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Abstract Efficient resource utilization requires that emerging datacenter interconnects support both high performance

communication and efficient remote resource sharing. These goals require that the network be more tightly coupled with the

CPU chips. Designing a new interconnection technology thus requires considering not only the interconnection itself, but

also the design of the processors that will rely on it. In this paper, we study memory hierarchy implications for the design of

high-speed datacenter interconnects — particularly as they affect remote memory access — and we use PCIe as the vehicle

for our investigations. To that end, we build three complementary platforms: a PCIe-interconnected prototype server with

which we measure and analyze current bottlenecks; a software simulator that lets us model microarchitectural and cache

hierarchy changes; and an FPGA prototype system with a streamlined switchless customized protocol Thunder with which

we study hardware optimizations outside the processor. We highlight several architectural modifications to better support

remote memory access and communication, and quantify their impact and limitations.

Keywords high-speed interconnect, memory hierarchy, time shared memory, datacenter network

1 Introduction

Exploding data volumes and increasingly sophisti-

cated data usage scenarios are beginning to overwhelm

existing datacenter interconnection structures. In par-

ticular, the north-south traffic (between clients from

the Internet and datacenter servers) traditionally ac-

counted for about 80% of the total traffic, but emerg-

ing applications are drastically changing communica-

tion patterns so that the east-west traffic (within the

center) has begun to dominate in newer datacenters,

making the latter traffic now constitute up to 80% of

the total. In these data centers, about 80% of the traf-

fic flows are smaller than 10 KB in length, and most of

the bytes transmitted belong to the top 10% of large

traffic flows[1]. Furthermore, common big data work-

loads such as Hadoop require frequent communication

among multiple nodes. Delivering good performance

for such traffic patterns requires both high-bandwidth

and low-latency interconnects among nodes.

Emerging datacenter interconnects must try to de-

liver the necessary communication performance while

reducing cost and power consumption. For instance,

the PCI Express Switch of PLX can be used to create

an intra-rack PCIe-based fabric[2]. The CALXEDA En-

ergyCore SoC integrates an embedded network fabric

switch that can efficiently connect thousands of nodes.

To reduce queue management in software and to ef-
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ficiently support user-level communication, some solu-

tions now integrate separate send and receive queues on

the network adapter. InfiniBand (IB)[3] achieves lower

latency than Ethernet by employing such QPairs in-

stead of ports for communication.

In addition to supporting explicit communication,

datacenter interconnects are increasingly being used to

dynamically allocate and flexibly share resources. The

high cost of datacenter servers and the disaggregation

of resources make it attractive to share inter-node re-

sources like memory. Software-defined datacenter ar-

chitectures like Intel’s Rack Scale Architecture (RSA)

re-architect the datacenter design to increase the mod-

ularity of components (i.e., CPU, memory, storage) at

the rack level 1○. RSA supports dynamically allocating

resources via high-speed Intel Silicon Photonics compo-

nents. Our own PCIe prototype system supports shar-

ing memory, GPGPUs, and NICs among nodes[4]. For

example, when a big data application needs more mem-

ory than the nodes it runs on can provide, it can simply

“borrow” unused memory from other nodes that are

running applications with smaller footprints. Here we

focus on optimizing support for sharing global mem-

ory; sharing other resources requires similar support,

but the details are beyond the scope of this paper.

Another emerging trend is that datacenter intercon-

nects are being integrated into the same chip with pro-

cessor cores. Designing a new interconnection techno-

logy or communication protocol thus requires not only

considering the interconnection itself, but also consid-

ering the design of the processors that will rely on it.

To take better advantage of the performance potential

of the entire computer system — including the resource

sharing and communication capacities between nodes,

we study memory hierarchy implications for the design

of high-speed datacenter interconnects.

To that end, we have built three complementary

datacenter models: a cluster connected via a PCIe fab-

ric; a software simulator that lets us study advanced

functionalities that have not (yet) been implemented

directly in commercial chips; and an FPGA-based pro-

totype that integrates an on-chip, switchless customized

protocol with a hardware QPair mechanism. We choose

PCIe for our prototype interconnect because PCIe en-

joys widespread use (almost every major microproces-

sor includes a PCIe interface, and thus any mainstream

processor can be added to our system), and it is non-

proprietary (unlike the Intel QPI and AMD HT pro-

ducts we considered). Furthermore, PCIe supports two

features absent in Ethernet and IB. First, PCIe al-

lows direct access to the remote memory via normal

load/store instructions. Second, PCIe allows “shorter”

communication channels: the PCIe-based communica-

tion channel removes adapters and additional protocol

conversion mechanisms (from PCIe to IB or Ethernet)

from the critical path.

