DOI: 10.1111/cgf.12597

COMPUTER GRAPHICS forum
Volume 00 (2015), number 0 pp. 1-10

Fast Rendering of Image Mosaics and ASCII Art

Nenad Marku§', Marco Fratarcangeli’, Igor S. PandZi¢' and Jorgen Ahlberg?

!'University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia
{nenad.markus, igor.pandzic } @fer.hr
2Chalmers University of Technology, Dept. of Applied Information Technology, Goteborg, Sweden
marcof @chalmers.se
3Linkoping University, Dept. of Electrical Engineering, Computer Vision Laboratory, Linkoping, Sweden
jorgen.ahlberg @liu.se

Abstract

An image mosaic is an assembly of a large number of small images, usually called tiles, taken from a specific dictionary/codebook.
When viewed as a whole, the appearance of a single large image emerges, i.e. each tile approximates a small block of pixels.
ASCII art is a related (and older) graphic design technique for producing images from printable characters. Although automatic
procedures for both of these visualization schemes have been studied in the past, some are computationally heavy and cannot
offer real-time and interactive performance. We propose an algorithm able to reproduce the quality of existing non-photorealistic
rendering techniques, in particular ASCII art and image mosaics, obtaining large performance speed-ups. The basic idea is to
partition the input image into a rectangular grid and use a decision tree to assign a tile from a pre-determined codebook to each
cell. Our implementation can process video streams from webcams in real time and it is suitable for modestly equipped devices.
We evaluate our technique by generating the renderings of a variety of images and videos, with good results. The source code of

our engine is publicly available.

Keywords: ASCII art, image mosaics, decision trees, SSIM

ACM CCS: Rendering [Computer Graphics]: Non-photorealistic rendering

1. Introduction

As pointed out by Tran [Tra99], a good image mosaic is striking
because it cleverly puts together otherwise ordinary and unrelated
features of the individual tiles into a coherent larger framework. Be-
sides having aesthetic value, image mosaics have been investigated
in the context of copyrighted material protection and hiding secret
data [BGO3]. ASCII art is a similar graphic design technique that
aims at producing images from printable characters. It originated
in its modern form in times when printers had limited graphical
capabilities and transferring images over computer networks was
inappropriate due to bandwidth constraints. It has its value as an
interesting reminder of graphical expression on early computer in-
terfaces. Today, ASCII art is commonly used in media that cannot
display images or mainly uses text. These include e-mails, bulletin
boards, discussion forums, Internet chats and short message services
(SMS).

© 2015 The Authors
Computer Graphics Forum © 2015 The Eurographics Association and
John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

We introduce a novel technique that significantly increases the
speed of ASCII art and image mosaic rendering. This is achieved
by addressing the problem as a classification task which is then
solved with an optimized binary decision tree. The tree samples pixel
intensities at relevant locations in the input image and compares
them with a set of thresholds in order to assign an appropriate tile to
each image region. The thresholds and pixel sampling locations are
set during the tree learning stage. This simple procedure produces
visually appealing results, as shown in Figure 1, while being at least
an order of magnitude faster than other approaches reported in the
literature. The limitation of our method is in rendering with a small
number of tiles (low resolution) and/or with a limited codebook.
However, these limitations also apply to other approaches. A sample
rendering produced with our method can be seen in Figure 2.

The runtime part is visually summarized through the example in
Figure 3.

2 N. Markus et al. / Fast Rendering of Image Mosaics and ASCII Art

IEIELLIE)T/_\\r [(()111) (33161115 (73)_5_\3nuk:
93>3\ \17¢5C4 (33t 30~CTC) [#C_(c/1VTH
veacr (/ oLy sscrs!

1677711 ($35€C1 5 CTy5_[<r Ivu
77>c5CHCy 3335 ovT0Cr 7<7 re Tl
4 (v el

iyPyyymy_Funy] jr s
dkuyyPaWAEPRaLL)
PATRBQHDXYERE75_7]
TEXEBQEAADEL) TF 3%
prxdrxxauytcarsssir

TudERDE vxEr | 711
(a4hxbe | <EE [[[+737)
T_Tyor \71ec:

ETFuTEO <ysashe.
yhhIort/%3LYr _e#ERDae)
“IxVPafnAIL13151% aavEe? ~

Figure 1: The Lenna image (left) rendered in ASCII with the SSIM-based mapping [WBSS04] (middle) and our decision tree—based approach
(right). Our approach produces the same visual results while being two orders of magnitude faster.

<ete, 1, ~F\+_
Jr2 (1~70° 13711 _c_r_r7/>rr>\|7vr ~<<\[~+,
Vi) _I><uyCans }_F <k 13115 7Jui C) L(s(_<_
(1 "_sj<xt/+_[)cL30*)L*x/[J4Z)Ji7>++<]
Vi*T"

3_71_120SynF;
=, ~vr_7ladnyaovi
~%/>\76rVGZV*

Figure 2: A flower rendered in ASCII tiles with our method.

