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ABSTRACT

Grain boundaries can have a significant influence on the properties of polycrys-
talline materials. When determining the type and extent of this influence it is fre-
quently useful to employ computational methods such as density functional theory
and molecular dynamics, which can provide models of the grain boundary structure
at the atomistic level. This work investigates the influence of grain boundaries in
two different materials, barium zirconate and graphene, using atomistic simulations.

Barium zirconate is a proton conducting material with a potential application as
a fuel cell electrolyte. However, the presence of grain boundaries has been found to
lower the proton conductivity. Here, density functional theory has been used to in-
vestigate the segregation of positively charged defects, such as oxygen vacancies and
protons, to the grain boundaries. It has been found that both defect types segregate
strongly to the grain boundaries, which gives rise to an electrostatic potential that
depletes the surrounding region of protons and impedes transport across the grain
boundary. A thermodynamical space-charge model has been employed to relate the
theoretical results to experimentally measurable quantities.

The carbon allotrope graphene has many potential applications in for example
electronics, sensors and catalysis. It has also been mentioned as a possible material
for phononics and heat management applications due to its unique vibrational prop-
erties, which give it a high thermal conductivity. Grain boundaries have been found
to decrease the thermal conductivity, but they may also provide a method for ma-
nipulating the vibrational properties. The work included in this thesis investigates
the scattering of long-wavelength flexural phonons, i.e. phonons with polarization
vectors pointing out of the graphene plane, at grain boundaries. Grain boundaries
in graphene frequently cause out-of-plane deformation, buckling, of the graphene
sheet, and it is found that this buckling is the main cause of scattering of long-
wavelength flexural phonons. Based on this result a continuum mechanical model
of the scattering has been constructed, with a view to facilitating the study of systems
too large to be modelled by molecular dynamics.

BaZrO3, proton conduction, graphene, phonons, grain boundaries, density func-
tional theory, interatomic model potentials
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Chapter 1

Introduction

Many materials in the world around us derive some of their properties from the
defects they contain. The presence of defects can make a material less useful, but
can also open the possibility of tuning its properties. For instance, the electronic
conductivity of semiconductors can be manipulated through introduction of point
defects, also known as dopants, a process that is fundamental to the semiconductor
industry [1]. Line defects or dislocations are important for the mechanical properties
of metals, and two-dimensional defects such as grain boundaries can change both
the mechanical, chemical and electronic properties of a material [1–3]. This thesis
describes the influence of grain boundaries in two materials, barium zirconate and
graphene.

1.1 What are grain boundaries?

In a crystalline material, a unit cell consisting of one or several atoms is repeated
in all directions, resulting in a periodic structure. A sample of a crystalline material
can be either a single crystal, if the periodic structure is unbroken throughout, or
polycrystalline, if it consists of several smaller single crystal grains with different
orientations. In a polycrystalline sample, the interface between two grains with the
same composition and structure but different orientations is a grain boundary (see
Figure 1.1).

Since the perfect crystal structure is usually the configuration with lowest energy,
it may seem strange that grain boundaries should form at all. That they do occur is
typically a consequence of how the sample was produced. As an example, consider
solidification of a molten substance. For temperatures slightly below the melting
point, solid particles will begin to form at several points in the melt. As the tempera-
ture drops, the solid particles will grow larger until the surfaces meet. In most cases
the particles do not have the same orientation, leading to a mismatch between the
crystal lattices. Theoretically, the grains could be rotated to the same orientation, but
in practice this would require too much energy. Instead, a grain boundary is formed
as a metastable state [1–3].

Although grain boundaries typically occur as a result of adjacent grains growing
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1 Introduction

θ

Figure 1.1: Two grains with the same structure and composition, but rotated by an angle θ

with respect to each other, forming a grain boundary.

(a) (b)

Figure 1.2: Schematic depicting the construction of a tilt grain boundary (a) and a twist
grain boundary (b) with misorientation angle θ.

together, it is more convenient to build theoretical descriptions on the differences
between the grain boundary and bulk, as well as on the relative displacement of the
grains. To create a grain boundary in a single crystal slab, one first has to divide the
sample into two parts along some direction. A lattice mismatch can then be created
by rotating the two parts relative to each other by some angle, or by displacing one
part with respect to the other along or perpendicular to the interface. Putting the two
parts together again, one will have obtained a grain boundary that can be classified
according to the misorientation angle, the crystal plane along which the slab has
been cut, and the relative displacement of the grains [1]. If the axis of rotation is
perpendicular to the interface the result is a twist grain boundary, as opposed to a tilt
grain boundary where the axis of rotation is parallel to the interface (see Figure 1.2).
The grains may be also rotated around two axes, one parallel and one perpendicular
to the boundary plane, resulting in a grain boundary that is a combination of tilt
and twist. This is often the case for real grain boundaries. The creation of a grain
boundary is associated with a grain boundary energy γ with units of energy per area.

Due to the lattice mismatch between the grains, the grain boundary will fre-
quently contain both voids and regions with atom-atom distances shorter than those
in bulk. This introduces a strain in the lattice, thereby causing distortions in the re-
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1.2 Thesis outline

gion close to the grain boundary. The altered structure at and near the grain bound-
ary will naturally affect the local vibrational and electronic properties, and may also
reduce the strength of the material [1, 3]. In addition, point defects such as vacan-
cies, interstitials and impurities frequently have a different energy of formation at
the grain boundary, leading to segregation of defects [2]. This could for example
affect the mechanical strength. If the segregated defects are charged, as may be the
case in semiconductors and ionic systems, segregation can also lead to the boundary
aquiring a net charge.

1.2 Thesis outline

In this thesis, the effect of grain boundaries on transport properties in two different
materials is investigated using atomistic simulations. The first material is yttrium-
doped barium zirconate, a proton-conducting oxide with a potential application as
an electrolyte in solid oxide fuel cells. The grain boundaries of barium zirconate
have been shown to substantially impede proton transport. Here, the segregation
of oxygen vacancies and protons to barium zirconate grain boundaries is studied in
order to ascertain whether they could cause the grain boundary to obtain a positive
net charge, depleting the surrounding region of protons and thereby lowering the
proton conductivity.

The second material studied is graphene, a carbon sheet of single atom thickness.
Although grain boundaries in graphene have been shown to affect both electronic
and mechanical properties, the focus here is on phonon transport. Specifically, we
have studied the scattering of long-wavelength out-of-plane acoustic phonons, which
are important for e.g heat transport.

The thesis will be organized as follows: Chapter 2 introduces the potential appli-
cation of barium zirconate in fuel cells, and gives an overview of the defect chem-
istry of the material. Chapter 3 descibes phonon transport in graphene, and also how
grain boundaries in a two-dimensional material like graphene differ from those in an
ordinary material. Chapter 4 gives an overview of the computational methods used
and Chapters 5 and 6 provide a summary of the results, conclusions and outlook
concering barium zirconate and graphene, respectively.
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Chapter 2

Proton-conducting BaZrO3

Barium zirconate, BaZrO3, has been studied extensively during the last three decades.
The main reason is that doped barium zirconate is a proton conductor, and it may
therefore be useful for electrolysis of water and as an electrolyte material in fuel
cells. A fuel cell is a device that transforms the chemical energy stored in fuel into
useful work, similarly to the ubiquitous internal combustion engine. However, while
in the internal combustion engine the heat generated by burning fuel causes a gas to
expand, thereby generating work, the fuel cell converts chemical energy directly into
electrical energy. This gives the fuel cell a higher efficiency compared to the internal
combustion engine [4, 5].

In addition to their higher efficiency, fuel cells may also be a key to replacing
fossil fuels with renewable alternatives due to their ability to run on pure hydro-
gen. In the ideal scenario, known as the hydrogen economy, hydrogen could be
sustainably produced from e.g. solar-powered photocatalytic reactions or biological
processes, and then used to power fuel cells in for example cars and other vehi-
cles [6, 7]. This process would result in near-zero emission of greenhouse gases
and eliminate the need for fossil fuels. However, sustainable hydrogen production
and storage are technologically challenging, and fuel cell technology must also be
developed further before the hydrogen economy can be realized.

In the first part of this chapter, a brief overview of the basic principles of fuel cells
is given and the requirements that an electrolyte material must meet are discussed.
The second part of the chapter gives a more thorough introduction to the defect
chemistry of barium zirconate and describes how the influence of grain boundaries
may be explained.

2.1 Fuel cells

2.1.1 Basic principles

To extract electrical energy directly from a combustion process, the reaction must
be split into an oxidation part and a reduction part. As an example, consider the
combustion of hydrogen. When hydrogen gas is ignited in the presence of oxygen,
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2 Proton-conducting BaZrO3

water is produced according to the following reaction:

H2 +
1
2

O2→ H2O (2.1)

This reaction is exothermic and will release energy in the form of heat. If the hy-
drogen is instead used as fuel in a fuel cell, oxygen and hydrogen are supplied at
different locations in the cell (see Figure 2.1). At the anode, hydrogen gas is split
and incorporated into the electrode material according to the oxidation reaction

H2→ 2H+ +2e−. (2.2)

The free electrons generated in this process flow through an electrical circuit, where
work is extracted, to get to the cathode. At the cathode, oxygen gas undergoes
reduction and forms ions:

1
2

O2 +2e−→ O2−. (2.3)

Finally, the products of the previous reactions combine to form water:

2H+ +O2−→ H2O. (2.4)

The water formation step may take place either at the cathode or at the anode de-
pending on the properties of the electrolyte. A proton-conducting electrolyte enables
the protons to travel through the cell, forming water with the oxygen ions at the cath-
ode. If the electrolyte is an oxygen ion conductor, the oxygen ions will instead travel
to the anode and water will form there [4, 5].

In order for the fuel cell to function efficiently, the reactions must proceed at a
high speed and be kept separated. This means that the component materials must
have a specific set of properties. The electrodes should be efficient catalysts for the
splitting reactions (Equations 2.2 and 2.3), and also be good electronic conductors so
that electrons can be transported to and from the electric load. Ideally, the electrodes
should also be ionic conductors so that ions can be transported through the elec-
trode to the electrolyte. This enables the splitting reaction to take place anywhere
on the electrode surface. If the electrode is not an ionic conductor, the reaction is
restricted to points where the electrode, electrolyte and gas are in contact. The elec-
trolyte should have a high ionic conductivity, but must also be impermeable to gas
molecules and electrically insulating, as electrons passing through the electrolyte
would short-circuit the cell. Finally, the component materials must be chemically
stable under fuel cell operating conditions. This means that they must not react with
each other at the operating temperature of the cell, and they must also be stable in
the presence of water and carbon oxides [5, 8].

2.1.2 Types of fuel cells

Efficient fuel cell operation can be accomplished using a number of different com-
binations of electrode and electrolyte materials. As a consequence there are several
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2.1 Fuel cells

(a)

(b)

Figure 2.1: Schematic of fuel cells with (a) an oxygen ion conducting electrolyte and (b) a
proton conducting electrolyte.

types of fuel cells, each with their own advantages and drawbacks. Most existing
fuel cell types belong to one of two categories: Low-temperature fuel cells, with
operation temperatures below 200 ◦C, or high-tempterature fuel cells with operation
temperatures between 700 and 1000 ◦C. An exception is molten carbonate fuel cells,
with operation temperatures between 500 and 700 ◦C. The operation temperature is
mainly determined by the temperature interval in which the electrolyte is an efficient
enough ionic conductor [5, 8].

In low-temperature fuel cells, typical electrolytes are solid polymer membranes,
liquid solutions of alkaline salts, and phosphoric acid. Solid polymer membranes
like Nafion require operation temperatures between 70 and 100 ◦C, while alkaline
solutions and phosphoric acid cells can be used at temperatures between 100 and
250 ◦C [8]. The low operation temperatures of these fuel cells give them short
startup times and make them suitable for mobile applications, such as replacing
internal combustion engines and batteries. However, in this temperature range noble
metal catalysts, usually platinum, are required for the hydrogen splitting reaction.
This makes the fuel cells more expensive and renders them sensitive to carbon in the
fuel, as carbon oxides bind very strongly to platinum and thus block reaction sites
for the splitting reaction (catalyst poisoning). Only pure hydrogen can therefore
be used as fuel, except in direct-methanol fuel cells where alloys of platinum and
other metals, often ruthenium, are used to enable the use of a hydrocarbon fuel.
The alkaline and phosphoric acid cells have the additional drawback that the liquid
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2 Proton-conducting BaZrO3

electrolyte might leak out if the cell is damaged. This is especially problematic as
both liquids are corrosive [5].

High-temperature fuel cells contain solid oxide electrolytes such as yttrium-
stabilized zirconium oxide or doped cerium oxide [9], which function at temper-
atures between 700 and 1000 ◦C. At these temperatures, hydrocarbons can be re-
formed into hydrogen in the fuel cell, and no expensive catalysts are needed. This
increased fuel flexibility can be a great advantage. On the other hand, a high op-
eration temperature increases the startup time, as well as requiring the cell to be
thermally isolated from its surroundings. This makes high-temperature fuel cells
less useful for mobile applications. The high temperature also increases the risk of
reactions or interdiffusion between the cell components, and differences between
the thermal expansion coefficients of the components can lead to the formation of
cracks in the cell during heating or cooling [8].

Considering the advantages and drawbacks of high- and low-temperature fuel
cells, it becomes clear that a fuel cell with operation temperature in the intermediate
range, 200 to 700 ◦C, could have several very attractive features. It might for in-
stance have the same fuel flexibility as a high-temperature fuel cell, but without the
high risk of interdiffusion and crack formation. However, the only existing fuel cells
operating in this temperature range are molten carbonate fuel cells, which have a
number of drawbacks. For instance, the molten carbonate electrolyte is a liquid and
may therefore leak out of the fuel cell. It can be destroyed by repeated solidification
and melting, requiring it to be kept above its melting temperature also when the cell
is not in use. Similarly to the low-temperature liquid electrolytes it is corrosive [8].

What appears to be needed is thus a solid electrolyte with operation temperature
between 200 and 700 ◦C. To function as an efficient electrolyte, the material must
have a high ionic conductivity in this temperature range, as well as being an elec-
tronic insulator. As will be shown in the next section, barium zirconate may meet
these criteria.