We use the first prototype to investigate the perfor-

mance ramifications of using remote memory through

either direct load/store instructions or the DMA en-

gine. Our results confirm that memory sharing through

DMA requests performs consistently well. For using

remote memory as block device by DMA, our proto-

type system has five times bandwidth, 11 times IOPS

(input/output per second) and 1/12 latency compared

with the system connected by 10 Gigabit Ethernet

(GigE) in average for ORION benchmark. However,

sharing remote memory through CPU load/store in-

structions may incur high overhead caused by the mod-

ern processors that contain no special optimization for

cache line loads/stores through the otherwise consi-

dered pure I/O interface. These results highlight op-

portunities to optimize the execution of direct memory

access instructions for sharing memory resources. We

use the simulator to study the impact of three specific

modifications: increasing the number of read requests

that can be processed by the PCIe interconnect con-

troller and bus simultaneously; changing the cache pol-

icy from write-through/invalidate to write-back; and

modifying the prefetch degree of the prefetcher to ac-

commodate remote memory traffic. For a prefetcher,

when the prefetch degree is set to five, it has seven

times performance improvement compared with that

without prefetcher. Finally, we use the FPGA proto-

type to study the design space for a QPair implemen-

tation that leverages a customized, switchless proto-

col. Using hardware MMU and on-chip memory (OCM)

achieves 25% bandwidth increase compared with using

cache without hardware MMU. Moreover, using hard-

ware MMU and OCM has the lowest latency.

In the rest of the paper, Section 2 describes the

background of this work. Section 3 presents the modi-

fications of memory hierarchy for resource sharing and

communication. Section 4 shows the platforms and

methodology. Section 5 contains the evaluation results.

Section 6 talks about related work. Section 7 concludes

the paper.

1○ Rack scale architecture for cloud, Oct. 2013. http://www.chinacloud.cn/upload/2013-10/13102200313281.pdf, July 2014.
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2 Background

In this work, we plan to build an interconnect sys-

tem which not only can be used for communication, but

also can be used for resource sharing. Fig.1 shows the

architecture of our desirable system. Through the sup-

port of interconnect, the memory of all the nodes forms

a logical memory pool. One node can simply “borrow”

unused memory from other nodes.

CPU

Memory

Interconnect

CPU

Memory

Interconnect

CPU

Memory

Interconnect

Interconnect Fabric

Memory 

Pool

Node 1 Node 2 Node N

...

Fig.1. Architecture of resource sharing system.

To keep the cost in check, we use exclusively com-

modity products for the prototype system. We select

x86 processor chips from Intel for the computing nodes

and PCIe switch chips from PLX for interconnect. We

considered Intel QPI and AMD HT products but de-

cided against using them because they are proprietary

and do not have the widespread use as PCIe does. PCIe

interface can be found in almost every major micropro-

cessor, thus allowing us to add almost any mainline

microprocessor to the system.

The selection of the interconnect technology is the

most critical decision for the hardware prototype, be-

cause the desired resource sharing will only happen

through the selected interconnection links. The con-

ventional choices are Ethernet or IB. To put the raw

characteristics of PCIe in perspective, Table 1 com-

pares the key features of PCIe Gen2, 10 Gigabit Ether-

net (10 GigE), and IB. PCIe and IB have similar peak

bandwidths and the same latency, and 10 GigE has the

lowest peak bandwidth and a latency of an order of

magnitude more than PCIe and IB. All three support

remote DMA (RDMA) and need external switches in

real deployments.

PCIe has two features that Ethernet and IB do not

have. First, PCIe allows direct access to the remote

memory via normal load/store instructions. This fea-

ture allows a program to make use of remote memory

without modification. It is supported by a PCIe switch

with the non-transparent bridge (NTB) functionality.

NTB provides isolation among the hosts connected via a

PCIe switch while still allowing communications among

the hosts. Second, PCIe allows “shorter” communica-

tion channel. A typical communication channel with

Ethernet and IB goes through the Ethernet and IB

adapters connected to the north bridge via a PCIe inter-

face. PCIe-based communication channel is shortened

because the adapters and the additional protocol con-

version (from PCIe to IB or Ethernet) are cut off from

the path.

Peak
Bandwidth

Application
Latency

PCIe switch

PLX 8648
a

3 005 MB/s b1 mm

Remote
Memory
Access

External
Switch

RDMA, 
load/store 
direct access

IB 40 Gb/s

Mellanox

PCIe Gen2
c

10 GigE RDMA 

RDMA

Yes

Yes

Yes

1 175 MB/sb

3 400 MB/s b1 ms

8.9 msc

Table 1. Interconnect Comparisons

Note: a The numbers are from PLX PEX 8619 user manual 2○.

b The numbers are from our test by using Netperf. c The num-

bers are from Mellanox report 3○.