2. Related Work

Generating ASCII artwork by hand is a labourious task that requires
careful placement of individual glyphs. There exist tools which

/\A\
CRBC
COROIONO

simplify the process [MJN11] or convert the image to ASCII art
in a completely automatic way [aal, OR08, TTIN13, XZW10]. The
usual way to automatically generate ASCII art is to subdivide the
image into a rectangular grid and replace each cell with a font glyph
in such a way that the average grey level stays approximately the
same. A representative system that uses this technique is AAlib [aal],
written in the 1990s. It relies on pre-computed lookup tables and
is able to produce visually appealing results in real time. Another
interesting approach has been described by O’Grady and Rickard
[ORO8]. They treat the conversion of binary images to ASCII art as
an optimization problem and use an algorithm based on non-negative
matrix factorization techniques [LS99] to solve it. The approach
has limited applications due to the considerable processing time
needed for a single image. Inspired by the techniques for optimizing
binary images for printing [PQW#*08], Takeuchi et al. [TTIN13]
propose a method which approximates the characteristics of the
human visual system with a Gaussian filter and uses this metric to
drive the optimization procedure which involves placing individual
font glyphs. The authors manage to achieve real-time frame rates on
images of moderate size by implementing the algorithm on a GPU.
Recently, research has focused on structure-based art [XZW10]
which represents an object by rendering its rough outline in ASCII
characters. Their system achieves impressive results that rival even
the artwork created by artists. However, it cannot process images
in real time on modern machines and, thus, has a different area of
application than the approach we describe in this paper.

Figure 3: ASCII art rendering example. The input greyscale image is partitioned into a rectangular grid (left) and each cell is passed through
a decision tree (middle) in order to replace it with an ASCII glyph (right). The decisions in internal tree nodes, D;;, are obtained by comparing

the intensity of a pixel at a pre-determined location with a threshold.

© 2015 The Authors

Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

N. Markus et al. / Fast Rendering of Image Mosaics and ASCII Art 3

As with ASCII art, image mosaics are usually generated by par-
titioning the input image in a grid and assigning a tile from a
codebook to each cell. (There are also techniques for generating
image mosaics with non-rectangular, rotated or slightly deformed
tiles [KP02, OKO08], which is a different problem from the one
we address here.) Silvers [Sil97] described the first computer pro-
gramme for automatizing this process. The similarity between a
tile and a grid cell is usually calculated by taking L, L, or some
string distance between them [Sil97, Tra99], or by using techniques
from content-based image retrieval [FR98, ZNZ03]. Klein et al.
[KGFC02] extended the idea to rendering video streams with an
assembly of small video tiles. An overview of classical algorithms
can be found in [BBFGO07]. Liaw, Tsai, and Tsai [LTTO8] improve
on basic techniques by incorporating multi-resolution analysis to
include the information from surrounding grid cells. The approach
produces gentle colour changes, smooth shapes and more refined
textures. Kang et al. [KSRY13] speed up the basic method based
on per-pixel distance calculation [Sil97, Tra99] by first downsam-
pling the tiles/cells to n x n thumbnails, where n is a small number
(3 or 4). The computation time needed to find the best matching
tile is significantly reduced. In addition, the mosaic generation pro-
cess becomes more robust to small image perturbations and noise.
In our preliminary experiments, we observed that the approach of
Kang et al. [KSRY13] provides the best trade-off between image
mosaic quality and speed, thus, we use it as a baseline for compari-
son. The aforementioned approaches require the search of the whole
codebook for the best matching tile, and this demands large compu-
tational resources (the search complexity is linear in the size of the
codebook). This issue has been addressed by Choi et al. [CJKK13]
and Kang er al. [KSRY11]: they report real-time performance by
optimizing the tile set and taking advantage of GPU acceleration.
Another interesting approach to speed up the database search has
been proposed by Blasi and Petralia [BPOS]. The idea is to build
an antipole tree data structure [CFP*05] prior to rendering. This
enables fast approximate nearest neighbour search in feature space
extracted from grid cells, which is then exploited during rendering.
We discuss the main differences with respect to our approach at the
end of Section 3.2.

3. Method

We subdivide the image into a rectangular grid and map each cell to a
tile image from our codebook (a font glyph, for example). The visual
outcome of the process depends on this mapping. In the simplest
case, the mapping assigns a tile based on its mean intensity or
colour value. This can lead to an unnecessary loss of image detail. A
more sophisticated approach is to base the mapping on a correlation
measure that takes the spatial distribution of pixels into account (i.e.
the structure of the underlying region). Our method is independent
of the correlation measure and it is useful for improving the speed of
the process. We first describe particular correlation measures which
will be used in this paper (Section 3.1) and then introduce a machine
learning technique to approximate them (Section 3.2).

