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Insurance: solvency and valuation
Jonas Alm

Abstract

This thesis concerns mathematical and statistical concepts useful to assess an
insurer’s risk of insolvency. We study company internal claims payment data
and publicly available market data with the aim of estimating (the right tail
of) the insurer’s aggregate loss distribution. To this end, we also develop a
framework for market-consistent valuation of insurance liabilities. Moreover,
we discuss Solvency II, the risk-based regulatory regime in the European Union,
in some detail.

In Paper I, we construct a multidimensional simulationmodel that could be
used to get a better understanding of the stochastic nature of insurance claims
payments, and to calculate solvency capital requirements. The assumptions
made in the paper are based on an analysis of motor insurance data from the
Swedish insurance company Folksam. In Paper II, we investigate risks related
to the common industry practice of engaging in interest-rate swaps to increase
the duration of assets. Our main focus is on foreign-currency swaps, but the
same risks are present in domestic-currency swaps if there is a spread between
the swap-zero-rate curve and the zero-rate curve used for discounting insur-
ance liabilities. In Paper III, we study data from the yearly reports the four
major Swedish non-life insurers have sent to the Swedish Financial Supervi-
sory Authority (FSA). Our aim is to find the marginal distributions of, and de-
pendence between, losses in the five largest lines of business. In Paper IV, we
study the valuation of stochastic cash flows that exhibit dependence on interest
rates. We focus on insurance liability cash flows linked to an index, such as a
consumer price index or wage index, where changes in the index value can be
partially understood in terms of changes in the term structure of interest rates.

Papers I and III are based on data that are difficult to get hold of for people
in academia. The FSA reports are publicly available, but actuarial experience
is needed to find and interpret them. These two papers contribute to a better
understanding of the stochastic nature of insurance claims by providing data-
driven models, and analyzing their usefulness and limitations. Paper II con-
tributes by highlighting what may happen when an idea that is theoretically
sound (reducing interest-rate risk with swaps) is applied in practice. Paper IV
contributes by explicitly showing how the dependence between interest rates
and inflation can be modeled, and hence reducing the insurance liability valu-
ation problem to estimation of pure insurance risk.

Keywords: risk aggregation, dependence modeling, solvency capital require-
ment, market-consistent valuation
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Introduction

1. A first overview

Insolvency occurs when a company is unable to meet its financial
obligations. A lack of liquidity to pay debts as they fall due is called
cash-flow insolvency, and the event that the value of a company’s liabil-
ities exceeds the value of its assets is called balance-sheet insolvency or
technical insolvency. This thesis concerns mathematical and statistical
concepts used to assess the risk of balance-sheet insolvency, and hence
could be used as tools for risk management decisions.

Given some valuationmethod and a pre-defined time period, the loss
on an asset is the negative change in asset value over the period. The loss
on a liability is the positive change in liability value over the period. The
aggregate loss is the sum of losses on all individual assets and liabilities.
For a future time period, the aggregate loss and the individual losses
may be viewed as random variables. The distribution of the aggregate
loss, in particlar the right tail of the distribution, determines the risk of
insolvency.

The challenge in solvency modeling is to estimate the right tail of
the aggregate loss distribution as well as possible. The first modeling
step is to decide on valuation methods to use given some overarching
valuation principle. For example, if market-consistent valuation is the
principle, then the valuation method for assets (and liabilities) traded
in deep and liquid markets is to observe market prices. For non-traded
liabilities (and assets) a valuation method based on a subjective choice of
state price deflator (stochastic discount factor) may be used. The second
step is to decide on a segmentation of asset and liability classes that
is optimal in some sense, and the third and final step is to model the
marginal distributions and dependence structure of the losses on these
classes.

3
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Governments impose regulations on insurers in order to reduce their
probability of insolvency and thereby protect the policyholders. Regula-
tory frameworks for insurers differs between jurisdictions. For example,
the countries in the European Union are about to implement Solvency
II, and Switzerland has the Swiss Solvency Test (SST). A short overview
of the Solvency II framework is given in the end of this section. The
remainder of the introduction is organized as follows. In Section 2, we
define the one-period loss of an insurer and introduce the concept of
risk measures. We explain how insurance liabilities can be valued using
state price deflators in Section 3. Section 4 is devoted to construction
and modeling of liability losses, and modeling dependence between as-
set and liability losses. Summaries of the papers included in this thesis
are found in Section 5, and some final thoughts are given in Section 6.

1.1. Solvency II. The regulatory regime Solvency II will harmonize the
solvency rules for insurers in the European Union. The Solvency II Di-
rective, which is a recast of several EU directives [15–17], will enter into
force on January 1, 2016. The Delegated Act of Solvency II [14] con-
tains implementing rules that set out more detailed requirements for
insurers. The Solvency II Directive replaces 14 existing EU directives
commonly known as “Solvency I”. While Solvency I focuses on the in-
surance risks on the liability side of the balance sheet and uses a crude
volume-based capital requirement model, Solvency II takes a total bal-
ance sheet approach where all risks and their interactions are supposed
to be considered. For a historical overview of the steps towards Solvency
II, see [27].

