noise figure (NF) showed the
potential of PSAs to perform low-noise amplification [15]. Such demonstration
was performed in a two-mode PSA using the copier-PSA scheme [16], which is
a modulation-format independent as well as a wavelength-division multiplexing
(WDM) compatible scheme [17]. The benefit of low-noise amplification was also
confirmed by demonstrating that the receiver sensitivity was improved by about
6 dB (3 dB when accounting for the idler power) when using a PSA-based receiver
compared to an EDFA-based receiver in a back-to-back experiment with WDM
signals [18] and in another experiment with single-channel single-span transmis-
sion [19]. As predicted theoretically [20, 21], the transmission distance in multi-
span transmission in the linear regime is increased by a factor of four when using
PSAs compared to EDFAs amplifiers [22]. In addition to performing low-noise am-
plification, PSAs can mitigate signal impairments caused by fiber non-linearities
since idler and signal experience anti-correlated distortions [23]. Thus, the trans-
mission distance is improved when operating in the linear regime as well as in the
non-linear regime.

PSAs are also very attractive as regenerators since they squeeze the output sig-
nal phase. Moreover, amplitude regeneration can simultaneously be achieved by
operating the amplifier in saturation. Then, PSAs can simultaneously regenerate
the phase and the amplitude of noisy signals. PSAs performing all-optical regener-
ation were demonstrated using interferometric PSAs [24–26] and non-degenerate-
pump PSAs [27]. In 2010, the demonstration of a black-box regenerator showed
that PSA-based regenerators were practical and high performing [28]. Using bi-
nary phase-shift keying (BPSK) signals, increase of the transmission distance has
been shown by implementing in-line regenerators in multi-span transmission [29].
Furthermore, the regeneration is not limited to BPSK signals and the regeneration
of multilevel phase-shift keying (PSK) signals has also been demonstrated [30].

In addition to low-noise amplification and regeneration, all-optical function-
alities such as quadrature demultiplexing [31–33] and [Paper C], and low-noise
multi-casting [34] have been demonstrated using PSAs or phase-sensitive proces-
sors; showing the potential of using PSAs for all-optical processing. However,
whereas optical networks encode data on two orthogonal polarizations, most work
on PSAs has been performed using signals modulated in only one polarization.
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Thus, further research on PSAs is needed in order to assess the possibilities of
PSAs in dual-polarization (DP) scenarios.

1.1 This Work

This thesis is devoted to the experimental characterization and evaluation of vector
PSAs which, as shown in the thesis, have the capability of PS amplification and
regeneration of DP-modulated signals. In [Paper A], we characterize the perfor-
mance of a degenerate vector PSA and compare to a degenerate scalar PSA. This
analysis was the first demonstration of vector PSA with large gain. The gain and
phase-sensitive extinctio ratio (PSER) were assessed as a function of the relative
polarization angle between the signal and the idler. As predicted theoretically,
the amplifier is not polarization-insensitive but has different potential applica-
tions including phase-to-polarization conversion, PS amplification of DP-BPSK
signals and quadrature demultiplexing. The latter two applications were demon-
strated in subsequent papers. In [Paper B], we demonstrate PS amplification of a
DP-BPSK signal using a degenerate vector PSA. We also demonstrate that this
scheme can perform phase-regeneration of both polarization channels, being the
first demonstration of PSA-based regenerator of DP-modulated signals. In [Paper
C], we demonstrate quadrature demultiplexing of a quadrature phase-shift keying
(QPSK) signals into two cross-polarized waves by operating the degenerate vector
amplifier in PI mode. A novel phase-locked loop (PLL) scheme is proposed and
demonstrated to perform stable decomposition.

1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2, we describe the wave propaga-
tion effects in optical fibers as well as how they relate to parametric amplification.
Chapter 3 describes the process of parametric amplification. After explaining PI
parametric amplification, we present the different schemes to achieve scalar and
vector PS amplification. The chapter is concluded by highlighting the most promis-
ing applications of PSAs in conjunction with their main properties. Chapter 4
discusses both polarization-diverse and vector PSAs. We show that both schemes
can phase-sensitively amplify DP-modulated signals. We conclude by pointing out
different directions on PSA research in general, and more specifically on vector
PSAs, in Chapter 5.
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Chapter 2

Wave Propagation Effects

Both PS and PI parametric processors can be implemented in second-order, χ(2),
and third-order, χ(3), nonlinear materials. For instance, bulk crystals [12, 13] and
periodically-poled lithium niobate (PPLN) waveguides [35–37] have been used as
χ(2) platform for PS parametric processors. PS parametric processors based on
third-order nonlinearities, χ(3), materials, have been demonstrated using, e.g., sil-
icon waveguides [38, 39], chalcogenide waveguides [40], lead-silicate-based highly-
nonlinear fiber (HNLF) [41, 42], bismuth-oxide-based HNLF [43] and silica-based
HNLF [15, 44]. Among all materials, silica-based HNLF is the medium in which
the largest net parametric gain has been achieved. Moreover, it is the most com-
patible medium with the existing technology. For instance, it can be spliced to
standard single-mode fiber (SSMF) with less than 0.3 dB loss, which is essential
when targeting low NF. For these reasons, the nonlinear medium in which the
lowest NF, 1.1 dB, with considerable net PS gain (>10 dB) has been achieved is
also silica-based HNLFs as well [15].

Due to the aforementioned reasons, silica-based HNLFs is the nonlinear medium
used in this thesis. In χ(3) media such as HNLF, the desired nonlinearities to pro-
vide parametric effects are caused by the Kerr effect; the fiber refractive index
dependence on the intensity of the optical field. Apart from the Kerr effect, FOPA
features such as gain, bandwidth and NF are also determined by different linear
and nonlinear effects. In order to gain understanding into parametric amplifica-
tion, those effects of importance will be discussed in this chapter.

2.1 Linear Propagation Effects: Attenuation,

Chromatic Dispersion and Birefringence

2.1.1 Fiber Attenuation

The fiber attenuation is mainly caused by material absorption and Rayleigh scat-
tering. The attenuation in silica HNLFs is typically around 0.6-1.2 dB/km, which
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is slightly higher than the attenuation in SSMF (0.2 dB/km). To account for the
attenuation, the nonlinear effective length [45]

Leff =
1− e−αL

α
(2.1)

can be used instead of the physical fiber length L, where α is the attenuation in
m−1. In long fibers, we have Leff ≈ 1

α . In FOPAs, we often have Leff ∼ L since
short fibers (from 50 m to 1000 m) are usually preferred.

2.1.2 Chromatic Dispersion

The chromatic dispersion is the wavelength dependence of the speed of light, i.e.,
light at different wavelengths travels at different speed. To describe this effect,
the propagation constant β is usually defined in a Taylor series around the center
frequency ω0

β = β0 + β1(ω − ω0) +
β2

2!
(ω − ω0)2 +

β3

3!
(ω − ω0)3 + ..., (2.2)

where βi = diβ
dωi

∣∣∣
ω0

.

The phase velocity and group velocity are vp = ω0/β0 and vg = 1/β1 respec-
tively. The second-order, β2, and third-order, β3, dispersion parameters determine
the group-velocity dependence to the frequency. Instead of using frequency, de-
scribing the group-velocity dependence on the wavelength is often preferred. We
then make use of the dispersion parameter, D, and the dispersion-slope parameter,
S, which relate the group-velocity dependence on the wavelength, λ, as D =

dvg
dλ

and S = dD
dλ . The dispersion and the dispersion slope are related to the above

Taylor expansion coefficients by

D = −2πc

λ2
β2, (2.3)

S =

(
2πc

λ2

)2

β3 +
4πc

λ3
β2, (2.4)

where c is speed of the light in vacuum. In SSMFs, the dispersion and dispersion
slope are D ∼ 16.5 ps/(nm km) and S ∼ 0.09 ps/(nm2 km) at around λ = 1550 nm.

The fiber dispersion causes pulses to widen when they are travelling through
the fiber. In FOPAs, dispersion and dispersion slope together with nonlineari-
ties determine the gain and the bandwidth. As will be discussed in Section 3.1,
the center wavelength of FOPAs is often in the anomalous regime (D > 0) but
close to the zero-dispersion wavelength (ZDW). The fibers used in our experi-
ments have a ZDW in the range from 1530 to 1575 nm, and a dispersion slope
of about S ∼ 0.02 ps/(nm2 km). Though we have limited our analysis to disper-
sion and dispersion slope, higher-order dispersion parameters can be relevant in
high-bandwidth FOPAs. Moreover, the dispersion fluctuations along the fiber also
influence the performance of FOPAs [46–48].
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2.1.3 Polarization-Mode Dispersion

The polarization-mode dispersion (PMD) is caused by fiber birefringence, i.e.,
waves with different polarizations do not experience the same refractive index due
to fiber asymmetry caused by e.g., variation in the core shape, internal stress and
external effects such as bends or lateral stress. Depending on the fiber design,
fiber birefringence can be random or deterministic.

Polarization-maintaining fibers (PMFs) are fibers in which the birefringence is
induced in the manufacturing process. Usually, a longitudinal stress is applied in
the fiber, which causes a strong linear birefringence. By launching the input wave
in one of the main axes (fast or slow axes), PMFs preserve the polarization of this
wave through (ideally) infinite distances.

In optical fibers with random birefringence, the orientation of the main axes
(locally defined fast and slow axes) changes randomly along the fiber. The length
in which the main axes can be considered constant is only on the order of sev-
eral meters. Moreover, fiber birefringence changes with time due to environmental
changes such as vibrations, temperature and external stress. In these situations,
the fiber PMD is a stochastic effect and it is usually analyzed in statistical terms.
When a polarized continuous wave (CW) signal is launched into an optical fiber
with random birefringence, its polarization will therefore change along the fiber.
Moreover, the output polarization also depends on the signal wavelength. The
two launched polarization states in which the output polarization is frequency
independent to first-order approximation are the so-called principal states of po-
larization [49]. The difference in propagation time between a wave launched in one
of the principal states of polarization compared to the wave launched in the other
principal state of polarization is the differential group delay (DGD).

HNLFs can be either PMFs or fibers with random birefringence. Since po-
larization determines the strength of the nonlinearities, polarization-maintaining
HNLFs would, in principle, be better than HNLF with random birefringence. How-
ever, manufacturing a polarization-maintaining-HNLFs with adequate values of
dispersion and nonlinearities is challenging and expensive. Thus, and since lab-
environments can be controlled, HNLFs with random birefringence are employed
in most experiments. In scalar FOPAs, influence from fiber birefringence can be
mitigated by launching the involved waves with principal state of polarizations
(SOPs). However, PMD affects severely the performance of vector FOPAs [50,51],
and more so when operating in PS mode [Paper A].