3.1. The structural similarity (SSIM) mapping

To demonstrate our approach for ASCII rendering of greyscale im-
ages, we employ a measure of SSIM introduced by Wang et al.

[WBSS04]. Each region of the image is assigned a font glyph that
is most similar to it, as measured by the SSIM index. To obtain
the SSIM index between two arrays of pixels (a grid cell and a
font glyph in our case), we first compute luminance, contrast and
structure similarities:

1, if py and w, are 0
L= 241 o .
12 % , otherwise,
ny+ us
1, if oy and 0, are O
= 2010, .
Ci 5 5 otherwise,
oy + 03
1, ifo;is0oro,is0
S, =1 o2 :
12 12 , otherwise,
0102

where 1, and p, are the pixel mean values of the arrays, o7 and o}
are their variances and o2 is their correlation. The SSIM index is
computed as

SSIM,, = L!,C5,S5,, (1)

where exponents /, ¢ and s are parameters used to adjust the relative
importance of each component. The downside of this approach is its
computational load: it requires a loop over all font glyphs for each
erid cell to compute o3,.

In the case of colour images, we take into account the spatial
distribution of colour to increase the sharpness of generated image
mosaics. This is achieved by subdividing the current image region
into n X n subregions, calculating average colour within each of
them and concatenating all values into a vector. This vector serves as
a region descriptor. The spatial colour similarity (SCSIM) between
an image region (represented by r) and a tile from a codebook
(represented by t) is calculated as

1, ifrandtare 0
SCSIM = 't] (2)
———, otherwise.
r’r +t't

We empirically found that this simple similarity measure gives good
results in practice. In particular, the generated image mosaics are
qualitatively similar to the ones generated with other similar meth-
ods [Tra99, ZNZ03].

There are a number of other similarity measures that would also
work, like the ones based on colour correlograms, commonly used
in content-based image retrieval, e.g. [HKM*97]. Once the region
colour descriptor has been computed, it has to be compared with all
the descriptors in the database to find the best matching tile. This
is computationally heavy and, thus, not suitable for some applica-
tions, like real-time rendering of image mosaics. Approximations
are required to make the approach feasible.

We solve this problem by using a machine learning technique
which is specifically designed to extract correlations from large
quantities of data. We treat the tile assignment step as a classification
task which we solve using an optimized binary decision tree. This
was inspired by the work done by Rosten ez al. [RPD10] in the field

© 2015 The Authors

Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

Figure 4: Some example tiles from the flower codebook used in our
experiments.

—_
0.8
wn
<
Q
gos6
©
wn
bS]
C
i)
‘g 0.4 e
r SSIM
Tree, d=20
Tree, d=16
0.2 |
Tree, d=12
Tree, d=8
_____ Luminance
00 '''''' L L Il
0.40 0.45 0.50 0.55 0.60

DSSIM

Figure 5: Cumulative error distributions for different methods on
a validation set (10 5 Mpixel images). The error is defined as
DSSIM = (1 — SSIM)/2.

of corner detection, which is an important problem in computer
vision.

3.2. Approximating the mapping with a decision tree

Decision trees are tools for function approximation [HTF09]. The
basicideais to split recursively the original problem into two simpler
ones, each solvable by a model of reduced complexity. The splits are
performed at internal nodes of the tree, based on problem-specific
binary tests. Leaf nodes contain simple models that approximate the
desired output. We treat the tree construction process as a supervised
learning problem. We choose the binary tests in internal nodes and
output models at leaf nodes based on a finite set of input—output
pairs in a training set.

In our case, the internal nodes of the tree employ simple binary
tests which are defined for an image region R as

05 Rx,}uc =1

bintest(R; x, y, c,t) = { 1 otherwise

where R, , . is the pixel intensity sampled from colour channel c at
location specified by x and y, and ¢ is the threshold associated with
the test. Each leaf node of the tree contains a label that represents a
specific tile.

The construction of the tree is supervised. For example, in the
case of ASCII rendering, the training data are a set {(Ry, gs) :

N. Markus et al. / Fast Rendering of Image Mosaics and ASCII Art

s=1,2,...,8} where g, e {!,",...,a,b,c,...,A,B,C,..., "}
is the ground truth glyph label associated with image region R;. The
binary test in each internal node of the tree is selected in a way to
minimize the average entropy obtained when the incoming training
data are split by the test. The average entropy is computed as

H = poHy + p1 Hy, (3)

where py and p; are fractions of training samples for which the
results of a binary test on an associated region were 0 and 1, re-
spectively. Values H, and H; are the entropies computed from
the distributions of ground truth labels within each of these two
partitions. As the set of all pixel intensity comparisons is pro-
hibitively large, we generate only a small subset during optimization
of each internal node by randomly selecting a number of (x, y, c, t)
quadruplets. The test that achieves the smallest entropy according to
Equation (3) is selected. The training data are recursively clustered
in this way until at least one termination condition is met. In our
setup, we limit the depth of the tree to reduce training time, runtime
processing speed and memory requirements. Each leaf node con-
tains a tile label which was the most frequent of the ones arriving
there during the learning process.

