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Abstract 
High shear granulation is an important process in the pharmaceutical industry. The 

aim of the process is to produce granules with specific properties, like size and 

hardness, from powder mixtures. The properties of the granules are determined by 

the flow field in the mixer. The most common approach taken to modelling the flow 

in a mixer includes tracking the forces on each individual particle and resolving each 

occurring collision. This gives detailed information, but the computational cost 

restricts this use to small-scale equipment.  

Continuum modelling of particle flows means that averages are made to form a 

continuous flow rather than tracking individual entities. The problem that arises in 

this procedure is correctly describing the transfer rates of mass and momentum in 

the system. The focus of the research in this thesis is on evaluating previously used 

continuum models, and finding and developing new approaches. The connection 

between flow field information and the evolution of particle properties is also studied 

through the development of a compartment model. 

Results show that the continuum model currently being used has a promising 
parameterization for describing the overall effect on a flow field caused by particle 
property changes that occur during granulation. The model is; however, not capable 
of adequately resolving the flow field in the important regions close to the walls and 
the impeller of the vessel where the particle volume fraction is high. A rheology-like 
model is used to improve the dense granular flow regions, while the theory for the 
more dilute parts is improved via kinetic theory models modified for inelasticity and 
improved for its validity in the transition region to dense flows.  
 
 
Keywords: High shear granulation, continuum modelling, granular flow, parameter 
study, resolution dependence, kinetic theory of granular flow, compartment model 
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1. Introduction 
High shear granulation is a common process in the pharmaceutical industry. The 

process consists of three steps: dry mixing, where powder ingredients are mixed; 

liquid addition, where a binder liquid is added and agglomeration starts; and wet 

massing, where granules are processed to the desired properties in the shear field of 

the mixer. The process is used to ensure the homogeneous mixture of tablet 

ingredients and to improve the flow and process ability of the material. 

Mathematical models are of great importance for predicting granulate properties 

such as size distribution, particle density distribution and particle liquid content 

distribution. Population balance equations have been developed to describe the 

evolution of these properties [Darelius et.al. 2006, Niklasson Björn et.al. 2005, 

Hounslow 2001]. The rate of property changes is described in so called kernels, and is 

determined by the flow conditions in the equipment. The flow information can be 

incorporated into the kernels either from experimental measurements or through 

flow field modelling [Gantt et.al 2006a]. The flow situation in a high shear granulator 

is one in which the volume fraction of solids approaches close packing and high shear 

rates near the impeller, while the flow in the bulk of the vessel is dispersed [Ng et.al. 

2007]. Nevertheless, the kernels are normally based on the assumption of a 

homogeneous system with a global rate of change of particle properties [Iveson et.al. 

2001]. To develop improved models for high shear granulation, more information 

about the flow conditions in a mixer is needed [Iveson et.al. 2001]. 

The most common approach to modelling the flow conditions in granulators is 

currently Discrete Element Modelling (DEM). A review of the use of DEM in the 

pharmaceutical industry is given in [Ketterhagen et.al. 2009]. Other examples of its 

use in high shear mixing, specifically, are [Gantt et.al. 2006a] and [Gantt et.al. 2006b]. 

In the DEM approach, momentum balances are put up and solved for all particles 

individually. This yields a detailed model that takes into account the forces that act on 

each individual particle. One drawback is computational cost, the result of which is 

that only small-scale systems (1 000 000 particles [Ketterhagen et.al. 2001]) can be 

modelled. If large-scale equipment is to be modelled, for studying the effects of 

process scale-up, a different approach is needed.  

Continuum descriptions of granular flows have been used since the pioneering work 

of Bagnold [Bagnold 1954] and are common in flow field modelling of other particle 

processes, both industrial and natural, like fluidized beds [van Wachem et.al. 1998, 

van Wachem et.al. 1999, Passalacqua et.al. 2009] or land slide and avalanche motion 
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[McDougal and Oldrich 2004]. Continuum descriptions have only recently been 

introduced to the study of high shear granulation [Darelius et.al. 2008] and [Ng et.al 

2009]. The continuum treatment of the granular phase of the process allows for the 

potential to model systems with a larger amount of particles than is possible with 

DEM. The approach used for continuum modelling, in the two mentioned papers, is 

based on an averaging procedure of particle motion. The procedure is similar to that 

used in kinetic gas theory, with attention given to drag forces between air and the 

particle phase, inelastic collisions and added frictional stresses in the regions with a 

high volume fraction of solids. In [Darelius et.al. 2008] and [Ng et.al. 2009] it was 

concluded that there are discrepancies in the model predictions for the parts with a 

high volume fraction of granules; near the walls of the vessel and the impeller blades. 

The reasons for the discrepancies have not been fully examined, and further studies 

using the same modelling framework on simpler high shear granulation equipment 

would be beneficial for deciding how to improve the models. There are also other 

approaches to modelling granular flows with high volume fractions available and 

used in other fields. Investigating and evaluating their potential use for modelling 

high shear granulation could be a major step forward for flow field modelling and the 

scale-up of equipment. 

 

1.1. Objectives 
The purpose of this research is to develop a continuum model suitable for modelling 

high shear granulation systems. This would be extremely useful for the purpose of 

equipment scale-up since both small-scale and large-scale processes could then be 

modelled. The research started with further evaluation of the already used 

framework of the kinetic theory of granular flow with added frictional stress. There 

are other concepts available from other areas in which particle flows occur, and the 

research has progressed with an investigation of other promising concepts, such as 

kinetic theory models made for flows of high volume fractions with inelastic particles 

and empirical approaches of a rheological nature. In addition to the evaluation of 

continuum models, attention has also been directed towards the connection to the 

modelling of particle properties through population balance equations.   
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1.2. Outline of the thesis 
The next chapter describes high shear granulation in order to obtain an 

understanding of the flow situation in a mixer. Chapter three then describes the 

physics in granular flows, focusing on the different flow regimes present in a mixer. 