2.2 Properties of BaZrO3

Barium zirconate belongs to a group of oxides called perovskites. The composition
of an undoped perovskite follows the formula ABX3, where A and B are cations and
X usually stands for oxygen ions. The A cation is often bivalent (charge +2e) and
the B cation tetravalent (+4e), as is the case in barium zirconate. Barium zirconate
is normally found in the cubic perovskite structure shown in Figure 2.2, but other
perovskites may appear in an orthorombic or tetragonal version of this structure.

Proton conductivity in doped perovskite oxides was first discovered in the 1980:s
by Iwahara and coworkers [10–12]. The first studies consider barium and strontium
cerates, but later on calcium, strontium and barium zirconate were also found to
conduct protons when doped and exposed to water vapour [13]. It was found that
the activation energy for proton transport in these oxides is generally lower than the
activation energy for oxygen ion transport in conventional solid oxide ionic con-
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2.2 Properties of BaZrO3

Figure 2.2: The cubic perovskite structure of BaZrO3.

ductors, which gives the proton-conducting perovskites a higher conductivity in the
intermediate-temperature range (see Figure 2.3). Later studies have found similar
proton conductivity also in oxides with other structures [9, 14].

Among the proton-conducting oxides, doped barium zirconate stands out as a
particularly interesting electrolyte material since it is an electronic insulator and
chemically stable under fuel cell operating conditions. However, the total proton
conductivity is lower than that of, for example, the less chemically stable oxide
barium cerate. Experimental measurements have shown that the total proton con-
ductivity of barium zirconate must be divided into a grain interior component and
a grain boundary component. The grain interior conductivity is high, comparable
to that of other oxides, while the proton conductivity of the grain boundaries is
much lower and significantly reduces the total conductivity [16–18] (Figure 2.4).
The grain boundary conductivity remains low even when the grain boundaries are
free of segregated impurity phases [19–21], in contrast to for example zirconium
oxide where blocking layers of amorphous material impede transport across grain
boundaries [22].

The high resistivity of grain boundaries in barium zirconate is especially prob-
lematic due to the poor sinterability of the material, which leads to small grains
and thus a high number of grain boundaries. In the search for ways to reduce the
resistivity of barium zirconate, attempts have been made to improve sinterability
by making solid solutions with barium cerate, co-doping with e.g. strontium or in-
dium, employing sintering aids such as zinc oxide [14,25], or optimizing fabrication
techniques [26, 27]. While co-doping with strontium or indium has been shown to
produce high conductivity [28,29], theoretical studies suggest that using zinc oxides
as sintering aids may reduce the proton mobility due to a strong attraction between
the proton and the zinc ion [30, 31]. Attempts are also being made to use thin films,
which can be produced as single crystals [14, 25, 32].

Other efforts have been focused on finding the cause of the low grain boundary
conductivity. While it has been suggested that structural effects such as the lattice
distortion at the boundary may be of relevance [16,33], most studies have focused on
the space-charge effect that is known from grain boundaries in other oxides. In e.g.
yttria-stabilized zirconia, doped ceria and strontium titanate, some of the effects of

9



2 Proton-conducting BaZrO3

Figure 2.3: Temperature dependence of the conductivity of the oxygen ion conductors yttria-
stabilized zirconia (YSZ), Sm-doped ceria (SDC) and doped lanthanum gallate (LSGM)
compared to the proton conductor yttrium-doped barium zirconate (BZY). Figure from
Ref. [15], c©2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, reprinted with
permission.
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Figure 2.4: Comparison of bulk, grain boundary and total conductivity in BaZrO3. Bulk and
grain boundary conductivities are taken from Ref. [23]. The total conductivity is calculated
assuming a grain size of 1 µm. Figure from [24], reprinted with permission.
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2.3 Point defects in BaZrO3

Figure 2.5: Schematic depicting point defect types, a vacancy (1), an interstitial (2) and a
substitutional defect (3).

grain boundaries on conductivity can be explained by charged defects aggregating at
the grain boundary and giving it a net charge [34, 35]. This leads to the surrounding
volume, termed the space charge layers, being depleted of mobile charged defects of
the same polarity as the boundary charge. Experimental studies have suggested that
this model may also be applicable to barium zirconate [20,23,36–40], indicating the
existence of a positive grain boundary charge that depletes the surrounding material
of protons.

2.3 Point defects in BaZrO3

In its pure form, barium zirconate does not contain any protons and is not a very good
ionic conductor. To turn it into a proton conductor, it has to be doped and exposed
to water vapour. This section describes how doping, i.e. the intentional introduction
of point defects, leads to the incorporation of protons and how the protons move
through the material.

Point defects are present in all real materials at finite temperature due to the
significant increase in entropy caused by introducing a point defect into a perfect
lattice. In general, there are three types of point defects: Vacancies, substitutional
defects, and interstitials. A vacancy is formed when an atom is taken out of the
material, leaving the lattice site empty. If the atom is instead replaced by an atom
of a different species, a substitutional defect is formed. Interstitials, finally, occupy
positions between the atoms of the regular lattice. A schematic illustration can be
seen in Figure 2.5.

In barium zirconate, additional point defects are introduced in order to make the
material a proton conductor. This is done by replacing some of the tetravalent zirco-
nium ions with trivalent metal ions. To understand the effects of this substitution, it
is perhaps easiest to begin by imagining the atomic constituents of one unit cell of
pure barium zirconate, i.e. one barium atom, one zirconium atom and three oxygen
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2 Proton-conducting BaZrO3

atoms. When the five atoms combine to form barium zirconate, the barium atom
will donate two electrons and thus become an ion with a charge of +2 in units of
the elementary charge. The zirconium atom will donate four electrons and the ion
will have the charge +4, while the oxygen atoms will receive two electrons each and
form ions with charge −2. Together, the ions form a charge neutral, stable material.

If the zirconium atom is replaced by a metal atom that can only donate three
electrons, one of the oxygen ions will be missing an electron. As in semiconductors,
the missing electron can be thought of as an electron hole. Also in analogy to semi-
conductors, trivalent dopants at the zirconium site in barium zirconate are termed
acceptor dopants since they cause formation of an electron hole. However, there
is also another possibility: two electron holes together with one oxygen ion could
make a neutral oxygen atom, which then leaves the material and thus generates an
oxygen vacancy. Whether this happens or not depends on the oxygen partial pres-
sure in the surrounding atmosphere. For barium zirconate, it has been shown that
oxygen vacancies occur in larger amounts than electron holes except at very high
oxygen partial pressures [41].

Doped barium zirconate will thus contain dopant atoms, which are substitutional
defects, and oxygen vacancies. Both defect types will have a different charge com-
pared to the ion occupying the same place in the undoped material. For example,
the dopant ion has the charge +3 and is replacing a zirconium ion with the charge
+4. Compared to the undoped material, the dopant thus has an effective charge
of 3− 4 = −1. In the same way, the vacancy is replacing an oxygen ion with the
charge−2 and therefore has the effective charge +2. This can be expressed using the
Kröger-Vink notation for defects. According to this notation, an yttrium dopant is
written Y

′
Zr, where Y is the chemical symbol for yttrium, the subscript ”Zr” signifies

that it occupies a zirconium site and the single aphostrophe indicates the effective
charge −1. Correspondingly, the vacancy is denoted by V••O , where the ”V” stands
for vacancy, the ”O” shows that it occupies the oxygen site and the two dots give the
effective charge as +2. Interstitial defect sites are denoted by the letter ”I”, so that
an interstitial tetravalent zirconium ion would be written as Zr••••I [2].

Finally, the protons are introduced by exposing the doped barium zirconate to
water vapour. The oxygen vacancies are then filled with hydroxide ions according
to the hydration reaction

H2O(g)+V••O +O×O 
 2OH•O, (2.5)

where O×O is an effectively neutral oxygen ion at an oxygen site. Protons will thus
be present in the material as part of effectively positive hydroxide ions, OH•O. The
proton conductivity will depend on the proton diffusion coefficient, which will be
discussed in section 2.3.2, and on the concentration of hydroxide ions. The concen-
tration in turn depends on the temperature and the partial pressure of water vapour.
To determine the equilibrium concentrations of hydroxide ions and oxygen vacan-
cies at a given temperature and partial pressure, the change in Gibbs’ free energy
associated with the hydration reaction must be considered.
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2.3 Point defects in BaZrO3

2.3.1 Defect equilibrium

To obtain an expression for the defect concentrations, we start by deriving the rela-
tion between defect concentration and a change in Gibbs’ free energy for a general
case. Consider a model material, consisting of a single element denoted M. A va-
cancy can be formed by removing an atom from the middle of the lattice and placing
it on the surface:

MM 
 Msurf +VM. (2.6)

Here, MS denotes an atom of element M on a surface (surf) site. This reaction will be
associated with an enthalpy of formation ∆Hf and an entropy of formation ∆Sf. The
enthalpy of formation has two main contributions, one being the change in energy
resulting from breaking the bonds in the lattice and forming bonds at the surface.
The other contribution is the energy and volume change that arises as the atoms near
the vacancy are displaced from their equilibrium positions in a way that minimizes
the energy cost of the vacancy. The entropy of formation is due to the changes in
lattice vibrations caused by the introduction of the vacancy [2].

In addition to these two quantities, there is also a change in the configurational
entropy of the system. Unlike the entropy of formation, which depends on the spe-
cific material, the configurational entropy change ∆Sconf can be calculated from a
general expression provided that the defect concentration is low and the defects do
not interact. Suppose that ND defects have been formed in a lattice containing N
sites in total. The number of possible ways to arrange these defects on the lattice is

Ω =
(

N
ND

)
=

N!
ND!(N−ND)!

, (2.7)

which gives the configurational entropy

∆Sconf = kB lnΩ = kB ln
N!

ND!(N−ND)!
. (2.8)

Assuming that N and ND are very large numbers, we can use Stirling’s approxima-
tion to obtain

∆Sconf ≈ kB

(
N ln

N
N−ND

−ND ln
ND

N−ND

)
. (2.9)

Since we have assumed that the defects do not interact, we can write the total Gibbs’
free energy of a system with ND defects as

G = Gpure +∆G = Gpure +ND∆Hf−NDT ∆Sf−T ∆Sconf, (2.10)

where Gpure is the Gibbs’ free energy of the lattice without defects. We can then
obtain the chemical potential of the defect by differentiating with respect to the
number of defects [2]:

µD =
(

∂G
∂ND

)
T,P

= ∆Hf−T ∆Sf + kBT ln
ND

N−ND
. (2.11)
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2 Proton-conducting BaZrO3

The ratio of the number of defects to the total number of sites, ND/N gives the defect
concentration cD. Denoting the maximum defect concentration with c0 and inserting
this into the above equation yields

µD = ∆Hf−T ∆Sf + kBT ln
cD

c0− cD
. (2.12)

If the defect concentration is very low we can approximate the denominator in the
logarithm with c0 and obtain

µD = ∆Hf−T ∆Sf + kBT ln
cD

c0
. (2.13)

This is known as the dilute approximation. In equilibrium, the Gibbs’ free energy is
at a minimum with respect to changes in the defect concentration. This means that
the chemical potential must be zero, which gives

cD = c0 exp
(
−∆Hf−T ∆Sf

kBT

)
. (2.14)

Equation 2.14 describes the relation between the Gibbs’ free energy of formation
and the defect concentration for a single defect type, but the hydration of barium
zirconate involves two defect species in equilibrium with a surrounding atmosphere.
In a general chemical reaction with two reactants and two products, where a moles
of species A and b moles of species B form c and d moles of species C and D,

aA+bB 
 cC+dD, (2.15)

the change in Gibbs’ free energy of the system can be obtained as the free energy of
the products minus the free energy of the reactants,

∆G = cµC +dµD− (aµA +bµB). (2.16)

The chemical potential of reactant i is given by

µi = µ◦i + kBT lnai (2.17)

where ai is the activity and µ◦i is known as the standard chemical potential. Compar-
ing to Equation 2.13, we see that for a defect in the dilute limit we have ai = ci and
µ◦i = ∆Hf−T ∆Sf. Setting ∆G◦ = cµ◦C + dµ◦D− aµ◦A− bµ◦B, we find the law of mass
action:

cc
Ccd

D

ca
Acb

B
= exp

(
−∆G◦

kBT

)
≡ K, (2.18)

For reactants in the gas phase the activity is taken to be equivalent to the partial
pressure of the gas. The constant K is referred to as the equilibrium constant of the
reaction.

Applying the law of mass action to the hydration reaction, Equation 2.5, we
obtain

Khydr =
c2

OH
cVcO pH2O

, (2.19)
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2.3 Point defects in BaZrO3

where pH2O is the water vapour partial pressure. There are now three species that
may occupy the oxygen sites in the lattice: Oxygen ions, oxygen vacancies and
hydroxide ions. If we define the concentrations to be measured per unit cell, this
gives the site restriction

3 = cO + cV + cOH (2.20)

since each unit cell contains three oxygen sites (i.e. c0 = 3). The condition of charge
neutrality also gives a relation between the concentrations of vacancies, hydroxide
ions and dopants:

2cV + cOH = cA, (2.21)

where cA is the dopant concentration. Combining these equations and setting κ =
pH2OKhydr we get the following expression for the concentration of hydroxide ions

cOH =
3κ

κ−4

[
1−
√

1− κ−4
3κ

cA

(
2− cA

3

)]
. (2.22)

Using this expression, it can be seen that the proton concentration depends on the
dopant concentration and water partial pressure, and also on temperature through the
equilibrium coefficient Khydr. This will in part determine the behaviour of the proton
conductvity. To obtain a full expression for the conductivity, however, we must also
consider the diffusion coefficient.

2.3.2 Diffusion and conductivity

Before writing down an expression for the diffusion coefficient, we consider the dif-
fusion mechanism. As part of a hydroxide ion, the proton is embedded in the electron
cloud of the oxygen ion [42]. The proton can rotate around the host oxygen but also
form hydrogen bonds with neighbouring oxygen ions. The hydrogen bond distorts
the lattice and brings the oxygens closer to each other [43]. In this configuration
it is possible for the proton to jump between the oxygen ions, aided by the lattice
distortion (Figure 2.6) [44, 45]. This diffusion mechanism, consisting of alternate
rotation and transfer steps, is known as the Grotthus mechanism [16, 42, 46].