For a tree of depth equal to D, the required memory is ®(27) and
the time needed to transform an image region into a tile is (D).

Our approach shares some similarities with the tree-structured
vector quantization (TSVQ) technique [GG92]. As the main goal of
TSVQ is signal compression, the codebook is not given in advance
like in our case (ASCII glyphs or image tiles) but is constructed
during the learning process. Another difference is in the binary tests
used in internal nodes of the tree. In the TSVQ case, each internal
node stores two prototype vectors with which the incoming sample
is compared. The nearest (minimum distortion) one determines in
which of the subtrees the search has to continue. A similar structure
known as the antipole tree [CFP*05] has been used by Blasi and
Petralia [BP0S5] to speed up the database search when rendering im-
age mosaics. This approach and TSVQ are both based on codebook
clustering while our method relies on approximating the similarity
measure by learning a discriminative classifier from training data.
Thus, neither TSVQ nor [BPO5] can be directly applied to ASCII
art rendering based on the SSIM mapping (Section 3.1) as these
methods require feature vector (descriptor) extraction from each
grid cell. This gives our method more flexibility, since similarity
measures can be easily constructed from feature vectors whereas
the converse is not true.

4. Experimental Analysis

To show how our framework performs for greyscale images, we
use it to render ASCII art. We use a font with glyph size equal to
10 x 6 pixels. The implemented renderer replaces image regions
with glyphs by finding the best match according to Equation (1).
In our experiments, we set the exponents to [= 10, ¢ = 0.1 and
s = 0.1. We experimentally found that these adequately weight
the contribution of the region structure content when selecting
an appropriate glyph and lead to visually appealing results. To
show how our framework works for colour images, we render
image mosaics using 1500 flower tiles (15 x 15 resolution). Some
examples from the flower tile codebook can be seen in Figure 4.

© 2015 The Authors

Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

N. Markus et al. / Fast Rendering of Image Mosaics and ASCII Art 5

O

Figure 6: This figure visually demonstrates the advantage of taking into account the structure of the underlying image regions: A circle (left)
has been rendered in ASCII using luminance information (middle left), using the SSIM-based mapping (middle right) and with the tree-based

approach (right).

Image mosaics are generated by finding the best match for each
image region according to Equation (2). We set n = 3, i.e. our ren-
derer subdivides each region/tile into 3 x 3 blocks when computing
its descriptor. This value provides a good trade-off between retrieval
speed and spatial colour matching accuracy.

As we demand real-time performance on hardware with lim-
ited computational resources, we use a decision tree to map a
tile to each image region. Learning of the tree is described in
Section 4.1. Section 4.2 demonstrates some results on real-world
images. Section 4.3 discusses processing speed advantages.

4.1. Learning step

To generate the training set, we render 200 5 Mpixel images of
‘natural’ scenes (flowers, landscapes, sky, etc.) by subdividing
each of them into a rectangular grid and assigning each cell a tile
image by directly optimizing the criterion defined by Equation (1)
or (2), depending on whether or not we are incorporating colour
information. This process results in tens of millions of region-tile
pairs which are then used as training samples to learn the tree.

The parameters of the tree learning process have to be set in
advance. We generate 1024 binary tests during the optimization of
each internal node by repeated sampling of four integers (x, y, ¢
and ¢) from an appropriate distribution. The thresholds ¢ are selected
uniformly from {1, 2, 3, ..., 254} as the intensity of each pixel is
represented with a single byte. Channel index ¢ is sampled from
{0, 1, 2} (this parameter is ignored when dealing with greyscale
images). In the case of w x h pixel tiles in the codebook, x and y
are chosen uniformly from {0, 1, ..., w — 1}and {0, 1, ..., h — 1},
respectively. We learn trees of depths equal to 8, 12, 16 and 20 for
the purpose of experiments. Learning the tree of depth equal to 16
takes around 1 h on a modern PC with four cores and 8 GB of RAM.
The tree requires 500 kB of storage.

To numerically investigate the accuracy of ASCII art rendering
with a decision tree, we transformed a large number of images to
ASCII with different approaches and compared the errors induced
by the approximation. Cumulative error distributions are displayed
in Figure 5.