2.2 Kerr Effect

The refractive index of a material, n, does not only depends on the frequency but
also on the intensity of the light, I. The effect of the refractive index dependence
on the optical intensity is named the Kerr effect. When accounting for the Kerr
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effect, the refractive index is usually expressed as [52]

n(ω, I) = n0(ω) + n2I, (2.5)

where n0(ω) is the linear part and n2 is the nonlinear refractive index. The non-
linear refractive index is related to the third order susceptibility, χ(3), by

n2 =
3

8n
Re(χ(3)), (2.6)

where Re stands for the real part. Here, we have assumed that the light is linearly
polarized, and χ(3), which in general is a fourth-rank tensor, is expressed as a
scalar. It is important to realize that the second-order susceptibility, χ(2), vanishes
in silica fibers due to molecular symmetry. Materials in which χ(2) does not vanish
can be used to achieve parametric amplification as well. In that case, amplification
is based on second harmonic generation or sum- or difference-frequency generation.

In the analysis of wave propagation in fibers, the nonlinear coefficient, γ, is
often used to incorporate the field distribution into the analysis since the intensity
is determined by the field distribution. The nonlinear coefficient, γ, is defined
as [45]

γ =
2πn2

λAeff
, (2.7)

where Aeff is the effective mode area, and thus it determines the confinement of
the mode.

In order to analyze the nonlinear refraction with arbitrary SOPs, the 81 ele-
ments of the third order susceptibility tensor, χ(3), should be considered. However,
many of these elements vanishes due to symmetries and in the case of silica-based
fiber there are only three independent terms [45, 52]. In addition, in the case of a
random birefringent fiber, the analysis should ideally be performed in statistical
terms. The analysis can be simplified by assuming that fiber birefringence does
not change the relative polarization between the waves and that the SOP of the
wave travelling through the fiber lies anywhere in the Poincaré sphere with equal
probability. With these assumptions, the averaged coupled equations describing
the field propagation are [53,54]

i
∂Au

∂z
+
β2

2!

∂2Au

∂t2
+
β3

3!

∂3Au

∂t3
+ γ

(
|Au|2 + |Av|2

)
Au = 0, (2.8)

i
∂Av

∂z
+
β2

2!

∂2Av

∂t2
+
β3

3!

∂3Av

∂t3
+ γ

(
|Av|2 + |Au|2

)
Av = 0, (2.9)

where Au and Av are the wave components in two orthogonal polarizations. Here,
γ has been reduced by 8/9 due to the PMD effects. This model, known as the
Manakov model [55], provides insight in how the dispersion, the polarization and
the nonlinearities interact. When one of the polarizations is neglected, the model
corresponds to the well-known scalar nonlinear Schrödinger equation (NLSE). The
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validity of the Manakov model depends on the considered bandwidth, fiber length
and fiber birefringence. This model is not applicable when using short fibers, PMF
fibers [45] or rapidly spun fibers [56]. Nor is it valid in cases where PMD is not
negligible and changes the relative polarization between the waves. Considering
the lengths of HNLFs employed in parametric amplification, the Manakov model
is a reasonable assumption [45,57] that significantly simplifies the analysis.

From the Manakov model, two important consequences are derived. First,
the absolute polarization does not determine the strength of the nonlinearities.
Second, the power in each polarization is conserved when neglecting the fiber loss.

2.2.1 Self-Phase Modulation

Self-phase modulation (SPM) is a process in which a wave propagating through
the fiber phase modulates itself by inducing changes in the fiber refractive index.
In the case of a CW, the nonlinear phase shift is described by

ΦNL,SPM = γPLeff , (2.10)

where P is the power of the propagating wave. The interaction between dispersion
and self phase modulation should be considered when analyzing propagation of
pulses. An interesting effect of such interaction is the generation of optical solitons
in which dispersion and nonlinearities cancel out [58,59].

2.2.2 Cross-Phase Modulation

Cross-phase modulation (XPM) is a process in which two waves co-propagating
through the fiber phase-modulate each other. The induced nonlinear phase shift
on a CW by a second CW with power P2 is

ΦNL,XPM12 = 2γP2Leff (2.11)

if we assume that both waves are co-polarized. Compared to SPM, XPM is twice
as strong when both waves are co-polarized. However, XPM is an effect whose
strength depends on the polarization of the involved waves. For example, the
nonlinear phase shift is

ΦNL,XPM12 = γP2Leff (2.12)

when the two waves are cross-polarized (assuming the Manakov model). This
means that the strength of XPM is half when having orthogonally polarized waves
compared to parallel polarized waves.

Apart from polarization, dispersion should also be considered when accounting
for the strength of cross-phase modulation. The walk-off length between pulses,
i.e., the length in which pulses overlaps, may also limit the strength of the XPM-
induced phase shift.
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2.2.3 Four-Wave Mixing

Scalar Four-Wave Mixing

FWM, also named as four-photon mixing, is a process which involves the inter-
action between four photons and energy exchange between them. The energy
exchange can be explained by the different gratings formed by the interference
beating among waves at different frequencies. For instance, when two co-polarized
waves, E1 and E2, with frequencies ω1, ω2 are co-propagating through the fiber,
they generate an intensity beat tone with frequency ω1 − ω2. Thus, the fiber re-
fractive index is modulated at this frequency in accordance with the Kerr effect.
When a third wave, E3 , also co-polarized and with frequency ω3, also propagates
together with the two previous waves, this third waves is phase modulated and
new waves at frequencies ω3 ± (ω1 − ω2) are created [8]. In the same way, E2

is modulated by the beating between E1 and E3 , and E1 is modulated by the
beating between E2 and E3. If all the waves have different frequencies, the FWM
process is said to be non-degenerate. As shown in Figure 2.1, the non-degenerate
FWM creates three new wavelengths at frequencies ωkmn = ωk + ωm − ωn where
k,m, n ∈ {1, 2, 3}, k 6= m, k 6= n and m 6= n. Note that two terms are created at
the same frequency. The degenerate processes include E1 being modulated by the
beating between itself and E2 and the beating between between itself and E3 ; and
similarly to the cases in which E2 and E3 are modulated. The new frequencies
created by degenerate processes are ωkmn = ωk + ωk − ωm with k,m ∈ {1, 2, 3},
k 6= m. Six new frequency components are created when considering degener-
ate FWM. Taking into account degenerate and non-degenerate FWM, the total
number of new frequency components is 9.

Vector Four-Wave Mixing

The previous explanation is valid for scalar FWM in which all waves are co-
polarized. Vector FWM, in which waves have different polarizations can also occur.
We now assume that two waves, E1 and E2, are co-polarized and a third wave, E3,
is cross-polarized with respect to them. In this case, the two co-propagating and
co-polarized waves, E1 and E2, set the beat tone; and power from E3 will be scat-
tered to waves at frequencies ω3±(ω1−ω2) as shown in Figure 2.2. These generated

ω1 ω2 ω3ω123
ω213

ω113 ω132 ω231ω223
ω221 ω332

ω312 ω321

ω331 ωω112

Figure 2.1: Schematic of waves generated by FWM processes when three input

co-polarized waves are considered. The frequencies of the input waves are ω1, ω2

and ω3.
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ω1 ω2 ω3ω221 ω312 ω321ω112 ω

x

y

Figure 2.2: Schematic of waves generated by FWM processes when three input

are considered, with two co-polarized waves and the third wave cross-polarized to

them. The frequencies of the input waves are ω1, ω2 and ω3.

waves are co-polarized with E3. An special case is that in which ω1 + ω3 = 2ω2,
and a new wave at the same frequency as E2 but cross-polarized to E2 is created.
Combinations of E1 -E3 and E2 -E3 do not establish a intensity beat tone as they
are cross-polarized pair of waves. The degenerate process involving E1 and E2 also
generates new waves as explained previously with co-polarized waves.

Quantum-Mechanical Interpretion

From a quantum mechanical point of view, the FWM process is interpreted as
follows: two photons at frequencies ω1, ω2 are annihilated, and two photons at fre-
quencies ω3 and ω4 are created. FWM is a process in which energy is conserved,
thus we have ω1 + ω2 = ω3 + ω4. Momentum is also conserved and establish the
phase-matching condition which will be discussed in Section 3.1. Spin angular
momentum is also conserved, determining the possible combinations of the spin of
the annihilated photos and created photons. When the two annihilated photons
have the same spin, the created photons also have the same spin as the annihi-
lated photons. When the two annihilated photons have opposite spin, the two
created photons also have opposite spin. As a consequence, power from two waves
with right-hand circular polarization cannot scatter to two waves with right-hand
circular polarization. However, power from two co-polarized waves with linear
polarization can scatter to two waves with orthogonal polarization to the original
wave. The latter case should be considered in short fibers. However, that case is
not possible within the Manakov model.

In Chapter 3 we will provide more insight about the consequences of FWM
and its use to achieve parametric amplification. We will also discuss the interplay
between dispersion, SPM, XPM and FWM.

2.3 Raman Scattering

Raman scattering is an inelastic nonlinear process, caused by the imaginary part
of the third-order susceptibility χ(3). Raman scattering is commonly referred as
the delayed response of the Kerr effect. From a quantum mechanical point of
view, a photon is annihilated, and a photon at lower frequency is created as well
as an optical phonon (vibration). The created downshifted photons can travel in
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either forward direction or backward directions. In silica fibers, stimulated Raman
scattering (SRS) gain has a large bandwidth with its peak being downshifted about
13.2 THz from the scattered wave [45]. Amplifiers using SRS are quite attractive
since they can perform distributed amplification without the practical challenges
of parametric amplifiers.

The effect of Raman scattering in parametric amplification can be either ben-
eficial or detrimental. The SRS can be used to increase the FOPA gain and/or
bandwidth [60]. However, Raman scattering affects the noise properties of para-
metric amplifiers, mainly in broadband parametric amplifiers [61, 62]. The NF
degradation due to Raman scattering will be discussed in Section 3.5.

2.4 Brillouin Scattering

Brillouin scattering is an inelastic nonlinear process, caused by the electrostriction
effect: the medium is compressed in presence of an optical field. As in the case
of Raman scattering, Brillouin scattering involves energy transfer to the medium
in form of an acoustic vibration. Contrary to SRS, the created downshifted wave
only propagates backwards. The gain peak, dictated by the speed of the acoustic
wave, is about 10 GHz in silica fibers, and the gain bandwidth is on the order of
tens of MHz [45].