As the proton migrates from one oxygen to the next, it crosses two energy barri-
ers. The first barrier is associated with breaking the hydrogen bond to a neighbouring
oxygen ion and rotating to form a hydrogen bond with a different neighbouring oxy-
gen ion, and the second barrier is associated with the actual transfer between one
oxygen ion and the next. Taken together, these two energy barriers give the activa-
tion enthalpy of proton migration, ∆Hdiff. The activation enthalpy can be influenced
by local distortions in the lattice, which may for example occur close to a dopant
ion. There is also an entropy change ∆Sdiff related to the migration process.

In addition to their distorting effect on the nearby lattice, dopant ions may also
influence the diffusion of protons due to the electrostatic attraction between the ef-
fectively negative dopant and the effectively positive proton, as well as by changing
the chemical properties of nearby oxygen ions. These effects frequently lead to
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2 Proton-conducting BaZrO3

(a) (b) (c)

Figure 2.6: Schematic depicting the movement of a proton (green) in the oxygen sublattice
(blue). The proton will first rotate around the oxygen ion (a) and then transfer to a second
oxygen ion aided by relaxation of the oxygen lattice (b). Figure (c) shows the proton at the
second oxygen ion.

trapping of protons close to dopant ions [47–52]. The strength of the trapping inter-
action will depend on which metal is used as dopant. For barium zirconate, it has
been found that yttrium dopants cause weaker trapping than other dopants and thus
have a smaller detrimental effect on the proton conduction [16, 47–51].

To connect the atomistic-level proton diffusion mechanism, the activation en-
thalpy, and the experimentally measurable conductivity, we now turn to the dif-
fusion coefficient. The diffusion coefficient is proportional to e−∆Gdiff/kBT , where
∆Gdiff = ∆Hdiff−T ∆Sdiff is the change in Gibb’s free energy related to the proton
transfer. The diffusion coefficient also depends on the number of nearest-neighbour
sites n, the fraction of occupied sites k, the distance between sites a, a correlation
factor f and a characteristic frequency ν. The correlation factor accounts for effects
of the lattice geometry and the frequency is a measure of how often the proton is in
a position to overcome the energy barrier [53, 54]. Together, this gives

D(T ) =
n
6

f (1− k)a2
νexp

(
−∆Gdiff

kBT

)
(2.23)

The conductivity depends on both the diffusion coefficient and the charge num-
ber and concentration of the charge carriers, and can be expressed as

σ = zec
ze

kBT
D (2.24)

where z is the charge number of the diffusing species, e is the elementary charge and
c is the concentration. The factor zeD/kBT is called the mobility of the defect [45].

2.3.3 Space charge

Finally, we turn to the effects of grain boundaries on the proton conductivity. As
previously mentioned, there are two main explanations. According to one theory,
the lattice distortion near the boundary alters the distances between oxygen ions
in that region, thus making it harder for the protons to transfer from one oxygen
ion to the next [16]. The other explanation focuses on the possibility of charged
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2.3 Point defects in BaZrO3

defects accumulating at the grain boundaries, giving rise to a space-charge effect.
While lattice distortion certainly exists and may contribute to the low conductivity,
experimental studies have found ample evidence of space-charge effects [20,23,36–
40].

Due to the structural differences between the grain boundary and the perfect
lattice, defects often have different free energies of formation at the grain boundary.
If the formation energy is lower and the defects are mobile, they may lower the
total free energy of the system by segregating to the grain boundary. According to
the space charge model, the accumulation of charged defects in the grain boundary
leads to it aquiring a net charge, which generates an electrostatic potential near the
grain boundary. For a mobile defect with charge z situated some distance from the
grain boundary, the chemical potential is then given by

µ = µ◦+ kBT ln
c

c0− c
+ zeφ, (2.25)

where the first two terms are the same as in Equation 2.17, and the third incorporates
the effect of the electrostatic potential φ.

In equilibrium, the chemical potential of the defect must be the same throughout
the material. For simplicity, we will consider a one-dimensional model with the
grain boundary situated at x = 0. If the chemical potential is to be the same at some
position x near the boundary and infinitely far from the boundary, we have

µ◦(∞)+ kBT ln
c(∞)

c0− c(∞)
+ zeφ(∞) = µ◦(x)+ kBT ln

c(x)
c0− c(x)

+ zeφ(x), (2.26)

which may be rewritten as

c(x)
c(∞)

=
c0 exp

(
−∆µ◦(x)+ze∆φ(x)

kBT

)
c0 + c(∞)

[
exp
(
−∆µ◦(x)+ze∆φ(x)

kBT

)
−1
] . (2.27)

We see that this expression relates the concentration of defects to the potential
difference ∆φ(x) = φ(x)− φ(∞) and the difference in standard chemical potential
∆µ◦(x) = µ◦(x)− µ◦(∞). However, the electrostatic potential must also depend on
the charge density according to Poisson’s equation:

d2φ

dx2 =−ρ(x)
ε0εr

, (2.28)

where in this case the charge density is given by ρ(x) = ∑i zici(x). The sum runs
over all charged defect types. Combining equations 2.27 and 2.28 we obtain the
Poisson-Boltzmann equation

d2∆φ

dx2 =− 1
ε0εr

∑
i

ci(∞)zi

ci0 exp
(
−∆µ◦i (x)+zie∆φ(x)

kBT

)
ci0 + ci(∞)

[
exp
(
−∆µ◦i (x)+zie∆φ(x)

kBT

)
−1
] (2.29)
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Figure 2.7: Schematic of a grain boundary with space charge layers in BaZrO3, assuming a
constant dopant concentration. The figure has been redrawn based on Figure 1 in Paper III.

Using the Poisson-Boltzmann equation it is in theory possible to calculate the
concentration of all charged defects close to the boundary, provided that one has
access to the difference in standard chemical potential for all defects as a function of
x. In the space charge model, it is assumed that the difference in standard chemical
potential is zero everywhere except very close to the boundary where the lattice is
distorted. This region is known as the grain boundary core (Figure 2.7).

Outside of the grain boundary core, the concentrations of mobile defects are
determined by the electrostatic potential. This leads to depletion of mobile defects of
the same polarity as the boundary core and aggregation of defects with the opposite
polarity in the region closest to the core, known as the space charge layers. In the
case of barium zirconate, it is thought that the boundary core charge is positive and
causes the mobile, effectively positive protons to be depleted. Oxygen vacancies are
also mobile at temperatures above 300 K [46], diffusing through a simple hopping
mechanism illustrated in Figure 2.8, and would thus be depleted. In contrast, the
effectively negative dopant ions have been found to be immobile at temperatures
below 1400 K [39], and they are thus unable to migrate to the space-charge layers
at lower temperatures. There is, however, evidence that the dopants aggregate in the
space charge zones during sintering at high temperature [39, 55].

By using the assumption that the standard chemical potential is only altered in
the core and requiring the defect sites in the core to be in equilibrium with the grain
interior, it is possible to obtain the barrier height and space charge layer width nu-
merically for different values of ∆µ◦ as a means of investigating the consequences
of defect segregation [56]. It is also possible to calculate the difference in forma-
tion energy for various defects in the grain boundary compared to the perfect lattice
using atomistic simulations. The difference in formation energy, also known as the
segregation energy, is thought to be the dominant term in ∆µ◦, and it can therefore
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2.3 Point defects in BaZrO3

Figure 2.8: Schematic of the vacancy diffusion mechanism. An atom next to the vacancy
(picked out in red) moves to fill the vacancy, which is thereby displaced one step to the right.

indicate both if the defects segregate to the boundary at all and if they segregate
strongly enough to cause a significant space charge effect. Papers I, II and III re-
port the results of such calculations of the difference in formation energy, as will be
further discussed in Chapter 5.

While theoretical studies generate information about segregation energies and
concentration profiles, experimental studies typically measure the conductivity. This
is done through impedance spectroscopy, a method capable of distinguishing be-
tween the grain interior and grain boundary conductivity. Using the relation between
conductivity and concentration, the ratio of the grain boundary and bulk conductiv-
ities can be used to calculate the average height of the electrostatic barrier at grain
boundaries in a polycrystalline sample [20,23,37,38], making it possible to compare
experimental and theoretical results.
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Chapter 3

Graphene

Unlike barium zirconate, which is mainly studied due to its proton conductivity,
graphene has several properties that excite interest. Graphene is an atomically thin
layer of graphite, consisting of a single sheet of carbon atoms arranged on a hexag-
onal lattice. Its unique electron band structure, high strength and low density make
graphene both a model system for phenomena involving relativistic electrons and
a material with possible practical applications in e.g. flexible electronics and sen-
sors [57–60]. It has even been shown that graphene could act as a proton conduc-
tor [61].

Many of the special properties of graphene are directly linked to the two-dimen-
sional nature of the material. Of particular importance to this thesis is the impact of
the low dimensionality on phonon transport and on the behaviour of grain bound-
aries. The first part of this chapter therefore gives an introduction to phonons in
graphene and how they differ from phonons in ordinary three-dimensional materi-
als. Some of the consequences of these differences are also discussed, in particular
with regard to thermal transport. The second part of the chapter describes the prop-
erties of grain boundaries in graphene.

3.1 Phonons in graphene

3.1.1 Phonon dispersion

To obtain a qualitative understanding of phonons in three-dimensional materials,
picture a crystalline material with a unit cell containing one atom. Each atom in the
lattice can move in three dimensions, but due to the interaction with neighbouring
atoms there will be a restoring force that brings it back towards its equilibrium po-
sition. The exact form of this force is different for different materials, but for small
displacements it can be approximated with a harmonic potential.

Let us investigate the consequences of this harmonic approximation for a one-
dimensional case, where we also assume that only the nearest neighbours interact.
The system can then be represented as a chain of atoms of mass m, at distance a
from each other and connected by springs with spring constant C, as illustrated in
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Figure 3.1: A one-dimensional chain of atoms with mass m, at distance a from each other
and connected by springs with spring constant C.

Figure 3.2: The dispersion relation derived from the spring model (solid blue line), and the
dispersion relation for the flexural vibration of a thin plate (dashed red line).

Figure 3.1. Considering the atom n at position un, we see that the force on this
atom depends only on the distance to the neighbouring atoms, giving the equation
of motion

mün = C(un+1−2un +un−1). (3.1)

We are looking for solutions in the form of travelling waves, so we make the as-
sumption u ∝ eikn−iωt , where k is a wavenumber and ω a frequency, and obtain

−mω
2 = 2C[cos(k)−1], (3.2)

which gives the dispersion relation

ω = 2

√
C
m
|sin(k/2)|. (3.3)

This dispersion relation is plotted in Figure 3.2 (blue solid line), where it can be seen
that it is nearly linear for small wavenumbers.

In the three-dimensional case, the scalar spring constant is replaced with a 3×3
matrix, known as the dynamical matrix, where each element is given by the second
derivative of the total energy with respect to the positions of the interacting atoms.
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3.1 Phonons in graphene

Figure 3.3: Lattice structure of graphene, with the lattice vectors a1 and a2 indicated by
arrows.

In this case, the equations of motion have three sets of solutions on the form un ∝

~εeik·R−iωt , where~ε is the polarization vector. The three sets of solutions correspond
to three vibrational modes. Two of the modes will be transverse, with polarization
vectors perpendicular to the wavevector k, while the third is a longitudinal mode
where the polarization vector and wavevector are parallel. These three modes are
often called normal modes [1].

If there are two atoms in the lattice unit cell instead, the number of normal modes
will increase to six. Three of these modes will be acoustic modes where the atoms
in the unit cell move in the same direction, and three will be optical modes where
the atoms move in opposite directions.

Now, instead of the three-dimensional crystal lattice, picture a suspended graph-
ene sheet. The unit cell in graphene contains two atoms, as can be seen in Figure
3.3, resulting in six normal modes. Two of these must be longitudinal modes, one
acoustic and one optical, which are similar to the longitudinal modes in a three-
dimensional crystal. There is also one acoustic and one optical transverse mode
where the atoms still move in the graphene plane. However, there must also be a
pair of transverse modes where the atoms are displaced in a direction normal to the
graphene plane, as illustrated in Figure 3.4. These modes, which are called flexural
modes, behave quite differently compared to the in-plane phonon modes.

One might think that we could use the simplified model with atoms connected
by springs to understand the flexural mode as well, but in fact this model will fail,
particularly for the interesting case of long wavelengths. The reason is that the spring
model only depicts stretching motions which alter the bond lengths of the material.
In flexural motion, however, the main distortion of the material is bending rather
than stretching. The bending is also associated with an increase in energy and thus
with a force on the atoms directed towards the equilibrium position. However, as
this bending energy is related to the changes in bond angles between atoms rather
than to changes in the bond lengths, a model depicting this motion would have to
include more long-ranged interactions, at least with second nearest neighbours. It
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Figure 3.4: Graphene with atoms displaced in the out-of-plane direction, as in flexural
vibrations.

is therefore more difficult to construct a simple atomistic model that describes the
origin of this energy.

Instead of an atomistic model, we turn to continuum mechanics to understand
the flexural acoustic mode. We regard the graphene sheet as a thin plate. For a thin
plate, the bending energy Eb is proportional to the square of the curvature of the
material [62], so that

Eb =
κ

2
|∇2w|2, (3.4)

where w is the out-of-plane displacement and κ is the bending rigidity of the mate-
rial. This leads to an equation of motion of the form

ρẅ+κ∆
2w = 0, (3.5)

where ρ is the two-dimensional density of the plate. Assuming a propagating wave
solution, we set w ∝ eik·R−iωt and obtain the dispersion relation

ω = |k|2
√

κ

ρ
. (3.6)

The out-of-plane or flexural mode thus has a quadratic dispersion relation, rather
than the linear dispersion relation displayed by the in-plane modes in graphene and
by phonons in three-dimensional materials. A plot of this dispersion relation against
the wavevector magnitude k = |k| can be seen in Figure 3.2. Since the group velocity
is given by ∂ω/∂k, it is clear that the flexural phonons will have a lower group
velocity than the in-plane phonons at long wavelengths. The group velocity for the
flexural phonons will also change considerably with k even at long wavelengths,
while that of the in-plane phonons is almost constant.