Fig.2 shows our prototype system, which is com-

prised of five computing nodes and a backplane. Each

computing node is connected to the backplane via a

PCIe adapter card. The backplane contains one trans-

parent PCIe bridge chip and four NTB chips. The

transparent bridge chip supports one root node (CPU

0) and four leaf nodes (CPUs 1∼4), giving the system

five nodes in total. CPU 0 is in charge of forward-

ing transactions between the root node and leaf nodes.

Each node contains one Intel Core i7 3.4 GHz processor

and 8 GB DDR3 DRAM. The NTB chips are used for

address isolation and translation. The prototype sup-

ports PCIe Gen2 interfaces. Any machine with a PCIe

slot can be connected to the backplane.

2.1 Remote Memory Access

In PCIe systems, the NTB includes an address map-

ping table to translate address spaces between hosts.

Once the mapping has been set up, one side can access

the memory region of the other side. In our prototype

system, the OS on the remote node can no longer see

2○ PEX 8619 DMA performance metrics. http://www.plxtech.com/8619, Dec. 2014.
3○ InfiniBand performance. http://www.mellanox.com/content/pages.php?pg=performance infiniband, Dec. 2012.
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Fig.2. Architecture of PCIe switch-based system. RC: root complex; MC: memory controller; NTB: non-transparent bridge.

the borrowed memory block, hence we term such as

time-shared memory (TSM).

Fig.3 shows two optional design methods. One is

direct load/store instructions access, and the other is

DMA access. Node A can borrow the shared memory

provided by node B after they set up their own ad-

dress mapping tables in the address translation module

of NTB. Node A borrows rather than shares remote

memory, making it unnecessary to maintain data con-

sistency. Node A can access the remote memory located

in node B using either direct load/store instructions or

DMA method.

Root 

CPU

Load
Store

DMA

Node A Node B

Complex

Root 

Complex

PCIe

PCle Switch
DMA

Engine

PCIe

VBD Memory

Used by 
Remote Node

Fig.3. Methods of using TSM.

2.1.1 DMA

PCIe supports DMA access mode by using DMA

engine located in the NTB chip. When the client node

sends data reading/writing request of remote memory,

the request will be first transferred to the NTB chip.

The NTB chip reconstructs the request into the DMA

descriptor, which contains essential information, such

as source address, destination address, and transferred

data size, and sends it to the DMA engine. Then, the

newly constructed DMA descriptor will be launched to

the server side which processes it as its normal DMA

request. To simplify the use of the DMA engine, we im-

plement a virtual block driver (VBD) in Linux to emu-

late a block device backed by the remote memory. The

way of using VBD is to make it behave like a local disk.

Many traditional databases require strong disk perfor-

mance, thereby we use ORION (Oracle I/O Calibration

Tool) 4○ for this study. ORION is a standalone bench-

mark tool for calibrating the I/O performance of sto-

rage systems intended to be used for Oracle databases.

In addition to the Ethernet virtual disk (Vdisk), IB

with SCSI RDMA Protocol (SRP), and VBD imple-

mentations, we also measure two more alternatives,

7200rpm SATA disk and SATA3 SSD. Fig.4 shows the

measured bandwidth, IOPS and latency. VBD stands

out among the competitors. It has the highest band-

width, highest IOPS, and lowest latency. Its bandwidth

is about 50 times of that of SATA disk, and about five

4○ Oracle ORION benchmark. http://www.oracle.com/technetwork/cn/topics/index-088165-zhs.html, Dec. 2014.
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times of that of SSD. Its IOPS is more than 1 400 times

of that of SATA disk and about three times of that of

SSD. Its latency is more than 600 times of SATA disk,

and more than seven times of that of SSD.
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Fig.4. Performance evaluation for Oracle ORION.

2.1.2 Load/Store

In direct load/store mode, with the help of our im-

plemented driver module hooked to the OS, the user

application can access remote memory as its local mem-

ory. The difference with local memory is that when the

request of remote memory load/store misses in caches,

it will be delivered to the PCIe Root Complex (RC),

forwarded to the PCIe port and transmitted to the cor-

responding NTB. Finally, the request is handled by the

remote node.