For narrow-band waves, stimulated Brillouin scattering (SBS) imposes a limi-
tation on the maximum power that can be launched into the fiber [63]. This effect
is then detrimental in parametric amplification in which the high-power pumps are
commonly CWs. In order to overcome SBS, different techniques have been devel-
oped. The fiber can be doped with a material which lowers the SBS gain such as
Al2O3 [64]. The use of these dopants to increase the SBS threshold do however in-
crease fiber loss. Since the amplified wave travels backwards, the use of isolators is
another way to mitigate SBS [65]. This technique cannot be however implemented
in bidirectional parametric amplifiers. Furthermore, it also introduces additional
losses. SBS is also reduced when the wave spectrum is broadened beyond the
bandwidth of SBS [66]. In parametric amplification, the pump spectrum is usu-
ally broadened by phase modulation with radio frequency (RF) tones [67], white
noise [68] or pseudorandom bit sequence (PRBS) [69]. However, the pump-phase
modulation is transferred to the idler which is undesired when performing wave-
length conversion. In PSAs, pump-phase modulation degrades the performance
of the amplifier. In two-pump amplifiers, counter-phase modulation of the pumps
can alleviate the penalty due to pump phase modulation [69]. Applying a temper-
ature gradient [70,71] or strain gradient [72–74] in the fiber also decrease the SBS.
As drawback, both temperature and strain causes ZDW fluctuations which might
degrade the performance of parametric amplifiers [46]. The solution is applying
the strain such that it mitigates inherent ZDW fluctuations of the HNLF as well
as SBS [75]. Fiber straining also enhances the fiber PMD which is undesired in
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parametric amplifiers [76]. Fiber more tolerant towards straining have been also
designed [77]. These techniques can also be combined in order to achieve larger
SBS suppression. For example, the combination of fiber straining and isolators has
allowed to design parametric amplifiers with large net gain without pump spectral
broadening [78].

SBS is often considered a detrimental effects on parametric amplification. How-
ever, it can also be used to enhance some FOPA properties. Using SBS to perform
a phase shift on the signal can enhance FOPA bandwidth and gain [79–81]. In ad-
dition, such a method has also been shown to control the saturation characteristics
in FOPAs [82]
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Chapter 3

Fiber-Optic Parametric Ampli-
fication

In Chapter 2, we have discussed the wave propagation effects in optical fibers. In
this chapter, we establish the connection between FWM and parametric amplifi-
cation. We determine the input-output relations of FOPA and use these relations
to discuss the different PSA schemes. The chapter is concluded by highlighting
the main properties of PSA and their potential applications.

3.1 Phase-Insensitive Parametric Amplifica-

tion

Parametric amplification can be achieved by means of both degenerate and non-
degenerate FWM, and using either vector or scalar FWM. When using degenerate
FWM in scalar PI-FOPAs, the input waves consists of a strong wave, known as
pump, and a weak signal to be amplified. In this case, the most efficient process
is the one in which power from the pump scatters due to the grating set by the
pump and the signal. The pump power is indeed scattered to the signal wave and
to a new wave, known as idler, at frequency ωI = 2ωP − ωS where ωP and ωS

are the pump and the signal frequencies. The process in which power from the
signal scatters can be usually neglected due to its lower strength. When using
non-degenerate FWM in scalar PI-FOPAs, the input waves usually consists of two
strong waves, pump waves, and the weak signal to be amplified. In vector PI-
FOPAs, the input consists of two cross-polarized pumps and a signal. In both
non-degenerate cases, the amplifier is often designed such that only one idler at
frequency ωI = ωP1 +ωP2−ωS needs to be considered and other created waves can
be neglected due to their lower strength. Here, ωP1 and ωP2 denote each pump
frequency.

The evolution of the pumps, AP1 and AP2, the signal AS and idler, AI, fields
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can be described by a set of four coupled equations in both scalar and vector non-
degenerate FWM processes. This set of four equations is obtained from applying
Eqs. 2.8 and 2.9 to this situation. In scalar FWM, four co-polarized waves are con-
sidered. In the case of vector FWM, we assumed that both pumps are orthogonally
polarized, which translates into a signal and idler which are also cross-polarized
since spin number is also conserved. For simplicity, we assume that the signal field,
AS, is co-polarized with one pump, AP1, and the idler field, AI, is then co-polarized
with the other pump, AP2. Then, we have [83]

∂AP1

∂z
=iγ

(
|AP1|2 + ε|AP2|2 + 2|AS|2 + ε|AI|2

)
AP1

+iεγASAIA
∗
P2 exp(i∆βz), (3.1)

∂AS

∂z
=iγ

(
|AS|2 + ε|AP2|2 + ε|AS|2 + 2|AI|2

)
AS

+iεγASAIA
∗
P2 exp(−i∆βz), (3.2)

∂AI

∂z
=iγ

(
|AI|2 + ε|AP1|2 + ε|AS|2 + 2|AP2|2

)
AI

+iεγASAIA
∗
P2 exp(−i∆βz), (3.3)

∂AP2

∂z
=iγ

(
|AP2|2 + ε|AP1|2 + ε|AS|2 + 2|AI|2

)
AP2

+iεγASAIA
∗
P2exp(i∆βz), (3.4)

where the parameter ε = 2 in the scalar cases and ε = 1 in the vector case which
allows the use of the same set of equations in both cases [83, 84]. The parameter
∆β = βS +βI−βP1−βP2βS−βI is the linear phase mismatch due to the difference
of the pump, the signal and the idler propagation constants. These equations
assume that the pumps, the signal and the idler are CW or negligible dispersion
over the bandwidth of the signal, the idler and the pumps; and also negligible fiber
loss. On the right-hand side, the different terms corresponding to SPM, XPM and
FWM can be observed. The strength of XPM and FWM effects are halved when
considering vector amplification. Here, we have used a set of four scalar equations,
but a more general description in which the pumps can have any relative state
of polarization is also possible when using Jones vectors [45]. By using the set of
four scalar equations, we can gain much insight into the two most common cases
in parametric amplification. In Chapter 4 Jones vectors will be used to generalize
the vector PSAs for any arbitrary signal SOP.

Eq. 3.1 and 3.4 can be solved when the pumps remain undepleted. The pump
fields are then given by [83]

AP1 = AP1(0) exp[iγ(PP1 + εPP2)L], (3.5)
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AP2 = AP2(0) exp[iγ(εPP1 + PP2)L], (3.6)

where L is the fiber length, and the pump powers are denoted by PP1 = |AP1|2
and PP2 = |AP2|2. In the small-signal regime, the pumps are only affected by SPM
and XPM between them. The solutions for the signal and the idler fields are then
given by

AS = [µAS(0) + νAI(0)∗]

· exp(−iβL/2 + iγ
3

2
|AP1|2 + iγ(ε− 1/2)

3

2
|AP2|2) (3.7)

AI = [µAI(0) + νAS(0)∗]

· exp(−iβL/2 + iγ
3

2
|AP2|2 + iγ(ε− 1/2)

3

2
|AP1|2). (3.8)

In Eqs. 3.7 and 3.8, the phase term which affects equally both equations is of-
ten neglected for simplicity. The coefficients µ and ν defining the input-output
relations are given by [83]

µ = cosh(gL) + i(κ/g) sinh(gL), (3.9)

ν = iεγ(AP1AP2/g) sinh(gL), (3.10)

where g =
√
ε2γ2PP1PP2 − (κ/2)2 with κ = ∆β + γ(PP1 + PP2). The relation

|µ|2 − |ν|2 = 1 is always fulfilled.
When both the signal and the idler are present at the fiber input, the signal gain

depends on the relative phase between the optical waves. Such gain dependence on
the phase relation between the input optical waves is what generates the so-called
PS amplification. When there is no input idler, the amplifier is operating in the
PI regime. The signal gain is in this case determined by

G = |µ|2 = 1 +

(
ε γ(PP1 + PP1)

g
sinh(gL)

)2

. (3.11)

In this case, the idler is internally generated with a wavelength-conversion efficiency
given by

|ν|2 =

(
ε γ(PP1 + PP1)

g
sinh(gL)

)2

. (3.12)

Using Eq. 3.10 and assuming parametric gain, the phase of the generated idler,
φI, is given by φI = π/2 + φP1 + φP2 − φS, where φP1, φP2 and φS are the pump
and signal phases respectively. As can be seen, the idler is a conjugated copy of
the signal with an additional phase-shift.

The maximum gain will occur when g is maximized, i.e., κ = 0. This condition
is known as the phase-matching condition. It states that the parametric gain is
maximized when the linear phase shift and nonlinear phase shift cancel out. We
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can also observe that phase-matching is obtained for both scalar and vector FWM
with the same conditions. In other words, maximum parametric gain occurs for
the same pump, signal and idler wavelength locations in both vector or scalar
amplifiers. Assuming high gain, the gain when fulfilling phase-matching is given
by

G = |µ|2 ≈ exp[2Lεγ
√

(PP1PP2)]/4. (3.13)

The gain has an exponential dependence on the pump power and the fiber length
and fiber non-linear coefficient. For this reason, we commonly refer to this case
as the exponential gain regime. Equation 3.13 also states that the scalar scheme
has twice the gain in dBs than the vector scheme. However, in the scalar case,
only the signal component parallel to the pump is amplified. In the vector scheme,
both components are amplified. If the input signal is co-polarized to P2, the same
gain is easily obtained by exchanging the idler and signal in our previous analysis.

To gain insight in the gain bandwidth, we note that [45]

∆β = β2

[
(ωS − ωc)

2 − ω2
d

]
, (3.14)

where β is expanded around the center frequency ωc = ωP1+ωP2
2 and we defined

ωd = ωP1−ωP2
2 . The dispersion parameters β4 and higher-order terms have been

neglected. The third-order dispersion β3 is considered but it does not determine
∆β. Here, we can see that if the pumps are far apart, the second term in Eq. 3.14
dominates over a large bandwidth. In such a case, we desire −β2ω

2
d = γ(PP1 +

PP2) to achieve phase-matching. Then, we should be operating in the anomalous
dispersion regime but close to the ZDW to achieve phase matching over a large
wavelength range. This statement is valid for both two-pump scalar and vector
parametric amplifiers. The gain bandwidth can be further increased at the expense
of the gain peak by operating at the ZDW. In that case, β4 should be considered
as well in order to determine the gain bandwidth.