The framework is divided into three areas, called pillars. Of main
concern for this thesis is Pillar 1, which sets out quantitative require-
ments, including the rules to value assets and liabilities and to calculate
capital requirements. Pillar 2 sets out requirements for risk manage-
ment, governance and supervision, and Pillar 3 addresses transparency
and disclosure.

The most well-known capital requirement level is the Solvency Cap-
ital Requirement (SCR) which “shall correspond to the Value-at-Risk of
the basic own funds of an insurance or reinsurance undertaking subject
to a confidence level of 99.5% over a one-year period” [15, Article 101].
The “basic own funds” are essentially the difference in value between
the insurer’s assets and liabilites. The other capital requirement level is

4
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the Minimum Capital Requirement (MCR) which is volume based and
similar in structure to the capital requirement in Solvency I. There is
a standard formula for SCR calculation in Solvency II, but insurers also
have the possibility to develop and use their own (full or partial) internal
models to calculate SCR. The SCR and MCR may be viewed as soft and
hard levels of intervention. If an insurer breaches the SCR, the regulator
will intervene to make sure that the insurer takes the appropriate ac-
tions to restore SCR. Breaching the MCR will trigger serious regulatory
intervention and potential closure of the company.

The fundamental valuation principle in Solvency II is that all as-
sets and liabilities on the insurer’s balance sheet should be valued in a
market-consistent way. This means that the value of an asset or a li-
ability traded in a deep and liquid market is set to the price paid in
the latest market transaction. However, liabilities arising from contrac-
tual obligations towards policyholders, known as technical provisions,
are in general not traded. The directive states that “the value of tech-
nical provisions shall be equal to the sum of a best estimate and a risk
margin”, where “the best estimate shall correspond to the probability-
weighted average of future cash-flows, taking account of the time value
of money” and “the risk margin shall be such as to ensure that the value
of the technical provisions is equivalent to the amount that insurance
and reinsurance undertakings would be expected to require in order to
take over and meet the insurance and reinsurance obligations” [15, Ar-
ticle 77].

In general, insurance risk cannot (and should not) be hedged. Thus,
any model for insurance liability valuation must somehow include the
market price of insurance risk. A mathematical interpretation of the
above quotes is that the best estimate is calculated under the assumption
that the market price of risk is zero.The risk margin is then calculated as
the cost of holding the solvency capital until all claims are settled, with
the cost-of-capital rate set to 6% (see [14, Articles 37–39] for details).
The cost-of-capital rate is here interpreted as the expected return in ex-
cess of the risk-free rate an investor will require in order to take over the
insurance obligations.

5
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2. From ruin theory to risk measures

In this section we start from the classical Cramér-Lundberg model
and arrive at a modern setup for solvency modeling based on one-period
losses. The line of presentation is inspired by [32].

The theoretical foundation of collective risk theory, also known as
ruin theory, was laid by Lundberg in his doctoral thesis [23]. The pi-
oneering work of Lundberg was later treated with mathematical rigor
by Cramér [6, 8]. In the Cramér-Lundberg model, the surplus process
(Xt)t≥0 of the insurer is given by

Xt = x0 + ct −
Nt
∑

i=1

ηi , t ≥ 0,

where x0 ≥ 0 is the initial surplus, c > 0 is the premium rate, (ηi )i∈N
are strictly positive iid claim amounts with finite mean, and (Nt)t≥0 is a
homogeneous Poisson process. The claim amounts (ηi )i∈N and the num-
ber of claims (Nt)t≥0 are assumed to be independent, so

(

∑Nt

i=1ηi
)

t≥0 is a
compound Poisson process.

The main quantity of interest in the Cramér-Lundberg model is the
probability of ultimate ruin,

P

(

inf
t≥0

Xt < 0
)

,

and there are many interestingmathematical results related to this prob-
ability. For example, the origin of the theory of large deviations (see [29])
is traced back to work by Esscher [13] and Cramér [7]. Ruin theory for
heavy-tailed claim amount distributions is covered in e.g. [10, Chap-
ter 1].

In practice, it is not possible to continuously assess the value of an
insurer’s surplus, so for statistical purposes we consider the discrete ver-
sion of the ultimate ruin probability,

P

(

inf
j∈N

Xj < 0

)

.

Amodern interpretation is that x0 represents the insurer’s initial equity,
i.e. the difference in value between assets and liabilities. Given that new
equity may be injected by the owners of the insurance company at each

6
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time step it makes sense to study the one-period ruin probability,

P (X1 < 0) .

In this modern interpretation, c includes not only the earned premium
but also the return on assets over the period. We drop the compound
Poisson process assumption, i.e. we allow

∑N1
i=1ηi to have any distribu-

tion. Moreover,
∑N1

i=1ηi is assumed to include not only new claims but
also revaluation of existing, not yet completely settled, claims. Putting
all this together, we get

X1 = x0 + c −
N1
∑

i=1

ηi = A0 −L0 +A1 −A0 − (L1 −L0) = A1 −L1,

where Ai and Li , i = 0,1, are the values of assets and liabilities, respec-
tively, of the insurer at time i.