We can see that the trees outperform the luminance-based ap-
proach, which serves as a baseline. As the depth d increases, the
accuracy approaches the ground truth curve obtained with SSIM.
Similar conclusions can be made when rendering image mosaics.
We omitted these results for brevity.

Table 1: Survey statistics for ASCII art.

95% confidence
interval for p

Mean Standard
Method score [deviation n—3a n+38
Luminance-based 4.51 2.10 4.29 4.74
SSIM-based 5.54 2.01 5.32 5.75
Tree-based 5.61 1.95 5.40 5.82

Figure 5 shows that the trees indeed manage to approximate the
mapping. However, it is not clear how the presented numerical
measure correlates with visual quality. In the next two sections,
we provide images and processing speed analysis, and discuss the
applicability of our method.

4.2. Rendering

We use the tree of depth equal to 16 to display the artwork in the
rest of this paper as this has proved to be a good trade-off between
memory usage, processing speed and quality. Figure 6 shows the
rendering of a circle in ASCIIL

‘When comparing the produced ASCII artwork, we conclude that
the tree-based approach manages to reduce aliasing artefacts and
preserves more image details than the luminance-based method with
dithering, and the quality approaches that of SSIM. These results
are consistent with numerical measures from Figure 5. To back our
claims, we also conducted a survey in which 50 participants were
invited to score the similarity between each of the six source images
and their ASCII renderings obtained by three different methods:
luminance-, SSIM- and tree-based. (The possible scores were on a
10-point scale; 10 being best.) The detailed results of the survey
are given in the Supporting Information. Table 1 shows a short
summary. We can see from the statistics that SSIM and the tree
perform approximately the same while producing visually more
pleasing results than the luminance-based method with dithering.

Figure 7 displays classical works of art in ASCII. We omitted
the original images on purpose to give the article an old fashioned
feel. These experiments demonstrate that the tree-based approach
is suitable for producing high-resolution ASCII art; the renderings
are sharp and the tone is preserved.

© 2015 The Authors

Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

N. Markus et al. / Fast Rendering of Image Mosaics and ASCII Art

3 Foaxdayatays: rpabecioc:

AR\ 1) vx-,:ovm-_

R AN TR A
ojre Nos v
nuuror/).

:gn)h Ao

e
i
,}u 71 :g

uuauﬂ~v >
Loju mmv:

iyretuiatTIEve
phizin i Tudd
733

g ,u" ey \11,
. 7N

PR
H:r,nnk}\ix vy
e -
o ,,),.mr,,
VTP

i TmyDt

'mj‘l'z»wrnznnrumvn, s731ag -

stsenTss) i
eTTrLTAL

A
ke e
n,,.,v...m,,....zz:.w,..,..m,,,......
BT e et e I
5 R
R

Ry
_t

P
am% =

S

T “mm.. i

AT N y-’éf
e

Sl
1\.,,\] ’ J /-2

; 4

. a
LS Py bETE 1 m 73 3%
< Sekao i) 4117
LR

13
Thartss)10)

d
o e c]xr-m .
By

o
e L AR T L o
T

e s BVAL

s i
PR e e

e o iR R
B et R S S R P D
Py IFTTTTN). ik

=5
2 _11: w...‘m,,....m,

EacTTTavNE - £F
u

yihutvavvvicaver T
EIVaEE IV savar
e T

o
L SSEEVIEISLovne: xﬂn/nﬂ}"e‘r

e
MO el -,m

e
) stag o7

ey, L/ (v
o

“§vTTae.nasmw
ayricstsoy
R
T A

sty --»n
Tt Epyraaduadniat (unrvic Lvunutar sy ymar (7.
: B e
- R v)'lvn u-.méum 7/4v)3 A
Srtmgy)(\owr) et Py w‘n}((rv!:uﬂnur

T
intAs2aveyc
Fyns rag

vhavhetnyre
{liumw ok
c1v1ve

b
Yol 7 357
TS ianieoL T .
.."“"“4" ""“#”m‘?‘; “m’m’ 1’;,‘ E i A1 R

S
SovEnnaOeyT
T RoxrvoFotr)1 4eruRsaEEy,

T :cfx,
,\im SsEiry

mm-.x HEH)
vugggpve

e i,

) i
43¢5 S s GRS T
g ;y';mmumz.o.m-vmummwmm

Ve RGP (o
s --u(jcwﬂz;mlﬂn :-jm_ Sage:

-

A
St e,

T9gpris vt aseunaeTIr 11 Taots o
Tovel) .v-qvwn-mnnul 471 -yryieme
e,

i
-&in‘,ém’.ﬁvimnm. e
Rt

T i
e e v
e\ e

07

e
.n s A ,mum_:«-iol B
itk ety

i

JE—
P ’1m‘"'mzmwmmww Ve)
uluuun SO

ol

'17'H17177-1171771n717111171w1177111717111171‘771“11171“"‘!"‘1‘!"!
T T

n.mmm s <153

LS. o st aedy aiha

EVETTTYmyadyy Sianie L) 51))) L)Y EROFREF R U YOLLAPAVY Ve vaato .mmu.mmm..w.vmmx.mw.m

PR o et s e e A R Rt M O e iny. HnTTRToL S 1)1 ey Paey PP TYE YT

Figure 7: Famous masterpieces of sculpture rendered in ASCII. Original images are provided in Supporting Information.