Although the bending energy in graphene is mainly related to changes in bond
angles, out-of-plane distortions are in general also accompanied by stretching of the
interatomic bonds. This means that an out-of-plane distortion changes the strain
in the material. If we again regard the graphene sheet as a thin plate, it can be
shown that the stretching couples the flexural vibrations to the in-plane modes and
introduces nonlinear terms in the equations of motion for the flexural displacement
[62]. This geometric nonlinearity is responsible for some of the special properties
of graphene, for example the negative thermal expansion coefficient that will be
discussed in the next section.
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Figure 3.5: Phonon dispersion of graphene as calculated using density functional pertuba-
tion theory (black lines) and the bond-order potential used in Papers IV and V (red lines).
The symbols represent experimental results. Reprinted with permission from Ref. [63].
Copyright 2014 by the American Physical Society.

At this point, one might ask how well the two simple models we have used to
derive phonon dispersion relations reproduce the phonon dispersion in graphene.
The phonon dispersion of graphene as obtained from experiments and from atom-
istic simulations can be seen in Figure 3.5. At small wavenumbers, i.e. close to
the Γ point in the figure, we see that three of the phonon modes have frequencies
approaching zero. These are the acoustic modes. Two of these, the longitudinal
and transverse modes, clearly have an approximately linear dispersion close to the
Γ point, as in the simplified model. The third is the flexural acoustic mode, which
can be seen to have an approximately quadratic dispersion. Our simple models thus
give us a good general idea of the behaviour of the acoustic phonon modes. The
dispersion relations of the optical modes are also included and we can see that these
modes have considerably higher frequencies than the acoustic modes at the Γ point.

Apart from determining the group velocity, the dispersion relation also affects
the number of phonons in the vibrational mode. To see how, we must recall that
while the classical description of lattice vibrations given above works well for most
cases, phonons follow the rules of quantum mechanics. As phonons are bosons, the
probability that a phonon state is occupied is given by the Bose-Einstein distribution

nBE(ε) =
1

e(ε−µ)/kBT −1
, (3.7)

where ε = ~ω is the phonon energy, µ is the chemical potential, which is always zero
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for phonons, T is the temperature and kB is Boltzmann’s constant. As an example we
will consider the limit ω→ 0, in which case the exponential term can be expanded
and we obtain

nBE ≈ kBT
~ω

(3.8)

The number of phonons at a given frequency is given by multiplying the distri-
bution function with the density of states D(ω), which for a two-dimensional system
depends on the wavenumber and dispersion relation according to

D(k) =
k

2π

1
∂ω/∂k

. (3.9)

For the flexural acoustic mode, it is clear from Equation 3.6 that this leads to

D(ω) =
1

4π
√

κ/ρ
. (3.10)

The in-plane acoustic modes have dispersion relations similar to those of phonons
in three-dimensional materials. As we see in Figures 3.2 and 3.5, this means that
they have nearly linear dispersion at low frequencies, and we therefore make the
approximation ω(k) ≈ vgk. The constant vg is the group velocity. This leads to the
density of states

D(ω) =
ω

2πv2
g
. (3.11)

Multiplying the density of states for acoustic in-plane and flexural phonons with
the distribution function, we see that the number of phonons in the flexural modes
becomes proportional to ω−1 as ω→ 0, while the number of phonons in the in-plane
modes approach a constant value. This means that there will be more flexural than
in-plane acoustic phonons at low frequencies. In fact, using values of κ, ρ and vg
appropriate for graphene it has been calculated that the flexural acoustic phonons
should be more abundant than in-plane acoustic phonons over a large frequency
range [64].

3.1.2 Anharmonicity and thermal properties

The harmonic approximation for the interaction between atoms can provide a gen-
eral description of phonon behaviour, but some important material properties are
connected to the deviations from a harmonic potential. For most materials, thermal
expansion and phonon thermal conductivity are determined by the anarmonicity of
the interatomic interactions. In graphene, this is true for the in-plane phonon modes,
while the flexural mode is also affected by the geometric nonlinearity discussed in
the previous section. The thermal properties of graphene are mainly determined
by the acoustic phonon modes, and this section will therefore focus on acoustic
phonons.

The degree of anharmonicity of a phonon mode can be quantified in terms of
the Grüneisen parameter γ(k), which measures how the phonon frequencies change
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if the volume of the unit cell changes. The Grüneisen parameter for each phonon
mode can be calculated as

γ(k) =− V
ω(k)

∂ω(k)
∂V

(3.12)

where V is the volume of the unit cell. For a two-dimensional material like graphene,
the volume is replaced by an area. It is important to note that the Grüneisen param-
eter captures not only the anharmonicity of the interatomic interactions but also the
geometric nonlinearity of the flexural mode. The total Grüneisen parameter of a ma-
terial can be calculated as an average of the Grüneisen parameters of the individual
vibrational modes, and is directly related to the thermal expansion coefficent [1].

In graphene, the flexural acoustic mode has been found to have a large and neg-
ative Grüneisen parameter. This is due to the geometric nonlinearity, which causes
the frequency of the flexural mode to increase as the unit cell is expanded in much
the same way as stretching a piano string causes the tone it emits to change. As
the frequency increases with increasing unit cell area, the sign of the derivative in
Equation 3.12 is positive and the constant itself becomes negative. In a theoretical
study by Mounet and Marzari [65] the Grüneisen parameter of the flexural acoustic
mode was found to reach −80 at low frequencies, where the other modes display
more modest values between 0 and 2. The flexural acoustic mode thus dominates
the average Grüneisen parameter of the material at low temperatures, and the nega-
tive sign results in a negative thermal expansion coefficient for graphene at low and
moderate temperatures [65,66]. The negative thermal expansion coefficient has also
been confirmed experimentally, see e.g. Ref. [67].

Thermal conductivity

Both the anharmonicity of the interatomic interactions and the geometric nonlinear-
ity also impede the phonon transport by causing phonon-phonon scattering to occur,
which affects the phonon thermal conductivity. In fact, the type of phonon trans-
port in a sample depends on the relation between the sample size and the mean free
path of the phonons between scattering events. If the sample size is similar to or
smaller than the mean free path, the thermal conductivity will mainly be limited by
phonons scattering against the edges of the material. This is termed ballistic thermal
transport. For sample sizes much larger than the mean free path, on the other hand,
phonon-phonon scattering becomes more important and the length of the mean free
path determines the intrinsic phonon thermal conductivity. This is known as diffu-
sive transport. The total thermal conductivity is also influenced by extrinsic factors,
such as phonon scattering against defects.

For a three-dimensional material in the diffusive limit, phonon-phonon scatter-
ing processes affect the phonon thermal conductivity in such a way that it becomes
independent of the sample size, even if there are no defects or edges. Theoretical
studies suggest that this is not the case in materials of a lower dimensionality. For
one-dimensional materials the thermal conductivity seems to have a power-law de-
pendence on the sample size, and for two-dimensional crystals it has been claimed
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that the thermal conductivity increases as lnN, where N is the number of atoms
(see [68] and references therein). The models for two-dimensional lattice conduc-
tivity emphasize the importance of long-wavelength acoustic phonons, which are
weakly scattered in two-dimensional lattices.

In graphene, acoustic phonons are the main heat carriers [69, 70]. Experimental
studies of the thermal conductivity of suspended graphene have found it to be high,
between 2000 and 5000 W/mK [68, 69, 71]. In line with the theoretical results for
general two-dimensional lattices, this high thermal conductivity has been attributed
to long-wavelength in-plane acoustic modes, which are weakly scattered and hence
have long mean free paths. Theoretical calculations of the thermal conductivity have
also been successful in reproducing the experimental thermal conductivity values
when assuming that the in-plane acoustic phonons are the main heat carriers [68,72,
73]. In these studies, flexural acoustic phonons have been considered to contribute
very little to the thermal conductivity due to their small group velocity and large
Grüneisen parameter, which indicates strong scattering.

However, some of the approximations made in these theoretical studies have
been questioned [74]. In particular, it has been pointed out that due to the symmetry
of graphene there exists a selection rule preventing any scattering process involving
an uneven number of flexural phonons [63, 64, 75]. This means that although the
large Grüneisen parameter of the flexural mode indicates strong scattering, many of
the scattering processes are in fact forbidden and the lifetimes and mean free paths
of the flexural phonons are therefore quite large. Theoretical studies that take these
scattering rules into account find that flexural acoustic phonons dominate the thermal
conductivity of graphene [63, 64]. Experimental results also appear to support this
conclusion [76, 77].

Interestingly, the logarithmic dependence of the thermal conductivity of a two-
dimensional crystal on sample size has gained support from experimental measure-
ments on graphene, where the thermal conductivity was seen to increase for sample
sizes up to 9 µm [78]. However, there are also theoretical studies that suggest that the
observed length dependence is a consequence of the long phonon mean free paths
in graphene. These studies indicate that the transport is still partly ballistic in the
micrometre-sized samples and that the thermal conductivity does in fact converge
for even larger samples where purely diffusive transport can be observed [79, 80].

Finally, the thermal conductivity of graphene is also strongly affected by defects,
edges and substrates. The thermal conductivity of graphene on a substrate has been
observed to be 600 to 1000 W/mK, which is substantially lower than for suspended
graphene but still higher than that of e.g. silicon [68]. Substrates, as well as edges,
point defects and grain boundaries, may make it possible to tune the thermal con-
ductivity of graphene. This may be useful in applications such as thermoelectrics
where a lower thermal conductivity is advantageous [68].
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Figure 3.6: TEM image of a graphene grain boundary with 27◦ misorientation angle. In the
right-hand image the defect structure of the grain boundary is indicated. Figure reprinted by
permission from Macmillan Publishers Ltd: Nature, Ref. [81], copyright 2011.

3.2 Grain boundaries in graphene

As mentioned in the previous section, the two-dimensional nature of graphene means
that the atoms can be displaced in the direction perpendicular to the graphene sheet,
and these displacements are accompanied by a different energy cost compared to
in-plane displacements. This fact is significant also with regard to grain boundaries.

The most obvious difference between a grain boundary in graphene and a grain
boundary in an ordinary three-dimensional material is the dimensionality. In a
three-dimensional crystal, the grain boundaries are two-dimensional defects, but in
graphene the grain boundaries are by necessity one-dimensional. A consequence of
this is that there are no twist grain boundaries in graphene, as all rotations of the
grains must be around an axis perpendicular to the graphene sheet.

3.2.1 Grain boundary structure

Graphene grain boundaries are found in graphene grown by chemical vapour deposi-
tion, where they occur as a result of the single-crystal grains growing from different
nucleation centers having different orientations [82]. Where the grains meet, grain
boundaries are formed. TEM studies of graphene grain boundaries reveal that they
consist of non-hexagonal carbon rings, mainly alternating pentagon and heptagon
defects [81, 83], as can be seen in Figure 3.6. This is also observed in several theo-
retical investigations of grain boundary structure [84–86].

In graphene, a heptagon and a pentagon situated close together in the lattice form
an edge dislocation. Edge dislocations are equivalent to adding a semi-infinite strip
of atoms to the material, with the actual dislocation core forming at the end of the
strip (see Figure 3.7). The presence of the dislocation distorts the graphene lattice,
introducing a strain into the material. However, the energy cost of in-plane stretch-
ing or compression of graphene is quite high, as evidenced by the two-dimensional
elastic stiffness being about 340 N/m, corresponding to a Young’s modulus of 1
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Figure 3.7: A dislocation in a graphene sheet. Dashed lines indicate the ”added” strip of
carbon atoms.

TPa [87]. In contrast, the bending rigidity κ is only about 2× 10−19 J. The strain
introduced by the dislocation will therefore cause the graphene sheet to bend, and
dislocations in graphene are thus accompanied by out-of-plane distortions, or buck-
ling, of the graphene sheet. This has also been observed experimentally [88–90].

Since grain boundaries consist of alternating pentagon and heptagon defects,
they can be viewed as an array of dislocations. Computational studies of graphene
grain boundaries have revealed that they do indeed cause out-of-plane buckling, as
illustrated in 3.8(a), and that this can reduce the formation energy of the grain bound-
ary considerably [84–86]. Furthermore, the degree of buckling has been found to
depend on the misorientation angle. Grain boundaries with misorientation angles
between 20◦ and 40◦ in particular have been found to cause smaller buckling. An
example of this is the grain boundary with misorentation angle 32.2◦, which displays
the highest possible defect density but no buckling (Figure 3.8(b)).

In addition to ordinary tilt grain boundaries, grain boundaries with zero tilt angle
have also been observed. These zero-angle grain boundaries occur at the border
between two regions that have the same orientation but a translational mismatch.
They typically consist of pentagon and octagon defects [82].

3.2.2 Grain boundaries and material properties

By breaking the lattice symmetry and inducing out-of-plane deformations, grain
boundaries can be expected to change the properties of graphene. The effect of
grain boundaries on the mechanical and electronic properties of graphene have been
a subject of intense study, and copious amounts of information exist on these topics.
Here, we will only touch upon the main points.

The mechanical properties of polycrystalline graphene have been studied both
theoretically and in nanoindentation experiments, where the elastic modulus and
fracture load can be determined [82]. Early experimental studies found a significant
reduction in strength of polycrystalline graphene compared to single-crystal films.
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(a)

(b)

Figure 3.8: (a):A grain boundary with misorientation angle 9.4◦, viewed from an in-plane
direction (upper image) and from the direction perpendicular to the graphene sheet (lower
image). This grain boundary clearly displays out-of-plane buckling. The dislocations are
indicated in red (heptagon) and blue (pentagons). (b): A grain boundary with misorientation
angle 32.2◦.
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However, Lee et al. [91] observed that the measured strength was influencend by the
technique used to fabricate the samples and that polycrystalline graphene could be
almost as strong as single crystals, especially in samples with large grains. However,
indentation tests on grain boundaries yielded fracture loads 20 to 40 % lower than
the fracture load in the middle of a grain [91].

In theoretical studies, it has been found that the strength of a grain boundary de-
pends on the misorientation angle. Grain boundaries with large misorientation an-
gles appear to be stronger than grain boundaries with smaller misorientation angles,
something that has also been seen in some experimental studies (see [82] and refer-
ences therein). Meanwhile, theoretical studies of realistic grain boundary networks
have indicated that the fracture load decreases and the Young’s modulus increases
with increasing grain size, and also that points where two grain boundaries meet
serve as starting points for crack formation [92].

