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Abstract
A standard TPS measurement gives the thermal conductivity and thermal diffusivity of an
isotropic material which in turn gives the heat capacity. The thermal properties of an
anisotropic material can be measured if the heat capacity is known. A method for heat
capacity measurement exists, where the TPS sensor is attached to a sample container which is
surrounded by insulation. However, it's based on an assumption of negligible heat losses which
leads to uncertainties in the results. From that position, this work aims to model the heat losses
from the specific heat measurements with TPS. A new set-up is introduced, where the sensor
with the container hangs freely in a steel tube to get more predictable heat losses.
The results show that the measurements can be modelled as a network of lumps connected

by conductances approximated as constant. Thereby, the conductances out from the system
can be solved from a reference measurement and used as input for a model of a measurement
with a sample. The model seems to underestimate the heat capacity, which might be a
consequence of temperature dependent effects on the conductances from convection. The
tube in the set-up could be evacuated to minimize those losses.
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1. Introduction

Specific heat capacity of materials and components are of
vital importance in their final functionality i.e. thermal
storage in building elements or transient heat flux.

There are different methods for determination of the specific
heat capacity. One method is the adiabatic calorimetry where
heat is added to a sample while the temperature increase is
measured continuously. The sample is surrounded by a heating
guard keeping the initial measuring temperature to minimize
the heat losses from the sample to the surrounding. If the losses
and hosting by Elsevier B.V. Open access under CC BY-NC-ND license.
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are negligible, the heat capacity can be calculated from the
known energy input and temperature by Eq. (1).

mcp ¼
ΔE
ΔT

¼
R t2
t1 Pdt
ΔT

ð1Þ

where m is the mass (kg), cp is the specific heat capacity
(J/kg/K), E is the heating energy (J), ΔT is the temperature
change (K), P is the power input (W), t is the time (s).

Matsou (1988) describes that the adiabatic method works
best at lower temperatures where almost adiabatic condi-
tion can be reached and thus is a good estimate for the
heat capacity calculations. At higher temperatures the heat
losses has to be taken into account or they will influence the
calculated results. Karasz and O'Reilly (1966) solve the
problem with adiabatic conditions by letting the heating
guard follow the temperature increase of the sample.

The TPS method (ISO 22007-2, 2008) can be used for
simultaneous determination of thermal conductivity, ther-
mal diffusivity and specific heat of an isotropic material. To
measure the thermal properties of anisotropic material, the
specific heat capacity has to be known. This creates an
incentive to create a model for measuring the specific heat
capacity with the TPS equipment.

In this paper, the specific heat capacity has been
measured by a TPS-sensor. The method is similar to the
adiabatic method but does not assume adiabatic conditions.
Matsou (1988) created an extrapolation method to quantify
the heat losses from the cooling of the sample. The heat
losses to the surroundings could instead be incorporated in
the model for heat capacity calculation, which has been
examined in this paper.
Figure 1 Picture of a TPS sensor.

Figure 2 Gold container glued to a TPS sensor for specific heat
container ready for measurement to the right.
2. Principle of transient plane source

Gustafsson et al. (1979) Chalmers University of Technology,
Sweden, first demonstrated the TPS principle. The TPS
method uses a sensor which is a combined heat source
and resistance thermometer. A constant power is supplied
to the sensor and the temperature in the sensor is continuously
measured. The thermal properties of the sample can be
calculated by using the temperature development in the
sensor. A TPS sensor is shown in Figure 1.
2.1. Existing method to measure of heat capacity
with TPS

Determination of the specific heat capacity can be per-
formed by the measurement procedure described in the Hot
Disk (2001) manual. In specific heat application a TPS sensor
is attached to the underside of a gold container (sample
holder), shown in Figure 2. The container limits the size of
the sample which for this case is a cylinder with a diameter
of 20 mm and a height of 5 mm.

The process of measuring is based on two individual
measurements; a reference measurement (the empty con-
tainer) and a sample measurement (the container with-
holding a sample). In order to minimize the heat losses to
ambient air, in both measurements the setup of the sensor,
holder and sample are imbedded in a low conductive material.

The method is based on the assumption of a linear tempera-
ture increase (Gustavsson et al., 1996), which would mean that
the heat losses to the surroundings are negligible for the time
span of the measurement. The heat capacity would be
calculated by Eq. (1) as for the adiabatic calorimetry.

