PHYSICAL REVIEW B 91, 125401 (2015)

Finite-frequency noise in a quantum dot with normal and superconducting leads

Stephanie Droste,! Janine Splettstoesser,” and Michele Governale'
1School of Chemical and Physical Sciences and Mac Diarmid Institue for Advanced Materials and Nanotechnology,
Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
2Department of Microtechnology and Nanoscience - MC2, Chalmers University of Technology, S-412 96 Géteborg, Sweden
(Received 22 October 2014; revised manuscript received 10 February 2015; published 2 March 2015)

We consider a single-level quantum dot tunnel-coupled to one normal and one superconducting lead. We employ
a diagrammatic real-time approach to calculate the finite-frequency current noise for subgap transport. The noise
spectrum gives direct access to the internal dynamics of the dot. In particular, the noise spectrum shows sharp
dips at the frequency of the coherent oscillations of Cooper pairs between the dot and the superconductor. This
feature is most pronounced when the superconducting correlation is maximal. Furthermore, in the quantum-noise
regime, w > kg7, N, the noise spectrum exhibits steps at frequencies equal to the Andreev addition energies.
The height of these steps is related to the effective coupling strength of the excitations. The finite-frequency noise
spectrum hence provides a full spectroscopy of the system.
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I. INTRODUCTION

Nanostructures with quantum dots in proximity to su-
perconducting electrodes are an ideal playground to study
superconducting correlations in systems with few degrees of
freedom that exhibit strong Coulomb-interaction effects [1,2].
Intriguingly, these types of structures are at the heart of
recent proposals to generate Majorana-fermion excitations in
quantum dots [3-6] and to establish and detect different sym-
metries of superconducting pairing in a controllable way [7].
Another line of research has focused on the possibility to use
double quantum dots, tunnel-coupled to superconductors as
a source of entangled electron pairs [8,9]. It is therefore of
vital importance to get access to the properties of such hybrid
quantum-dot systems.

Here we are interested in a setup, in which the tunnel-
coupling rate between the superconductor and the quantum dot
is strong (larger than the coupling to other normal-conducting
leads eventually present in the device), such that it is possible
to establish a BCS-like state in a single-level quantum dot
even in the presence of strong Coulomb repulsion [10]. Such a
state is characterized by a coherent exchange of Cooper pairs
between the dot and the superconducting lead. If one considers
the two-terminal case of a quantum dot, tunnel-coupled to one
normal and one superconducting lead, the proximity effect is
established by generating a nonequilibrium situation by means
of an applied transport voltage. The presence of the proximity
effect can be detected by measuring the Andreev current and
its zero-frequency noise [11]. In various experimental studies,
the subgap spectrum of hybrid superconductor-quantum dot
devices has been analyzed by Andreev level spectroscopy
[12-22], which allows to measure the Andreev addition
energies and the total line width of the resonances via the
differential conductance.

The coherent dynamics underlying the proximity effect in
the dot shows up, for example, in the waiting time distribution
of transport events [23-25] in the normal lead, which exhibits
an oscillatory behavior due to the coherent exchange of
Cooper pairs between dot and superconductor [26]. However,
a direct measurement of the waiting time distribution might be
challenging and it is therefore interesting to look at alternative
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possibilities to reveal the coherent tunneling of Cooper pairs
between dot and superconductors.

A quantity of high interest to look at is the finite-frequency
noise of the Andreev current. Current noise spectroscopy
in mesoscopic systems has become a standard tool to gain
information on the transport processes and internal time scales
of mesoscopic conductors [27-36]. Indeed, the nonequilibrium
finite-frequency noise of quantum dots in different regimes and
setups has previously been at the focus of various theoretical
studies [37-56].

This manuscript focuses on the finite-frequency current
noise for subgap transport through a single-level quantum
dot tunnel-coupled to one normal and one superconducting
lead. We consider strong coupling between the quantum dot
and the superconductor, while the dot is only weakly coupled
to the normal conducting lead. We employ a nonequilibrium
real-time diagrammatic perturbation expansion in the tunnel-
coupling to the normal lead [42,57-59]. We find that the
coherent oscillations between dot states with different particle
numbers lead to a resonant feature at the oscillation frequency
in the finite-frequency noise spectrum. The magnitude of this
feature (a sharp dip in the spectrum) is directly related to
the pair amplitude in the dot. In the quantum noise regime,
w > kgT,uN, it is possible to extract information on the
relative coupling of different BCS-like states to the normal
lead. Beyond the knowledge of the Andreev addition energies,
which can also be obtained from Andreev level spectroscopy
by means of a differential conductance measurement [12-22],
the finite-frequency noise additionally provides information
on the coherent dynamics of the system and its characteristic
time scale, and the effective coupling strengths of the different
Andreev levels.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the mathematical model used to describe
the hybrid quantum-dot system and present the diagrammatic
approach employed to calculate its noise spectrum. After a
brief overview over the properties of the Andreev current
in Sec. IlI, we show the results for the finite-frequency
current noise in Sec. IV organized by biasing and frequency
regimes. The main conclusions of the paper are summarized
in Sec. V.
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II. MODEL AND FORMALISM

In this section, we present the model for the interacting
single-level quantum dot attached to one normal and one su-
perconducting lead and the real-time diagrammatic approach
to obtain the finite-frequency current noise.

A. Quantum-dot Hamiltonian

In this paper, we study subgap transport through a single-
level quantum dot tunnel-coupled to one normal and one
superconducting lead. We consider strong coupling between
the quantum dot and the superconductor, while the dot is only
weakly coupled to the normal conducting lead. We restrict
ourselves to the case when the temperature is larger than
the tunnel-coupling strength of the normal-conducting lead
(kgT > I'n, where I'y will be defined in terms of tunnel
amplitude and the density of states of the lead later in this
section). In this particular regime, the Kondo correlations due
to the coupling with the normal lead are negligible and we
can treat the tunneling with the normal lead to the lowest
nonvanishing order. A large body of theoretical work regards
the interplay of superconductivity and Kondo physics [60—65].
For the subgap transport characteristics of the system, the
superconductor can be described by means of an effective
Hamiltonian, which becomes exact in the regime of infinite
superconducting gap. However, the effective Hamiltonian still
describes well the subgap transport features even for finite
values of the gap as long as the temperature is larger than
the Kondo temperature related to the Kondo screening by
the quasiparticle excitations in the superconductor. A detailed
study of the reliability of this approximation can be found in
Ref. [66].

The Hamiltonian of the system can be written as the sum
of three terms: H = Heg + Hx + Hypn. The first term, Heg,
is the Hamiltonian for the hybrid system composed of the dot
and the superconductor in the limit of a large superconducting
gap, the second term, Hy, describes the noninteracting normal
lead and the third one, Hy,, the tunnel coupling between the
proximized dot and the normal lead.

We model the quantum dot tunnel-coupled to the su-
perconducting lead by means of the following effective
Hamiltonian, which becomes exact in the limit of a very large
superconducting gap [67]:

r
Hor = Y €y + Uyt — Ts(didj +ddy. (D)

Here, € is the dot level energy, U is the on-site Coulomb
repulsion, and I's is the tunnel-coupling strength between the
dot and the superconducting lead. All energies are measured
with respect to the chemical potential of the superconductor,
ie., us =0. Here, d; (dj) is the annihilation (creation)
operator for an electron on the dot with spin o = 1, and
iy = did_ the corresponding number operator. The Hilbert
space of the proximized dot is spanned by the states: |0)
(empty), |o) = d;|0) (singly occupied), and |d) = d1d1|0)
(doubly occupied).