We define the one-period profit Y1 as the change in equity over the
period, i.e.

Y1 = A1 −L1 − er0(A0 −L0),
where r0 denotes the one-period risk-free rollover at time 0. The dis-
counted one-period loss Z1 is defined by

Z1 = −e−r0Y1 = A0 −L0 − e−r0(A1 −L1).
Understanding the probability distribution of the insurer’s loss Z1 (or
profit Y1) is the key for both strategic business decisions and risk man-
agement.

2.1. Risk measures and capital requirements. A risk measure tries to
summarize the risk of the entire probability distribution of the future
equity value (or the change in equity value) in a single number. Let V be
a linear vector space of random variables V representing values of the
insurer’s equity at time 1. A risk measure ρ is then defined as a map-
ping from V to R∪∞. The quantity ρ(V ) is interpreted as the minimum
amount of cash that needs to be added to the insurer’s equity at time 0
in order to make the position with value V at time 1 acceptable. If no
cash is needed, i.e. ρ(V ) ≤ 0, then the position is considered acceptable.

A risk measure ρ is called a monetary risk measure if it is:
(1) translation invariant, i.e. ρ(V +aer0) = ρ(V )−a for all a ∈ R, and
(2) monotone, i.e. V2 ≤ V1 implies that ρ(V1) ≤ ρ(V2).

It is called a coherent risk measure if it is also:

7
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(3) positively homogenous, i.e. ρ(aV ) = aρ(V ) for all a ≥ 0, and
(4) subadditive, i.e. ρ(V1 +V2) ≤ ρ(V1) + ρ(V2).

The notion of coherent risk measures was introduced in [1]. More about
risk measures and their properties are found in [21, Chapter 6].

Any monetary risk measure ρ determines a capital requirement. Us-
ing the translation invariance property, we get

ρ(A1 −L1) = ρ(Y1 + er0(A0 −L0)) = ρ(Y1) +L0 −A0.

The insurer’s portfolio of assets and liabilities is accepted by the regula-
tor if ρ(A1 −L1) ≤ 0, which is equivalent to

A0 ≥ L0 + ρ(Y1),

i.e. today’s value of assets must exceed today’s value of liabilities by at
least the capital requirement ρ(Y1).

The two most commonly used risk measures are Value-at-Risk (VaR)
and Expected Shortfall (ES). Given a confidence level p ∈ (0,1) and an
equity value V at time 1, the (one-period) Value-at-Risk is defined by

VaRp (V ) = min{a : P (aer0 +V < 0) ≤ p}
=min{a : P (Z > a) ≤ p} = F−1Z (1− p)

where Z = −e−r0V and F−1· denotes the quantile function. The (one-
period) Expected Shortfall is defined by

ESp (V ) =
1
p

∫ p

0
VaRu (V )du =

1
p

∫ 1

1−p
F−1Z (u)du.

Notice that

P (X1 < 0) < p ⇔ P (Z1 ≤ A0 −L0) ≥ 1− p
⇔ A0 ≥ L0 +F−1Z1

(1− p),

so setting an upper bound of the one-period ruin probability is equiva-
lent to choosing Value-at-Risk as risk measure.

In Solvency II, the choice of risk measure is VaR at level 0.005 over
a one-year horizon (see [15, Article 101]). The solvency capital require-
ment is thus given by

SCR = VaR0.005 (Y1) = F−1Z1
(0.995),

8
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where Z1 = −e−r0Y1 is the (discounted) one-year loss. Since VaR at level
0.005 is the 0.995-quantile of the one-year loss distribution, the SCR in
Solvency II is often referred to as ”the Value-at-Risk at level 99.5%”.

The risk measure used in the Swiss Solvency Test is ES at level 0.01
over a one-year horizon (see [28]), so the SCR is given by

SCR = ES0.01 (Y1) = 100
∫ 1

0.99
F−1Z1

(u)du.

On the one hand, ES should be a better measure of risk than VaR
since it takes the entire right tail of the one-period loss distribution into
account. Moreover, ES is a coherent risk measure while VaR is not. On
the other hand, there are very few data available on the extreme levels
specified by the regulators, so in practice the statistical problem (more
or less) boils down to determining the shape of the right tail, and the
variance, of the loss distribution given a total number of, say, 20 obser-
vations.

3. The valuation framework

In this section we introduce the concept of state price deflators (sto-
chastic discount factors), as presented in [31], to create valuation func-
tionals for insurance liability cash flows. Moreover, we show how a state
price deflator defines a risk-neutral probability measure. The existence
of a risk-neutral measure is equivalent to absence of arbitrage opportu-
nities in the market.

We consider a discrete-time setting given by a filtered probability
space (Ω,F ,F ,P), where F = (Ft)t=0,...,T , with Ft denoting the informa-
tion available at time t. Here, P is the real-world probability measure
under which all cash flows and price processes are observed, and the
expectation operator with respect to P is denoted by E. We let P(t,u)
denote the price at time t of a non-defaultable zero-coupon bond matur-
ing at time u ≥ t, with P(u,u) = 1 by convention, and rt = − logP(t, t +1)
denote the one-period risk-free rollover at time t.