Our results show that accessing remote memory

through sustained (repeated) direct loads has high over-

head, whereas sharing memory through store opera-

tions performs well for small transactions. The reasons

for this are fairly obvious: PCIe’s posted write trans-

actions need not wait for a reply, whereas read trans-

actions must wait for the requested data to arrive. To

better understand the architectural interactions under-

lying our observations, we examine four issues in greater

detail: load serialization, impact of the cache write pol-

icy, prefetcher behavior, and limitations of atomic in-

structions.

Load Serialization. To evaluate the performance

trade-offs of the various approaches, we use each

method to transfer 1 GB data between two nodes in

block sizes varying from 64 B to 1 MB. The results

in Table 2 show that the maximum bandwidth of di-

rect loads is 26 MB/s and that of the DMA loads is

2 980 MB/s. Issuing sustained direct loads performs

uniformly poorly for all block sizes. To understand this

behavior, we use a PCIe Logic analyzer to collect TLP

(Transaction Layer Packet) traces. The traces show

that in a 17 µs randomly sampled observation window,

the DMA can generate about 400 TLPs, but direct

loads generate only 12 TLPs (this happens because a

new TLP load request is issued only after the previous

load request finishes). Using DMA transfers or issuing

sustained writes generates pipelined parallel TLP re-

quests, and thus they both perform significantly better

than issuing back-to-back loads. We suspect that the

PCIe RC inside the Intel Core i7 processor chip seria-

lizes the load requests 5○. Extending the microarchitec-

ture to support parallel load requests is a modification

worth exploring.

Table 2. Bandwidth of Load/Store and DMA (MB/s)

Data Size (B) Load Store DMA

64 26 1 694 1 282

128 26 1 340 1 551

512 26 2 480 1 812

1 K 26 2 430 2 300

4 K 26 2 470 2 980

16 K 26 2 480 2 980

64 K 26 2 480 2 980

256 K 26 2 480 2 980

1 M 26 2 480 2 980

Cache Write Policy. The Intel IA-32 architecture

allows data loaded from remote memory to be saved in

local caches 5○. However, we find that cacheable writes

to the remote memory must be carried out in write-

through mode. We try using write-back mode on three

different IA-32 processors (Intel Core i5, Core i7, and

Xeon E5) without success (we are still investigating the

issue). In write-through mode, a write always updates

(local or remote) memory no matter whether it hits in

cache or not.

To analyze the performance of caching remote data

locally, we use four microbenchmarks: 1) benchmark

1: one with a read-only working set smaller than the

LLC (last level cache); 2) benchmark 2: one with a

read/write working set smaller than the LLC; 3) bench-

mark 3: one with a read-only working set larger than

the LLC but with good locality; and 4) benchmark 4:

one with a random read/write working set larger than

5○ Intel 64 and IA-32 architectures software developer’s manual, Dec. 2012. http://www.intel.com/content/www/us/en/process-
ors/architectures-software-developer-manuals.html, Dec. 2014.
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the LLC and without locality. Fig.5 shows the results.

For benchmark 1 and benchmark 3, there is little or

no performance difference between using local and re-

mote memory. This implies that storing load-intensive

data with good locality on the remote node will be un-

likely to degrade performance, even on a standard PCIe

switch-based system (i.e., without the modifications we

make in our FPGA prototype). For benchmark 2 and

benchmark 4, using the remote memory performs sig-

nificantly worse than using the local memory. While

the performance of benchmark 4 is in line with our

expectations, the performance of benchmark 2 seems

anomalous. It turns out that the writes in benchmark 2

are not being handled as expected. The Intel processor

manual 6○ states that in write-through mode, writes ei-

ther refill (option 0) or invalidate (option 1) the match-

ing cache line. The mode can be configured by setting

the page table attributes or the memory type range

register (MTRR). If we firstly select option 0 and have

one host (A) read a remote location and write the value

0 to it, and secondly have the local host (B) write it

with the value 1, then when we have A reread the vari-

able, it should get the value 0 from its cached copy.

Instead, when A rereads the variable, it gets the value

1, indicating that option 1 is in effect regardless of our

setting.
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Fig.5. Performance of direct memory access. The lower the
slowdown, the better.

Prefetcher Considerations. In order to mask latency

and reduce the number of cache misses, many proces-

sors use hardware prefetchers to load cache lines before

they are requested. The effectiveness of such mecha-

nisms depends on the workload, and most prefetchers

only consider local memory characteristics. Given the

different latencies and bandwidths, improving the per-

formance of remote memory access in the presence of

prefetch engines requires that those mechanisms con-

sider remote memory requirements.

Atomic Instructions. We find that our Intel pro-

cessors (including Xeon and Core i7 architectures) do

not allow lock prefix instructions to be used on remote

memory in a PCIe system, which implies that remote

memory cannot be used for lock/barrier variables or

data structures that require atomic operations. This

issue hinders the OS’s ability access remote memory

transparently.