The normal lead is described by the noninteracting Hamil-
tonian Hy = Y,  €xcl_c,.. wherec, (c|)is the annihilation
(creation) operatbr for an electron with spin o in the single-
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FIG. 1. (Color online) Sketch of the energy landscape of the
effective dot-superconductor subsystem coupled to a normal-
conducting lead that acts as a bath.

particle state of the lead characterized by the momentum
quantum number k with energy €;. The normal-conducting
lead has an electrochemical potential py, which in general
differs from zero.

The tunnel-coupling between the dot and the normal
lead is modeled by means of the tunneling Hamiltonian,
Hypn = Zk,o th,dea + H.c. with the tunneling amplitude
tn. We assume the density of states, pn, of the normal lead
to be constant and spin- and momentum independent; we
define the tunnel-coupling strength as I'y = 27 px|tn|?. The
effective dot-superconductor subsystem coupled to a normal-
conducting lead is sketched in Fig. 1. When discussing the
results of this paper, we will always assume 'y < Ts.

We proceed to discuss the eigenstates of the effective
Hamiltonian in the absence of coupling to the normal lead. The
singly-occupied states |o) are not affected by the proximity
effect and are eigenstates of H.g with eigenenergy €. Due to
the tunnel-coupling to the superconductor, the states |0) and
|d) form Andreev bound states (ABS):

1 8 1 8
+)=— [1F—|0)F — [l = —]d), 2
I£) NG :F26A|)¢\/5 26AI> @

with the eigenenergies of the effective Hamiltonian, €4 =
8/2 £ ex.Here,§ = 2¢€ + U is the detuning between the empty

and the doubly-occupied states and 2e5 = +/8% + '3 is the
energy splitting between the |+) and |—) states. The excitation
energies of the dot are the so-called Andreev addition energies,
which are given by the differences of the eigenenergies of those
states that have occupation numbers differing by one:

Eyy,=2(ex —€)= V/% + Vea (3
withy’, ¥ = £1. When an electron leaves or enters the normal
lead, its energy must account for the energy difference between
the initial and final state of the dot-superconductor subsystem,
which are the Andreev addition energies, represented by the
energy levels in the sketch, Fig. 1.

At this stage, it is useful to introduce effective coupling
strengths that describe the coupling between the electronic
reservoir and the dot resonances, namely the Andreev levels.
These effective coupling strengths turn out to be essential to
understand the form of the finite-frequency noise spectrum.
The effective tunnel-coupling strengths of the Andreev levels
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to the normal-conducting lead I'y corresponding to the
transition |o) to |£) are given by

I'n )
oz =—11x—], 4
=7 ( 2€A> 4)
while for the opposite transition they read
I'n 1)
MNioe=—\1F—]. 5
+ > ( F 2€A> &)

In the following, we use the convention 4 = e = 1.

B. Diagrammatic real-time approach for noise

We aim to study the finite-frequency noise for transport
through a quantum dot coupled to a normal- and a super-
conducting lead as described by the above introduced model.
We take into account on-site Coulomb interaction of arbitrary
magnitude and nonequilibrium conditions without resorting to
the linear-response regime. While we are interested in a strong
coupling of the quantum dot to the superconducting lead,
leading to strong superconducting correlations, we assume
the coupling to the normal-conducting lead to be weak
(I'y < kgT, where kg is the Boltzmann constant and 7 is
the absolute temperature). Considering these conditions, we
make use of a diagrammatic real-time perturbation theory
in the tunnel coupling with the normal lead [57,58] and its
extension to a system with superconducting electrodes, [10]
in order to derive the current and the finite-frequency current
noise. The formalism to obtain the finite-frequency noise using
this real-time diagrammatic approach has been introduced
previously, where it was applied to the case of normal-
conducting electrodes [59] as well as for the ferromagnetic
case [42].

In this section we review the formalism to obtain the finite-
frequency current noise by relating it directly to the system of
a quantum dot coupled to one normal and one superconducting
lead. The aim is to formulate a method that allows to calculate
the reduced density matrix of the proximized quantum dot as
well as the current through it and the finite-frequency current
noise.

The full system is represented by a density matrix de-
scribing the normal-conducting lead (which has many degrees
of freedom but is noninteracting) coupled to the interacting
quantum dot proximized by the superconducting condensate
(the latter having just a few degrees of freedom). Since
we are not interested in the degrees of freedom of the
normal-conducting reservoir, we trace them out, making use of
Wick’s theorem. We are then left with an effective description
by means of the reduced density matrix of the quantum
dot proximized by the superconductor. This reduced density
matrix has the form
pf PY 0 0
P P~ 0 0

P={o o » p| ©)
| v
o o P P

where the diagonal elements are the probabilities to find
the dot singly occupied, PJ = P,, or in a BCS-like state,
PI = P, or P~ = P_. The off-diagonal elements, which we
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FIG. 2. (a) Example of the time evolution of the reduced density
matrix P for the evaluation of the expectation value of the current.
The reduced system propagates forward in time along the top bath
from ¢ to ¢ at which the observable I is measured, then the system
propagates back to time f. (b) Diagrammatic representation of the

;
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matrix element W'’} .
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refer to as the coherences, describe coherent superpositions
of two eigenstates of the proximized dot. Importantly, the
time evolution of the coherences between states of single
occupation decouples from the one of the diagonal elements
due to spin-conserving tunneling and these coherences will
hence be disregarded in the following. In contrast, in order
to fully describe the short-time dynamics of the system, it is
necessary to consider the off-diagonal elements in the reduced
density matrix between the Andreev bound states, P* and P, .
It turns out that these become important for the finite-frequency
noise at frequencies w ~ +(e; — €_).

The nonequilibrium time evolution of the reduced density
matrix can be depicted on the Keldysh contour and expressed
in terms of a propagator P(t) = II(z,t')P(¢'). An example of
the Keldysh contour for the calculation of the current is shown
in the sketch in Fig. 2(a). The upper (lower) horizontal time line
stands for the propagation of the individual dot state forward
(backward) in real-time, indicated by arrows. In frequency
space, this full propagator can be written in terms of a Dyson
equation,

(w) = Hy(w) + (@)W (w)I(w)
= [Mo(w)™" — W(w)] ™", (7

with the frequency-dependent free propagator on the Keldysh
contour ITyp(w) and the kernel W(w), representing the self
energy of the Dyson equation due to coupling to the normal-
conducting reservoir. The full propagator is broken up in two
types of blocks on the Keldysh contour, irreducible self-energy
insertions and free propagation, as depicted in Fig. 2(a). The
matrix elements of the free propagator are given by

iaxm’amxz’ 8)

Mo(w)" i = —
g — € —w+i0F

xnx; e

where y;,x; denote the different dot states at different times
t,t'. The kernel W describes transitions between different
reduced-density-matrix elements due to tunnel events between
the quantum dot and the normal-conducting lead. The kernel
W is defined as the sum of all irreducible diagrams and
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FIG. 3. Diagrammatic representation of (a) the current, (b) the
contribution to noise with both current operators in one block and (c)
in different ones separated by the full propagator.

can be obtained diagrammatically, based on a perturbation
expansion in the tunnel-coupling to the normal-conducting
lead as displayed in Fig. 2(b). A tunnel event, where an
electron hops between the dot and the normal-conducting
lead, is represented by an internal vertex (black dot) on the
Keldysh contour. A directed tunnel line between two vertices
indicates the contribution due to the contraction of two lead
operators. The transformation into frequency space enters
the diagrammatic representation by an additionally horizontal
bosonic line transporting the energy w.