Each asset or liability has a corresponding F -adapted price process
(ξt)t=0,...,T , where ξt denotes the price at time t. For assets (or liabilities)
traded in deep and liquid markets, we equate ξt with the market price
at time t.

If no (deep and liquid) market exists, we view a liability (or an as-
set) as a stochastic cash flow X = (X0, . . . ,XT ), where Xt is the payment

9
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due at time t. We decide on a valuation functional Qt that maps the
cash flow to a market-consistent (liability) value at time t, and set ξt =
−Qt(X ). In general, the market of insurance liabilities is incomplete
which implies that there are infinitely many valuation functionals that
allow for arbitrage-free pricing. One should aim for a valuation func-
tional that correctly captures the risk appetite of the market partici-
pants, and yields a simple change of measure between the risk-neutral
and the real-world probability measures.

3.1. State price deflators. A cash flow X is an F -adapted random vec-
tor with integrable components, and we write X ∈ L1(Ω,F ,F ,P). A state
price deflator ϕ = (ϕ0, . . . ,ϕT ) ∈ L1(Ω,F ,F ,P) is a strictly positive ran-
dom vector with normalization ϕ0 ≡ 1. The component ϕt transports a
random cash amount Xt at time t to a value at time 0.

The set of cash flows that can be valued relative to a given state price
deflator ϕ is

Lϕ =















X ∈ L1(Ω,F ,F ,P) : E















T
∑

t=0

ϕt |Xt |
∣

∣

∣

∣
F0















<∞














,

and the value at time t of a cash flow X ∈ Lϕ is defined by

Qt (X ) =
1
ϕt

E















T
∑

u=0

ϕuXu

∣

∣

∣

∣
Ft















, t = 0, . . . ,T .

By the tower property of conditional expectation,

E (ϕt+1Qt+1 (X ) |Ft) = E















E















T
∑

u=0

ϕuXu

∣

∣

∣

∣
Ft+1















∣

∣

∣

∣
Ft















= E















T
∑

u=0

ϕuXu

∣

∣

∣

∣
Ft















= ϕtQt (X ) .

So, the deflated price process (ϕtQt(X ))t=0,...,T is a (P,F )-martingale.
The cash flow corresponding to a zero-coupon bond maturing at

time u consists of one single deterministic payment of size 1 at time
u. Thus, for any state price deflator ϕ, the condition

P(t,u) =
1
ϕt

E (ϕu |Ft) , t ≤ u,
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must be fulfilled.

3.2. Equivalent martingale measure. The value Bt of one unit of the
bank account at time t is given by

B0 = 1 and Bt = exp















t
∑

s=1

rs−1















, t ≥ 1.

We define a probability measure P∗, equivalent to P, via the Radon-
Nikodym derivative

dP∗

dP

∣

∣

∣

∣
Ft = ϕtBt > 0.

We have

E
∗ (B−1t+1Qt+1 (X ) |Ft

)

= B−1t ϕ−1t E (ϕt+1Qt+1 (X ) |Ft) = B−1t Qt (X ) ,

(see e.g. [31, Lemma 11.3.]), i.e. (B−1t Qt(X ))t=0,...,T is a (P∗,F )-martin-
gale. The martingale measure P∗ is often called a risk-neutral measure.
According to the Fundamental Theorem of Asset Pricing, the existence
of a risk-neutral measure P∗ is equivalent to that the market is free of
arbitrage (see e.g. [9, Section 1.6.] or [19, Theorem 5.16.]). In general,
there exist more than one risk-neutral measure which implies that the
market is incomplete.

A natural way to model state price deflators is to set up a model
for the interest-rate dynamics under P∗ such that it via a convenient
change of measure yields interest-rate dynamics under P that are in
line with historical observations of interest-rate changes. Typically, the
change of measure corresponds to a Girsanov transformation, where
the kernel can be interpreted as the market price of risk. In this case,
the Radon-Nikodym derivative is completely determined by the market-
price-of-risk function, which may be estimated from historical interest-
rate changes. For an introduction to interest-rate modeling, see [4], [18]
(continuous time) or [31] (discrete time).

3.3. Non-life insurance liabilities. Consider a fixed non-life insurance
liability class (or line of business), and let Xi,j denote the (incremental)
claims payment for accident period i and development period j , i.e. the
amount paid in accounting period i + j for claims in accident period i.
Moreover, let J denote the ultimate development period, i.e. Xi,j = 0 if
j > J .
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Accident Development period
period 0 1 · · · J
−J +1 X−J+1,J
−J +2 . . . X−J+2,J

... . . . . . .
...

1 X1,0 X1,1 · · · X1,J
...

...
... · · · ...

K XK,0 XK,1 · · · XK,J

Table 1. Future claims payments at time 0.