The electron transport in polycrystalline graphene has been investigated experi-
mentally. It was found that the electron mobility and conductivity was lower in the
polycrystalline samples than in pristine graphene. Scanning probe measurements at
individual grain boundaries also find lowered conductivity [82]. In theoretical stud-
ies, it has been found that the defect structure at the grain boundary influences the
electron transmission, with complete reflection occuring for some grain boundaries
and electron energies. An increase in conductivity with increasing grain size has
also been predicted [82].

In addition to electronic and mechanical properties different from those of per-
fect graphene, grain boundaries also display an increased reactivity. It has been seen
that both oxygen and hydrogen adsorb preferentially to grain boundaries, something
that may for instance alter the electron transport properties of the boundary and could
be important in chemical sensing applications [92]. Also, theoretical investigations
have predicted that several metals adsorb more strongly to pentagon and heptagon
defects, as well as to Stone-Wales defects, than to pristine graphene [93–97]. A
Stone-Wales defect contains two pentagons and two heptagons, as can be seen in
Figure 3.9, and arises due to rotation of a carbon-carbon bond. The preferential ad-
sorption of metals to pentagon and heptagon defects imply that metals could also
adsorb more strongly to grain boundaries than to pristine graphene. If this is the
case, it may be important for example in the context of graphene being used as a
support for nanoparticle catalysts. The possibility of studying metal adsorption on
graphene grain boundaries using model potentials is further discussed in Chapter 6.

Grain boundaries in graphene also affect the thermal transport, something that
is of particular interest here as it involves phonon scattering. Thermal transport
across grain boundaries in graphene has mainly been investigated in theoretical and
computational studies, often using non-equilibrium molecular dynamics or Green’s
function methods [98–101]. In these studies, grain boundaries in graphene are found
to have a high thermal conductivity compared to grain boundaries in other materials.
Some molecular dynamics studies also find that the thermal conductivity across the
grain boundary decreases with increasing misorientation angle between the grains,
probably due to an increase in defect density [98,99]. However, the Green’s function
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Figure 3.9: A Stone-Wales defect, with the rotated bond indicated by an ellipse.

study by Lu et al. [100] found no evidence for such a trend.
Interestingly, none of the theoretical studies of thermal conductivity across grain

boundaries make any mention of out-of-plane buckling close to the boundary. The
only study which does consider such effects is focused on thermal conductivity along
the boundary [102]. It is possible that no grain boundary buckling was observed in
some of these studies due to the way in which the grain boundaries were constructed.
In all probability, the presence of out-of-plane buckling influences the thermal con-
ductivity, as out-of-plane distortions due to compressive strain has been found to
affect the thermal transport [103]. Also, the buckling can be shown to be the main
cause of scattering of long-wavelength flexural phonons, as is further discussed in
Chapter 6 and Papers IV and V.
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Chapter 4

Computational Methods

The research presented in this thesis has been carried out using computational mod-
els of the studied materials. In this chapter, a brief introduction to the computational
methods is given. Two of the methods treated here describe the atomic structure of
the materials, while in the third the studied material is treated as a continuum.

When using the first two methods, the aim is to understand the overall prop-
erties of the material based on the interactions between the atoms it contains. To
accomplish this it is necessary to model the interactions in a realistic manner. The
first method described here is density functional theory, in which the interatomic
interactions are determined from the electron density. This method gives a relatively
accurate description of material properties, but is quite computationally demanding.
In the second method, the interatomic interactions are described by a potential that
is parametrized by fitting to either experimental or first-principles results. This is
less computationally demanding than the density functional approach but also gives
a less accurate description of the interatomic interactions.

In this thesis, density functional theory has been used in the investigation of
defect segregation to grain boundaries of barium zirconate. Interatomic model po-
tentials have been used both when studying barium zirconate and in the modelling of
graphene, while the continuum mechanical modelling is applied only to graphene.

4.1 Density functional theory

Density functional theory was developed as a way to solve the Shrödinger equation,

HΨ(r1,r2...;R1,R2...; t) = EΨ(r1,r2...;R1,R2...; t), (4.1)

for a large number of atoms. Here, Ψ(r1,r2; ...,R1,R2...; t) is the quantum mechan-
ical wavefunction describing the system, ri is the position of electron i and RI is the
position of nucleus I. E is the total energy corresponding to the wavefunction Ψ and
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H is the system Hamiltonian

H =−1
2 ∑

i
∇

2
i +

1
2 ∑

i 6= j

1
|ri− r j| −∑

i,I

ZI

|ri−RI| (4.2)

−1
2 ∑

I

∇2
I

MI
+

1
2 ∑

I 6=J

ZIZJ

|RI−RJ| ,

where ZI and MI are the charge and mass of nucleus I. The electron mass does
not appear as the Hamiltonian is expressed in Hartree atomic units, where both the
electron mass and the elementary charge are unity by definition. The number of
terms in this Hamiltonian, and the complexity of the problem, increases quickly
with the number of particles in the system. For a small system such as a hydrogen
atom it can be solved. However, just a single unit cell of barium zirconate brings
five nuclei and 120 electrons, increasing the complexity significantly, and for larger
systems the problem is in general intractable.

The first step to reducing the complexity of this problem is to take advantage of
the fact that the nuclei are much more massive than the electrons. Even the hydrogen
nucleus, which consists of a single proton, is about 1800 times heavier than an elec-
tron. Since the forces affecting electrons and nuclei are approximately of the same
strength, this implies that the nuclei will move much more slowly than the electrons.
The electrons can thus be assumed to follow the nuclear motion adiabatically, that
is to remain in the ground state as the positions of the nuclei change [104]. It is
therefore possible to separate the electronic and nuclear parts of the problem, and to
solve the electronic problem for specific configurations of immobile nuclei. This is
known as the Born-Oppenheimer approximation [105].

When applying the Born-Oppenheimer approximation, the effect of the nuclei
on the electrons can be expressed as an external potential Vext. The Hamiltonian is
then reduced to

H =−1
2 ∑

i
∇

2
i + ∑

i 6= j

1
|ri− r j| +Vext. (4.3)

However, even with this simpler Hamiltonian a substantial complexity remains. In
particular, the electron-electron interactions described by the second term require all
electrons in the system to be treated simultaneously. It is possible to obtain an exact
solution to the Schrödinger equation with this Hamiltonian for the hydrogen atom,
and for small molecules an exact numerical solution may be found [104], but for
other systems a different approach is needed.

4.1.1 Hohenberg-Kohn theorems

The quantum mechanical wavefunction for a system of interacting electrons is a
function of the positions of all electrons in the system. In density functional theory,
the problem of determining this wavefunction is replaced by the problem of finding
the electron density of the ground state, which simplifies the problem considerably
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as the electron density is only a function of the three spatial coordinates. The moti-
vation for this replacement is found in two theorems that were proven by Hohenberg
and Kohn in 1964 [106,107]. The first theorem states that a given ground state elec-
tron density n0(r) can only result from one specific external potential Vext. If the
ground state density is known, the potential is therefore determined up to an addi-
tive constant. This in turn means that all properties of the system are determined
implicitly by the electron density.

The second theorem concerns the relation between the energy and the ground
state electron density. For a system with electron density n(r), the energy can be
expressed as a functional of the density according to

E[n(r)] = F [n(r)]+
Z

n(r)Vext[n(r)]dr, (4.4)

where F [n(r)] contains the kinetic energy and contributions from electron-electron
interactions. The second Hohenberg-Kohn theorem states that the ground state elec-
tron density n0(r) is the electron density that minimizes the energy functional, so
that

E0 = E[n0(r)] = min
n(r)

E[n(r)], (4.5)

where E0 is the ground state energy. The task of finding the ground state electron
density is thus equivalent to minimizing the energy functional. However, this is still
a challenge as the functional is not known, chiefly because of the contribution from
electron-electron interactions.

4.1.2 The Kohn-Sham equations

In order to bring the problem closer to a solution, the unknown functional F [n(r)]
can be divided into three terms,

F [n(r)] = Ts[n(r)]+EH[n(r)]+Exc[n(r)], (4.6)

as suggested by Kohn and Sham in 1965 [107, 108]. Here, Ts[n(r)] is the kinetic
energy of a system of noninteracting electrons and the Hartree energy

EH[n(r)] =
1
2

Z n(r)n(r′)
|r− r′| drdr′ (4.7)

is a mean-field approximation of the electrostatic interaction between electrons.
Both these terms are known exactly. The third term is the exchange-correlation func-
tional, which contains the many-body contributions to the kinetic energy, exchange
effects related to the Pauli principle and correlation effects due to the electrostatic
repulsion.

As the term representing the kinetic energy of a system of noninteraction elec-
trons can now be separated from the rest of the functional, it is possible to replace
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the original system with an equivalent system of noninteracting electrons moving in
an effective potential given by

Veff(r) = VH(r)+Vxc(r)+Vext(r), (4.8)

where VH =
R
(n(r′)/|r−r′|)dr′ is the Hartree contribution and Vxc = δExc[n(r)]/δn(r).

The system of independent electrons is then described by the Kohn-Sham equations,[
−1

2
∇

2 +Veff

]
φi(r) = Eiφi(r), (4.9)

where φi(r) and Ei are the wavefunction and energy eigenvalue of the one-electron
state i. The wavefunctions φi are also known as Kohn-Sham orbitals. The total
electron density is obtained as n(r) = ∑i fi|φi|2, where fi is the occupation number
of the one-electron state, and the energy corresponding to this electron density is
given by

E = ∑
i

fiEi−EH[n(r)]+Exc[n(r)]−
Z

n(r)Vxc(r)dr. (4.10)

Since VH(r) depends on the electron density, the Kohn-Sham equations have to be
solved iteratively. An initial guess will be used as a starting point for the density.
The equations will then be solved to obtain a new density, which is used in the next
iteration. This process has to be repeated until the solution is self-consistent, i.e. the
calculation results in the same electron density that was used as input.

So far no approximations have been made, and with the exact exchange-correlation
functional the problem could be solved exactly. However, the exchange-correlation
functional is not known. Instead, density functional theory calculations rely on ap-
proximations. Common approximations to the exchange-correlation functional, as
well as some other topics in the practical implementation of density-functional cal-
culations, are discussed in the next section.

4.1.3 Practical implementation

Exchange-correlation functionals

The first approximate exchange-correlation functional was suggested by Kohn and
Sham in their original paper on density functional theory [108]. It is called the local
density approximation, or LDA, and uses the exchange and correlation functionals of
a homogeneous electron gas. For the homogeneous electron gas, the energy density
εx resulting from exchange is known exactly and the energy density εc resulting from
correlations can be obtained from Monte Carlo simulations [109]. The combined
exchange and correlation energy density can be taken to be εxc = εx + εc. Under
the LDA approximation, the exchange and correlation energy density of the studied
system at a point r is approximated by that of a homogeneous electron gas with the
same electron density as the density at point r. The functional can then be obtained
from

Exc[n(r)] =
Z

n(r)εxc[n(r)]dr. (4.11)
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The LDA has been quite successful at reproducing e.g. bond lengths and vi-
brational frequencies, especially for systems with slowly varying electron densi-
ties [104]. It also has the advantage of being fairly uncomplicated. However, the
binding energies between atoms are often overestimated by LDA [110] as it pro-
duces electron densities that are too homogeneous. Systems with strongly correlated
electrons are also poorly reproduced [104].

Several attempts have been made to develop functionals that perform better than
the LDA. Many of these attempts aim to take inhomogenieties in the electron density
into account by making the exchange-correlation energy density a function of both
the local electron density and the local gradient of the electron density. Such func-
tionals are called generalized gradient approximations, or GGA, and they are broadly
divided into two categories depending on if the functionals have been parametrized
by fitting to experimental data, or by requring adherence to formal conditions such
as sum rules or long-ranged decay [104]. The GGA functional used for most of
the density functional calculations in this thesis is called the PBE (Perdew-Burke-
Ernzerhof) and it belongs to the second category [111].

Although GGA is an improvement over LDA in some areas, there are problems
that remain. One problem that is common to both LDA and GGA is that they under-
estimate the band gap in insulators and semiconductors quite substantially. The band
gap calculated in density functonal theory has two contributions. The first contribu-
tion is simply the difference in energy between the lowest unoccupied Kohn-Sham
orbital and the highest occupied Kohn-Sham orbital. The second contribution arises
from a discontinuity in the exchange-correlation potential Vxc. Both GGA and LDA
lack this discontinuity, erroneously setting the second contribution to the band gap
to zero. This will affect the calculated formation energies of defects if the defect
formation involves introducing an electron in a previously unoccupied state. Seg-
regation energies are less affected as they are the difference between two formation
energies, and most of the error will therefore cancel.

Basis sets

When solving the Kohn-Sham equations, it is necessary to construct a mathematical
representation of the one-electron wavefunctions. Normally, this is done by expand-
ing the wavefunctions using a basis set, thereby transforming the equation into a
linear eigenvalue problem. The choice of basis set is usually made based on the sys-
tem geometry and properties. For crystalline materials, which can be represented by
a small repeating unit cell, it is natural to use plane waves as the basis set. According
to Bloch’s theorem [112], the one-electron wavefunction can then be expressed as

φn,k(r) = un,k(r)eik·r, (4.12)

where n is the index of the wavefunction, k is a wave vector in the first Brillouin
zone of the unit cell and un,k(r) is a function with the same periodicity as the stud-
ied system. The periodic function can be expanded in a Fourier series using the
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reciprocal lattice vectors G:

un,k(r) = ∑
G

cn,k+GeiG·r, (4.13)

where cn,k+G are expansion coefficients. The wavefunction can thus be expressed as
a sum over all reciprocal lattice vectors, according to

φn,k(r) = ∑
G

cn,k+Gei(k+G)·r. (4.14)

Note that the inclusion of a Fourier series implies periodic boundary conditions.
In principle, the sum includes an infinite number of reciprocal lattice vectors. In
practice, it is customary to use a cutoff energy Ecut, so that for each wavevector k
only reciprocal lattice vectors that fulfill the condition 1

2 |k+G|2 ≤ Ecut are included
[104].

Studies of crystalline materials often involve systems where the crystalline trans-
lational symmetry is broken, such as systems with point defects or grain boundaries.
In these cases, it is customary to construct a larger cell, termed a supercell, contain-
ing the defect. This approach makes it possible to model a defect in an extended
material, but has some problems that will be discussed in Section 4.1.5.