Here, we have limited our analysis to four-wave interaction. However, it is
worth realizing that there are scenarios in which more waves needs to be considered.
For instance, six waves should be considered in four-mode amplifiers in which there
are three idlers to be considered [85]. We have also assumed that the pumps remain
undepleted and thus, we are operating in the small-signal regime. The solution
in the case of large signal power gain requires the use of elliptical functions [86].
The FWM between the pumps can also generate additional waves and deplete the
pumps, invalidating this model.

The previous analysis is valid for non-degenerate FWM but it can be adapted
to the different cases of degenerate FWM. The gain in the scalar pump-degenerate
FWM can be calculated by assuming AP1 = AP2 = AP/

√
2 where AP is the

pump field. The bandwidth should be calculated by using ∆β = βS + βI − 2βP,
and therefore ωd = 0. For this reason, achieving flat and large bandwidth in
pump-degenerate schemes is not as simple as with dual-pump schemes. Assuming
high gain, the gain has a quadratic dependence on the pump power when the
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signal is located close to the pump wavelength [8]. The phase-matching condition,
exponential regime, is only achieved for a certain signal-pump separation.

The scalar signal-degenerate FWM can be calculated by replacing AI = AS in
Eq. 3.7 and not considering Eq. 3.8. In the vector FWM, the signal-degenerate
FWM can still be analyzed with the previous equations since signal and idler are
two cross-polarized waves.

3.2 Scalar Phase-Sensitive Amplifiers

The four most common scalar PSA schemes are shown in Figure 3.1. If the signal
and the idler are located at the same frequency, Figure 3.1 (top row), the amplifier
is said to be one-mode amplifier. When the signal and the idler are located at
two different frequencies, Figure 3.1 (bottom row), the amplifier is a two-mode
amplifier. The cases of scalar one-mode and two-mode PSAs will be considered
separately.

3.2.1 Scalar One-Mode Phase-Sensitive Amplifiers

The two most basic scalar one-mode PSA schemes are the fully-degenerate PSA
and the signal-degenerate PSA. In the fully-degenerate PSA, Figure 3.1(a), the
pump, the signal and the idler are located at the same frequency. In order to
differentiate the signal from the pump, this scheme is implemented in an interfer-
ometer structure, either a Mach-Zehnder interferometer [14] or a Sagnac loop [87].
In the signal-degenerate PSA, Figure 3.1(b), the amplifier input waves are formed
by the two pump waves, and the signal/idler wave. The frequencies of these waves
are related by 2ωS = ωP1 + ωP2.

In one-mode PSAs, the input-output relation is given by [14,83]

Sout = µSin + νS∗in, (3.15)

where Sin, and Sout are the input and output signals. The parameters µ and ν are
different to each case but they fulfill |µ|2−|ν|2 = 1 regardless of the scheme. In the
case of fully degenerate PSA, their values can be found by analyzing the non-linear
phase-shift from SPM [88]. For the signal-degenerate PSA, we can calculate their
values from Eqs. 3.9 and 3.10. The signal gain can be expressed as

G =
|Sout|2
|Sin|2

= |µ|2 + |ν|2 + 2|µ||ν|cos(φ), (3.16)

where φ = 2φS + φµ − φν ; with φS, φµ, and φν denoting the signal phase and the
phases of the parameters µ and ν.

The gain dependence on the phase is shown in Figure 3.2. The maximum gain
is

Gmax =
|Sout|2
|Sin|2

= |µ|2 + |ν|2 + 2|µ||ν| = (|µ|+ |ν|)2, (3.17)
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Figure 3.1: Scalar PSA schemes based on (a) fully-degenerate FWM, (b) signal-

degenerate FWM, (c) pump-degenerate FWM and (d) non-degenerate FWM

and correspond to a signal with phase φS = φν/2−φµ/2 or φS = π+φν/2−φµ/2.
The minimum gain or maximum attenuation is

Gmin =
|Sout|2
|Sin|2

= |µ|2 + |ν|2 − 2|µ||ν| = (|µ| − |ν|)2, (3.18)

corresponding to a signal with phase φS = π/2 + φν/2 − φµ/2 or φS = −π/2 +
φν/2 − φµ/2. Obviously, GminGmax = 1, which establishes that the maximum
attenuation equals the maximum gain.

As can be seen from Equation 3.16, one-mode PSAs amplify one signal quadra-
ture whereas the other quadrature component is attenuated, which means that the
output signal phase is squeezed. In addition, the quadrature that is amplified can
be selected by controlling the pump phases. Such effects has been utilized to
achieve phase regeneration as will be discussed in Section 3.6.

Comparing the fully-degenerate PSA and the signal-degenerate PSA, the for-
mer one has several drawbacks. The gain dependence on the pump power is
quadratic, contrary to all-other schemes here that under the phase-matching as-
sumption have exponential dependence. The Mach-Zehnder interferometer is pe-
nalized by any mismatch between the two arms of the interferometer or between
the couplers. The Sagnac loop non-linear interferometer is degraded by guided
acoustic-wave Bragg scattering (GAWBS). Though 1.8 dB NF was demonstrated
with such PSA, it was measured at 16 GHz [87] and at lower frequencies the
performance was degraded by GAWBS.
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Figure 3.2: Gain vs. φ when the maximum PS gain is 18 dB

3.2.2 Scalar Two-Mode Phase-Sensitive Amplifiers

The pump-degenerate, Figure 3.1(c), and the non-degenerate PSAs, , Figure 3.1(d),
are two-mode amplifiers since the interaction occurs between the signal and one
idler which ar located at different frequencies. In the pump-degenerate PSA, the
signal, the idler and the pump frequencies are related by 2ωP = ωS + ωI. In the
non-degenerate PSA, we have ωP1 + ωP2 = ωS + ωI. The output signal, Sout, and
idler, Iout are given by [20,89]

[
Sout

I∗out

]
=

[
µ ν
µ∗ ν∗

] [
Sin

I∗in

]
, (3.19)

where Sin and Iin are the input signal and idler waves. The parameters µ and
ν coefficients can be found from Eqs. 3.9 and 3.10 in the case of non-degenerate
PSAs. We can also use these equations for the cases of pump-degenerate PSAs
by replacing AP1 = AP2 = AP/

√
2 as already discussed. The signal gain can be

expressed as

G =
|Sout|2
|Sin|2

= |µ|2 + |ν|2 + 2|µ||ν| cos(φ) (3.20)

where φ = φS + φI + φµ − φν . We have have assumed that the signal and idler
are equal in power, which translates into maximum PS interaction between both
waves.

The maximum gain is given by Eq. 3.17 correspond to an idler which is a
conjugated copy of the signal and an additional phase shift, φI = −φS − φµ + φν .
The minimum gain, given by Eq. 3.18, is also the inverse of the maximum gain
in this case. We can also observe that the maximum gain corresponds to four
times higher than the gain in phase-insensitive mode (Eq. 3.11), when assuming
the high-gain regime (µ ∼ ν).

The main difference of two-mode amplifiers with respect to one-mode amplifiers
is that the former one can PS amplify any signal regardless of the modulation
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format as long as the idler is a conjugated copy of the signal. In the degenerate
case, only amplitude-shift keying (ASK) signals can be amplified.

3.3 Vector Phase-Sensitive Amplification

PS-FOPAs can be also be implemented in vector schemes. The two most basic
schemes are the signal-degenerate vector PSA and the non-degenerate vector PSA,
shown in Figure 3.3. As in vector PI-FOPAs, two orthogonal pumps are required
and it is not possible to achieve vector PSA with a single-mode pump. It is worth
realizing that we show the pump with linear SOPs, but this is not a requirement
of vector schemes. Assuming the Manakov model, the pumps can take any SOP
as long as they are cross-polarized. We here assume that the signal is co-polarized
with P1 for simplicity. Sections 4.5 and 4.4 cover the general case of any input sig-
nal and idler SOP. In the case of an input signal co-polarized to P1, PS interaction
occurs between a signal and an idler which are cross-polarized, as shown in Fig-
ure 3.3. Both schemes can be described as two-mode amplifiers since degenerate
vector PSAs are degenerated in frequency but not in polarization; the signal and
the idler have the same frequency but orthogonal polarizations. Similar to scalar
PSAs, the frequencies of the waves fulfill ωP1 +ωP2 = ωS +ωI. The output signal,
Sout, and idler, Iout, are determined by the same equations as two-mode amplifiers
in scalars PSAs, Eq. 3.19. However, the parameters µ and ν take different values
as discussed in Section 3.1. The signal gain is also defined as the signal gain in
the scalar two-mode amplifiers, Eq. 3.20. As in scalar two-mode PSA, maximum
amplification occurs when the signal and the idler are conjugated copies. The
difference is that PS interaction occurs between two cross-polarized in the vector
PSA.

Note that a degenerate vector PSA can also be described as a 1-mode vector
PSA [90] when the signal and idler are equal in power and thus the degenerate
wave, combination of signal and idler, forms a 45◦ angle (in Jones space) with
both pumps. Under these assumptions, the degenerate vector PSA can be de-
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Figure 3.3: Vector PSA schemes based on (a) non-degenerate FWM and (b) signal-

degenerate FWM
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scribed by the input-output equation of 1-mode amplifier [90]. Such description
of the degenerate-vector PSA is a particular case which does not provide a gen-
eral description. The two-mode description of vector FWM is valid for any input
polarization of the degenerate wave. It says that the process is PI when the input
degenerate wave is aligned with one of the pumps and that maximum PS interac-
tion occurs when the two signal components projected onto the two pump SOPs
have equal power.

3.4 Phase-Sensitive Amplifiers in Transmis-

sion Systems

In all PSA configurations, the relative input phase relation among all waves,
pump(s), signal and idler, determines whether the signal and idler are amplified
or attenuated. Thus, pump, signal, and idler waves must be frequently and phase
locked in order to achieve coherent amplification. If the signal, the idler and the
pump(s) are not frequency and phase locked, amplification cannot be achieved.
The generation of three/four phase and frequency locked waves can be imple-
mented using a parametric amplifier operating in PI mode [16, 91], the so-called
copier-PSA scheme. The illustration for the copier-PSA is shown in Figure 3.4(a).
The copier generates the idler as a conjugated copy of the signal. The idler is
located at frequency ωP1 + ωP2 − ωs and its phase is φP1 + φP2 − φs. Then, at
the copier output, signal, idler and pump(s) are frequency and phase locked. In
between the copier and the PSA, the mid-stage can vary in accordance with the
application.