At time 0, the insurer’s liability cash flow is X̃ = (0, X̃1, . . . , X̃T ), where
T = J +K , and

X̃t =
min(t,K)
∑

i=−J+t
Xi,t−i , t = 1, . . . ,T ,

with K denoting the minimum integer greater than or equal to the max-
imum remaining lifetime of contracts written at time 0. Since most non-
life insurance contracts have a lifetime of one year, K is often the number
of periods in one year. The claims payments included in the cash flow X̃
are shown in Table 1.

For a given state price deflator ϕ, we have

Qs

(

X̃
)

=
1
ϕs

T
∑

t=1

E

(

ϕtX̃t |Fs
)

, s = 0,1.

In the most general case we need a joint model for ϕ and X̃ to calculate
Qs(X̃ ). Here, we consider the case X̃t = ItYt , t = 1, . . . ,T , where It is
the value of an index at time t that may depend of ϕ, and Yt is a pure
insurance risk independent of both the state price deflator and the index.
The index could be, e.g., a consumer price index, a wage level index, or
a claims inflation index.

We have
1
ϕs

E

(

ϕtX̃t |Fs
)

=
1
ϕs

E (ϕtIt |Fs)E (Yt |Fs)

= BsE
∗ (B−1t It |Fs

)

E (Yt |Fs) ,
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and hence,

(1) Qs

(

X̃
)

= Bs

T
∑

t=1

E
∗ (B−1t It |Fs

)

E (Yt |Fs) , s = 0,1.

Thus, to value the cash flowwe need both a method to calculateE (Yt |Fs),
and a joint model for the bank account and the index under P∗.

We set

E (Yt |Fs) = Ŷ
(s)
t , with Ŷ

(s)
t :=

min(t,K)
∑

i=−J+t
Ŷ
(s)
i,t−i ,

where Ŷ
(s)
i,j is a prediction of the index-adjusted payment Yi,j = Xi,j /Ii+j

at time s given some actuarial method, e.g. the chain-ladder method (see
[24]) or the Bornhuetter-Ferguson method (see [3]) with some additional
assumptions regarding future accident periods where no payments yet
are made.

Notice that if there is a bond linked to the index, then

1

B−1s Is
E
∗ (B−1t It |Fs

)

= Pr(s, t),

where Pr(s, t) denotes the price at time s of an index-linked zero-coupon
bond maturing at time t. In this case,

Qs

(

X̃
)

= Is

T
∑

t=1

Pr(s, t)E (Yt |Fs) , s = 0,1,

so there is no need for a joint model for the bank account and the index.
In Papers I and III, we assume independence between X̃ and ϕ, i.e.

we set It = 1 for all t. Moreover, we assume a low-interest-rate environ-
ment and use the approximation

(2) Qs

(

X̃
)

≈
T

∑

t=1

E (Yt |Fs) , s = 0,1.

In Paper IV we model state price deflators and the market price of risk
in a Heath-Jarrow-Morton (HJM) framework. Moreover, we give a sug-
gestion of how to model the dependence between interest rates and the
index under P∗.
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4. Dependence modeling

In this section we formulate the risk aggregation problem as the
problem of statistically estimate (the tail of) the distribution of a sum
of dependent random variables. Moreover, we explain how to construct
time series of insurance liability losses from data, and formulate a sto-
chastic model for one-period losses for the case when an index can be
linked to the liability cash flow.

Assume that all assets but no liabilities of the insurer are traded
in deep and liquid markets. Let dA and dL be the insurer’s number of
classes of assets and liabilities, respectively. Moreover, let Aℓ

t denote the

total market value of assets of class ℓ at time t, and let X̃ ℓ denote the
cash flow corresponding to liability class ℓ at time 0.

Then, the (discounted one-period) loss on asset class ℓ is

Zℓ
A,1 = Aℓ

0 − e−r0Aℓ
1, ℓ = 1, . . . ,dA,

and the loss on liability class ℓ is

Zℓ
L,1 = e−r0 Q1

(

X̃
ℓ
)

−Q0

(

X̃
ℓ
)

, ℓ = 1, . . . ,dL.

The total loss Z1 of the insurer may now be written

Z1 =
d

∑

ℓ=1

Zℓ
1,

where d = dA + dL and

Zℓ
1 =















Zℓ
A,1, if 1 ≤ ℓ ≤ dA,

Z
ℓ−dA
L,1 , if dA < ℓ ≤ d.

The statistical challenge is to get the best estimate possible of the joint
distribution of Z1

1 , . . . ,Z
d
1 . Given this joint distribution, the distribution

of Z1 follows directly. We must make sure that dA and dL are large
enough to capture the essential parts of the insurance business, but not
larger. Ideally, there should be independence between some disjoint sets
of Zℓ

1s that simplifies the dependence modeling.
For an introduction to the basic concepts of multivariate modeling,

e.g. spherical and elliptical distributions, extreme value methods, and
copulas, we refer to [21] and [25]. More about extreme value model-
ing is found in [5]. For a comprehensive view on regular variation and
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statistical inference for heavy tails, see [26]. Financial time series anal-
ysis and related stochastic processes are covered in [10, Chapter 7] and
[25, Chapter 4]. Some recent interesting results on risk aggregation with
dependence uncertainty are found in [2], [11] and [22].