Finally, in the stationary limit, the reduced density matrix,
Py, is found from the solution of a generalized master
equation

0=[Iy"(w=0)— W(®=0)]Pu ©)

containing the coherent evolution of the reduced system
described by the zero-frequency contribution to the free prop-
agator and the dissipative coupling to the normal-conducting
lead described by the zero-frequency contribution to the kernel.
With the help of the solution for Py, we will in the following
be able to determine the expectation values of the current
and the current-current correlator yielding the finite-frequency
noise.

In the results part of this manuscript, we will restrict our-
selves to the weak-coupling regime, performing a perturbation
expansion with respect to the tunnel coupling to the normal
lead. The explicit expression for the kernel can be obtained by
using diagrammatic rules, see Appendix A.

1. Current

The current through the hybridized quantum dot is given
by the operator representing the rate of change of the number
of electrons in the normal lead: [ = %[N ,H], where N =

ko c,tacka. When calculating the time-dependent expecta-
tion value of the current operator, the latter acts as an external
vertex on the Keldysh contour.

In order to calculate the expectation value of the charge
current, /, the current operator is placed at the rightmost point
of the Keldysh contour, see Fig. 3(a), and contracted to an
internal tunnel vertex via a tunneling line. It turns out that the
current can be expressed as

I = ST Wi Pyl (10)
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The kernel W can be obtained from W by replacing one of the
internal tunneling vertices (black dot) by an external current
vertex (open circle) [42,59]. The current kernel Wy takes into
account whether an electron enters or leaves the dot through
the normal lead. The diagrammatic rules to compute the kernel
W are summarised in Appendix A in lowest order in the tunnel
coupling.

2. Noise

The symmetrized finite-frequency current noise is defined
as Athe Fourier transform of S(¢) = (1(¢)1(0)) + (I(0)I(¢)) —
2(I)?, namely of the current-current correlator at different
times,

0
S(w) = / dt[(1()I(0)) + (F(0)[(1))](e™" + et

— 4 8(w)(1)>. (11)

By construction, the finite-frequency current noise Eq. (11),
also referred to as the power spectral density, is symmetric with
respect to frequency, S(w) = S(—w). It represents a real quan-
tity, which can be measured by a classical detector [39,68].

Experimentally, the current noise can be measured in
the normal lead. However, at finite-frequencies, so-called
displacement currents appear and the tunneling current [
is not equal to the measured currents. The displacement
current can be included in the calculation by means of
the Ramo-Shockley theorem [40,69]. A derivation of the
Ramo-Shockley theorem for the effective Hamiltonian (1) can
be found in Appendix C. In the following, we assume the
capacitance of the superconducting junction to be much larger
than the capacitance of the normal junction. In this case, the
displacement current in the normal-conducting lead can be
neglected, as discussed in Appendix C. This assumption is
consistent with I's > I'y.

In order to calculate the current correlator, two current
operators at different times have to be placed on the Keldysh
contour. Diagrammatically, this means that two internal
tunneling vertices have to be replaced by external current
vertices. The contributions to the current-current correlator can
be grouped into two different classes, as shown in Figs. 3(b)
and 3(c). Either both current vertices are placed in the same
irreducible block or in two different ones separated by a
propagator.

These external operators are connected by additional
bosonic (dashed) lines, carrying the frequency w of the Fourier
transform. The symmetrized finite-frequency noise can be
written as [42]

S(w) = %Tr[Wn(w)Psm + Wi () II(@)W - (0) P ga]
—278(w)(I)? + (0 —> —w). (12)

Here, the kernels W;.(w) and W;_(w) are the sum of all
diagrams, where one tunnel vertex (black dot) is replaced by a
current vertex (open circle) and a frequency line w is attached
to the current vertex. The indices > and < indicate whether
the frequency line leaves the diagram to the right or enters it
from the left as shown in Fig. 3(c). The kernel Wy(w) contains
diagrams with both current vertices in the same irreducible
block [see Fig. 3(b)].
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III. ANDREEV CURRENT

Before discussing the finite-frequency current noise, we
give a brief overview over the properties of the Andreev
current. When a finite-bias voltage is applied across the
quantum dot with one superconducting and one normal-
conducting lead, a so-called Andreev current flows across
the structure, which is due to Cooper-pair tunneling between
the quantum dot and the superconductor caused by Andreev
reflection processes [10,70].

We determine the current through the single-level quantum
dot by using Eq. (10), and show the result in Fig. 4 as a
function of the chemical potential of the normal lead, uy, and
the detuning, §. The current is largest when superconducting
correlations on the dot are strong and it furthermore shows
features at the Andreev addition energies.

The Andreev addition energies (dashed lines in Fig. 4) are
symmetric around zero-bias voltage, ux = 0, and with respect
to zero detuning, § = 0. In the region around zero-bias voltage
the system is mainly in one of the singly-occupied states, |0},
since the charging energy suppresses transitions from |o’) to
the |£) states. The Andreev current is thus zero. Only when
the bias voltage is large enough, such that one of the conditions
un = E._ or uny S E_y is fulfilled, the quantum dot has a
finite probability to be either empty or doubly occupied and
the Andreev current sets in. A further increase of the Andreev
current is observed, when also the other two addition energies,
E, and E__, enter the bias window.

Outside the region where the current is suppressed due
to the charging energy, the current is largest for § ~ O,
the regime of strongest superconducting correlation. We
obtain a simple analytic result for the Andreev current in the
unidirectional-transport regime, namely when ux > E 4,
where the applied bias voltage to the normal conducting lead
is much larger than all other energy scales in the system apart
from the superconducting gap A,

FZ
Iuni = FN_SZ (13)
4ex
I/I'y
1.5
B 1
0.5
S N
Z T ; 0
3 .
-0s5="
B -1
~15 ,"" | | 1 | S
=2 -1 0 1 2
o/U

FIG. 4. (Color online) Density plot of the Andreev current as a
function of the detuning é and the chemical potential of the normal
lead un both in units of the Coulomb interaction strength U. The
other parameters are I's = 0.2U, 'y = 0.002U, and kg T = 0.02U.
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As required, this result matches the current displayed in
Fig. 4, for un > E. . .Indeed, the current in the unidirectional
regime, Eq. (13), is maximal for |§| < I's, namely when 2¢4,
the splitting between the ABSs, is minimal and just given by the
coupling strength to the superconducting lead I's. In this situ-
ation, the empty |0) and doubly-occupied state |d) are nearly
degenerate and hence the mixing between them is maximal (the
proximity effect is on resonance). If the detuning § becomes
large, i.e., |6] > I's, the superconducting correlations on the
dot are almost zero (the proximity effect is off-resonance) and
the Andreev current goes to zero as shown in Fig. 4.