The mid-stage consisting of a filter with programable phase-response was used
to characterize the PSA using CW in [92]. The dynamic response of the PSA can
be measured by phase modulating some of the waves. For example, in experiments
characterizing the pump-degenerate scalar PSA the pump(s), the signal and the
idler were divided into two branches and only the pump was phase modulated [93,
94]. Note that modulating the three waves simultaneously would give an invariant
relative phase. An important drawback when any of the waves travels through a
different path is the need for a PLL which compensates for environmental drifts.
Using signals modulated with data, differential PSA-based receivers have been
demonstrated using a dispersive element as the mid-stage [95, 96]. The idler is
delayed by one symbol period with respect to the signal in the dispersive element
and in the PSA demodulation is achieved by beating of the idler and the signal.
The mid-stage can also consist of a fiber link [19, 23] such that the PSA is placed
at the receiver end to exploit the low-noise amplification provided by the PSA. As
we will discuss in the next section, the copier-PSA scheme is the preferred option
in transmission experiments since it is WDM-compatible and modulation format
independent [15].

Modulation stripping has been proposed and demonstrated to operate as a
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Figure 3.4: Schematic of (a) copier-PSA scheme (b) modulation stripping-PSA

pre-stage before the PSA [28, 44]. In its basic configuration, a CW and BPSK
signal are combined in a parametric amplifier. The generated wave is located at
the frequency 2ωs−ωP1 and its phase is 2φs−φP1. In other words, the second order
harmonic of the BPSK signal has been generated. This harmonic corresponds to
a CW since the phase modulation of the signal is erased. As will be discussed
in Section 3.6, signal regeneration can be performed by implementing a signal-
degenerate PSA after generating a modulation stripping pump.

Electro-optic combs have also been successfully proven in order to generate the
corresponding phase and frequency locked waves before the PSA. Since no excess
noise is added to the signal and idler as in the copier approach, the use of combs is
of special interest when characterizing the PSA NF [97]. However, when requiring
data-modulated signal and idler, with the idler being a conjugated copier of the
signal, this scheme requires independent modulation of the signal and idler. A
drawback of using the electro-optic comb is that the bandwidth of operation is
limited by the bandwidth of the comb, usually hundreds of GHz.

3.5 Low-Noise Amplification

In our previous analysis, we have neglected the noise generated during the ampli-
fication process. The main contribution of noise in a parametric amplifier is the
amplified quantum noise [62, 98, 99]. In a semi-classical analysis, we can calculate
the output of a two-mode parametric amplifier as [15]

[
Sout

I∗out

]
=

[
µ ν
µ∗ ν∗

] [
Sin + nS

I∗in + n∗I

]
, (3.21)
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where ns and ni represent the vacuum noise. They are statistically complex Gaus-
sian distributions with < nS,I >= 0, < n2

S,I >= 0 and < |nS,I|2 >= hfS,I/2 where
h is the Planck constant and f the optical frequency. Equation 3.21 is valid for
the signal non-degenerate vector and scalar PSA.

In PI operation, assuming high gain and shot-noise limited input signal, the
quantum-noise limited noise figure of a PI-FOPA is 3 dB [98]. Furthermore, the
idler output noise is practically equal to the conjugated signal noise. From this
fact, we know that detecting both signal and idler directly after the amplifier does
not improve the SNR unless the detector is limited by thermal noise. We can also
deduce that the quantum-limited noise figure of the wavelength conversion process
is 3 dB.

When both input and signal idler are present at the input, we can also observe
that the output noise does not vary. If the PSA is operating so that maximum
gain is obtained, the output signal and idler powers are 6 dB higher than in the
PI case, whereas the noise powers are the same. Therefore, the signal NF is -3 dB,
6 dB lower than the quantum-limited NF of a PI-FOPA. For the same reason, the
quantum-limited idler NF is also -3 dB. The NF of the amplifier needs to take into
account that both waves are present at the input, and it has been shown that it
can be calculated as the sum of the idler and signal NF [15, 100]. Therefore, the
quantum limited NF of PSAs is 0 dB which means that SNR is not degraded by
the amplifier when assuming a shot-noise limited input. The unique property of
performing noiseless amplification can only be possible in PSAs, i.e., amplifiers in
which the gain depends on the phase of the input waves [11]. Here, it is important
to realize that the NF is defined for a quantum-noise limited input, and therefore
signal and idler noises are not correlated. If the idler is generated by the copier
with high-gain, just after the copier the signal and idler noises are correlated.
For that reason, loss in between the copier and the PSA is necessary in order to
decorralate the signal and the idler noises and benefit from the low NF of PSAs.

The previous analysis regarding NF is valid for both scalar and vector PSAs as
long as they can be defined as two-mode amplifiers. In the case of signal-degenerate
scalar PSA, the quantum-limited NF is also 0 dB.

In the case of 4-mode PSAs, the quantum-limited NF is also 0 dB when four
modes are present at the input. Therefore, when accounting for the noise perfor-
mance, the use of 4-mode PSA is not practical due to the complexity increase of
the 4-mode operation. It is important to realize that if in a 4-mode PSA, only two
modes are present at the input, the noise figure will be degraded in accordance
with the strength of the modes which are not at the input [84,89]. For this reason,
dual-pump parametric amplifiers are commonly designed such that only one idler
is strong, so that the signal NF is not degraded.

Apart from amplified quantum noise (AQN), there are different noise contri-
butions which degrade the performance of parametric amplifiers. These contribu-
tions are mainly the pump-transfered noise (PTN) [98] and Raman scattering [61].
PTN has its origin in the pump-power fluctuations. Since pumps are amplified by
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EDFAs before being launched into the HNLF, the launched pumps have in-band
amplified spontaneous emission (ASE) noise which cannot be filtered and cause
power fluctuations. Since the gain depends on the pump powers, these power
fluctuations are transferred as in-band noise to the signal and idlers. The per-
formance degradation due to PTN has been analyzed both in PI-FOPAs [98, 99]
and in PS-FOPAs [97]. Spontaneous Raman scattering also degrades the NF of
FOPAs [61, 99, 101]. Raman-induced NF degradation impose an ultimate limit in
order to experimentally achieve quantum-limited NF. For instance, it imposes a
limit of 0.4 dB NF on the scalar pump-degenerate PSA [61]. However, despite the
additional NF degradation effects, NF as low as 1.1 dB have been demonstrated
in pump-degenerate PSA [15].

The capability of low-noise amplification makes PS-FOPA very promising as
inline amplifiers and preamplifiers. In the back-to-back case or single-span links,
6 dB better sensitivity (3 dB when accounting for signal and idler power) is ex-
pected when using a PSA-base preamplifier compared to a PIA-based preamplifier
due to the difference in the quantum-limited NF. This better sensitivity has been
demonstrated using the copier-PSA scheme, with the copier at the transmitter and
the PSA at the receiver in both back-to-back [18] and transmission implementa-
tions [19, 23]. In the latter case, the pump is attenuated before the link to avoid
nonlinear effects within the link. At the receiver end, the pump is separated from
the signal and idler. As we discussed, the pump needs to be recovered with fidelity
such that PTN does not degrade the NF. In order to achieve such a pump recovery,
the use of an optical injection-locking scheme has been proposed and demonstrated
successfully [102]. In multi-span links, a scheme using the copier-PSA provides 4
times larger transmission distance (6 dB link NF improvement) when transmitting
in the linear regime [20]. The 6 dB NF improvement comes from the 3 dB NF
improvement of the PSA and from the fact that idler is considered as an internal
mode. Such increase in transmission distance has recently been demonstrated in
multi-span transmission with inline PS amplification. In all these demonstrations
of PSA-amplified links, the PSA configuration was the scalar pump-degenerate
PSA which simplifies the pump recovery. The use of pump-degenerate PSA in com-
bination with the copier-PSA scheme translates into a scheme that is modulation
format independent (as long as it is a single-polarization (SP) signal) and WDM
compatible [15]. For instance, demonstration were performed with QPSK [103]
and 16-quadrature-amplitude modulation (QAM) [23] signals. PS amplification of
WDM signals has been demonstrated in a back-to-back scenario [18].

3.6 Phase Squeezing and Regeneration

PSAs have attracted much attention not only due to their low-noise amplification
capabilities but also because the output phase is squeezed. Using the signal-
degenerate scalar scheme, the output phase is squeezed to the real axis. When
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operating in the linear regime, phase noise is converted into amplitude noise. Since
the noise transformed, no major sensitivity improvement is expected [104]. If PSAs
are operated in saturation, both amplitude and phase noise can be regenerated.
Therefore, the scheme is suitable in order to achieve simultaneous phase and ampli-
tude regeneration of BPSK signals. A requirement in order to have such a scheme is
the presence of two pumps located symmetrically around the signal. Furthermore,
the generation of such pumps must be performed in a black-box implementation,
meaning that the input consists of only the modulated signal. In order to achieve
such a black-box implementation, modulation stripping and the use of a injection-
locking laser has been proposed and successfully demonstrated [28, 44, 104, 105].
Modulation stripping is achieved by combining a pump wave with the signal and
mixing in a parametric amplifier as shown in Figure 3.4(b). In order to simulta-
neously amplify and filter the second-harmonic of the signal, an injection-locked
laser is used. After this process, the two pumps (symmetrically located around the
signal) and the signal are input into the degenerate-signal PSA. After the PSA,
the signal phase and amplitude are regenerated when operating in saturation.

The concept has also been extended to perform regeneration of m-PSK sig-
nals [30,106]. In order to regenerate a m-PSK signal, the signal must be coherently
added with its (m-1)th conjugated harmonic. The black-box regenerator consists
of two stages, a first PI stage in which the (m-1)th and the mth harmonics are
generated by cascaded FWM. Note that modulation stripping is achieved in the
mth conjugated harmonic. In second stage, the harmonic wave and the signal are
combined by means of a non-degenerate scalar PSA. It has been also demonstrated
that the presence of (m-1)th conjugated harmonic wave at the input of the second
stage is not necessary because it is internally generated as the PSA is operated
in saturation [107]. Moreover, operation in saturation also provides amplitude
regeneration.

There have been also demonstrations including regeneration of m-QAM signals
such as 8-QAM [108]. However, regeneration of multilevel signals is hindered by
the lack of schemes to amplitude regenerate multilevel signals. Regeneration of
16-ary quadrature-amplitude modulation (16QAM) signals can be achieved by the
regeneration of inner and outer QPSK signals into which the 16QAM signal can
be divided [109].