4.1. Observing and modeling liability losses. It is a straightforward
task to create time series of asset losses to analyze from historical mar-
ket prices. The dependence between losses on a bond portfolio, a stock
portfolio and a foreign interest-rate swap is studied in Paper II. How-
ever, to “construct” losses on the different liability classes (often chosen
as the lines of business) we need both company internal data and a valu-
ation functional. In Papers I and III, we construct normalized losses Uℓ

via

Uℓ =
Q1

(

X̃
ℓ
)

−Q0

(

X̃
ℓ
)

Q0

(

X̃
ℓ
) ,

where Q0 and Q1 are given by the approximation in (2).
Now, suppose that X̃ℓ

t = I ℓt Y
ℓ
t , where I ℓt is the value of index ℓ at time

t that may depend of ϕ, and Y ℓ
t is a pure insurance risk independent of

both the state price deflator and the index. From (1) we get

Qs

(

X̃
ℓ
)

= Bs

T
∑

t=1

E
∗ (B−1t I ℓt |Fs

)

E

(

Y ℓ
t |Fs

)

, s = 0,1.

Thus,

Zℓ
L,1 =

T
∑

t=1

(

V ℓ
1,tW

ℓ
1,t −V ℓ

0,tW
ℓ
0,t

)

where V ℓ
s,t = E∗

(

B−1t I ℓt |Fs
)

and W ℓ
s,t = E

(

Y ℓ
t |Fs

)

.

The distribution of Zℓ
L,1|F0 is determined by the distributions of

V ℓ
1|F0 and W ℓ

1|F0, where

V ℓ
1 = (V ℓ

1,1, . . . ,V
ℓ
1,T ) and W ℓ

1 = (W ℓ
1,1, . . . ,W

ℓ
1,T ).

A joint model for the bank account and index ℓ yields the distribution of
V ℓ

1|F0. We give an example of such a model in Paper IV. The distribution
ofW ℓ

1|F0 is given by the choice of stochastic claims reserving model (see
e.g. [12] or [30]).
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Losses on two liability classes, ℓ and m, may be dependent due to
index or interest rate dependence, i.e. dependence between V ℓ

1|F0 and
Vm

1 |F0, or due to pure insurance risk dependence, i.e. dependence be-
tween W ℓ

1|F0 and Wm
1 |F0. Moreover, for any ℓ, there may exist depen-

dence between the index factor V ℓ
1|F0 and losses on interest-rate sensi-

tive assets, e.g. bonds and interest-rate swaps.
If the general price inflation in a region is not close to zero, we expect

to see positive index dependence betweenmany non-life liability classes.
This is why the standard formula in Solvency II assumes positive cor-
relations between the non-life modules (see [14, Annex IV]). Since the
subjective part in any solvency calculation is the assumption about fu-
ture claims or price inflation (see e.g. Papers I and IV), it is a good idea
to make this assumption explicit in the model and separate it from the
modeling of pure insurance risk dependence. A natural approach is to
create two independent models: a joint model for the bank account and
all indices that yields the distributions of V ℓ

1|F0s, and a multivariate sto-
chastic claims reserving model (see e.g. [30, Chapter 8]), with some ad-
ditional assumptions regarding future accident periods, that yields the
distributions of W ℓ

1|F0s.
The findings in Paper III suggest that there exists pure insurance

risk dependence between the Swedish LoBs Home and Motor Other, but
there are no clear signs of dependence between other lines of business.
Moreover, Paper I suggests that there is dependence between subclasses
of the LoBs Motor Liability and Motor Other.

4.2. A simple example. In this example, we construct a simple model
for the stochastic behavior of a non-life insurer’s assets and liabilities.
The aim is to show how model assumptions may induce interest-rate,
index, and pure insurance risk dependence between losses for different
lines of business.

We consider a yearly grid with time points t = 0,1,2,3, where t = 0
is the current time. The non-life insurer has two short-tailed lines of
business (J = 1 in both LoBs) and an asset portfolio that only consists of
n zero-coupon bonds maturing at time 2. All insurance contracts have a
lifetime of one year, so we set K = 1.

We assume a Ho-Lee framework (see [20]) with interest-rate dynam-
ics given by

rt = rt−1 +θt +σrǫ
∗
t , t = 1,2,
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where ǫ∗1|F0 and ǫ∗2|F1 are independent standard normal random vari-
ables under P∗, and θ1 and θ2 are known constants. We further assume
that θ1 = θ2 = −12σ2

r . With these dynamics, the one-year loss on the asset
portfolio is given by

Z1
1 = n(P(0,2)− e−r0P(1,2)) = ne−r0(e−r0+σ

2
r − e−r1).

For LoB ℓ, we have the cash flow X̃
ℓ = (0, X̃ℓ

1, X̃
ℓ
2,0), where

X̃ℓ
1 = I ℓ1Y

ℓ
1 = I ℓ1(Y

ℓ
0,1 +Y ℓ

1,0) and X̃ℓ
2 = I ℓ2Y

ℓ
2 = I ℓ2Y

ℓ
1,1.