To find the right time span for the analysis, the measure-
ment data could be analysed in a variety of time windows.
The results will give a curve with a maximum that is close to
the specific heat of the analysed material. An example of
the results is shown in Figure 3.

The method is time consuming and there is a problem
with the reliability of the results. If the later decrease of
measurements. The open container to the left and the closed
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the curve comes from the losses that start to influence the
measurement, there will always be a risk that the losses
start to have an influence already before the plateau which
would make the model underestimate the specific heat. It
will also be hard to choose an adequate time interval for the
analysis.
2.2. Comparison of different set-ups

To test the influence of the losses, and to connect them
to heat transfer mechanisms, three different set-ups for
Figure 3 Analyses of measuring points for determination of
specific heat with a silver sample with specific heat of 235 J/kg/K.

Figure 4 The device used for set-up 1 is shown to the le
the mounting of the gold container have been tested for
measuring the heat capacity with TPS:
1.
ft a

Fig
me
The old set-up where the sample container and the
sensor were put in a hole between two blocks of XPS
insulation.
2.
 The sample container hanging inside a steel tube at
atmospheric pressure.
3.
 The sample container hanging inside a steel tube at
10 kPa pressure.
The devices for the different set-ups are shown in
Figure 4 where the same steel tube is used for both set-up
2 and 3. A fan was used for evacuating the tube in set-up
nd the device used for set-up 2 and 3 to the right.

ure 5 Curves for the temperature increase for reference
asurements with the three different set-ups.



Table 1 Approximate values of heat capacity for some
sample materials.

Material Sample
mass (g)

Specific heat
capacity (J/g/K)

Heat
capacity (J/K)

XPS 0.042 0.8 0.034
Silver 4.2 0.24 1.0
PVC 2.2 0.8 1.8
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3 which reached down to a pressure of 10 kPa. The sensor is
either placed in the insulation or freely hanged in its leads
from the lid of the tube.

To compare the different set-ups, and chose which to
study further, measurements were made with the empty
container. Figure 5 shows the corresponding temperature
curve for the three different set-ups. For all three measure-
ments, a power of 10 mW has been supplied for 640 s. The
temperature seems to increase asymptotically toward a
stable temperature where the heat losses will balance the
power input. The curves stabilize at different temperatures
which means that the losses vary between the different set-
ups. Set-up 1 with XPS seems to have considerably lower
amounts of losses while the change in pressure conditions
seems to have a quite small effect.

The results presented in Figure 4 indicate that the
deviation between set-up 2 and 3 can be neglected, thus
it is unnecessary to evacuate the tube. The main influence
from a lowered pressure would be on the convection since
the radiation is independent on pressure and a pressure of
10 kPa is too high to influence the conduction in such a large
cavity. This suggests that the convection plays a minor part
in the heat losses. That gives better possibilities to develop a
mathematical model of the temperature increase since both
the radiation flux and the conduction flux can be considered
linearly dependent of temperature at these temperature
intervals, while the conduction would have been dependent
on higher degrees of the temperature difference.

For the case with insulation around the sensor there
might appear both some transient behavior of the heat
waves expansion through the insulation material and, after
a certain time of the measurement, effects from the
boundaries of the insulation.

For the case with the steel tube, the large inner area,
high heat capacity and high conductivity will lead to a
negligible temperature increase in the tube for the magni-
tude of the power and times used in these experiments.
Thus, assuming a constant temperature boundary condition
is a good approximation. This will although be a limitation
for the possible time over which the model would be valid
for that set-up.

Thereof the set-up 2 with the steel tube at atmospheric
pressure will be the focus of this paper and will be used for
both simulations and measurements in further chapters.
Figure 6 Temperature development in the sensor for measuremen
3. Analysis of transient measurements

The heat capacity should be possible to calculate by using
the measured temperature increase since it seems to govern
the shape of the curve. This can be seen in Figure 6 which
shows the curves for the empty container and measure-
ments on three different sample materials with varying heat
capacity. A higher heat capacity will lead to a slower incline
of the temperature. This correspond to Figure 6 since
mcpXPSomcpsilveromcpPVC. Approximate properties of the
materials are shown in Table 1. The mass of PVC is large
compared to that of silver because the silver sample is a
folded foil and thus not as compact as a homogenous material.