Another application in which phase-squeezing is desired is quadrature demulti-
plexing [33]. When the input signal is modulated in both quadratures, e. g. QPSK
signals, only one quadrature will be output by the PSA when assuming high-gain.
The additional quadrature can be obtained by a second PSA. Quadrature de-
multiplexing can also be achieved with a degenerate vector parametric amplifier
operating on phase-insensitive mode [Paper C]. Such scheme will be discussed in
Section 4.5.
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3.7 All-Optical Mitigation of Fiber Nonlin-

earities

PSAs can also mitigate the effect of fiber nonlinearities on modulated signals [22,
23,103,110]. The explanation of such mitigation is that when transmitting two con-
jugated signals in two orthogonal dimensions, they will experience anticorrelated
nonlinear phase shift when the dispersion map is symmetric [111]. The technique
of transmitting two conjugated copies is known as the twin-wave concept. In the
case of a PSA-amplified link, the idler and the signal are transmitted through the
link after being generated by a copier. Using perturbation analysis, the signal and
idler fields after the link, SL and IL, can be expressed as [111]

SL = S0 + δE (3.22)

IL = I0 − δE∗ (3.23)

where the dispersion and the power maps are considered to be symmetric, and S0

and I0 are the signal and idler at the link input. The distortions introduced
by the nonlinearities during transmission are defined by δE. It is clear from
Eqs. 3.22 and 3.23 and the input-output relations, Eq. 3.19, that PSAs cancel
the distortions due to fiber nonlinearities under such assumptions.

Nonlinear effects can also be suppressed by digital coherent superposition [111–
113]. A comparison between PSA-based and digital-based mitigation has shown
that both techniques perform similarly [114]. In terms of practical implementa-
tion, the PSA requires optical dispersion compensation whereas when using digital
signal processing (DSP), dispersion can be compensated digitally.
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Chapter 4

Phase-Sensitive Amplification of
Dual-Polarization Signals

As we have seen in Chapter 3, PSAs are promising to perform functionalities
such as low-noise amplification, regeneration and mitigation of fiber nonlineari-
ties among many applications. However, most experimental demonstrations have
been performed with data encoded in one polarization whereas optical networks
often encode data using both polarizations. Thus, demonstrations of PSAs com-
patible with DP signals are necessary in order to show the full potential of PSAs.
For PI-FOPAs, two different solutions were demonstrated to achieve polarization-
independent performance: polarization-diversity [115–118] and vector schemes [119–
121]. This thesis is devoted to the characterization of vector PS-FOPAs and its
applications. In this context, the comparison between vector and polarization di-
verse PSAs is necessary. To do such a comparison, we analyze if polarization-
independent PS-FOPAs can be obtained by implementing either polarization-
diverse PSAs or vector PSAs. Our analysis is performed using the Jones description
of both the polarization-diverse and the vector schemes in conjunction with the
input-output description of PSAs. We conclude this chapter by comparing both
schemes in practical terms.

4.1 Polarization-Diverse Implementations

Scalar PSAs only amplifies one polarization and polarization diversity is needed to
amplify both polarizations. Such a polarization-diverse PSA [37,122] is usually im-
plemented in a loop similar to polarization-diverse PI-FOPAs [115–118]. Figure 4.1
shows two possible implementations of polarization-diverse FOPAs. The pumps,
or pump in case of pump degenerate FWM, have linear polarization at 45◦ so that
their power is equally divided after the polarization-beam splitter (PBS). In the
case of signal-degenerate FWM, the input waves are the pumps and the signal. In
this scheme, a polarization controller (PC) is used to direct the output to the other
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Figure 4.1: Polarization-diversity FOPA implemented in a loop with (a) one non-

linear medium (b) two nonlinear media and filter removing the pumps.

port by compensating for polarization rotations within the fiber. By using a loop,
both signal components are combined coherently after being amplified as shown
Figure 4.1(a). When using the loop implementation, the same nonlinear medium
can be used to amplify both signal components. However, degradation of the am-
plifier performance has been already reported in bidirectional PI-FOPAs [118,123],
caused by Rayleigh and Brillouin scattering. This degradation is expected to be
detrimental when requiring low-noise PS amplification. It can be mitigated by im-
plementing a loop with two different nonlinear media, as shown in Figure 4.1(b). A
similar scheme has already been experimentally demonstrated using χ(2)-material-
based PSAs [122]. As can be seen, the pumps are attenuated by e.g. an optical
filter in between the two FOPAs. Then, the amplification of each polarization
component occurs in each HNLF.

4.2 Polarization-Diverse Two-Mode Phase Sen-

sitive Amplification

When implementing a polarization-diversity scheme, the output signal and idler
(non-degenerate signal) are determined by [90]

Sout = µSin + νI∗in, (4.1)

Iout = µIin + νS∗in, (4.2)

where S and I correspond to the signal and idler Jones vectors. The operator ∗
denotes conjugation in each vector component. The matrix coefficients µ and ν
were defined in Eqs. 3.9 and 3.10 for the non-degenerate and the pump-degenerate
FOPAs. We have assumed that the phase relation at the input of both amplifiers is
not affected by dispersive elements between the PBS and both amplifier inputs. We
have also assumed that both FOPAs perform equally. In practical terms, the same
gain is achieved by using the same HNLF in bidirectional implementation [124],
but the NF can vary due to ZDW fluctuations [48]. When using two nonlinear
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media, the gain must be equalized for both FOPAs, which can be challenging in
the case of broadband amplification since it requires identical HNLFs.

The gain dependence on the polarizations and phases of the signal and idler is
given by

G =
|Sout|2
|Sin|2

= |µ|2 + |ν|2

+2|µ||ν|[cos(θS) cos(θI) cos(φS + φI + ϕS/2 + ϕI/2)

+ sin(θS) sin(θI) cos(φS + φI − ϕS/2− ϕI/2)], (4.3)

where we defined

Sin = |Sin|eiφS
[

cos(θS)eiϕS/2

sin(θS)e−iϕS/2

]
, (4.4)

Iin = |Iin|eiφI
[

cos(θI)e
iϕI/2

sin(θI)e
−iϕI/2

]
, (4.5)

where φS defines the signal global phase, ϕI defines the phase relation between sig-
nal polarization components and θI determines the magnitude of the wave in each
polarization component. We have assumed equal input signal and idler powers,
|Sin|2 = |Iin|2. To simplify the analysis, we have also assumed that µ and ν are real
which can be achieved by tuning the pump phases and perfect phase-matching.

From Eq. 4.3, we can observe that maximum amplification can only be achieved
when the signal and idler SOPs fulfill JS = J∗I θS = θI and ϕS = −ϕI, and the idler
is a conjugated copy of the signal, φS = −φI. Using the conversion between Jones
vector and Stokes vector presented in the Appendix, we can observe that maximum
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PS amplification can only be achieved when the idler polarization (described with
Stokes parameters) fulfills

Iin =



I1

I2

I3


 =



S1

S2

−S3


 , (4.6)

where Sin =



S1

S2

S3


 describes the signal input polarization using Stokes description.

Figure 4.2 shows this relation between the signal and the idler polarizations to
achieve maximum PS interaction using the Poincaré sphere. Maximum PS inter-
action occurs e.g., when the idler SOP is a mirror image of the signal SOP in the
S3 = 0 plane. Maximum gain can be obtained for e.g. when the signal and idler are
both co-polarized with linear polarization. If signal and idler are cross-polarized
with circular SOP, θS = θI = π/4 and ϕS = ϕI = π/2, maximum gain can be
also obtained. On the other hand, if the signal and idler are cross-polarized with
linear SOP, θS− π/2 = θI and ϕS = ϕI = 0, the output signal and idler powers do
not depend on the phase of the input waves. Such PI gain is also obtained if the
signal and idler are co-polarized with either right of left hand circular polarization.
Therefore, the maximum gain depends on the relative SOP between the signal and
the idler as well as on their absolute SOP.

An idler which fulfills the conditions to achieve maximum amplification can
be generated by a polarization-diverse PI-FOPA, without any constraint in the
input signal to the copier. Thus, PS amplification of DP-modulated signals can
be achieved by the means of copier-PSA with polarization-diversity. However, the
implementation of the copier-PSA with a polarization-diverse PSA will be affected
by any absolute change of polarization in either the signal, the idler or both during
the mid-stage. In other words, first-order PMD will affect the performance of the
scheme [90]. For instance, if the copier generates a signal and idler which are co-
polarized with linear polarization; and in the mid-stage their polarization is rotated
to circular polarization, it will not be possible to achieve maximum amplification
in the PSA.

4.3 Polarization-Diverse One-Mode Phase Sen-

sitive Amplification

The signal-degenerate case can be analyzed by substituting Iin by Sin in Eq. 4.1
which gives

Sout = µSin + νS∗in. (4.7)
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In this case, the gain is determined by

G =
|Sout|2
|Sin|2

=

|µ|2 + |ν|2 + 2|µ||ν|[cos2(θS) cos(2φs + ϕS)+

sin2(θS) cos(2φS − ϕS)] (4.8)

where the signal is defined as in Eq. 4.4, and we assume, as in the previous section,
that µ and ν are real. We will consider the cases of PI and PS gain separately.

4.3.1 Phase-Insensitive Gain

From Eq. 4.8, we realize that if the input signal is circularly polarized, θS = π/4 rad
and ϕS = π/2 rad, the gain

G = |µ|2 + |ν|2 (4.9)

does not depend on the signal phase. In this case, phase-to-polarization conversion
is performed since the ratio between the output ′x′ and ′y′ components depends
on the signal input phase. Assuming high-gain (|µ| ∼ |ν|), we have

Sout,x/Sout,y ∼ tan−1(φS + π/4). (4.10)

which indicates that when the relation between both polarization components is
determined by the signal input phase.

The previous equation states that quadrature demultiplexing into two cross-
polarized waves can be performed with this scheme when the input signal is cir-
cularly polarized. When assuming high gain, the in-phase component is projected
on the output component with at +45◦ linear polarization and the quadrature
component on the wave component with -45◦ linear polarization.