2.2 Implications for General Communication

The communication performance of all intra-rack in-

terconnects is affected by how well they make use of

cache and memory. To better understand how memory

hierarchy design influences general communication, we

developed a user-level communication library based on

remote memory. Before setting up a remote connection,

the library allocates a message buffer in the user space

and maps it to the remote node. Bypassing the kernel

makes it possible to exploit the full speed and band-

width of PCIe (i.e., applications can see 1-µs transfers).

Our library implementation highlights a few limitations

of the prototype system, such as address translation.

The DMA engine can only use physical addresses to

access memory, and thus it must convert virtual ad-

dresses before initiating a communication. User-level

applications must therefore execute a time-consuming

system call to perform this address translation.

One possible communication optimization technique

for networks on chip (NoCs) is cache injection[5], which

directly sends data from on-chip I/O devices (e.g., an

NIC or accelerator) to cache instead of to off-chip mem-

ory. Leon et al.[5] showed that cache injection mecha-

nisms can improve the performance of several collective

communication operations in parallel programs. IBM

implemented cache injection in their PowerEN[6] cloud

platform. Note that implementing cache injection re-

quires choosing the cache level and cache location to

put the injected data, and this becomes increasingly

difficult as cache hierarchies grow more and more com-

plex.

6○ Intel 64 and IA-32 architectures software developer’s manual, Dec. 2012. http://www.intel.com/content/www/us/en/process-
ors/architectures-software-developer-manuals.html, Dec. 2014.
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3 Memory Hierarchy Modifications

In light of these issues, we design and implement

some memory hierarchy modifications to improve com-

munication performance, particularly with respect to

remote memory accesses.

3.1 Remote Memory Access

Since device configuration registers are rarely ac-

cessed and their accesses exhibit poor locality, a write-

through/invalidate cache policy works well with the

memory mapped I/O (MMIO) operations used to set

them. But unlike MMIO, TSM treats remote locations

like local memory. Due to the long latency of remote

memory access, remote data with good locality of refe-

rence should be kept in cache as much as possible. If the

cache uses a write-through/invalidate policy for remote

memory (as required for MMIO of current x86 architec-

tures), each write operation will cause an invalidation,

and subsequent loads of the same address will miss in

cache. A write-back policy would thus be more suitable.

Since remote memory accesses have different laten-

cies and bandwidths compared to local memory, it is

difficult for a single prefetch strategy to perform uni-

formly well. A more robust scheme would intelligently

issue prefetches based on the latency of memory access.

For example, for remote memory, the prefetch de-

gree (or prefetch distance, which indicates the num-

ber of cachelines per prefetching) of a stride prefetcher

should be adjusted to account for the longer access la-

tency. We can use a register to statically configure

the “prefetch degree”. TLB entries could be modi-

fied to identify remote pages, or the prefetcher could

distinguish the physical addresses of local versus re-

mote memory. When the prefetcher detects the remote

memory, it uses the configured “prefetch degree” of the

register. For local memory, the prefetcher uses original

“prefetch degree” to prefetch.

The results in Section 2 show that the serial pro-

cessing of read requests severely limits the performance

of remote memory direct read operations. Obviously,

improving concurrency for these read operations will

greatly improve performance. In addition, if the remote

memory space can be used for lock/barrier variables or

atomic operations, unmodified applications could bene-

fit from remote memory. For instance, the ARM pro-

cessor uses exclusive loads and stores to execute atomic

operation. Therefore, we can try to use ARM processor

instead of x86 processor.

3.2 Communication

DMA controllers only recognize physical addresses,

but user-level communication uses virtual addresses.

Two common ways to solve that problem are: 1) using

a system call to perform the translation and transmit

the physical address to the DMA controller before each

send operation; and 2) copying the message to a pre-

allocated memory buffer for which the physical address

is known. The former imposes a higher latency, and the

latter results in higher CPU utilization. To avoid such

performance penalties, we integrate a memory manage-

ment unit (MMU) into the interconnect adapter to al-

low user-level applications to trigger transmissions with

virtual addresses, as Pfister describes for Infiniband[3].

Like many modern processors, our FPGA platform

has an integrated on-chip memory, which has similar

performance with L2 cache (the LLC of our platform).

To avoid the complexity of deciding where to place in-

jected data in cache, data injection can, instead, be

applied to the on-chip memory. Storing frequently ac-

cessed small messages and descriptors in the on-chip

memory can improve communication performance and

reduce L2 cache interference.