The value of the Andreev addition energies can, however,
only roughly be extracted from the current. We will show in
Secs. IV A-IV C that they lead to sharp features in the noise
spectrum.

IV. RESULTS FOR THE FINITE-FREQUENCY NOISE

In this section, we come to the actual focus of the present
paper, the finite-frequency noise associated to the current flow
through the hybrid quantum-dot system, which we calculate
based on the diagrammatic real-time approach introduced
before. The discussion of the finite-frequency noise is divided
into three parts: the unidirectional-transport regime, where the
applied bias voltage un is chosen such that no back tunneling
to the normal lead is allowed, the finite-bias regime, where the
applied bias voltage can be of the same order of the Andreev
addition energies and the noise frequency, and the low-bias
regime, where the current through the dot is suppressed. All
regimes are shown to provide direct access to the internal
dynamics of the system.

Depending on the applied bias voltage different frequency
regimes of the noise are accessible. Table I gives an overview
over the different types of noise depending on the characteristic
energy scales of the system, the thermal energy kg 7', the energy
related to the noise frequency w, and the applied bias voltage
un, which we are going to discuss within the different parts of
this section.

Atlow and intermediate frequencies, the noise is dominated
by time-dependent fluctuations in the conductance. In the limit
of zero frequency (w — 0), the noise spectrum exhibits the
information of a long-time measurement. In this frequency
range, the equilibrium thermal noise, due to thermal fluctu-
ations in the occupation number of the leads, is dominant
in the spectrum if kg7 > un,w. In contrast, the so-called
nonequilibrium shot noise, which is due to charge quantization,
is dominant for uyn > kgT,w.

The quantum noise, which arises from zero-point fluc-
tuations in the device, is dominant for high frequencies
> kgT,uN. It is a measure of the ability of the system
to absorb or to emit a certain energy w [71], and will therefore
allow to visualize transport processes which are enabled or
blocked by energy absorption or emission.

Although we here consider the symmetrized noise, we refer
to the regime of high frequencies w > kgT,un as quantum
noise, as discussed, e.g., in Ref. [72].

A. Noise in the unidirectional-transport regime

We start our analysis with the unidirectional-transport
regime, where we set the chemical potential of the normal
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TABLE I. Table sumarizing different noise regimes depending on noise frequency (increasing from left to right) and applied bias voltage

(decreasing from up to down).

Frequency
Bias . .
regime Low Intermediate High, o > un.kgT,I'n
Unidirectional, w < T'y (shot noise) Sec. IVA 1 w > 'y (shot noise) Sec. [IVA2 N/A

un largest energy scale

Finite bias o< un & o < kgT,I'y

(thermal & shot noise) Sec. IV C

Zero and low bias w < kgT (thermal noise) Sec. IVB

un > o & o > kgT,I'y
(shot noise) Sec. IVC

(quantum noise) Sec. [V C

N/A (quantum noise) Sec. [IVB

lead pn to be much larger than all relevant energy scales of the
system (apart from the superconducting gap A). In particular,
since uN > E. 4, all Andreev levels are in the transport win-
dow and sufficiently far away from the chemical potential u;,
thus allowing no back tunneling from the dot into the normal
conducting lead. A sketch of this situation is shown in Fig. 1.

The finite-frequency noise in the unidirectional-transport
regime is given by

r3s?
43 (T} + 0?)

1 I I | @2
2463 | Th 4 (0 — 2€4)? €A

2 2
+ 5—N <1+‘”+ EA)]
FN+(2€A+w)2 €A

Figure 5 shows the finite-frequency noise in units of I'y as
a function of the noise frequency w. Two limiting cases are
displayed, the one where the proximity effect on the dot is
on resonance, |§| < I's (red dashed line), and the one where
the proximity effect on the dot is off resonance, |§| > I's
(blue solid line). In different frequency regimes, the spectrum
shows sharp features, which depend on the strength of the
detuning, §. In the following subsections, we discuss first
the low-frequency noise, followed by a discussion of the
intermediate-frequency regime.

S(w) _
21uni B

(14)

T
| s -
BEE .
= F E .
g | 50 | |
A --- 8=

B — 8=0.4U] |
os- | ——

0 | | |

0 0.5

/U

FIG. 5. (Color online) Finite-frequency noise S(w) in the
unidirectional-transport regime for I's = 0.2U, I'y = 0.002U both
for the case where the proximity effect is on resonance, § = 0, and
off resonance, § = 0.4U. The peaks and dips are located at w = 0
and at w = 32€,, the oscillation frequency of the Cooper pairs. Here
and in the following figures, we concentrate on the positive-frequency
part of the spectrum.

1. Low-frequency noise, » < I'y

The first part of Eq. (14) is the low-frequency contribution
to the current noise,

s)

St) = 20y 5 |1+
) = S
N46/2\

8%
43 (T +?) |
It is indeed the only contribution to the noise, when the noise
frequency is of the order of the coupling strength to the normal-
conducting lead, @ < I'y. Note that in the low-frequency noise
for unidirectional-transport only shot noise is present.

On resonance (§ ~ 0), when the Andreev current is maxi-
mal in the high-bias regime, see Fig. 4, the noise is frequency
independent and is given by two times the Andreev current
2Iyni, which in the limit of zero detuning discussed here
equals 2I'y. This means that the noise equals the long-time
measurement result (w — 0) over the whole low-frequency
range. This effect has previously been discussed in Ref. [11]:
if the proximity effect is on resonance, the superconducting
correlations on the dot are maximal and Cooper pairs oscillate
rapidly between the dot and the superconductor. This oscil-
lation of Cooper pairs is only interrupted by single-electron
tunnel events from the normal conducting lead to the dot.
It is these independent charge injections that give rise to a
Poissonian transfer of single electrons.

When the proximity effect is off resonance (|| > I's), the
low-frequency noise can be approximated by

2 3
S(w) ~ 2Ty —= (1 + —N) )

16
52 %+ o? (16)

The noise spectrum shows a Lorentzian dependence on the
frequency w, as shown by the low-frequency contribution of
Fig. 5 (solid blue line). This maximum has a width given by the
coupling strength 'y and a height scaling with the magnitude
of the Andreev current. Except for this maximum, the noise is
overall suppressed with respect to the case on resonance. The
reason for this is that in the unidirectional-transport regime if
6 > I's, the Andreev current becomes negligibly small with
increasing detuning, as depicted in Fig. 4.

This behavior is similar to the case of a quantum dot
with normal conducting leads only, [40,42] as presented in
the Appendix B 1. In this purely normal-conducting case,
the low-frequency noise shows a Lorentzian behavior if the
coupling to the two leads is asymmetric (similar to what we
observe in the case of finite detuning in the hybrid system).
The noise is frequency-independent, when the coupling to the
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leads is symmetric. However, the constant is only half as big
as in the hybrid case discussed here, due to the absence of
Cooper pairs in the system.