Pseudopotentials

Using plane waves as a basis set for periodic systems has many advantages, but
also a few disadvantages. A significant disadvantage is the slow convergence of the
sum for rapidly varying wavefunctions. The electron wavefunctions tend to oscillate
considerably close to the atomic nuclei, and describing these oscillations using a
plane-wave basis set requires a high energy cutoff and is therefore computationally
demanding.

The solution to this problem lies in that electrons that are likely to be found close
to the atomic nucleus contribute little to the interatomic bonds, while the valence
electrons that contribute strongly to the bonds are more likely to be found further
from the nucleus. The valence and core electrons can thus be treated separately, in a
way that lowers the required cutoff energy. A very common approach is to replace
the potential caused by the nucleus and core electrons with a pseudopotential. At a
distance from the atomic nucleus the pseudopotential generates wavefunctions that
are the same as if all electrons were included in the calculation, while closer to
the nucleus the wavefunctions are considerably smoother than in the all-electron
case [113]. The smoother wavefunctions make it possible to use a lower cutoff
energy, decreasing the computational cost.

4.1.4 Nuclear configuration

In the beginning of this brief overview of density functional theory, it was stated
that the Born-Oppenheimer approximation can be applied to separate the motion
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of electrons and nuclei, allowing us to focus solely on the system of electrons and
include the nuclei in the form of an external potential. Having seen that the electronic
problem may be solved, we now turn back to the issue of the nuclear configuration.

In density functional theory, the nuclei are usually treated classicaly. The jus-
tification for this is that the relatively large mass of the nuclei cause any quantum
mechanical effects to be small. Since the total energy of the system of electrons
and nuclei depends on the ionic positions, the force FI on ion I can be found as the
derivative of the total energy with respect to the position of the ion,

FI =− ∂E
∂RI

. (4.15)

According to the Hellman-Feynman theorem, the derivative of the energy is equiv-
alent to the expectation value of the corresponding gradient of the Hamiltonian,
making it possible to obtain the force from the electron density [114]. The forces on
the ions can be used to integrate the classical equations of motion and simulate the
time evolution of the system, as is done in ab initio molecular dynamics. They can
also be used with energy minimization algorithms to perform a geometry optimiza-
tion of the system and find the ionic configuration corresponding to the lowest total
energy [104].

4.1.5 Defects in periodic supercells

As seen in the discussion of basis sets, Section 4.1.3, the use of a plane-wave basis
set imposes periodic boundary conditions on the system. As long as the translational
symmetry of the material is perfect, this is unproblematic. However, if the symmetry
is broken, for instance by the introduction of a defect, problems may arise. Applying
periodic boundary conditions to a system with a defect can be thought of as mod-
elling an infinite array of systems with identical defects. Unless the supercell is very
large, the defect will interact with neighbouring defects in the array, that is, interact
with itself through the periodic boundary conditions. This introduces errors into the
calculation.

The easiest method of solution for this problem is to increase the size of the
supercell until the defect energy no longer changes with supercell size, or if this is
not possible, to calculate the defect energy for different supercell sizes and extrapo-
late to larger systems. However, for point defects attempts have also been made to
find a general expression for the error introduced by defect self-interaction. In these
attempts, the error is separated into a part arising from elastic interactions, i.e. the
lattice distortion caused by the presence of the defect, and electrostatic interactions
that occur if the defect is charged. For a cubic supercell with the side L, the elastic
interaction has been found to be proportional to L−3 [115].

The electrostatic interaction requires a bit more consideration. Firstly, if the
system contains a charged defect the supercell itself aquires a net charge, and in this
case the periodic boundary conditions will lead to an infinite electrostatic energy.
In calculations involving charged defects a uniform background charge of the same
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magnitude as the defect charge but of opposite sign is therefore introduced into the
supercell, keeping it charge neutral. Under these conditions, the error caused by the
electrostatic interactions has been found to be proportional to L−1 [116, 117].

Several formulas for correcting the error introduced by the electrostatic interac-
tion have been proposed (see e.g. [116–125]), although it has also been suggested
that performing calculations for several different supercell sizes and extrapolating to
the value for an infinite cell is a more reliable method [126]. A review of some of
these correction schemes can be found in Ref. [127]. No correction schemes have
been used in the present study. Although the calculations performed in Papers I
to III do involve the energies of charged point defects, it is the segregation energy
and not the formation energy that is calculated. As the segregation energy is the
difference between two formation energies, most of the errors due to the periodic
boundary conditions are expected to cancel. For higher-dimensional defects such as
grain boundaries no correction schemes exist, and using supercells of different sizes
is thus the only way to estimate the error.

Defect self-interaction can also occur in simulations carried out using inter-
atomic model potentials, as periodic boundary conditions are often applied in these
simulations in order to avoid introducing surfaces into the system. Since interatomic
model potential simulations frequently use larger supercells than density functional
theory calculations, the errors introduced by defect self-interaction tend to be less
significant.

4.2 Interatomic model potentials

While density functional theory has many advantages, it also has the disadvantage of
being computationally expensive. At present, systems containing up to 1000 atoms
can be described with density functional theory, but for larger systems it is necessary
to use less exact descriptions. Such descriptions are for example provided by inter-
atomic model potentials, which are fitted to results from first-principles calculations
or experiments. This is considerably less computationally expensive than density
functional theory, but also less accurate.

As different types of interatomic interactions require different model potentials,
there are many model potential types. The simplest are pair potentials, where the
interaction between two atoms depends only on the distance between them. Such
potentials are used to describe e.g. van der Waals or ionic interactions. Other po-
tential types may include terms that depend on the relative positions of three to four
atoms, or bond-order terms that describe covalent bonds.

In general, a single model potential cannot be assumed to give an adequate de-
scription of all interactions involving one chemical element in different surround-
ings. As an example, it is not possible to use the same potential to describe the
oxygen atoms or ions in an oxide as to describe an oxygen molecule. This lack of
transferability can cause problems, for example when attempting to calculate the
formation energy of a material.
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4.2.1 The Buckingham potential

To model barium zirconate the Buckingham potential has been used. The inter-
atomic interactions in barium zirconate are mostly electrostatic, with contributions
from van der Waals forces at small distances. This is reflected by the Buckingham
potential, which has the form [128]

Ui j(ri j) = Ae−ri j/ρ− C
r6

i j
+

qiq j

ri j
(4.16)

where qi is the charge of ion i and A, ρ and C are constants. The exponential term
represents Pauli repulsion, the second term describes van der Waals attraction and
the third term is the long-ranged electrostatic interaction.

In some ionic materials, the polarizability of the ions is also significant for the
interatomic interactions. When using model potentials, ionic polarizability can be
incorporated through a shell model, as is done in Paper II. This means that the ion is
treated as consisting of two parts, a massive core and a massless shell. The two parts
are connected by a spring, allowing them to be displaced with respect to each other
to a certain degree, and the charge of the ion is distributed over the two parts [129].
If the shell and core move in relation to each other this can displace the charge of the
ion with respect to the mass, or even create a slight dipole moment, thus mimicking
polarizability.

4.2.2 Bond-order potentials

For studying graphene, a bond order potential was used. Bond-order potentials were
developed to describe semiconductors and other covalently bonded materials, and
especially to reproduce different stacking sequences and crystal structures of the
same material correctly with one single potential [130]. This is hard to achieve with
ordinary pair potentials, which tend to predict the structure where the atoms have
the highest coordination number (i.e. highest number of nearest neighbours) to be
the most stable state. This is rarely correct for covalently bonded crystals. With the
bond-order potential, the strength of the bonds to neighbouring atoms decreases as
the coordination number increases, thus enabling the potential to reproduce more
open structures.

The bond-order potential used here was originally developed by Tersoff [130].
In this potential, each bond between a pair of atoms i and j contributes to the total
energy according to the potential

Ui j = fC(ri j)[ai j fR(ri j)+bi j fA(ri j)], (4.17)

where fR is a repulsive pair potential, ai j is factor that limits the range of the repul-
sive potential, fA is an attractive pair potential and fC is a cutoff function that limits
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interactions to the nearest neighbours. The pair potentials have the form

fR(r) = Ae−λ1r

(4.18)

fA(r) =−Be−λ2r

where A, B, λ1 and λ2 are constants. The remaining term in Equation 4.17, bi j, is
known as the bond-order term. It is given by

bi j = (1+β
n
ξ

n
i j)
−1/2n,

ξi j = ∑
k 6=i, j

fC(rik)g(θi jk)eλ3
3(ri j−rik)3

, (4.19)

g(θ) = 1+
c2

d2 −
c2

[d2 +(h− cosθ)2]
.

Here, θi jk is the angle between the bonds i− j and i− k. Although the first para-
metrization of the potential was done for silicon, a parameter set for carbon was later
developed [131]. The potential was shown to reproduce the structures and cohesive
energies of several carbon allotropes with reasonable accuracy. Recently, Lindsay
and Broido have developed a new parameter set for carbon, aimed at giving a better
description of the phonon dispersion [132]. This is the parameter set used in Papers
IV and V.

Since the development of the Tersoff potential, efforts have been made to im-
prove its performance further. Most well-known is perhaps the work of Brenner et
al. [133,134] and Stuart et al. [135], who aimed to improve the description of hydro-
carbon molecules and intramolecular bonding. These attempts were quite successful
and especially the Brenner potential is frequently chosen for modelling carbon struc-
tures.

Bond-order potentials of the Tersoff and Brenner types have also been used to
describe the interactions between carbon and metals. It has been shown that if the
angular dependence of the bond-order term is omitted, the functional form of the
bond-order potentials is equivalent to that of the embedded atom model (EAM) po-
tentials which are used to describe metals [136]. This potential form can thus be used
to describe both carbon-carbon, metal-metal, and carbon-metal bonds. Such poten-
tials describing the interactions of carbon with e.g. platinum, iron, cobalt, nickel and
tungsten can be found in the literature [136–139].

4.2.3 Molecular dynamics simulations

With the total energy E(R1,R2, ...) given by the interatomic potential as a function
of the atom positions, the forces on the atoms can be obtained by differentiation
according to

Fi =−∂E(R1,R2, ...)
∂Ri

. (4.20)
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Knowledge of the forces may then be used to perform a classical molecular dynam-
ics simulation, that is to investigate the time evolution of the system by integrating
the equations of motion. Doing so produces a trajectory in phase space, and from
this trajectory one can obtain information about the properties of the system. In gen-
eral, molecular dynamics is used to model systems in equilibrium, and the studied
quantitites are calculated as time averages over the phase space trajectory. To relate
the obtained quantities to the macroscopic world, the time averages are assumed to
be equivalent to the ensemble averages in statistical physics. Ensemble averages are
by definition averages over several realizations of the same system, rather than over
the time evolution of a single system. The assumption that a time average for one
system is equivalent to an ensemble average is known as the ergodic hypothesis.

To perform molecular dynamics simulations in practice it is important to select
an integration algorithm that is stable, conserves the total energy and is computation-
ally inexpensive. The most common choice is the Verlet algorithm [140]. According
to this algorithm, starting with particle i in position Ri(t) and with the velocity vi(t),
the position at the next timestep is

Ri(t +∆t) = Ri(t)+vi(t)∆t +
1
2

ai(t)∆t2, (4.21)

and the new velocity is calculated as

vi(t +∆t) = vi(t)+
1
2
[ai(t)+ai(t +∆t)]∆t, (4.22)

where ∆t is the timestep and ai(t) is the acceleration. The acceleration is obtained
from

ai =
Fi

mi
, (4.23)

where mi is the mass of the particle.
In molecular dynamics simulations it is often desirable to be able to control the

temperature and pressure of the system. Several different methods exist to accom-
plish this. The work presented in the present thesis mostly employs the Nosé-Hoover
thermostat and barostat, a method in which additional degrees of freedom are added
to the system and coupled to the particle velocities and system size. The system can
exchange energy with these additional degrees of freedom, which makes it possible
to keep the temperature and pressure constant.

Apart from investigating the properties of a system at a finite temperature and
pressure, molecular dynamics simulations can also be used in the process of finding
the atomic configuration with the lowest energy. When minimizing the energy using
an ordinary minimization algorithm, such as conjugate gradients, there is always a
possibility that the algorithm will find a local minumum that does not correspond to
the lowest possible energy. The system will then become stuck at this local minimum
if it is separated from the real minimum by a high enough energy barrier. By per-
forming a molecular dynamics simulation of the system at an elevated temperature,
the energy barrier can be overcome and a larger number of states will be sampled.
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The temperature can then be lowered to make the system approach a configuration
corresponding to an energy minimum, hopefully the global minimum. This method
has been applied in the search for the optimum grain boundary structure in both bar-
ium zirconate (Paper II) and graphene (Papers IV and V). Note that in the case of
a grain boundary, the real global minimum in the system energy corresponds to the
perfect crystal, whereas we are looking for the atomic configuration that gives the
lowest energy provided that the grain boundary is still present.

Phonon wave packets

For the study of phonon scattering in Papers IV and V, a different approach was used.
Instead of studying a system at equilibrium, we deliberately introduced a disturbance
in the form of a phonon wave packet and studied how it scattered against the grain
boundary. By calculating the kinetic energy after scattering in different regions of
the supercell, and in different vibration modes, we could extract information about
the scattering process.

In order to produce the required information about the scattering process, the
wavepackets must have a well-defined wavenumber. Since it is necessary to use a
finite simulation cell, the wavepacket must also be localized in the direction perpen-
dicular to the grain boundary (the x direction). To accomplish this, we have used the
method introduced by Schelling et al. [141, 142] and further developed by Kimmer
et al. [143], in which the phonon modes of the perfect lattice are used as a basis set
for constructing a localized wavepacket. The initial displacement and velocity of an
atom i are calculated as

ui = Re∑
k

akεikei(k·Ri−ω(k)t), (4.24)

vi =−Re∑
k

iω(k)akεikei(k·Ri−ω(k)t) (4.25)

where k = kxx̂ + kyŷ is a wavevector, Ri is the position of the atom, εik is the polar-
ization vector for wavevector k for the phonon branch under consideration and ω(k)
is the angular frequency. The amplitudes ak are given by

ak = Ae−η2(kx−k0x)2
e−ik·R0, (4.26)

where A is a constant determining the maximum amplitude and η is the width of
the wavepacket in the x direction. This results in a wavepacket centered around
the position R0 in real space and around a wavevector k0 = k0xx̂ + kyŷ in reciprocal
space. Note that the wavepacket is only actually localized in x in real space, and
infinite in the direction parallel to the grain boundary. This is necessary as periodic
boundary conditions are applied in this direction.