4 Platforms and Methodology

Current processors lack efficient support for remote

memory access, and the PCIe standard does not sup-

port hardware offloading of some functions (such as

queue management). These limitations led us to study

architectural optimizations in our software simulator

and on our customized interconnect system. For the lat-

ter, we implement a customized interconnect protocol

in a Zynq7045 FPGA platform 7○. We add QPair hard-

ware to better support communication and remote re-

source sharing mechanism in the protocol. Our simula-

tor also models an ARM processor and our customized

interconnect protocol: this let us validate our baseline

simulator before adding processor modifications to sup-

port TSM access.

4.1 Simulator

Our simulation platform is based on gem5[8]. We

develop the remote memory controller and the lo-

7○ Zynq-7000 silicon devices. http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/silicon-devices/index.htm, Mar.
2014.
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cal/remote address map module. The remote memory

controller includes a DMA engine which can transmit

data between remote memory and local memory. We

choose the ARMv7 processor for its support for exclu-

sive loads and stores for atomic operations. We model a

write-back cache that treats remote and local memory

as the same, rather than treats the remote memory as

I/O space.

In addition, the simulator can be configured to con-

tinuously send load requests to remote memory. The

simulator configuration parameters are presented in Ta-

ble 3.

Table 3. Simulator Configuration

Component Parameter

Local memory latency (mean) 100 ns
Remote memory latency (mean) 600 ns
L1 DCache size 64 KB
L1 ICache size 32 KB
L2 Cache size 2 MB

4.2 Customized Protocol FPGA Prototype

The FPGA prototype overall structure and the pro-

tocol stack are shown in Fig.6. To overcome the limi-

tations of the PCIe standard, we insert a network layer

between the transaction layer and the data link layer

in the customized protocol. The protocol is comprised

of a control center and four logic layers, including the

transport layer, the network layer, the data-link layer,

and the physical layer. Here, we introduce our protocol

layers down-top.

Data-Link and Physical Layers. The multiple in-

stances of the data-link layer and the physical layer

comprise I/O ports of the embedded switch. The data-

link layer is responsible for reliable data transmission

from point to point. That is, we design the error de-

tection and recovery mechanisms to avoid packet data

from transient faults. Besides, we provide sequence

checking and flow control mechanisms to prevent packet

loss. The physical layer is used for parallel/serial data

conversion, and high speed serial data transmission.

Network Layer. The network layer is mainly com-

posed of an embedded switch and a configurable routing

table. Before the interconnect could be used, the rout-

ing table should be configured in advance through the

provided APIs. Unless it is filled with valid data, the

routing table cannot be used to direct packets forward-

ing from the ingress port to egress port of the embedded

switch. To trade off the hardware cost and network ef-

ficiency, the embedded switch is designed with a 7×7

crossbar, which removes the need for external switches

for node-level interconnections.

Transport Layer. There are three different chan-

nels integrated in the transport layer, namely instruc-

tion cut-through (ICT) channel, remote direct mem-

ory access (RDMA) channel, and queue pair (QPair)

channel. The ICT channel is designed for instruction-

level/cacheline-level remote memory accessing, which

transmits load/store instructions or cacheline fill/write-

back requests from processors to their remote counter-

parts. The RDMA channel could be used for large vol-

ume data transportation, e.g., page-level remote mem-

ory accessing. And the QPair channel is suitable for

user-level socket-based communication. Besides the

three channels, we also provide two user configurable

tables for addresses translation, i.e., the local/remote

address mapping table and the virtual/physical ad-

dress translation table (hardware MMU). Here, the lo-
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Fig.6. FPGA prototype system architecture.
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cal/remote address mapping table is used by the ICT

channel and the RDMA channel to achieve the address

translation from local to remote. While, as it is known,

the hardware MMU is used by the QPair channel to

translate virtual address into physical one.

The QPair channel can support up to 64k connec-

tions, which are isolated from each other. Therefore,

it is enough and safe, though we can use it in a way

of sharing. Each connection consists of a send queue

(SQ), a receive queue (RQ), and a completion queue

(CQ). SQ is made up of send descriptors which con-

tain data address, size, and some control signals. RQ

and CQ are similar to SQ except that RQ’s descrip-

tors point to the receive buffer, and CQ’s descriptors

just contain completion information. It is convenient

to transmit data that the sender only needs to post a

send descriptor and wait for the completion informa-

tion from CQ. Relatively, the receiver only needs to

post a receive descriptor, wait for completion and read

data from the receive buffer. It is easy to use and can

support user-level applications with high quality.

Our FPGA-based prototype platform is based on

Xilinx ZC706 8○ development board, as shown in Fig.7.