3.1. One lump model

The simplest mathematical model would be that the whole
sample container with the sample behaves as an isothermal
lump. When a heat source is connected to the lump, the
energy from the source will either heat up the lump or be
transported away from the lump as losses. This system is
illustrated in Figure 7 where the temperature T(t) is the
temperature difference measured by the TPS device.

The model in Figure 7 leads to the heat transfer equation
shown in Eq. (2) which describes that the change of energy
in the lump (sample and container) is the difference
between the power added to the system and the energy
loss from the system:

mcp
∂T
∂t

¼ P�KðTÞ � TðtÞ ð2Þ

where m is the mass (kg), cp is the heat capacity (J/kg/K),
T is the temperature (K), t is the time (s), P is the power
ts on samples of materials with varying specific heat capacity.



Figure 7 Model for the heat capacity measurement with TPS.

Figure 8 Schematics of the model used for simulations. The
container is separated into two lumps with an internal con-
ductance, Kint, connecting them together and both connected
to the exterior with Kext.

Figure 9 The figure shows the analytical solution for the two
sides of the container. The input data is based on measurements of
the empty container. After 100 s the time derivatives coincide.

A. Berge et al.480
input (W) and K(T) is the conductance to the surro-
undings (W/K).

If the conductance, K, is constant (not dependent of
temperature), Eq. (2) can be solved analytically with the
results shown in Eq. (3) together with Eq. 4):

TðtÞ ¼ P
K
ð1�e� t=tc Þ ð3Þ

tc ¼
mcp
K

ð4Þ

where tc is the time constant (s).
The behavior of Eq. (3) can be seen in Figure 5 where the

curves seem to stabilize at some specific temperature which
would equal the quotient P/K. Eq. (3) would give similar
curves for measurements of the container with a sample.
The sample measurement would have a slower ascent
toward the steady state temperature due to a higher time
constant when the value for mcp is increased in Eq. (4). This
can be seen in Figure 6.

3.2. Two lump model

To analyze the assumption of a lumped model representing
the true characteristics of the of the set-up, an analysis
were done of a more complex mathematical model shown in
Figure 8. Here, the side of the container where the sensor is
placed is separated from the other side by an internal
conductance and the power source is connected only to the
sensor side.

With this model it is possible to analyze the consequence
of getting all your data from a single side of the specimen.
For this symmetrical case, where the heat capacity is the
same for both nodes and the conductance are the same in
both directions, the temperatures in the model could be
calculated analytically by Eq. (5) together with Eq. (6) and
Eq. (7):

T1ðtÞ ¼ Ts1� Ts1 þTs2
2 e� t=tc � Ts1 �Ts2

2 e� t=t′c

T2ðtÞ ¼ Ts2� Ts1 þTs2
2 e� t=tc þ Ts1 �Ts2

2 e� t=t′c

(
ð5Þ

tc ¼
mcp
2Kext

ð6Þ

t′c ¼
mcp

2ðKextþ2KintÞ
ð7Þ
where Ts1 and Ts2 are the steady state temperatures
at corresponding node (K), tc and tc' is time constants (s),
Kext is the conductances to the exterior (W/K) and Kint is
the conductance from one side of the container to the
other (W/K).

The temperatures in Eq. (5) were calculated from input
based on heat transfer through radiation and conduction for
set-up 2, with the steel tube at atmospheric pressure. The
results are shown in Figure 9. Both the temperature
increase and its time derivative are shown for both the
front side (source side) and the back side of the container. It
is interesting to see that the derivatives seems to come
together and follow the same curve which means that from
this point the equation for the two temperature curves are
the same, but for a constant. This can also be seen in Eq. (5)
for the case where Kint is large compared to Kext. The third
term in the equation will decline faster than the second
term which is the same for both temperatures. After long
enough time for the third term to be negligible, the
equation for the sensor temperature can be rearranged to
Eq. (8), which is the same as Eq. (3) apart from the constant
(Ts1�Ts2)/2. This makes it into an equation with three
unknowns of which one, the constant, does not contribute
to the solution of the heat capacity.

T1ðtÞ ¼
Ts1�Ts2

2
� P

2� Kext
ð1�e� t=tc Þ ð8Þ

Validation of the calculated results was performed by
measuring the temperature the temperature of the back-
side of the container, shown in Figure 10. The behavior of
the curves from the measurements looks very close to that
of the analytical solution.