2. Intermediate-frequency regime, » > I'y

The remaining part of Eq. (14) carries the information
of the noise in the intermediate-frequency regime, w > I'y,
where the noise frequency becomes larger than the coupling
strength to the normal-conducting lead. In this regime, the
noise starts to reveal the internal dynamics of the quantum
dot. Indeed, the finite-frequency noise shows resonance dips,
whose position and size depend on the splitting of the Andreev
bound states (equal to the frequency of the coherent oscillation
between the empty and doubly-occupied dot states [26]),
2ep, and hence on the strength of the proximity effect, see
Fig. 5. Such dips are characteristic for the noise spectrum
of multilevel quantum dots [43,45,48]. In the case of a
hybrid quantum-dot system studied here, the dips arise from
a coherent destructive interference between the ABS, leading
to features at w = £|e; — €_| = £2€,4. In the following we
describe the properties of these dips.

Similar to the noise-enhancing peak in the low-frequency
regime, the shape of these noise-suppressing resonance dips
is Lorentzian, see Eq. (14), with a width given by I'y. The
depth of the resonance dip depends on the strength of the
proximity effect and is equal to Iyl é /46%, the prefactor
of the intermediate-frequency contribution in Eq. (14). The
resonance dip becomes most prominent if the proximity effect
is on resonance and its depth is maximally equal to I'y for
8 ~ 0. In contrast, the dip vanishes if the detuning § becomes
much larger than the coupling strength to the superconducting
lead I's, namely when the superconducting correlations on
the dot are almost zero, see Fig. 5. The resonance dip in the
spectrum hence indicates the strength of the proximity effect.
It is a signature of the coherent oscillation of Cooper pairs
between the dot and the superconductor.

For even higher frequencies, w >> 2¢4, the noise in the
unidirectional-transport regime is given by two times the
Andreev current, which depends strongly on the detuning
8, see Figs. 4 and 5. In the unidirectional-transport regime,
the noise spectrum can be used to extract the splitting of the
ABS, but not the individual Andreev addition energies. In
order to get the information of the excitation energies and the
effective coupling strengths of the ABSs, also back tunneling
to the normal-conducting lead must be allowed. Hence, in
the next two sections, we will consider a regime where the
electrochemical potential of the normal lead is not the largest
energy scale any more and the frequency can become larger
than the distance between the Andreev addition energies
and the transport voltage, w > |E+ + — un|. In this regime,
quantum noise can become the dominant contribution to noise.

B. Zero- and low-bias regime, un < E; _
1. Zero-bias regime

If the transport voltage of the normal lead goes to zero,
un — 0, the dot is in the singly-occupied state |o), see
Fig. 6(a) for a sketch of the energy landscape of the system.
Hence the transport excitation energies Ey . are outside
the bias window and transport is blocked, meaning that the
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FIG. 6. (Color online) (a) Sketch of the energy landscape of the
proximized single-level quantum dot for = 0. (b) Finite-frequency
noise S(w) with I'y = 0.0002U, I's = 0.2U, § =0, kg T = 0.03U;
the spectrum has quantum noise steps at w = E; _ and w = E |
indicated by the green vertical lines.

Andreev current is zero as shown in Fig. 4. In this limit,
shot noise is negligible and quantum noise is dominant in the
spectrum, since @ > kg T, un. Also the thermal noise, which
is expected to be dominant at zero bias up to a noise frequency
of w = kgT, is here suppressed, since no dot excitation energy
is close enough to the Fermi energy to allow for thermal
excitations of the system.

We show the finite-frequency noise in this regime in Fig. 6
and we observe that the noise spectrum has steps at frequencies
o = |E4 4| equal to the Andreev addition energies of the
system. This behavior is typical for the high-frequency noise
of a system in which transport is blocked. At certain noise fre-
quencies, the effect of new “noisy” channels becomes visible,
leading to steps increasing the noise. The steps thus reflect
the internal structure of the energy levels on the quantum dot.
Here they occur at frequencies equal to the Andreev addition
energies of the dot-superconductor subsystem as described in
detail in the following. An analogy to the normal-conducting
case with symmetrically and asymmetrically coupled leads can
be found in Appendix B 2.

In the limit un — O, the noise is suppressed until the noise
frequency is equal to the energy which is necessary to excite
the dot from the singly-occupied state o) to the |—) state, w =
| E+._|. Equally, also the inverse process, namely the excitation
from the ABS |—) into the singly-occupied state |o) yields a
contribution to the noise. It takes place at w = |E_ 4 |. These
excitation energies are, however, degenerate in the zero-bias
limit, see Fig. 6(a), and consequently only one step occurs at
the noise frequency w = |E_ 1| = |E4 _|. The step height is
given by the sum of the respective effective coupling strengths,
see Eqs. (4)and (5), 'y +T'__,, =T'x [73].

A second step takes place at w = |E4 1| = |E_ _|, the
energy necessary for the excitation between a singly-occupied
state and the ABS |+). The height of the second step is again
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FIG. 7. (Color online) (a) Sketch of the energy landscape of the
proximized single-level quantum dot for uy = 0.2U. (b) Finite-
frequency noise S(w) with 'y = 0.0002U,I's = 0.2U,8 = 0,kgT =
0.03U.

given by I'y, the sum of the effective coupling strengths,
oy + T4 =Tne

Consequently, when the noise frequency is larger than the
energy which needs to be provided to excite between any of
the singly-occupied states and the ABSs, the noise is constant
and given by the sum of all four effective coupling strengths,
2Ty [41,51,53].

2. Low-bias regime, 0 < un < E4 _

If a small (positive) bias voltage is applied to the normal-
conducting lead, but the bias is still smaller than the energy
E. _, necessary to excite from the singly-occupied state |o)
into the ABS |—), the dot is singly occupied and the system is
hence still in the region where the current is suppressed [see
Figs. 7(a) and 8(a) for the energy landscape of the system and
Fig. 4 for the respective behavior of the current].

In this bias regime, the noise spectrum exhibits four steps
at noise frequencies w = |E4 + — un| as shown in Figs. 7(b)
and 8(b). The reason for this is that a finite transport voltage
breaks the degeneracy between the excitation energies that is
present for uyn = 0. This is indicated by the different lengths
of the green dashed arrows in the energy-landscape sketches
of the system. The height of each of the four steps is given by
the respective effective coupling strength, Egs. (4) and (5).

In the limit of zero detuning, § = 0, the effective coupling to
all four levelsisequal, 'y sy =Ty o =T =T__, =
I'nv/2. The step heights shown in the noise spectrum in Fig. 7(b)
are therefore all equal to I'n/2.

In contrast, if the detuning § is finite, the effective coupling
strengths differ. For § > 0, the coupling for the excitation to
go from the singly-occupied state |o) to the |+) state and to
excite from the |—) state into the singly-occupied state |o) is
stronger than for the other two excitations, [', .. =T'__, >
'y =T';_,. Consequently, these first excitations give a
larger contribution to the noise than the latter ones and the noise
spectrum exhibits steps with different heights, see Fig. 8(b).
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FIG. 8. (Color online) (a) Sketch of the energy landscape of the
proximized single-level quantum dot for uy = 0.2U and § = 0.1U.
(b) Finite-frequency noise S(w) with 'y = 0.0002U, I's = 0.2U,
kgT = 0.03U.

This behavior holds only as long as the detuning does
not become much larger than the coupling strength to the
superconducting lead. As soon as § 3> I's, the noise spectrum
exhibits again only two steps because the superconducting
correlations on the quantum dot vanish. The effective coupling
strengths of the Andreev levels corresponding to the excitation
from |o') to |—) and from |+) to |o) gotozero, 'y, ,; —
0, while the other two excitations are coupled with the effective
tunnel-coupling strength I'y for § > I's, see Egs. (4) and (5).
When setting the bias voltage to 0, we find the previous result,
as shown in Fig. 6(b). This is due to the fact that the coupling
strength is here twice as large as in the case of zero detuning,
however, only half of the excitations contribute to the current
and to the noise when § > I's.