It contains an ARM dual-core Cortex-A9 MPCore pro-

cessor, 1 GB of DDR3 DRAM and 256 KB on-chip

memory. The link speed of our protocol is 2.5 Gbps,

with 8 b/10 b encoding, and the latency is about 0.6 µs.

Table 4 lists the major configuration parameters of the

prototype system.

ZC 706

Optical

Fabric

Fig.7. 4-node FPGA prototype system.

Table 4. Customized Protocol Prototype

System Configuration

Component Parameter

CPU ARM Cortex-A9 667 MHz
L2 cache 512 KB
Memory 1 GB DDR3 1 066 MHz
On-chip RAM 256 KB
Link of our protocol 2.5 Gbps, 8b/10b encoding

5 Performance Evaluation

Fig.8 shows simulation results for our microbench-

marks when using local memory, remote memory with

a write-through cache, and remote memory with a

write-back cache and three different outstanding re-

quest queue (ORQ) sizes. Increasing the size of the bus’

ORQ allows us to send read requests in larger batches.

The figure shows that write-back mode (bars 3∼5) per-

forms better than write-through/invalidate mode for

benchmark 2 and benchmark 4 and that a larger ORQ

can improve the performance of loading remote mem-

ory. For instance, for benchmark 4, ORQ16 is five

times better than ORQ1. ORQ16 performs as well as

ORQ1024, and thus modest hardware additions suffice

to deliver good performance.
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To evaluate prefetcher effectiveness, we run bench-

mark 3 and four memory-intensive applications from

SPECCPU 2000 (gzip, gcc, mcf, gap). Fig.9 shows that

increasing the prefetch degree improves performance.

8○ Zynq-7000 silicon devices. http://www.xilinx.com/products/silicon-devices/soc/zynq-7000/silicon-devices/index.htm, Mar.
2014.
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Unsurprisingly, with a prefetch degree of 5, the mi-

crobenchmark runs seven times faster than the baseline

with prefetching disabled.

Next we evaluate the effectiveness of using QPair

instead of ports. Our initial customized protocol does

not support cache coherence between DMA engine and

the processor, and thus we use an uncached memory re-

gion for the DMA buffers. In a second implementation,

we modify the hardware to support cache coherence.

Note that the Zynq board’s 256 KB on-chip memory 8○

has higher bandwidth and lower latency than off-chip

memory. Since the on-chip memory and the cache hier-

archy are independent, the CPU must bypass cache to

access on-chip memory. We use the on-chip memory to

hold QPair configuration data and small communica-

tion data packets, which provides good access latency

and reduces cache interference.
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Fig.9. Performance of prefetching TSM. The higher the speed-
up, the better.

We implement user-level communication library on

top of the QPair and again use our microbenchmarks

for evaluation. To study the effectiveness of the cache,

MMU, and on-chip memory, we conduct experiments on

four configurations: 1) placing data in uncached mem-

ory space to avoid the coherence problem; 2) placing

data in cached space with cache coherence maintained

by hardware; 3) using a hardware MMU to accele-

rate address translation; and 4) placing data in on-chip

memory and using the hardware MMU. In addition, we

also evaluate the Gigabit Ethernet (GigE) of the FPGA

platform. Fig.10 and Fig.11 compare the latency and

bandwidth for different packet sizes.

In these experiments, the latency is calculated in

the socket application layer, including time elapsed

from hardware to software. Due to the low frequency

(667 MHz) of the CPU clock, software has the biggest

influence on latency. These two figures show that plac-

ing data in cache has lower latency and higher band-

width than using uncached memory, and the MMU im-

proves performance, as well. Using on-chip memory

and MMU has the lowest latency — about 13 µs when

transferring 64B packets, which is six times lower than

GigE. We find the QPair latency to be a little large

(7 µs) in our FPGA platform, because it needs both

accessing main memory and a handful of software sup-

ports from communication library in order to translate

socket requests into QPair operations.

2 8 32 128 512 2K4 16 64 256 1K 4K

200

150

100

50

0

Packet Size (byte)

L
a
te

n
c
y
 (
m
s)

Uncached & Without_MMU

Cached & Without_MMU

Cached & with_MMU

OCM & with_MMU

GigE_on_zynq

Fig.10. Latency of QPair.

64 4K 128K1K 16K 1M 4M

Packet Size (byte)

140

120

100

80

60

40

20

0

B
a
n
d
w

id
th

 (
M

B
/
s)

Uncached & Without_MMU
Cached & Without_MMU
Cached & with_MMU
OCM & with_MMU
GigE_on_zynq

Fig.11. Bandwidth of QPair.