© 2015 The Authors

Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

N. Markus et al. / Fast Rendering of Image Mosaics and ASCII Art 7

Figure 8: Low-resolution images from [XZW10] rendered in ASCII
with our method.

However, as pointed out in [XZW10], rendering low text-
resolution ASCII art is more difficult, and our method does not
perform well in this case. This is illustrated in Figure 8, where due
to the limited resolution, the depiction of very fine spatial detail is
problematic.

We exploit the rendering speed of our method to reduce this
drawback by taking human perception into account, similarly to

Table 2: Survey statistics for image mosaics.

95% confidence
interval for
Mean Standard
Method score /L deviation n—3a n+38
n=1 4.89 1.73 4.72 5.06
n=3 6.75 1.57 6.59 6.90
Tree-based 6.24 1.46 6.09 6.38

[DER*10]: the input is rendered and displayed multiple times each
second with small randomized displacements. Consequently, ASCII
images displayed on a computer screen look much better than the
ones on paper, as shown in the accompanying video S1.

Figure 9 compares image mosaics generated with different
methods.

The visual quality of the tree-based approach mosaic is higher
than that of the one generated with average colour descriptor (n =
1), and is similar to the ground truth [KSRY13] (n = 3). Table 2
summarizes the scores between seven source images and their cor-
responding image mosaics rendered with three different methods.

We can see that the score of the tree-based method approaches
that of its ground truth target (n = 3), and is higher than the average
colour descriptor (n = 1). This shows that the learning capacity of
the tree is sufficient for our application. The rendering of the Baboon

Figure 9: An image of flowers (upper left) rendered with flower tile codebook by setting n = 1 (upper right), n = 3 (lower left) and the

decision tree—based approach (lower right).

© 2015 The Authors

Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

8 N. Markus et al. / Fast Rendering of Image Mosaics and ASCII Art

S,
FrEtety;

6%

b
i
e
b
b

i
p
5

Figure 11: Rough colour transitions may occur due to the limited codebook size.

image can be seen in Figure 10. Figures 11 and 12 show some failure
cases.

The next section discusses large processing speed gains offered
by our method.

4.3 Processing speed analysis

Table 3 presents processing times on various devices required to
convert a 640 x 480 pixel image to ASCIIL.

All computations were performed on a single CPU core available
on the device although all methods can be easily parallelized. This
can be achieved, for example, by transforming each row of the image
to ASCII in a separate thread. The computation times scale linearly
with the number of pixels in the input image and the depth of the
tree. The tree-based method outperforms the standard approaches
because the tree needs to analyse only a relatively small subset
of pixels within each image region in order to replace it with a
font glyph. The method is more than two times faster than the
luminance-based approach which serves as a baseline (represented
by AAlib [aal]). Takeuchi et al. [TTIN13] implemented their method
on a GPU and achieved real-time processing speeds. However, our
method is around 20 times faster while running on a single core of
a CPU. Furthermore, our method is orders of magnitude faster than
other approaches reported in the literature [XZW 10, OR08]. Table 4
shows the processing speed required to convert a 640 x 480 pixel
image into an image mosaic. Note that the difference in processing

speed for ASCII art and image mosaic rendering comes (partly)
from the different tile size. Our method is more than 100 times
faster than other approaches [KSRY 13, Tra99, ZNZ03] that utilize
only the CPU.

5. Possible Extensions

When the codebook is very large and high accuracy is needed,
a potential strategy to increase the approximation accuracy of our
approach is to learn multiple trees with low correlation between them
(i.e. arandom forest [BreO1]). For example, this can be achieved by
learning each tree on a separate training set. During the rendering
of a grid cell, each tree outputs a candidate tile from the codebook.
Then, these tiles are ranked according to their similarity with the grid
cell (using Equation 1 or 2), and the best candidate is picked. This
procedure is repeated for each cell in the image. The computation
time scales linearly with the number of trees. However, we did not
find this procedure necessary, as was also suggested by the surveys
in Tables 1 and 2.