The finite-frequency noise spectrum in this low-bias regime
provides a spectroscopy of the Andreev levels as well as the
effective coupling strengths.

Note, that in this case, namely, when the Andreev levels
are outside the bias window, the noise steps always lead to an
increase of the noise, regardless of whether the noise step is
related to a tunnel process between the reservoir and a strongly
or a weakly coupled dot resonance. The reason for this is that
we here observe features at noise frequencies, which always
correspond to energies necessary to excite otherwise blocked
transport channels between dot resonance and reservoir. This
is different if some of the Andreev levels are in the bias window,
as we will discuss in the next section.

C. Finite-bias regime

We consider in this section two different situations for a
finite transport voltage applied to the normal-conducting lead:
first, the voltage is applied such, that all Andreev energies are
in the bias window (high-bias regime) and second, such that
part of the excitation energies lie outside the transport window
(intermediate-bias regime). This allows us to study the full
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FIG. 9. (Color online) Sketch of the energy landscape of the proximized single-level quantum dot for uxy = 1.5U and (a) § = 0.1U,
(b) 6 =0, and (c) § = —0.1U. Finite-frequency noise S(w) with uxy = 1.5U, I'y = 0.002U, I's = 0.2U, kgT = 0.02U and (d) § = 0.1U,

()6 =0,and (f) § = —0.1U.

noise spectrum with its different contributions, similar to what
we observed separately in the previous sections, Secs. IV A
and IV B.

The finite-frequency noise spectrum will be shown to
provide a full spectroscopy of the system.

1. High-bias regime, pn > E .

We now assume the dot to be in a regime where the bias,
un = 1.5U, is chosen such that all Andreev energies are in the
bias window, see the sketches in Figs. 9(a)-9(c). We consider
the case where the superconducting correlations on the dot are
strong, which is realized for the detuning being smaller than
the coupling to the superconductor, § < I's. The results for the
noise spectrum in this regime are shown in Fig. 9, for§ = 0.1U
(d), 8 =0 (e),or § = —0.1U (f). In this regime, the Andreev
current is close to maximal, corresponding to the upper edge
of the density plot in Fig. 4.

In the low- and intermediate-frequency regimes, w <
|E+ + — un|, the noise spectrum shows Lorentzian-shaped
features, as discussed in Sec. IV A. These are a peak for a
nonzero detuning § in the low-frequency regime, w < I'y,
and dips at a noise frequency equal to the splitting of the
ABSs, w = |e; — €_| = 2¢4, due to a coherent destructive
interference of the ABSs.

The high-frequency part of the noise spectrum of Figs. 9(d)
and 9(f) exhibits quantum noise steps at frequencies w =
|Ex + — un|, similar to what was discussed in Sec. IV B.
However, in contrast to the previous section, where all steps
lead to an increase of the noise, the quantum noise steps
found here show different signs depending on the effective
coupling strength. A noise process related to a strongly coupled
Andreev level leads to an increase of the noise, while a
process between the electronic reservoir and a weaker coupled
Andreev level decreases the noise. The steps occurring in the
finite-bias regime at high frequencies can be understood from

an analogy to the ones obtained for a quantum dot coupled to
normal-conducting leads. In this case, an asymmetric coupling
to the two normal-conducting leads takes the role of the
differently coupled Andreev levels in the hybridised dot. See
Appendix B for a detailed discussion of this simpler case.

From this, we deduce that the varying directions of the
noise steps, namely, originate from the competition between
different noise contributions of opposite sign. When a certain
noise frequency o is reached, an ensemble of transport
processes becomes visible which can in principle involve
different types of transitions, |o) <> |£), due to tunneling
with the normal lead. The contribution to the noise which
stems from correlations of tunneling processes involving
only one type of transitions tends to increase the noise,
while the noise contribution stemming from correlations of
tunneling processes with different transitions tends to decrease
the noise. Depending on which of these contributions has
the larger magnitude, the step is positive or negative. The
magnitude of the correlations in turn depends on the coupling
strength of the involved processes. The addition of these two
noise contributions hence yields the noise spectra shown in
Figs. 9(d)-9(f). In the following, we discuss the implications
of this effect for different magnitudes of the detuning §.

In Fig. 9(d), we observe a large increase of the noise at
the noise frequency w = |un — E4 4|, because the related
Andreev level is coupled strongly to the normal-conducting
lead. This noise frequency corresponds to the energy which an
electron on the dot needs to absorb in order to tunnel out of
the dot. The second step at w = |un — E4 _| occurs when the
noise frequency provides the energy for an electron to tunnel
out of the weaker coupled Andreev level E _. The noise step
stemming from the process with the weaker coupled Andreev
level has a negative sign. In Fig. 9(d), the noise increases again
at w = |un — E_ 1| and decreases at w = |un — E_ _|. For
even higher frequencies, @ > un, the noise is always given by
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the sum of the effective coupling strengths, 2I'y, since the noise
frequency provides enough energy to excite from the singly-
occupied state into either one of the ABSs and vice versa.

If we invert the order of the excitation energies or the
strength of their effective couplings, the broad maxima are
transformed into troughs. This can, for example, be achieved
by inverting the bias unx — —un or the detuning § — —$§.
Figure 9(c) shows the energy landscape and (f) the finite-
frequency noise spectrum for § = —0.1U. The detuning
is reversed compared to the previously discussed case in
Fig. 9(d). Consequently, the noise is first suppressed, when a
process with a weakly coupled Andreev level takes place, and
then enhanced to the value 2I'y at a noise frequency related to
a strongly coupled Andreev level, see Fig. 9(f).

The quantum steps in the noise spectrum occur only in a
regime of intermediate detuning §. If the detuning § becomes
larger than the coupling to the superconducting lead I's, the
step structure as shown in Fig. 9 gets suppressed, because the
superconducting correlations become weaker.

If the proximity effect is on resonance and the detuning is
exactly equal to zero (§ = 0), the effective coupling strengths
to the different Andreev levels are equal. The finite-frequency
noise spectrum for this case is displayed in Fig. 9(e) with
the corresponding energy landscape of the proximized dot,
Fig. 9(b). In this regime, when the probabilities of the
dot to be in any of the ABSs are equal, no steps but
only shallow dips appear in the spectrum due to an almost
complete compensation of the different noise contributions.
The high-frequency noise spectrum is given by the sum of
the effective coupling strengths, 2I'y. Only small features at
o = | — E4 1| remain as shown in the inset of Fig. 9(e).

2. Intermediate-bias regime, E, _ < un < E4 4

We, finally, also address the case of the intermediate-bias
regime, where only a part of the levels is in the bias window. In
Fig. 10(a), we show the energy landscape of the dot considered
here, with un = 0.55U and § = 0.1U, where the excitation
energy E 4 is outside the bias window. The noise spectrum of
the intermediate-bias regime, see Fig. 10(b), shows a mixture
of the previously observed effects in the unidirectional, low-
bias, and high-bias regimes. We can identify in the spectrum
the features discussed in Sec. IV A, namely, the Lorentzian
dependence in the low-frequency regime and the resonance
dips at w = 2e€4, which are a signature of the coherent transfer
of Cooper pairs between dot and superconducting lead.