We let
I ℓ0 = 1 and I ℓt = eq

ℓ
0+...+q

ℓ
t−1 , t ≥ 1,

and assume that, for t = 1,2,

qℓt−1 = rt + dℓt , with dℓt = −
1
2
σ2
d +σdδ

ℓ∗
t ,

where (δ1∗1 ,δ2∗1 )|F0 and (δ1∗2 ,δ2∗2 )|F1 are independent bivariate standard
normal random vectors with correlation ρd under P∗. If we further, still
under P∗, assume independence between the ǫ∗ and the δ∗, we get

E∗
(

B−11 I ℓ1 |F0
)

= 1, E∗
(

B−11 I ℓ1 |F1
)

= e−r0+r1+d
ℓ
1 ,

E∗
(

B−12 I ℓ2 |F0
)

= 1, E∗
(

B−12 I ℓ2 |F1
)

= e−r0+r1+d
ℓ
1 .

Now, we consider the pure insurance risk. For i = 0,1, let

Y ℓ
i,1 = Y ℓ

i,0(f
ℓ
i − 1), with f ℓ

i = f +σf β
ℓ
i ,

where β10 |F0,β20 |F0,β11 |F1,β21 |F1 are independent standard normal ran-
dom variables under P. Notice that the chain-ladder factors f ℓ

i are inde-
pendent under P. Moreover, let

Y ℓ
1,0 = µY +σYγ

ℓ,

where γ1|F0 and γ2|F0 are standard normal random variables with cor-
relation ρY under P. Assuming independence between the β and the γ
under P, we get

E

(

Y ℓ
0,1|F0

)

= Y ℓ
0,0(f − 1), E

(

Y ℓ
0,1|F1

)

= Y ℓ
0,0(f

ℓ
0 − 1),

E

(

Y ℓ
1,0|F0

)

= µY , E

(

Y ℓ
1,0|F1

)

= Y ℓ
1,0,

E

(

Y ℓ
1,1|F0

)

= µY (f − 1), E

(

Y ℓ
1,1|F1

)

= Y ℓ
1,0(f − 1).
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Thus,

Q0

(

X̃
ℓ
)

= Y ℓ
0,0(f − 1) +µY f ,

e−r0 Q1

(

X̃
ℓ
)

= e−r0+r1+d
ℓ
1(Y ℓ

0,0(f
ℓ
0 − 1) +Y ℓ

1,0f ),

and we get the losses

Z2
1 = e−r0+r1+d

1
1 (Y 1

0,0(f
1
0 − 1) +Y 1

1,0f )−Y 1
0,0(f − 1)−µY f ,

Z3
1 = e−r0+r1+d

2
1 (Y 2

0,0(f
2
0 − 1) +Y 2

1,0f )−Y 2
0,0(f − 1)−µY f ,

for LoBs 1 and 2, respectively. We have index dependence due to the cor-
relation between d11 |F0 and d21 |F0, and pure insurance risk dependence
due to the correlation between Y 1

1,0|F0 and Y 2
1,0|F0. Moreover, we have

interest rate dependence between all losses since r1 is in the expressions
for Z1

1 , Z
2
1 and Z3

1 .
All insurers in a market are subject to the same interest rates, and

similiar levels of claims inflation in each common line of business. Thus,
it is reasonable that all insurers use the same model for interest rates
and indices, and their dependence structure. We discuss this further in
Section 6.

5. Summary of papers

Here we give brief summaries of the contents of the papers in this
thesis.

5.1. Paper I. In the first paper, A simulation model for calculating sol-
vency capital requirements for non-life insurance risk, we construct a mul-
tidimensional simulation model that could be used to get a better un-
derstanding of the stochastic nature of insurance claims payments, and
to calculate solvency capital requirements, best estimates, risk margins
and technical provisions. The only model input is assumptions about
distributions of payment patterns, i.e. how fast claims are handled and
closed, and ultimate claim amounts, i.e. the total amount paid to pol-
icyholders for accidents occuring in a specified time period. This kind
of modeling works well on lines of business where claims are handled
rather quickly, say in a few years. The assumptions made in the paper
are based on an analysis of motor insurance data from the Swedish in-
surance company Folksam. Motor insurance is divided into the three
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subgroups collision, major first party and third party property insurance.
The data analysis is interesting in itself and presented in detail in Chap-
ter 3 of the paper.

Some of the findings of Paper I are that: the multivariate normal
distribution fitted the motor insurance data rather well; modeling data
for each subgroup individually, and the dependencies between the sub-
groups, yielded more or less the same SCR as modeling aggregated mo-
tor insurance data; uncertainty in prediction of trends in ultimate claim
amounts affects the SCR substantially.

5.2. Paper II. In the second paper, Foreign-currency interest-rate swaps in
asset-liability management for insurers, co-authored with Filip Lindskog,
we investigate risks related to the common industry practice of engaging
in interest-rate swaps to increase the duration of assets. Our main focus
is on foreign-currency swaps, but the same risks are present in domestic-
currency swaps if there is a spread between the swap-zero-rate curve
and the zero-rate curve used for discounting insurance liabilities.