As noted by Tran [Tra99], a low tile variety within a local region
makes a mosaic monotonous. This issue is clearly seen in Figure 11
in which neighbouring tiles are usually the same. In case of video
streams coming from webcames, this is hardly noticeable because the
video frames are noisy and this results in a low probability of two
neighbouring tiles being the same. In the general case, this issue can
be improved by learning two decision trees on separate codebooks
in a pre-processing step. During rendering, each grid cell in the

© 2015 The Authors

Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

N. Markus et al. / Fast Rendering of Image Mosaics and ASCII Art 9

Table 3: Average times required to transform a 640 x 480 greyscale image into ASCII art using a single core available on the device.

Time [ms]
Device CPU Luminance-based SSIM-based Tree-based
Laptop 2.4GHz Core i7-4700MQ 1.34 93.07 0.55
iPhone 5 1.3GHz Apple A6 7.24 342.12 1.42
iPad 2 1GHz ARM Cortex-A9 19.84 484.28 2.54
iPhone 4S 800MHz ARM Cortex-A9 24.76 605.71 3.15

Figure 12: The depiction of fine details is reduced due to the limited
resolution and codebook size.

Table 4: Average times required to transform a 640 x 480 colour image
into an image mosaic using a single core available on the device.

Time [ms]
Device n=1 n=3 Tree-based
Laptop 7.42 31.90 0.25
iPhone 5 33.36 252.43 0.58
iPad 2 88.32 679.12 1.01
iPhone 4S 118.12 913.94 1.21

Figure 13: A modified duplicate reduction procedure from
[KSRY11] ensures low probability of same neighbouring tiles in
a 4-connected neighbourhood. This ensures greater diversity when
the mosaic is seen from a short distance.

input image is assigned a black or white label in a checkerboard
pattern style (inspired by the duplicate reduction procedure from
[KSRY11]). Cells labelled as black are processed with the first tree
and cells labelled as white are processed with the second tree. In this
way, neighbouring cells always have different tiles assigned to them
(provided that the trees were learned on disjoint codebooks), while
the computation time remains the same. Another possibility is to use
a single tree that keeps two labels in its terminal nodes (the best and
the second best one, assigned in the training process), and alternate
between them during rendering. This procedure greatly reduces
the probability of having same neighbouring tiles, as illustrated in
Figure 13.

Of course, modifications are possible which would ensure even
greater tile diversity.

6. Conclusions

The main contribution of our work is a simple and elegant method
for rendering ASCII art and image mosaics at very high speed. The
method can be easily extended to include other similarity mappings
and other tile codebooks than the ones used in this paper. The imple-
mented engine can achieve real-time frame rates on mobile devices.
To the best of our knowledge, this has not been achieved before. Our
framework can be used as a non-photorealistic rendering method
for computer games or as a video display technique on computers
without a graphical user interface. We have made the source code
publicly available: https://github.com/nenadmarkus/n3ar.

© 2015 The Authors

Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

10 N. Markus et al. / Fast Rendering of Image Mosaics and ASCII Art

Acknowledgements

This work has been supported in part by Croatian Science Founda-
tion under the project 8065. This work has been supported in part
by Visage Technologies AB, Linkoping, Sweden.

References

[aal] AA-lib: http://aa-project.sourceforge.net/aalib/. Accessed on
March 2014.

[BBFGO7] Bartiato S., Brasi G. D., FARINELLA G. M., GaLLo G.:
Digital mosaic frameworks—An overview. Computer Graphics
Forum 26, 4 (2007), 794-812.

[BGO3] Brunpo C., Granpr C.: Hiding information in image mo-
saics. Computer Journal 46, 2 (2003), 202-212.

[BPO5] Brast G. D., PETrALIA M.: Fast photomosaic. In Poster Pro-
ceedings of ACM/WSCG2005 (Plzen, Czech Republic, 2005).

[BreO1] BremMan L.: Random forests. Machine Learning 45, 1
(2001), 5-32.

[CFP*05] CanTtoNE D., FERRO A., PULVIRENTI A., REFORGIATO D.,
SHasHa D.: Antipole tree indexing to support range search
and k-nearest neighbor search in metric spaces. IEEE Trans-
actions on Knowledge and Data Engineering 17, 4 (2005),
535-550.

[CJIKK13] CHor Y.-S., Junc S., Kim J. W., Koo B.-K.: Real-time
video photomosaics with optimized image set and GPU. Journal
of Real-Time Image Processing 9, 3 (2013), 569-578.

[DER*10] DipYK P., EiseMaNN E., RitscHEL T., Myszkowski K., SEI-
DEL H.-P.: Apparent display resolution enhancement for moving
images. ACM Transactions on Graphics (TOG)- Proceedings of
ACM SIGGRAPH 29, 4 (2010), 113:1-113:8

[FRO8] FINKELSTEIN A., RANGE M.: Image mosaics. In 7th Interna-
tional Conference on Electronic Publishing, EP’98 Held Jointly
with the 4th International Conference on Raster Imaging and
Digital Typography, RIDT’98, St. Malo, France, March 30—April
3 (Berlin, Heidelberg, 1998), Springer, Vol. 1375, pp. 11-22.