Furthermore, the quantum noise steps show an overlap of
the features discussed in the previous subsections: the steps
at w = |E; 4 — un| and o = |ux — E_ _| both lead to an
increase of the noise but with a different step height due to
the fact that the corresponding Andreev levels couple with
different effective coupling strengths to the reservoir. The
first of these steps overlaps with the intermediate-frequency
regime, namely where the resonance dips due to the internal
dynamics occur. The spectrum furthermore shows two steps
atfrequenciesw = |uny — E_ ;|andw = |ux — E4 _|, where
the direction of the steps tells us if it is a noise process between
the normal conducting lead and a strongly or weakly coupled
Andreev level. Note that also the resulting trough is here partly
found in the intermediate-frequency regime.
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FIG. 10. (Color online) (a) Sketch of the proximized single-level
quantum dot for uy = 0.55U and § = 0.1U. (b) Finite-frequency
noise S(w) with 'y = 0.002U, I's = 0.2U, kg T = 0.02U.

At even higher frequencies, @ > un, the noise is again
given by the sum of the effective coupling strengths.

V. CONCLUSIONS

We have presented a calculation of the noise spectrum of
a system composed by a single-level quantum dot tunnel-
coupled to a superconductor and a normal-conducting lead.
We found that the noise spectrum reflects the internal spectrum
of the proximized dot. Resonance dips occur at a frequency
equal to the splitting of the ABSs, w = 2¢,. This feature is a
signature of the coherent oscillation of Cooper pairs between
the quantum dot and the superconductor. The effect is strongest
if the superconducting correlations on the dot are maximal,
which happens when the proximity effect is on resonance,
8 = 0. In order to observe this effect experimentally, the
frequency of the resonance dip, approximately I's close to
resonance, needs to be within the GHz frequency range. For
example, in recent experiments [14,74], the coupling to the
superconductor is I's &~ 50-250 GHz.

The high-frequency regime of the noise spectrum shows
quantum-noise steps at frequencies w = |Ey + — un|. The
quantum-noise steps provide not only information on
the Andreev addition energies of the system, but also
on the effective coupling strength of the Andreev levels to
the normal conducting lead. The height (in the low-bias
regime) and sign (in the finite-bias regime) of the steps tell
the strength of the effective coupling of each Andreev level to
the reservoir. Therefore we conclude that the finite-frequency
noise spectrum provides a full spectroscopy of the proximized
quantum dot.
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APPENDIX A: DIAGRAMMATIC RULES TO CALCULATE
IRREDUCIBLE BLOCKS W, -

In this section, we summarize the rules to determine
diagrammatically the different contributions to the kernel and
current kernel as given in Refs. [57,58] and [42]. We adapt the
rules for the system studied here, which has only one normal
lead. The rules for the kernel W (w) are the following.

(1) Draw all topologically different diagrams with n
directed tunneling lines connecting pairs of vertices containing
lead electron operators. Assign spin index o and energy z
to every tunneling line. Additionally, assign state index yx
and the corresponding energy E, to each element of the
Keldysh contour connecting two vertices. Also, add an external
horizontal bosonic energy line transporting the energy w to
each diagram, which results from the Fourier transform.

(2) For each time segment between two adjacent ver-
tices write a resolvent 1/(AE(r) +i0%) with AE being the
difference between all backward-going minus forward-going
energies, including tunneling lines transporting the energy z
as well as the external line transporting the energy w.

(3) Each vertex containing a dot operator d'1 gives rise to
a matrix element (x'|d”|x) where x (x') is the dot state
entering (leaving) the vertex with respect to the Keldysh
contour. Consequently, for each vertex connecting a doubly-
occupied state d to the up state 1, the diagram acquires a factor
(=D.

(4) Each tunneling line contributes with a factor ﬁ I'n fn(2)
for a backward-going line with respect to the closed time
path and a factor %FN[I — fn(2)] for a forward-going
contribution.

(5) Each diagram has an overall prefactor
(—i)(—1)P*¢, where b is the total number of vertices on
the backward propagator and c is the number of crossings of
tunneling lines.

(6) Finally, sum over the spin o and integrate over the
energies z of tunneling lines and sum over all diagrams that
contribute to the same kernel element.

As a next step, we provide the additional rules to determine
the blocks containing one or two current operators Wi(w) and
Wi(w).

(1) Replace one (two) tunnel vertex by a current vertex to
calculate diagrams contributing to the kernels Wi(w) [W(w)].
Note that the current vertex (open circle) might also be placed
on the start or end point of the diagram.

(2) Multiply each diagram by a prefactor, determining the
position of the current vertex inside the diagram: we have
to multiply each diagram by a factor of (—1) for a current
vertex on the upper (lower) Keldysh time branch and a particle
tunneling into (out of) the normal lead. In the two other cases
multiply the diagram with a factor of (+1).

(3) The diagrams contributing to W;.(w), W;_(w) have
open external frequency lines to the right or left side attached
to the current vertex. Diagrams with frequency lines leaving
the diagram to the right contribute to the kernel W ;. (), while
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diagrams with frequency lines coming from the left contribute
to W;_(w).

APPENDIX B: FINITE-FREQUENCY NOISE OF A
SINGLE-LEVEL QUANTUM DOT COUPLED TO
NORMAL-CONDUCTING LEADS

In this section of the Appendix, we present results for the
current and the noise in a noninteracting single-level quantum
dot coupled to two normal-conducting leads. The presentation
of these known results, see Refs. [37,41,44,45,48,51,53], is
helpful as a comparison for the understanding of the more
complex results for the interacting proximized dot studied in
this paper. In several cases, the effect of the differently coupled
Andreev levels studied in the main part of this paper can be
mimicked by considering asymmetric coupling of the dot to
the two normal-conducting leads. The system studied in this
appendix is shown in Fig. 11(a). Note that in this section, we
consider the total current and its noise rather than that in a
single contact.

1. Unidirectional-transport regime
In the unidirectional-transport regime, when the applied
bias voltage is such that € < V/2, the current is given by
2I' TR
uni = T»
with ' =TI't +T'r. The finite-frequency noise in this

unidirectional-transport regime, where also V > o is fulfilled,
is given by

(BI)

T — FR)2i|

Suni(w) = Iuni [1 + 2 + w?

(B2)

The noise shows a Lorentzian dependence on the noise
frequency w [40,42]. For a symmetric coupling of the dot to
the normal conducting leads I'L = I'g, the noise equals I"/2
and is hence independent of the noise frequency.