We set up a stylized insurance company, where the size of the swap
position can be varied, and conduct peaks-over-threshold analyses of
the distribution of monthly changes in net asset value given historical
changes in market values of bonds, swaps, stocks and the exchange rate.
Moreover, we consider a 4-dimensional sample of risk-factor changes
(domestic yield change, foreign-domestic yield-spread change, ex-
change-rate log return, and stock-index log return) and develop a struc-
tured approach to identifying sets of equally likely extreme scenarios
using the assumption that the risk-factor changes are elliptically dis-
tributed. We define the worst area which is interpreted as the subset of a
set of equally extreme scenarios that leads to the worst outcomes for the
insurer.

The fundamental result of Paper II is that engaging in swap contracts
may reduce the standard deviation of changes in net asset value, but it
may at the same time significantly increase the exposure to tail risk; and
tail risk is what matters for the solvency of the insurer.

5.3. Paper III. In the third paper, Signs of dependence and heavy tails in
non-life insurance data, we study data from the yearly reports the four
major Swedish non-life insurers (Folksam, If, Länsförsäkringar and Trygg-
Hansa) have sent to the Swedish Financial Supervisory Authority (FSA).
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The aim is to find the marginal distributions of, and dependence be-
tween, losses in the five largest lines of business. These findings are
then used to create models for SCR calculation. We try to use data in an
optimal way by defining an accounting year loss in terms of actuarial li-
ability predictions, and by pooling observations from several companies
when possible, to decrease the uncertainty about the underlying distri-
butions and their parameters.

We find that dependence between lines of business is weaker in the
FSA data than what is assumed in the Solvency II standard formula. We
also find dependence between companies that may affect financial sta-
bility, and must be taken into account when estimating loss distribution
parameters.

5.4. Paper IV. In the fourth paper, Valuation of index-linked cash flows in
a Heath-Jarrow-Morton framework, co-authored with Filip Lindskog, we
study valuation of index-linked cash flows under the assumption that
the index return and the changes in nominal interest rates have signif-
icant dependence. The cash flows we consider are such that each pay-
ment is a product of two independent random variables: one is the in-
dex value and the other may represent pure insurance risk or simply a
constant. Typically, the index is a consumer price index or a wage in-
dex, but the index returns could also be interpreted as claims inflation,
i.e. increase in claims cost per sold insurance contract. Given a deep and
liquid market of bonds linked to the same index as the cash flow, the nat-
ural market-consistent value of the cash flow would be a best estimate of
the non-index factor times the market-implied price of an index-linked
zero-coupon bond. Here we focus mainly on market-consistent valu-
ation of index-linked cash flows when market-implied prices of index
zero-coupon bonds are absent or unreliable.

We apply the valuation principles in [31] with the aim of setting up a
credible valuation machinery for index-linked cash flows. The valuation
formulas we derive allow us to understand how the volatility structure
of the calibrated Heath-Jarrow-Morton model, the market-price-of-risk
vector, the forecasts of trends in index values and interest rates, and
the necessary modeling assumptions affect the value of an index-linked
cash flow. The index we consider in the empirical analysis is the Swedish
Consumer Price Index (CPI) which, for example, illness and accident in-
surance contracts often are linked to. Market prices of CPI-linked bonds
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offer possibilities to investigate how the market’s anticipation of future
price inflation can be understood in terms of our valuation machinery.

Our main contributions in this paper can be summarized as follows.
Firstly, we present an approach, for assigning a monetary value to a sto-
chastic cash flow, that does not require full knowledge of the joint dy-
namics of the cash flow and the term structure of interest rates. Sec-
ondly, we investigate in detail model selection, estimation and valida-
tion in an HJM framework. Finally, we analyze the effects of model un-
certainty on the valuation of the cash flows, and also how forecasts of
cash flows and interest rates translate into model parameters and affect
the valuation.

6. Some thoughts about solvency modeling and regulation

We have seen in Section 4 that if claims inflation indices are avail-
able, then the modeling of interest rates and indices can be separated
from the modeling of (index-adjusted) claims payments. In this case,
the regulator could decide on a joint model for interest rates and indices
with parameters specified so that Qs(X̃ ) becomes the amount the fictive
investor will require at time s in order to take over the liability cash
flow X̃ . The only dependence left to model then is the dependence be-
tween insurance events, and this modeling could (and probably should)
be left to the actuaries in the different companies. A qualified guess is
that the linear correlation between most lines of business will be weak
when payments are adjusted for claims inflation. However, there may
exist extremal dependence due to catastrophes that somehow must be
modeled.

One interesting future research problem is how data from differ-
ent companies best could be used to construct claims inflation indices
for the major lines of business. Another interesting problem is how to
choose parameters so that the valuation functional corresponds to real-
istic assumptions regarding the investor’s risk profile.

As a final note, I would like to emphasize that we should be care-
ful so that the development of new valuation models does not lead to
more securitization of insurance risk. It is of great importance for pol-
icyholder protection that the insurance risk stays in the insurance com-
pany where it can be (somewhat) regulated.
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