4.3.2 Phase-Sensitive Gain

Looking at Eq. 4.8, we can observe that both ’x’ and ’y’ components are simul-
taneously PS amplified with maximum gain when they have the same phase, i.e.,
the input signal is linearly polarized. The gain in the case of an input signal with
linear SOP, ϕS = 0, is

G = |µ|2 + |ν|2 + 2|µ||ν| cos(2φs). (4.11)

Therefore, all signal instantaneous SOPs are amplified for the same relative phase
between the signal and the pumps. The relation between both polarization output
components

Sout,x/Sout,y = tan−1(θS) (4.12)
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is the same as this relation at the input, which means that the signal polarization
is maintained.

The scheme can therefore phase-sensitively amplify all modulation symbols of a
DP-ASK signal in which the polarization channels are linear and both polarization
channels are modulated in the in-phase component. Furthermore, the output phase
is squeezed for both polarization channels when assuming high gain which means
phase regeneration is performed in the two orthogonal polarizations. Thus, a DP-
BPSK signal can be phase regenerated with this scheme. This also means that
phase fluctuations will be converted into amplitude fluctuations when operating in
the small-signal regime. Operation in saturation will limit the amplitude fluctua-
tion. Thus, simultaneous phase and amplitude regeneration can be achieved. In
such a case, it is desired that the polarization channels of the DP-BPSK signal cor-
respond to the ′x′ and the ′y′ polarizations. If the polarization channels correspond
to any other linear polarization state, the amplitude of the ′x′ and ′y′ components
does depend on the modulation symbol. Then, the polarization-diverse PSA when
operating in saturation will distort the modulated signal unless the polarization
channels correspond to the ′x′ and the ′y′ polarizations.

4.4 Non-Degenerate Vector Phase-Sensitive

Amplification

The non-degenerate vector PSA was already analyzed in Section 3.3. In that
section, we limited our analysis to the case of the signal being co-polarized with
P1, and the idler being orthogonal to the signal; and thus we described the input-
output relations by scalar equations. However, the analysis can be extended to the
case of arbitrary signal and idler input SOPs by using Jones vectors. The output
signal, Sout, and the output idler Iout are the given by [90]

Sout = µSin + σνI∗in (4.13)

Iout = µIin + σνS∗in, (4.14)

where Sin and Iin are the input signal and idler Jones vectors, and

σ =

[
0 1
1 0

]
. (4.15)

The pump polarizations correspond to the ′x′ and ′y′ polarizations, meaning that
we are defining the signal and idler SOPs with respect to the pump SOPs. We also
assume phase-matching condition and pump phases such that µ and ν are real.

Following the definitions of signal and idler presented in Eqs. 4.4 and 4.5, the
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gain is given by

G =
|Sout|2
|Sin|2

= |µ|2 + |ν|2

+2|µ||ν|[cos(θS) sin(θI) cos(φS + φI + ϕS/2− ϕI/2)

+ sin(θS) cos(θI) cos(φS + φI − ϕS/2 + ϕI/2)]. (4.16)

We can observe that maximum amplification can only be achieved when the signal
and idler SOPs fulfill θS = π/2−θI and ϕS = ϕI, and the idler is a conjugated copy
of the signal, φS = −φI. Using the conversion between Jones vector and Stokes
vector presented in the Appendix, we can observe that maximum PS amplification
is achieved when the idler polarization (described with Stokes parameters) fulfills

Iin =



I1

I2

I3


 =



−S1

S2

S3


 , (4.17)

which means that the signal and idler SOPs should be mirrored in the S1 = 0 plane
as shown in Figure 4.3. If the signal and idler are orthogonally polarized and form a
45◦ angle with the pumps, θS = θI = π/4 and ϕS = ϕI, maximum PS amplification
is achieved giving an the idler which is a conjugated copy of the signal, φS = −φI.
If the signal and the idler are cross-polarized, maximum amplification occurs when
they have the same polarization as the pumps as discussed in Section 3.3. On the
contrary, if the signal and the idler are co-polarized with each other and with the
pumps, θS = θI = 0, PS interaction is not achieved. Nor does PS interaction occur
when they are cross-polarized with circular polarization. Thus, the gain of the
amplifier is determined by the relative polarization between signal and idler as
well as the absolute polarization. In the same way as in the polarization-diverse
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two-mode PSA, an idler fulfilling those conditions can be created by a vector PI-
FOPA regardless the signal input polarization and phase. This would lead to a
scheme capable of phase-sensitively amplifying DP-modulated signals. However,
such a scheme requires control of the relative signal and idler SOPs after the mid-
stage with regard to the pump SOPs.

Comparing with the polarization-diverse PSA, both schemes provide the same
gain for the same pump powers assuming phase-matching in both cases. Two
scalar PI-FOPA sharing pump power (as in the case of polarization diversity) has
the same gain as a single vector PI-FOPA using all the pump power when assuming
exponential gain regime.

4.5 Degenerate Vector Phase-Sensitive Am-

plification

In the case of degenerate vector PSAs, the output signal Jones vector, Sout is given
by

Sout = µSin + σνS∗in, (4.18)

where Sin is the input signal. The Pauli matrix, σ, was defined in 4.15. Note here
that the idler mode is the ’y’ component of the signal and the signal mode defined
in Section 3.3 is the ’x’ component of the signal described using Jones vector.

Similar to the polarization-diverse one mode PSA, we can gain much insight by
describing the gain as the function of the signal input phase, φS, and polarization,
θS and ϕS. In this case the gain is given by

G =
|Sout|2
|Sin|2

=

|µ|2 + |ν|2 + 2|µ||ν|[sin(2θS) cos(2φS)]. (4.19)

This equation was obtained in [Paper A] but with a polarization description in the
Stokes space. We address the cases of PI and PS gain separately below.

4.5.1 Phase-Insensitive Gain

When the signal is co-polarized with either of the pumps, θ = 0 rad, phase-sensitive
interaction is not achieved. A conjugated copy of the signal is generated in the
orthogonal polarization. The generation of such a conjugated copy at the same
wavelength can be used to perform dispersion compensation [125]. In this case
of PI operation, the output signal polarization depends on the input signal phase
since we have

Sout,x/Sout,y =
µ

ν
exp(2iφS). (4.20)
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In other words, the relative phase between the Jones components of the output
signal depends on the input signal phase. As expected, their magnitude rela-
tion is independent of the signal phase. This property has been exploited in low
power phase-sensitive processors. Since the polarization depends on the signal
input phase, by placing a polarizer after the degenerate vector FOPA, phase-to-
amplitude conversion can be achieved by the means of a PI-FOPA and a polarizer.
Following [Paper C], if the polarizer is aligned to, e.g., the polarization defined

by 1
|µ|2+|ν|2

[
ν
µ

]
, the signal after the polarizer has an amplitude that depends pro-

portionally on the signal input in-phase component. Moreover, the phase of the
signal after the polarizer can only take two values, i.e., the phase of the signal after
this polarizer is squeezed. This scheme, degenerate vector PI-FOPA followed by
a polarizer, can therefore be exploited to achieve phase quantizers with low pump
powers [126]. In such a case, phase variations are converted into amplitude fluc-
tuations unless the FOPA is operated in saturation. This limits the advantage of
efficient phase regeneration at low pump powers. When operating at low gain, to
obtain both quadratures, the signal after the degenerate vector PI-FOPA should
be split into two branches with a polarizer in each branch selecting the corre-
sponding signal quadratures. In the case of high-gain amplification |µ| ∼ |ν|, both
quadratures are demultiplexed into two cross-polarized components. Quadrature
demultiplexing can then be achieved by the means of a PBS after the high-gain
FOPA [Paper C].

4.5.2 Phase-Sensitive Gain

When the signal power is equally divided between both Jones components, θS =
45◦, angle between the signal and the pumps, maximum PS interaction occurs.
The gain is given by the same equation as in the polarization-diverse one-mode
scalar PSA when operating in the PS-gain regime (Eq. 4.11). The relation between
the signal output components is given by

Sout,x/Sout,y = exp(iϕS), (4.21)

which is the same relation as between the input components. Then, the signal
polarization is not modified by the amplifier in this case.

In order to achieve PS gain, the signal Jones components need to be conju-
gated copies of each other. For instance, if the ′x′ components is a QPSK signal,
the ’y’ components should be its conjugated copy. Such pair of conjugated and
cross-polarized waves at the same wavelength can be achieved by means of a degen-
erate vector FOPA operating in PI mode. The copier is not required to generate
such a pair of waves since any pair of two data signals which are cross-polarized
and conjugated can be defined as a DP-ASK signal. The scheme also provides
phase-squeezing for such signals [Paper B]. In the small-signal regime, both polar-
ization channels can be phase-regenerated without cross-talk. In such a case, phase
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fluctuations are converted into amplitude fluctuations. Considering the case of a
DP-BPSK signal, saturation could be desired to avoid such amplitude fluctuations.
However, crosstalk between the polarization channels appears when operating in
saturation [90].

4.6 Practical Comparison

In this chapter, we have analyzed polarization-diverse and vector PSAs. Both
signal-degenerate and non-degenerate cases have shown similar theoretical results.
Assuming phase matching, both schemes provide the same gain for the same pump
power. Also, the NF of the two cases is theoretically the same.

A copier-PSA scheme can be implemented in both cases providing a scheme
which is WDM compatible, modulation-format independent and capable of oper-
ating with DP signals. However, different practical issues should be taken into ac-
count in this comparison. Vector PI-FOPAs [51] have shown worse NF than scalar
PI-FOPA [99]. This degradation in vector FOPAs is usually attributed to the PMD
in the HNLF. As discussed, polarization-diverse PI-FOPAs are penalized when
using the same nonlinear medium. Mitigation of the penalties from reflections
requires the uses of two-nonlinear media, which adds complexity to the scheme.
The insertion loss of the PBS also degrades the performance of polarization-diverse
PSAs. A major difference between both schemes is that the non-degenerate signal
vector PSA requires two pumps while signal non-degenerate scalar PSA can be
implemented with a single pump. The need for two pumps in the vector case is a
drawback since it will add complexity to the pump recovery stage, which is neces-
sary in the case of PS amplification after transmission as discussed in Section 3.5.