When the packet size is larger than 16 KB, using

on-chip memory and MMU has the highest bandwidth

— more than twice of that of GigE (120 MB/s). The

on-chip memory has similar access latency and band-

width to the L2 cache. However, in the case of using

cache, only when the address hits the L2 cache will

Qpair put data in L2 cache. Otherwise, data would be
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put in main memory resulting in the performance re-

duction. Additionally, in the transmission of big data

packets (larger than 16 KB), it is difficult to ensure all

of these addresses will hit the L2 cache. Therefore, the

performance of using on-chip memory is better than

that of using cache. Besides, the performance of using

hardware MMU is higher than that of using software

to do address translation. In conclusion, using on-chip

memory and MMU could gain the best performance.

Note that the maximum packet size that can use the

on-chip memory optimization is 128 KB (because the

rest of the on-chip memory holds QPair configuration

information).

6 Related Work

Datacenters require highly efficient, low-cost, flexi-

ble interconnects to manage the rapidly growing inter-

nal traffic generated by an increasingly diverse set of

applications. Early datacenters often employed stan-

dard high performance computing (HPC) networking

solutions like 10 GigE[8], and InfiniBand[3]. Newer

designs increasingly include interconnects that better

match the communication requirements of modern dat-

acenter workloads. For instance, Freescale, IDT, Mo-

biveil, and Prodrive are promoting the use of ARM

servers connected by Rapid-IO 9○, and AMD SeaMicro

is marketing ultra low-power, small-footprint datacen-

ters connected by their proprietary FreedomTM Super-

computer Fabric 10○. Even PCIe — once viewed as inap-

propriate for use as a general-purpose fabric — is be-

ing used within small-scale, tightly coupled data-center

racks once connected by more traditional HPC network

technologies.

The ability to share datacenter resources over these

high-performance interconnects improves utilization,

lowers cost, and increases flexibility. To that end,

Deshpande et al. proposed MemX, which allows Xen

virtual machines to transparently access cluster-wide

memory resources over 1 Gigabit Ethernet[9]. Lim et

al.[10] disaggregated server memory, moving a portion

of main memory to separate memory blades optimized

for both capacity and power usage. Their design both

expands memory capacity and supports dynamic capac-

ity sharing across multiple servers. Like the designs we

analyzed here, their implementation also demonstrates

PCIe’s potential as a datacenter interconnect techno-

logy.

Recently, many industry leaders and researchers

have proposed the concept of software-defined data-

center server. For instance, the rack scale architec-

ture (RSA) has been proposed by Intel, which provides

the ability to provision pooled memory resources 11○.

Novakovic et al. proposed remote memory accessing

through QPair mechanism based on special APIs[11],

while we propose to do remote resources accessing

through LD/ST instructions (not special API) and OS

controlled RDMA channel, which presents less software

overhead and good application-level transparency.

7 Conclusions

In addition to supporting explicit communication,

emerging datacenter interconnects are increasingly be-

ing used to dynamically allocate and flexibly share re-

sources. Local datacenter interconnects are now inte-

grated into the same chip with the processor cores. De-

signing a new interconnection technology or communi-

cation protocol thus requires considering not only the

interconnection itself but also the design of the proces-

sors and the local memory hierarchies on which they

rely.

In this paper, we studied memory hierarchy impli-

cations for the design of high-speed datacenter inter-

connects. We built three complementary datacenter

server models: a hardware PCIe prototype system for

investigating the performance and optimization space

of access remote memory and communication; a soft-

ware simulator for evaluating specific memory hierarchy

modifications that we cannot (yet) implement directly

in hardware; and an FPGA-based customized intercon-

nect system for studying the design space of hardware

optimizations that leverage queue pair (QPair) design

together with a customized, switchless protocol. Based

on these platforms, we identified problems in existing

memory hierarchies and discussed optimizations to bet-

ter support remote memory access, including increasing

the number of requests that can be issued concurrently

via the interconnect interface, adapting the cache write

policy to better exploit the locality of remote memory

accesses, and increasing the prefetch degree to com-

pensate for the increased latencies of remote memory

accesses.

9○ Merritt R. RapidIO nudges ARM into servers, Jul. 2013. http://www.eetimes.com/document.asp?doc id=1318957, Dec. 2014.
10○ Amd — SeaMicro technology overview, Oct. 2012. http://www.seamicro.com/sites/default/files/SM TO01 64 v2.7.pdf, Dec.

2014.
11○ Rack scale architecture for cloud. http://www.chinacloud.cn/upload/2013-10/13102200313281.pdf, Oct. 2013.
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