3.3. Three lump model

The previous results, showed in Figure 9 and Figure 10, are
for the empty container. If a sample is added, the symmetry
of the system will disappear. For this case a three lump
model, shown in Figure 11, were analyzed.

If the assumptions in those models, the two lump model
for the empty container and the three lump model for the



Figure 10 Results from measurements with a TPS sensor on one side of the container and a thermocouple on the other side.

Figure 11 Schematics of the three lump model. A lump with a
varying heat capacity, for example a sample, is added to the
system.

Figure 12 Results from simulations of the three lump model
with input data from the two lump model and heat capacity
from material data for pure silver. The results are compared to
measured temperatures for a silver sample.

Figure 13 Time derivative of the temperature from simula-
tions of the three lump model with varying internal conduc-
tance. Compared to measurements of a silver sample.
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container with a sample, are valid, then mcp1 and Kext
should be the same in both models. To test that, Eq. (8) can
be fitted to the temperature curve of a reference measure-
ment with the empty container. That gives the external
conductance and the heat capacity of the holder. Then
there are only two unknown variables left in the three lump
model; mcp2 and K′int.

The temperatures in the three lump model were solved
numerically with input data from the curve fit of the two lump
model. The heat capacity of the sample was set to the heat
capacity pure silver, 235 J/kg/K, and the internal conductance
was adjusted to fit a measurement with a sample of pure silver.

The results are shown in Figure 12 where the internal
conductance, Kint, of 0.05 W/K gives a very good result. This
suggests that the external conductance is the same, both for
the reference measurement and the sample measurement.

To analyze the sensitivity of the variation in heat capacity
and internal conductance the, simulations were made with
a variation of the input data. The result for the time
derivatives for variation of internal conductance is shown
in Figure 13. There is an influence on the shape of the
temperature curve from the internal conductance but the
variation is quite small.

To make a first test of the possibility to predict the heat
capacity with the models, simulations were made for a
variation of heat capacity and internal conductance. The
simulation results were fit to the absolute temperature
difference and its time derivative from measurements of a
silver sample. The specific heat and the internal conduc-
tance which gave the lowest quadratic distance are shown
in Table 2.

The results are similar between both curves which
suggest that the temperature and its time derivative contain
the same information. Both analyses underestimate the heat
capacity compared to the tabulated value for silver.
4. Conclusions and discussion

It seems as if the set-up with the sensor hanging in a steel tube
is the easiest one to model, relative to set-up with insulation.



Table 2 Results from simulations over a variation of specific heat and internal conductance. The value is taken for the
simulation which gave the least squared distance between the simulated temperature curve and a measured curve.

Analysed curve Specific heat capacity (J/kg/K) Internal conductance (J/K) Error from tabulated valuen (%)

T(t) 218 0.052 �7.2
dT(t)/dt 221 0.051 �6.0

nTabulated value for pure silver is 235 J/kg/K.
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There were small differences between low pressure measure-
ments and measurements at atmospheric pressure why the
analysis was made for atmospheric pressure.

From the analysis of the heat losses, the two lump model
gives a good estimate of the measurements for the case
with an empty container. In addition, the analytical solution
show that it might take some while before the one sided
measurement represents the mean temperature develop-
ment. This means that the model needs to come with good
recommendations on which part of the measurement to use
in the analysis.

The conductance and heat capacity calculated from the
reference measurement can be used as input data for
the three lump model, which gave good results compared
to the measurement of a sample with known heat capacity.

When the model were simulated for a variation of heat
capacities and internal conductances and compared to a
measured curve with the least square method, the resulting
heat capacity underestimated the table value.

The underestimation can be a consequence of a tem-
perature dependence of the conductance. If the external
conductance increases with temperature, the temperature
would increase faster in the beginning and slower at the
end. With a model assuming constant conductances this
would be interpreted as a lower heat capacity, which is
what has been obtained. This suggests that the convection
might influence the results and cannot be neglected as has
been assumed. The set-up with vacuum will decrease the
convection which is seen in Figure 5 as the difference
between vacuum and atmospheric pressure. This makes
the vacuum set-up interesting for further studies.

The error in the heat capacity could also come from the
simplifications in the models where some heat transfer
paths are neglected. If the evacuated measurements do
not give better results the models might have to be more
advanced.

In this report the method has mainly been tested for a
silver sample, a material with high volumetric heat capacity
and high thermal conductivity. The model also has to be
tested for materials with different thermal properties to see
if the results are common.
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