[GG92] GersHo A., GrAY R. M.: Vector Quantization and Sig-
nal Compression. Springer Science+Business Media, New York,
NY, USA, 1992.

[HKM*97] Huang J., KumAR S. R., MITRA M., ZHU W.-J., ZABIH
R.: Image indexing using color correlograms. In Proceedings of
CVPR (San Juan, Puerto Rico, 1997).

[HTF09] Hastie T., TiBsHIRANI R., FRIEDMAN J.: The Elements of
Statistical Learning: Data Mining, Inference and Prediction.
Springer Science+Business Media, New York, NY, USA, 2009.

[KGFC02] KLEiN A. W., GranT T., FINKELSTEIN A., CoHEN M.
F.: Video mosaics. In Proceedings of the 2nd International

Symposium on Non-Photorealistic Animation and Rendering
(Annecy, France, 2002).

[KPO2] Kmv J., PELLACINI F.: Jigsaw image mosaics. ACM Transac-
tions on Graphics (TOG) — Proceedings of ACM SIGGRAPH 21,
3 (2002), 657-664.

[KSRY11]KanG D., SE0 S.,RY00S., Yoon K.: A parallel framework
for fast photomosaics. IEICE Transactions on Information and
Systems E94-D (2011), 2036-2042.

[KSRY13] Kang D., Seo S., Ryoo S., Yoon K.: A study on stack-
able mosaic generation for mobile devices. Multimedia Tools and
Applications 63, 1 (2013), 145-159.

[LS99] Lee D. D., SEung H. S.: Learning the parts of objects by
non-negative matrix factorization. Nature 401 (1999), 788-791.

[LTTO8] Liaw C., Tsar C.-T., Tsar S.-T.: Creating image mosaics
with a surrounding matching scheme. Optical Engineering 47, 5
(2008), 057002.

[MIN11] Mivake K., Jonan H., NisHita T.: An interactive system
for structure-based ASCII art creation. In Proceedings of NICO-
GRAPH International 2011 (Kanagawa, Japan, 2011).

[OKO08] Orcharp J., KapLan C. S.: Cut-out image mosaics.
In Proceedings of the 6th International Symposium on Non-
Photorealistic Animation and Rendering (Annecy, France, 2008).

[ORO0O8] O’Grabpy P. D., Rickarp S. T.: Automatic ASCII art
conversion of binary images using non-negative constraints.
In Proceedings of Irish Signals and Systems Conference
(Galway, Ireland, 2008).

[PQW*08] PanG W.-M., Qu Y., WonG T.-T., CoHEN-OR D., HENG P.-
A.: Structure-aware halftoning. ACM Transactions on Graphics
(TOG)—Proceedings of ACM SIGGRAPH 27, 3 (2008), 89:1—
89:8.

[RPD10] RosteN E., PorTER R., DRUMMOND T.: Faster and better: A
machine learning approach to corner detection. /[EEE Transac-
tions on Pattern Analysis and Machine Intelligence 32, 1 (2010),
105-119.

[Sil97] Swvers R. S.: Digital composition of a mosaic im-
age, 1997. US Patent 6,137,498. http://www.google.com/
patents/US6137498.

[Tra99] TraN N.: Generating photomosaics: an Empirical study.
In Proceedings of ACM Symposium on Applied Computing (San
Antonio, TX, USA, 1999).

[TTIN13] TakeucHr Y., Takarun D., Ito Y., Nakano K.: Ascii art
generation using the local exhaustive search on the gpu. In 2073
First International Symposium on Computing and Networking
(Matsuyama, Japan, 2013).

[WBSS04] Wanc Z., Bovik A. C., SueikH H. R., StmonceLL! E.
P.: Image quality assessment: From error visibility to structural

© 2015 The Authors

Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

N. Markus et al. / Fast Rendering of Image Mosaics and ASCII Art 11

similarity. I[EEE Transactions on Image Processing 13,4 (2004),
600-612.

[XZW10] Xu X., ZHANG L., WonG T.-T.: Structure-based ASCII art.
ACM Transactions on Graphics (TOG) — Proceedings of ACM
SIGGRAPH 29, 4 (2010), 52:1-52:10.

[ZNZ03] ZuaNG Y., NasciMENTO M. A., ZAIANE O. R.: Building
image mosaics: An application of content-based image retrieval.

In Proceedings of International Conference on Multimedia and
Expo (Baltimore, MD, USA, 2003).

Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article at the publisher’s web site:

Video S1

© 2015 The Authors

Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd.