2. Low- and finite-bias regimes

In order to get an insight into the parameters controlling the
height of the steps occurring in the quantum noise regime, we
here analyze the high-frequency noise spectrum in the regime
of low and finite bias, where quantum noise is dominant. For
o > T, the noise in the high-frequency regime is found to be
given by

3o N _
Sin(@) = 5 T LA O F (€ + o) + fif (e — ) fi_(€)]

12

+ E?R[fR*(e)fR‘(e + o)+ f(e — o) fg (e)]
10 T
3 LF R (e + o) fi (€) + f7(e) fi (6 — w)]
11 .T

+3 LF RfHEOf €+ o)+ fif € — o) fi (e)]

+w—> —w, (B3)

with the Fermi function f,f(w) = 1/(1 4 ¢ @~#)/ksT for the
two leads &« = L,R and f; (®) =1 — f;}(w). While the first
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FIG. 11. (Color online) (a) Sketch of the energy landscape of a noninteracting single-level quantum dot (with level energy €) coupled to
normal-conducting leads (with electrochemical potentials p;, ur and pp, — ug = V). The coupling strengths to the leads are given by I'L
and I'r. The other panels show the finite-frequency noise S(w) for a quantum dot coupled to normal leads in units of I". (b) Zero-bias regime
with 'L = g, € = 10", kgT = 4TI'L. (c) Low-bias regime for different coupling strengths with € = 70I'y, kg7 = 4.5T'., and V = 100I",..
(d) Finite-bias regime with symmetric coupling I'r = I'r, and € = 20I", kg7 = 4I'L, and V = 100I',.. (e) Finite-bias regime with asymmetric
coupling I'L = 10I'g, € =20I'L, kg7 = 4I'L, and V = 100I'L and (f) with inverted asymmetry I'r = 10I'L, € = 20'r, kg7 = 4I'r, and

V = 100Tk.

two contributions result from correlations in the same lead, the
latter two are related to correlations between different leads.
In the following, we will analyze the noise systematically
for the different bias regimes and investigate the effect of an
asymmetric coupling to the reservoirs (I'L # 'r) on the noise
spectrum.

a. Zero bias

In the limit of V — 0, shot noise is negligible. Thermal
noise, which is generally cut off at w = kg T, is here suppressed
due to € # 0. Hence quantum noise is dominant in this regime.

The noise spectrum, Fig. 11(b), has one step at w = |€|.
Since at zero bias all factors in Eq. (B3) containing Fermi
functions are equal, the step height is given by I'/2. An
asymmetric coupling to the leads does hence not influence
the shape of the noise spectrum.

b. Low bias, ¢ > V[2

When a finite transport voltage is applied, but the transport
level is outside the bias window, quantum noise is still the
dominant noise contribution and the noise spectrum exhibits
two steps. For the situation shown in Fig. 11(c), when € >
UL > UR, the quantum dot is unoccupied in the stationary
regime and all factors in Eq. (B3) containing f,"(¢) are zero.
Then the first step stems from the contributions of the first and
the third term of Eq. (B3) for which the factor containing
Fermi functions is equal. It occurs at w = |€ — ur| when
the excitation of the dot from the left lead becomes visible
and it has the height I'l /2. Analogously, the second step at
o = |e — ur| has height I'r /2. In both places an increase of

the noise is observed as long as the dot level is outside the
bias window, because in both cases the effect of an otherwise
blocked transport channel becomes visible. Figure 11(c) shows
two noise spectra, for a symmetrically coupled quantum dot
I'L = I'r (red dashed line) and an asymmetrically coupled dot
I'L > I'r (black solid line).

c. Finite bias, e < V [2

We finally consider the case, where the energy level lies
inside the bias window and shot noise as well as quantum
noise is present. When choosing asymmetric coupling to the
leads, we find a situation, which can be compared to the prox-
imized quantum dot with finite detuning as discussed in the
main text.

In Fig. 11(e), the noise is displayed for a situation where
the left lead is coupled much stronger to the quantum dot
I' = 10T'r. The Lorentzian behavior of the low-frequency
noise, w K (ur — €), is described with the expression given
in Eq. (B2). Furthermore, steps occuratw = |y, — €| and w =
|ur — €. The first step at w = |y, — €| increases the noise. At
this frequency back-tunnelling of an electron to the strongly
coupled left lead, emptying the quantum dot, becomes visible.
Its height is given by I'L(I'L — I'r)/2(I'r + I'L). The second
step at w = |e€ — ur|, which occurs when an electron can tun-
nel back onto the dot from the right lead, results in a decrease
of the noise. Its depth is given by —I'r(I'r — I'L)/2(T'r + I'L).
The high-frequency noise is again given by I'/2.

Whether a step in the noise leads to an increase or a
decrease of the total noise depends on the coupling strength
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of the different excitations. The reason for this is that, in
the regime where the level is in the bias window, the part
of the noise stemming from correlations in the same lead
increases at the frequencies equal to the excitation energies
with an amount given by the square of the respective coupling
strength, while the noise due to correlations between different
leads decreases by an amount which is always proportional to
'L k. This can be directly read off from Eq. (B3). Depending
on whether the positive contribution multiplied by I'2 or the
negative contribution multiplied by I'LI'r is larger the step
hence changes direction.

Figure 11(f) shows the noise for the same applied bias
voltage but with the right reservoir coupled stronger than the
left reservoir, ' = 10I'L. The noise spectrum therefore shows
a reversed order of the steps with respect to the result shown
in Fig. 11(e), leading to an occurrence of troughs rather than
plateaus in the noise.

The situation for a symmetrically coupled quantum dot
('L = I'r) where the probabilities of the quantum dot to be
empty or singly occupied are equal, is shown in Fig. 11(d).
The noise spectrum shows no quantum noise steps at w = |€ —
Mi/r| due to an almost complete compensation of the noise
stemming from correlations in the same lead and correlations
between the two leads.

The sum of these contributions to the noise leads to the
shallow dip structure in the symmetrized noise spectrum as
displayed in Fig. 11(d). For frequencies larger than the bias
voltage, the noise takes again the value I'/2. The case of
a quantum dot symmetrically coupled to normal-conducting
leads is equivalent to the situation of zero detuning in the high
bias regime in the main text.

APPENDIX C: DISPLACEMENT CURRENT FOR THE
SINGLE-LEVEL QUANTUM DOT COUPLED TO A
NORMAL AND A SUPERCONDUCTING LEAD

We consider a simple capacitive model and denote with
Cn and Cg the capacitances of the tunnel barriers with
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the normal and superconducting leads, respectively. The
number of electrons in the dot is A =Y dld,. Within
this model, the displacement current in the normal lead
is [40]

Cn .
——n.
Cn + Cs
The total current is simply the sum of the tunneling current

and the displacement current and reads

iN,displ = (C1)

- - Cn
INtot = INtunn — mn (€2)
with the tunneling current given by
A X 1 .
IN,tunn =-N= ——[N,H]
ih
i "
=~ > (nel,ds — Bidf cio). (C3)

Note that the tunneling current IAN,[unn is equal to the current
I introduced in Sec. IIl. The current Iy is positive when
flowing out of the normal lead. At this stage, it is worth
mentioning that if Cg > Cy, the displacement current in the
normal lead can be neglected. This assumption is consistent
with I's > I'n. '

Now, we proceed to evaluate 7i:

1

. 1 ~
= — AaH =1 nn i AaH
il ih[n 1=INw +ih[n eft ]

(o2))

where the tunneling current with the superconductor reads

= IN,tunn + IS,lunn’

A i +

s o = 3Ts(d}d] —d,dy). (C5)
Putting everything together we obtain the Ramo-Shockley
theorem for the N-dot-S system:

Cs . Cx

—— INumn — ———— C6
CN+CS N, tu CN+CS ( )

IN,tot = IS,lunn'
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