Both polarization-diverse one-mode PSAs or degenerate vector PSAs can per-
form phase-regeneration of DP-BPSK signals. When performing only phase re-
generation the vector scheme is simpler and can provide similar performance as in
that case the pump spacing does not need to be large. However, in most cases,
operation in saturation is desired to remove amplitude fluctuations. In such sit-
uations, the vector PSA suffers from cross-talk between the polarization channels
which will not be the case in the polarization-diverse PSA when the polarization
channels are aligned to each PSA. Another difference between these schemes is
that the scalar scheme suffers more from FWM between the pumps [Paper A],
which can deplete the pumps.
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Chapter 5

Conclusion and Future Outlook

Some of the most intriguing functionalities that PSAs can provide are low-noise
amplification, cancellation of distortion induced by fiber nonlinearities and regen-
eration. Experimental demonstrations covering all these application have demon-
strated the potential of PSAs. However, most demonstrations have been performed
with signals modulated in one polarization. In order to demonstrate the full poten-
tial of PSAs, these demonstrations should also be performed with DP-modulated
signals since future networks are expected to encode data on both polarizations.
In such a scenario two PSA schemes capable of operating with DP signals arise:
polarization diverse PSAs and vector PSAs. In this thesis, we have characterized
the latter scheme, vector PSAs, and we have demonstrated that they are capable
of providing both phase-regeneration and low-noise amplification. In our discus-
sion, we have theoretically compared the two possible solutions and we have also
discussed the practical differences between both solutions. This analysis should
be complemented with experimental verification to provide a full understanding of
the advantages provided by each scheme.

Regarding the regeneration applications, we have demonstrated that a degener-
ate vector PSA can phase regenerate both polarization channels of DP-BPSK [Pa-
per B]. In order to make this scheme attractive for future networks, a black-box
implementation should be demonstrated. Such a black-box implementation can be
achieved by performing modulation stripping before the degenerate vector PSA.
The crosstalk between polarization channels when operating in saturation should
also be addressed. Numerical work has shown that vector PSAs are also capa-
ble of achieving phase-regeneration of DP-QPSK signals [127]. However, neither
black-box implementation nor operation in saturation was discussed in that work.

The copier-PSA implementation is also feasible using either polarization-diverse
or vector PSAs, which leads to WDM-compatible modulation-format independent
PSA. Then, low-noise amplification and compensation of fiber nonlinearities can be
achieved with both implementations. Experimental demonstration should confirm
the potential of both schemes. A important aspect to overcome is that the copier-
PSA implementation in both cases requires control of the global signal and idler
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SOPs. In order to overcome that issue, two PLLs can be used when amplifying
SP-modulated signals and using the polarization-diverse scheme [122]. However,
that solution has not been demonstrated with DP-modulated signals. There is
still need for demonstrations which show that PSA can operate in out-of-lab con-
ditions with DP-modulated signals and transmission links. Up to know, all PSA
in transmission links have been possible due to being in lab-conditions.

This evaluation of PSAs capable of amplifying DP signals should be extended
to link transmission and be benchmarked by comparison to EDFA systems and
Raman systems. In terms of noise, PSAs outperforms lumped PIAs . However, ef-
fective negative noise figure can be achieved with distributed amplifications such as
Raman amplifiers. Parametric amplification has been demonstrated in distributed
scenario using dispersion-shifted fiber (DSF) [128, 129], but such implementation
is quite challenging in practical terms. Discussed theoretical [130,131], distributed
PSAs is impractical and no demonstrations have been shown yet. Combination
of Raman amplification and PSAs is an option whose consequences have not been
experimentally evaluated. In such a scheme, the use of PSAs are expected to only
double the distance in the linear regime at the expense of halving the spectral
efficiency.

PSAs also perform all-optical compensation of fiber non-linearities, though
not demonstrated yet with DP-modulated signals. PSAs can provide periodic
compensation of fiber nonlinearities which is not possible when performing digital
compensation. This opens the question of whether nonlinearities should be com-
pensated periodically or at the receiver. The twin-wave approach must also be
compared to other techniques which compensate for fiber non-linearities such as
phase-conjugation and digital back-propagation.

Focusing on the vector schemes, an important aspect that that needs to be
overcome is the performance degradation which is attributed to fiber PMD. The
use of polarization-maintaining HNLF could mitigate such effect but a different
model than the used in this thesis should be considered. For example, the gain
when using polarization-maintaining-HNLF would be lower than in the case of
using fiber with random birefringence. The use of vector PSAs can also bring
new applications or provide better properties than scalar scheme. For instance, we
demonstrated that both quadratures can be demultiplexed into two cross-polarized
waves at the same wavelength as the input signal [Paper C]. Contrary to previous
demonstrations of quadrature demultiplexing, both quadratures where obtained
simultaneously [Paper C]. Therefore, research on vector PSA should be consider
newer applications, including those outside of the telecom area.
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Chapter 6

Summary of Papers

This thesis includes three appended papers, which are summarized below.

Paper A: Experimental analysis of degenerate

vector phase-sensitive amplification

In this paper, we characterize a degenerate vector phase-sensitive amplifier and
compare it to a degenerate scalar phase-sensitive amplifier. We show that the
degenerate vector PSA is affected by fiber PMD, but the pump SOPs can be opti-
mized to mitigate such effects. Once the pump SOPs are optimized, we show that
the theoretical predictions agrees with the experimental setup regarding the gain
and PSER curves as a function of the polarization angle between the degenerate
wave and the pumps. In the comparison with the scalar case, we showed that the
vector scheme is less affected by pump-pump FWM and higher-order idlers.

Paper B: Phase-sensitive amplification and re-

generation of dual-polarization BPSK without

polarization diversity

In this paper, we demonstrate that the degenerate vector PSA can amplify DP-
BPSK signals with less added noise than EDFAs. A 1 dB sensitivity improvement
is measured with respect to EDFA-based amplification. No penalty was observed
by the presence of two polarization channels. The phase-regeneration capabilities
of the vector PSA are evaluated by inputting a phase-degraded signal into the
amplifier. At the output, we observe that the signal phase is regenerated and that
phase fluctuations are converted into amplitude fluctuations.
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Paper C: Quadrature demultiplexing using a

degenerate vector parametric amplifier

Here, we demonstrate quadrature decomposition of a QPSK signal into a DP-
BPSK signal. The decomposition is achieved by the means of a degenerate vec-
tor amplifier operating in PI mode. The high gain of the amplifier enables the
decomposition into two cross-polarized waves, which are split by a PBS. Stable
decomposition is achieved by using a novel PLL scheme which minimizes the am-
plitude variations of the decomposed signals. Thanks to this PLL, bit-error rate
(BER) curves can be measured and confirm that both quadratures can be obtained
simultaneously.
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Nielsen, “Towards ultrasensitive optical links enabled by low-noise phase-
sensitive amplifiers,” Nature Photonics, vol. 5, no. 7, pp. 430–436, Jun. 2011.

[16] R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev,
“Gain characteristics of a frequency nondegenerate phase-sensitive fiber-
optic parametric amplifier with phase self-stabilized input,” Optics Express,
vol. 13, no. 26, pp. 10 483–10 493, Dec. 2005.

[17] R. Tang, P. S. Devgan, V. S. Grigoryan, P. Kumar, and M. Vasilyev, “In-line
phase-sensitive amplification of multi-channel CW signals based on frequency
nondegenerate four-wave-mixing in fiber,” Optics Express, vol. 16, no. 12, pp.
9046–9053, Jun. 2008.

[18] Z. Tong, C. Lundström, E. Tipsuwannakul, M. Karlsson, and P. Andrekson,
“Phase-sensitive amplified DWDM DQPSK signals using free-running lasers
with 6-dB link SNR improvement over EDFA-based systems,” in 36th Eu-
ropean Conference and Exhibition on Optical Communication (ECOC), Sep.
2010, paper PDP1.3.

[19] B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrek-
son, “Phase-sensitive optical pre-amplifier implemented in an 80km DQPSK
link,” in Optical Fiber Communication Conference. Optical Society of Amer-
ica, Mar. 2012, paper PDP5A.4.

[20] Z. Tong, C. J. McKinstrie, C. Lundström, M. Karlsson, and P. A. An-
drekson, “Noise performance of optical fiber transmission links that use
non-degenerate cascaded phase-sensitive amplifiers,” Optics Express, vol. 18,
no. 15, pp. 15 426–15 439, Jul. 2010.

[21] C. J. McKinstrie, M. Karlsson, and Z. Tong, “Field-quadrature and photon-
number correlations produced by parametric processes,” Optics Express,
vol. 18, no. 19, pp. 19 792–19 823, Sep. 2010.

[22] S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Long-
haul (3465 km) transmission of a 10 GBd QPSK signal with low noise

44



phase-sensitive in-line amplification,” in 2014 European Conference on Op-
tical Communication (ECOC), Sep. 2014, paper PD.2.2.

[23] S. L. I. Olsson, B. Corcoran, C. Lundström, T. A. Eriksson, M. Karlsson, and
P. A. Andrekson, “Phase-sensitive amplified transmission links for improved
sensitivity and nonlinearity tolerance,” Journal of Lightwave Technology,
vol. 33, no. 3, pp. 710–721, Feb. 2015.

[24] K. Croussore, C. Kim, and G. Li, “All-optical regeneration of differential
phase-shift keying signalsbased on phase-sensitive amplification,” Optics Let-
ters, vol. 29, no. 20, pp. 2357–2359, Oct. 2004.

[25] K. Croussore, I. Kim, Y. Han, C. Kim, G. Li, and S. Radic, “Demonstration
of phase-regeneration of DPSK signals based on phase-sensitive amplifica-
tion,” Optics Express, vol. 13, no. 11, pp. 3945–3950, May 2005.

[26] K. Croussore, I. Kim, C. Kim, Y. Han, and G. Li, “Phase-and-amplitude
regeneration of differential phase-shift keyed signals using a phase-sensitive
amplifier,” Optics Express, vol. 14, no. 6, pp. 2085–2094, Mar. 2006.

[27] K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on
symmetric-pump phase-sensitive amplification,” IEEE Photonics Technology
Letters, vol. 19, no. 11, pp. 864–866, Jun. 2007.

[28] F. Parmigiani, R. Slav́ık, J. Kakande, C. Lundström, M. Sjödin, P. A.
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Appendix

A.1 Jones-Stokes Relation

The polarization of a wave with Jones description given by

E =

[
Ey

Ey

]
= |E|eiφ

[
cos(θ)eiϕ/2

sin(θ)e−iϕ/2

]
(A.1)

is described by the Stokes vector

S =



S1

S2

S3


 =



|Ex|2 − |Ey|2
2Re(ExE

∗
y)

−2Im(ExE
∗
y)


 = |E|2




cos(2θ)
sin(2θ) cos(ϕ)
− sin(2θ) sin(ϕ)


 , (A.2)

from which it is clear that the conjugated Jones vector, E∗, has a Stokes vector
with the opposite sign of the S3 component.
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