After the scattering has taken place, the amplitude for each phonon branch and
wavevector can be obtained from the displacement and velocity of the atoms accord-
ing to

ak = ∑
i

ε
∗
ik

(
ui +

ivi

ω(k)

)
e−ik·Ri, (4.27)
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where ε∗ik is the complex conjugate of the polarization vector. This makes it possible
to obtain not only the total reflection and transmission at the boundary but also to
observe any changes in the wavevector components, which is utilized in Paper V.

4.3 Continuum mechanical modeling

If the simulation supercell required to study a problem contains about 106 atoms or
more, even simulation using interatomic model potentials can become too compu-
tationally demanding. In this case, it may be necessary to abandon the atomistic
picture and model the material as continuous. Such a model may also contribute to
the understanding of the studied phenomena as it can provide a simpler description.
In this thesis, a continuum mechanical model has been developed for the phonon
scattering at graphene grain boundaries. By finding a simple way to model the fea-
tures of the grain boundary that are essential to scattering and solving the equations
of motion for the system, the scattering results from the molecular dynamics simu-
lations could be reproduced.

4.3.1 Equations of motion

In the continuum mechanical model, the graphene sheet is treated as a membrane
characterized by a bending rigidity κ, the Lamé parameters λ and µ, and a two-
dimensional density ρ. To find the equations of motions for displacements in such a
membrane, we consider the Lagrangian of the system, which can be written

L = T −Fb−Fs, (4.28)

Here, T is the kinetic energy which is given by

T =
ρ

2
(u̇2 + v̇2 + ẇ2), (4.29)

where u and v are in-plane displacements in the x and y directions, and w is the out
of plane displacement. The second term stands for the bending energy,

Fb =
κ

2
|∇2w|2, (4.30)

and the third term represents the stretching energy,

Fs =
1
2
[σxxεxx +2σxyεxy +σyyεyy]. (4.31)

Here, εxx, εxy and εyy are the components of the strain tensor, and σxx, σxy and σyy are
the components of the stress tensor. The strain tensor components are given by [62]

εxx = ∂xu+
1
2
(∂xw)2 (4.32)

εxy =
1
2
(∂xv+∂yu+∂xw∂yw) (4.33)

εyy = ∂yv+
1
2
(∂yw)2. (4.34)
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These expressions are valid if the length scale of the displacement is much larger
than the length scale of any underlying structure of the material. In the case of
graphene, this means that the length scale of the displacements should be much
larger than the lattice constant. According to Hooke’s law, the stress tensor compo-
nents are given by

σxx = (λ+2µ)εxx +λεxy (4.35)
σxy = 2µεxy (4.36)
σyy = λεxy +(λ+2µ)εyy. (4.37)

The equations of motion for the displacements are then found to be

ρü−∂xσxx−∂yσxy = Fx (4.38)
ρv̈−∂xσxy−∂yσyy = Fy (4.39)

ρẅ+κ∆
2w−∂x[σxx∂xw+σxy∂yw]−∂y[σxy∂xw+σyy∂yw] = Fz, (4.40)

where Fx, Fy and Fz are external forces. In our model, these forces are generally
zero.

4.3.2 Modeling the grain boundary

In the molecular dynamics simulations, the structure of the grain boundaries could
be described at the atomic level, and the resulting out-of-plane buckling determined
as a consequence of the lattice defects. The continuum model, on the other hand, by
definition does not include an atomic-level description of the defects at the boundary.
However, it can be noted that according to the molecular dynamics results in Paper
IV, the feature of the grain boundary that is relevant for scattering is the out-of-plane
buckling. This buckling can be described by a static out-of-plane displacement of
the form

w0(x,y) = χe−x2/2η2
[

1+asin
(

2πmy
Ly

)]
, (4.41)

where χ, η, a and m are constants that are determined through fitting to the grain
boundary buckling seen in molecular dynamics simulations, and Ly is the periodicity
of the grain boundary.

The introduction of an out-of-plane displacement will in general also result in
in-plane displacements. For the one-dimensional model applied in Paper IV, the in-
plane displacements could be obtained from Equation 4.38, whereas for the more
complex two-dimensional model in Paper V they were obtained by fitting to stress
tensor components obtained from the molecular dynamics simulations.

4.3.3 The finite difference method

Taking a closer look at Equations 4.38, 4.39 and 4.40, it is clear that obtaining an
analytical solution would be quite difficult. Instead, the problem was treated nu-
merically using finite difference methods. The displacements were thus evaluated at
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discrete steps in time and space using an explicit scheme [144]. The most common
finite difference approximation of the derivative of a function f (x) is

d f
dx
≈ f (n+1)− f (n−1)

2∆x
, (4.42)

where ∆x is the discretization step size and n refers to a particular point where x =
n∆x. Second and fourth derivatives can likewise be approximated as

d2 f
dx2 ≈

f (n+1)−2 f (n)+ f (n−1)
(∆x)2 (4.43)

d4 f
dx4 ≈

1
(∆x)4 [ f (n+2)−4 f (n+1)+6 f (n)−4 f (n−1)+ f (n−2)], (4.44)

and for derivatives in two dimensions one obtains for example

d2 f
dxdy

≈ f (n+1,m+1)− f (n+1,m)− f (n,m+1)+ f (n−1,m−1)
4∆x∆y

, (4.45)

where ∆y is the discretization step in the y direction. Discretizing Equations 4.38,4.39
and 4.40 accordingly, we see that the second derivative with respect to time will
contain the displacement at the next timestep. Solving for this term makes it pos-
sible to calculate the time evolution of the displacements. We can thus introduce
a wavepacket equivalent to the ones used in the molecular dynamics simulations
and study the way it scatters against the static out-of-plane displacement represent-
ing the grain boundary. The results can then be directly compared to the molecular
dynamics results, which is an advantage of this method.

4.4 Summary

This chapter has given brief introductions to three computational methods: Density
functional theory, with which the electron structure of a material can be determined,
interatomic potential calculations, which do not yield the electron structure but still
provide an atomistic description, and continuum mechanical modeling where the
studied material is treated as a continuum. Each of these three models has its own
advantages and disadvantages, and the choice of method for a specific problem must
be made on the basis of the size of the systems to be modeled and the degree of
accuracy required in the description of the material.

With the exception of the continuum mechanical model, I have not written the
computer code required for these calculations myself. The density functional theory
calculations have been performed using the Vienna Ab-initio Simulation Package,
VASP, a density functional theory code that employs a plane-wave basis set [145,
146]. Molecular dynamics simulations of barium zirconate were performed using
the DL POLY program package [147], while the program package LAMMPS [148]
was chosen for molecular dynamics simulations of graphene.
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Chapter 5

Results and Conclusion: BaZrO3

The aim of Papers I-III is to ascertain whether segregation of oxygen vacancies and
protons can explain the low proton conductivity across grain boundaries in barium
zirconate, as was discussed in Chapter 2. In all three papers, segregation energies
have been determined using either density functional theory or model potential sim-
ulations. The segregation energies have then been used in thermodynamic space-
charge models to obtain the potential barrier and defect concentration profiles in the
space charge layers.

5.1 Grain boundary notation

The grain boundaries studied in Papers I-III are all tilt grain boundaries and have
been labeled according to the Miller index of the grain boundary plane and the di-
rection around which the grains are rotated. Thus, if the grain boundary plane is a
(112) plane and the grains are rotated with respect to each other around the [110] di-
rection, the grain boundary is referred to as a (112)[110] boundary. The construction
of such a grain boundary is illustrated in Figure 5.1.

In addition to the rotation, the grains may also be displaced with respect to one
another parallel to the grain boundary plane. In Figure 5.1(b), it can be seen that the
directions [111] and [110] are parallel with the grain boundary plane for a (112)[110]
grain boundary. The grain boundary structure is periodic along these directions, with
a period of

√
3a0 in the [111] direction and

√
2a0 in the [110] direction, where a0 is

the lattice constant. The displacement of the grains is indicated in fractions of these
grain boundary lattice periods, with the symmetric configuration in Figure 5.1(b)
taken to be that of zero displacement. Thus, if the grains are displaced from the
symmetric configuration by 2/3 lattice periods in the [111] direction the boundary is
referred to as the (112)[110](0,2/3) boundary. This is the configuration that can be
seen in Figure 5.1(c).
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[110 ] [112]

[111]

(a)

[110]
[112]

[111]

(b)

[110 ]
[112]

[111]

(c)

Figure 5.1: Creating the (112)[110] grain boundary. The block in 5.1(a) is cut perpendicular
to the [112] and [11̄2] directions. The shaded area is removed. Tilting around the [1̄10] di-
rection produdes the symmetric configuration in 5.1(b). Displacement by 2/3 lattice periods
in the [111] direction creates 5.1(c). Dashed lines indicate the grain boundary plane.

52



5.2 Paper I

[110]
[112]

[111]

Figure 5.2: The (112)[110](0,0) grain boundary with a dashed circle indicating the oxygen
site with the most negative segregation energy.

5.2 Paper I

In Paper I, oxygen vacancy segregation to the (112)[110](0,0) grain boundary was
studied using density functional theory. The segregation energy ∆EV of the vacancy
is defined as the difference between the formation energy of a vacancy at the bound-
ary, Ef

GB,V, and the formation energy of a vacancy in a reference state, Ef
REF,V, so

that
∆EV = Ef

GB,V−Ef
REF,V. (5.1)

In Paper I the reference state is taken to be a vacancy in a supercell without grain
boundary, while in the later papers the reference state is a vacancy as far away from
the grain boundary as possible in the same supercell. According to this definition, a
negative segregation energy signifies that the vacancy is more stable at the boundary
than in bulk.

For the (112)[110](0,0) grain boundary, the site with the most negative vacancy
segregation energy was found to be situated next to the grain boundary layer, as is in-
dicated in Figure 5.2. The segregation energy for this site was calculated to be−1.25
eV, substantially lower than the other sites near the grain boundary which were found
to have segregation energies above −0.5 eV. It is probable that the strongly negative
segregation energies next to the grain boundary plane are due to the oxygen-oxygen
distances being considerably shorter than in bulk. It was also observed that on re-
moval of an oxygen atom in the position indicated in Figure 5.2, the corresponding
oxygen atom across the boundary relaxes into the middle of the grain boundary. This
relaxation is accompanied by a substantial decrease in the energy of the system.

In the space charge model, the grain boundary sites with moderate segregation
energies were neglected and only segregation to the site with the most negative seg-
regation energy was considered. The vacancy concentration in the boundary core
and the resulting potential barrier were calculated for both dry and hydrated con-
ditions at temperatures between 300 and 1200 K. Under dry conditions, with no
protons present, approximately 20 % of the oxygen sites in the core were found to
be vacant at experimentally relevant temperatures (about 400-900 K). This resulted
in an electrostatic barrier height of around 0.6 V. Hydrating the material lowers the
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vacancy concentration in the core, particularly at low temperatures when the proton
concentration in the grain interior is high. Even so, about 17 % of the sites in the
core are vacant even at 300 K and the potential barrier is 0.33 V. At higher tempera-
tures, around 600 K, the vacancy concentration in the core nearly reaches 20 % and
the potential barrier is 0.45 V. A substantial potential barrier is thus generated even
when the material is hydrated.

5.3 Paper II

In Paper II, an interatomic model potential is used to extend the investigation of oxy-
gen vacancy segregation to a larger set of grain boundaries. The grain boundaries
have the [110] direction as tilt axis and a (11i) plane as grain boundary plane, where
i = 1,2...8. With the exception of the (111)[110] grain boundary, the model potential
does not predict the symmetric grain boundary configuration to be the most stable
but instead yields configurations where the grains are displaced with respect to one
another. Two of the grain boundaries, the (111)[110] and the (112)[110](0,2/3), have
grain boundary periods short enough that they can be studied with density functional
theory. For these two boundaries, density functional theory and the model potential
were found to yield similar grain boundary and vacancy segregation energies, indi-
cating that the model potential is reliable. Oxygen vacancies were found to segregate
to all eight considered grain boundaries, with segregation energies between−0.5 and
−2.0 eV.

In contrast to the [110](112)(0,0) grain boundary studied in Paper I, the larger
boundaries were found to contain several different oxygen sites with substantially
negative segregation energies. Oxygen sites at the same distance from the boundary
plane were also found to have different segregation energies. To obtain the defect
concentration as a function of distance from the boundary plane, as required in the
space charge model, the grain boundary core was treated as a stack of layers con-
taining oxygen sites with different segregation energies. The concentration at each
site was calculated by assuming it to be in equilibrium with the grain interior, and
the total vacancy concentration as a function of position was obtained as a sum over
all sites in the layer. The calculated electrostatic barrier heights range from 0.2 to
0.8 V under dry conditions. Contrary to experimental results, neither increased total
dopant concentration nor aggregation of dopants in the grain boundary region were
found to affect the barrier heights. This is due to that not all low-energy sites in
the grain boundary core are vacant, and the vacancy concentration in the core can
therefore increase in response to the increased dopant concentration. The potential
barrier thus remains relatively constant.

54



5.4 Paper III

5.4 Paper III

In Paper III, the segregation energies of both protons and oxygen vacancies are cal-
culated for the (111)[110](0,0), (112)[110](0,0)∗ and (210)[001](0,0) grain bound-
aries using density functional theory. Both defect types were found to segregate to all
three grain boundaries. The vacancy segregation energy at the (112)[110](0,0) grain
boundary was found to be −1.5 eV, while the (111)[110](0,0) and (210)[001](0,0)
boundaries yielded segregation energies of −0.54 and −0.47 eV, respectively. The
proton segregation energies obtained were about −0.8 eV at all three grain bound-
aries.

In the space charge model, the grain boundary core was treated as a stack of
layers and the different sites in each layer were considered separately, as in Paper II.
Since both protons and vacancies segregate to the grain boundary, each oxygen site
in the core has three possible states: Vacant, occupied by an oxygen ion, or occupied
by a protonic defect in the form of a hydroxide ion. To obtain the concentrations of
each defect type as a function of distance from the boundary plane, the probability
for each site of being vacant or occupied by a protonic defect was calculated and the
total concentration of each defect was obtained as a sum over the defect sites.

Under hydrated conditions and at temperatures below 700 K, protons were found
to be more abundant than vacancies in all three grain boundary cores. At low tem-
peratures the proton concentration was close to 30 % in all boundaries, generating
potential barrier heights of about 0.6 V. The proton concentrations in all three bound-
aries were seen to decrease with increasing temperature, leading to a substantial de-
crease in the potential barrier height for the (111)[110](0,0) and (210)[001](0,0)
boundaries. At the (112)[110](0,0) boundary, however, the potential barrier re-
mained above 0.5 V at all temperatures due to a substantial increase in the concen-
tration of oxygen vacancies in the core at around 800 K.

The difference between the potential barriers of the three grain boundaries at
high temperatures were found to be due to the differences in oxygen vacancy segre-
gation energy. The smaller vacancy segregation energies of the (111)[110](0,0) and
(210)[001](0,0) grain boundaries are not sufficient to maintain a high core charge
in the absence of protons, while the stronger oxygen vacancy segregation at the
(112)[110](0,0) causes considerable segregation of vacancies and thus generates a
potential barrier also under dry conditions. This indicates that segregation of protons
can contribute substantially to the space charge effect, particularly at grain bound-
aries where protons segregate more strongly than oxygen vacancies.

∗The oxygen vacancy segregation energies of the (112)[110](0,0) grain boundary were recal-
culated using the PBE exchange-correlation functional, instead of PW91 which was used in Paper
I.
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5.5 Conclusion and Outlook

From the results of Paper I-III, it is clear that both protons and oxygen vacancies
segregate to several grain boundaries in barium zirconate. The segregation is strong
enough to generate a substantial positive core charge and electrostatic potential bar-
riers with heights between 0.5 and 0.7 V at experimentally relevant temperatures,
between 400 and 900 K. These barrier heights compare well with experimental data
(see e.g. Refs. [20, 37, 38, 149]), indicating that the low grain boundary conduc-
tivity in barium zirconate can indeed be explained by space charge effects arising
from segregation of protons and oxygen vacancies. However, the experimentally
observed reduction of the barrier height following dopant segregation [39, 55] has
not been reproduced by the present studies.

That the dopant concentration was found not to affect the electrostatic poten-
tial barrier is in all probability connected to one of the main issues remaining to
be clarified, namely that of defect-defect interactions. The defect segregation ener-
gies reported here are intended to be valid for isolated, noninteracting defects, and
the space charge models rely on the assumption that the defects only interact with
each other electrostatically. However, according to the same space charge models
the concentration of oxygen vacancies per site in the grain boundary core may be as
high as 20 %, and in Paper III the proton concentration in the core reaches 30 % at
low temperature. At these concentrations the defects may start to interact in ways
not captured by the electrostatic potential in the space charge model, for example
through the distortions they cause in the lattice, which would alter the segregation
energies. It would therefore be of interest to study grain boundaries with multiple de-
fects, especially if concentration dependent segregation energies could be obtained.
An investigation of the interaction between an oxygen vacancy and a proton in a
grain boundary has recently been conducted by Yang et al. [33], who found that the
proton segregates to the boundary core also in the presence of an oxygen vacancy,
but that the segregation energy is less negative at sites close to the vacancy. How-
ever, the study was focused on the activation energy for proton migration and did not
further explore the relation between defect concentration and segregation energy.

It is likely that defect-defect interactions in the grain boundary core would de-
crease the magnitude of the negative segregation energies, making it less energeti-
cally favourable for defects to segregate. This effect could alter the results reported
in Paper II with regard to the influence of dopant concentration. In the present model,
the concentration of sites with negative segregation energy is high enough that the
vacancy concentration in the core is only limited by electrostatic repulsion at realis-
tic dopant concentrations. Vacancy-vacancy interactions may effectively reduce the
number of available sites, thus lowering the maximum possible vacancy concentra-
tion in the core. When the maximum concentration of vacancies has been reached,
a further increase in dopant concentration can be expected to cause the lowering
of the potential barrier observed in experiments [39, 55]. Theoretical studies [56]
that assume a lower concentration of sites with negative segregation energy in the
grain boundary have found that the potential barrier height starts to decrease with
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increasing dopant concentration once the sites with negative segregation energy are
occupied by defects.

As experimental studies also suggest that the dopant atoms segregate to the grain
boundary region during sintering, it is relevant to investigate the interaction between
dopants, oxygen vacancies, and protons in the grain boundary. Previously, the sta-
bility of oxygen vacancies and yttrium dopants at the surfaces of barium zirconate
and barium cerate has been studied [150], as well as the effect of zinc ions on proton
transport [30]. However, the effects of dopant ions on the segregation energies of
oxygen vacancies and protons at grain boundaries are largely unknown and would
be an interesting subject of further study.
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Chapter 6

Results and Conclusion: Graphene

In Chapter 3 of this thesis, the consequences of the two-dimensional nature of
graphene in the contexts of phonons and grain boundaries were described. The pa-
pers summarized in the present chapter explore these topics further by investigating
the scattering of flexural phonons against graphene grain boundaries. In both papers
the scattering is studied using interatomic model potentials and molecular dynamics
simulations. A continuum mechanical model of the system is also constructed.

6.1 Paper IV

The chief aim of Paper IV was to determine to what extent long-wavelength flexural
phonons would be scattered by graphene grain boundaries. Three grain boundaries
with tilt angles of 9.4◦, 17.9◦ and 32.2◦ were chosen. The 9.4◦ and 17.9◦ grain
boundaries both display out-of-plane buckling. For the 9.4◦ boundary, the height
and width of the buckling are 0.6 and 1.7 nm, respectively, while for the 17.9◦
boundary the height of the buckling is 1.5 nm and the width is 5 nm. The 32.2◦
grain boundary was found to be flat. Compared to other studies of grain boundaries
in graphene, the buckling found for the 9.4◦ and 17.9◦ boundaries is rather large.
This may be attributed to variations in cell size and boundary conditions between
the present and previous studies.

Once the boundary structure and buckling had been determined, phonon wave-
packets with central wavevectors between 1 and 6 nm were introduced into the sim-
ulation supercells and allowed to scatter against the boundaries. Only normal inci-
dence was considered. At the buckled boundaries, the scattering was found to be
quite substantial. Transmission at the 9.4◦ boundary was found to range between
40 and 70 % of the total kinetic energy in the considered wavevector interval, while
the transmission at the 17.9◦ boundary varied between 20 and 80 %. In contrast,
more than 90 % of the kinetic energy was transmitted through the flat 32.2◦ grain
boundary for all wavevectors. This clearly demonstrates that long-wavelength flex-
ural phonons are scattered by grain boundaries that display out-of-plane buckling.
Unexpectedly, some of the energy was found to be scattered into the in-plane longi-
tudinal acoustic mode.
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Figure 6.1: The 9.4◦ grain boundary, seen from the y direction (top) and the z direction
(bottom). Figure from Paper V.

In order to obtain a better understanding of these results, a continuum mechanical
model of the system was developed. Since only the flexural and longitudinal vibra-
tional modes were found to be relevant, a one-dimensional continuum mechanical
model was considered sufficient. As was described in Chapter 4, the grain bound-
ary buckling was modeled as a static out-of-plane displacement. To model the 9.4◦
grain boundary, the static displacement was given the same height and width as the
boundary buckling obtained in the molecular dynamics simulations. The model was
found to reproduce the molecular dynamics transmission with reasonable accuracy,
especially for the smallest wavenumbers. In contrast, modeling the 17.9◦ bound-
ary using the buckling height and width from the molecular dynamics simulations
did not produce a very good agreement for the transmission. However, reducing
the width from 5 to 2 nm improved the agreement between the molecular dynamics
simulations and the model considerably. The reason for this improvement is most
likely that with the reduced width, the static displacement describes the curvature at
the peak of the boundary buckling more accurately.

6.2 Paper V

In Paper V, the influence of angle of incidence on the scattering was investigated. In
this study, only the buckled grain boundaries with misorientation angles of 9.4◦ and
17.9◦ were considered.

Substantial scattering was observed also for oblique incidence, with transmis-
sion ranging from 4 % to 65 % for the 9.4◦ boundary and reaching up to 80 % for
the 17.9◦ boundary. The extremely low transmission of only 4 % was only seen
for incidence angles near 35◦ and small total wavevector magnitudes. A less pro-
nounced dip in transmission was also seen for the same angle but larger wavevector
magnitude at the 9.4◦ boundary. In general, the transmission was found to increase
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2π n
L y

Ly

Figure 6.2: Illustration of diffraction at grain boundaries. The plot of the intensity as a
function of kx and ky in reveals two transmitted pulses T1 and T2 and two reflected pulses R1
and R2. T1 has the same wavevector as the incoming pulse, and the difference in ky between
the incident and scattered pulses is 2πn/Ly (n = 0,1). The dotted lines mark the values of
ky allowed by the boundary conditions, while the dashed circle indicates wavevectors of the
same magnitude as that of the incident pulse. In the inset, the height variation of the grain
boundary buckling is shown and the period Ly is indicated (the grain boundary is seen from
the x direction).

with decreasing incidence angle.
In contrast to the case of normal incidence, only negligible in-plane vibrations

were seen in this study. However, several pulses with different wavevectors could
be observed after scattering. The difference in wavevector between the incident and
scattered pulses was found to be connected to the grain boundary periodicity. Let the
direction perpendicular to the grain boundary be x and the direction parallel to the
grain boundary be y, as in Figure 6.1. Denoting the y component of the wavevector
of the incident pulse as kin

y , the x component as kin
x , and the magnitude as kin, the

wavevector components of the scattered pulses were given by

ky = kin
y +

2πn
Ly

(6.1)

kx =
√

(kin)2− k2
y ,

where n is an integer and Ly is the grain boundary period (see Figure 6.2). Thus,
it is clear that the grain boundaries act as diffraction gratings, in all probability due
to the periodic variation in buckling height caused by the periodic distribution of
pentagon-heptagon defects along the boundary. Both the diffraction and the depen-
dence of the total transmission on the incidence angle were well reproduced by a
two-dimensional continuum mechanical model based on the same principles as the
one-dimensional model used in Paper IV.
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6.3 Conclusion and Outlook

In Papers IV and V, it has been shown that buckled grain boundaries in graphene
cause significant scattering of long-wavelength flexural phonons. For normal inci-
dence some of the energy is scattered into the in-plane longitudinal vibration mode,
while for oblique incidence the grain boundary is observed to act as a diffraction
grating. The scattering can be fairly well described using a continuum mechanical
model where the grain boundary is included as a static out-of-plane displacement
corresponding to the boundary buckling.

Although the results presented here provide an improved understanding of the
interaction between flexural phonons and grain boundaries, the total effect of buck-
led grain boundaries on thermal conductivity is not clear. Previous studies aimed
at calculating the grain boundary thermal conductivity have typically not consid-
ered the grain boundary buckling [98–101,151,152], which according to the present
study is likely to be very significant. It may thus be worthwhile to attempt to obtain
the total thermal conductivity of a buckled grain boundary, or perhaps even of a set
of grain boundaries with different buckling heights and widths. This could be done
either using nonequilibrium molecular dynamics or Green’s function methods, or by
extending the present study to smaller wavenumbers and in-plane phonon branches.

The flexural mode in graphene is also relevant to the understanding of graphene
nanoresonator systems, and it might thus be interesting to apply the present results
to nanoresonators containing grain boundaries. The continuum mechanical model
could be of use in this context as it is capable of describing systems of micrometer
size, something that is still very demanding to do using atomistic simulations.

6.3.1 Adsorption

In Chapter 3, it was mentioned that graphene grain boundaries are more reactive
than pristine graphene. It was also argued that metals may adsorb more strongly to
the grain boundaries, a possibility that merits further attention due to the potential
applications in e.g. catalysis and sensing. However, metal adsoption is commonly
studied using first-principles methods that give an exact description of the atom-atom
interaction, while simulations of buckled grain boundaries often require simulation
supercells too large for first principles simulations. To study metal adsorption at
grain boundaries it would thus be necessary to find an interatomic potential that
describes the metal-carbon interaction with sufficient accuracy.

In the search for an adequate model potential we have evaluated the two most
commonly used potential types for the carbon-metal interaction, the Lennard-Jones
pair potential and a Tersoff-Brenner bond-order potential. For the Lennard-Jones
potential parameters describing the interaction of carbon and gold were chosen,
while the bond-order potential is adapted to the interaction between carbon and plat-
inum [136]. Unfortunately, neither potential was found to be entirely adequate.

The potentials were evaluated through calculations of the adsorption energies
of single atoms on pristine graphene and on a buckled graphene grain boundary.
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For pristine graphene the adsorption energy was compared to density functional
theory results available in the literature. Both potentials were found to give ap-
proximately the right adsorption energy at the most favourable adsorption site, but
the Lennard-Jones potential predicts the wrong adsorption site as the most energeti-
cally favourable. The bond-order potential, on the other hand, predicts substantially
weaker adsorption at the other adsorption sites compared to density functional the-
ory [153]. This would for example affect any study involving diffusion of adsor-
bates.

For the adsorption at the grain boundary no first-principles results exist, but
there are studies that suggest increased adsorption strength for gold and platinum
on individual pentagon or heptagon defects [93], as well as on a curved graphene
surface or a carbon nanotube [154, 155]. This indicates that stronger adsorption
should be observed at the grain boundary, as it contains defects and displays buck-
ling. The Lennard-Jones potential failed to reproduce this trend, predicting only
slightly stronger adsorption energies at the buckled grain boundary. In contrast, the
bond-order potential predicted the adsorption at the grain boundary to be stronger
than on pristine graphene by about 0.8 eV, with especially strong adsorption at sites
where the graphene displayed a strong curvature [153]. Despite this relative success,
it is clear that better model potentials are required for studies of metal adsorption on
graphene with grain boundaries. In particular, a potential modeling the interaction
between gold adsorbates and graphene would be a useful contribution to the field.
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