Chapter four briefly introduces the experimental techniques used in two of the 

articles. Chapter five gives the current situation in continuum phase modelling in high 

shear granulation. Chapter six evaluates the models described in the previous chapter 

and discusses available improvements to the modelling framework. Chapter seven 

discusses the coupling to population balance models. Chapter eight discusses the 

results and nine concludes the discussion. Future research is briefly discussed in the 

last chapter.   
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2. High shear granulation 
The following section will describe the conditions in a general granulator under the 

three stages of powder mixing, liquid addition and wet massing, consecutively. The 

focus is on powder mixing and the later part of the wet massing stages in which 

particle contacts can be considered to be dry contacts. This is because the models in 

the present research have not taken wet contacts into account. The findings can also 

be applied to dry high shear granulation.  

The powder mixing phase consists of the mixing of dry powder ingredients. The 

purpose is to achieve a homogeneous mixture of the ingredients. The particles in this 

phase are commonly in the size range of 1 µm to 100 µm. The forces acting on each 

particle in the flow field are drag force from the surrounding air, collisions from other 

particles, frictional gliding against other particles in high volume fraction areas (as the 

volume fraction approaches close packing) and possible cohesive forces; depending 

on the material and the size of the particles.  

In the liquid addition stage, a binder liquid is normally sprayed onto the powder from 

the top of the vessel. Droplets from the binder adhere to the powder particles, and 

this starts the agglomeration process. In this stage, liquid bridges are formed 

between particles and introduce other types of physics; however, studying these 

phenomena during this part of the process is beyond the aim of this project. 

When the addition of liquid is stopped, the wet massing stage starts. The desired 

granulate properties are to be reached by using the required granulation time, 

impeller and chopper speeds. System properties change as size distribution is driven 

towards larger particles and the granules are compacted in the shear field. The liquid 

becomes more and more encapsulated in the forming granules, and the physics of 

the flow once again start to resemble the physics in the powder mixing phase, 

although the properties of the particles have changed.   

There are different types of high shear granulator devices, and three examples that 

will be mentioned further in this thesis are the MiPro mixer, the vertical high shear 

mixer, the Diosna mixer and the disc impeller granulator.  

The MiPro and Diosna mixers consist of a three-bladed impeller mounted from the 

top for the MiPro and from the bottom for the Diosna. Figure 2.1 shows a lab-scale 

Mipro device.  
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Figure 2.1. A MiPro high shear granulator. 

The MiPro system also contains a second small-bladed chopper mounted at the top 

of the vessel designed to break large particle aggregates. 

A vertical high shear mixer consists of several blades mounted at different heights in 

a tube-like vessel. Figure 2.2 shows a sketch of a vertical high shear mixer.  

 
Figure 2.2. A sketch of a vertical high shear mixer with three mounted blade pairs. 

A disk impeller high shear granulator is basically a vessel with a flat rotating bottom 

plate. The system is used as a model system with a simpler geometry while retaining 

the dense sheared part of the flow field. 
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2.1 The flow situation in a high shear mixer 

The flow situation in a high shear mixer is complicated. It is a three-phase system of 

liquid droplets, solid particles and gas. It is a multi-body system with non-trivial 

interactions between the particles, and there are sharp gradients in both the velocity 

and volume fraction in the system. Momentum transfer can take place through a 

translation of particles or a collision between particles. Collisions can be binary or 

multi-body, and they can be instantaneous or long duration contacts with or without 

frictional gliding.  

The characteristics of the particle flow in high shear mixers have been experimentally 

studied in [Ng et.al 2007 and Knight et.al. 2001]. It was concluded there that the bulk 

region of the flow belongs to the so-called rapid granular flow regime, where the 

momentum transfer is dominated by a translation of particles and binary particle 

collisions. Close to the impeller and the walls of the vessel, the flow has a radically 

different character in which the high volume fractions of solid particles in 

combination with shear forces create considerable frictional particle interactions [Ng 

et.al 2007 and Knigth et.al. 2001]. These regions have proven to be of great 

importance for the flow inside high-shear mixers [Darelius et.al. 2008] [Ng et.al. 

2009], and have also been shown to be the most problematic to describe with 

continuum models. There are reliable models for rapid regime flows, as will be 

described below, and the focus in this thesis will, consequently, be on high solid 

volume fraction flows in the transitional and dense regions. 
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3. Physics of granular flow 
The physics of granular flows are versatile and dependent on the regime of a flow. 

Granular flows are typically divided into quasi-static and rapid regimes. A quasi-static 

flow occurs; for example, on the slope of a pile of particles, or as particles pour down 

a hopper. This flow is characterized by long duration particle contacts and frictional 

interaction. A rapid regime flow is encountered; for example, in fluidized beds and is 

a state in which individual granules freely fly around with only brief binary 

interactions with one another. Figure 3.1 summarizes some properties of the two 

regions. 

      Quasi-static                                                       Rapid 
      

      

      

      

      

      

      

 

  
 

                      

Behaviour:    Solid-like       Fluid-like     

Rheology:     Plastic         Viscous     

Mechanisms for 

momentum 

 

Friction 

         

Translation 

    

transfer: Friction       Binary Collisions   

Figure 3.1. Properties of the two regimes of granular flow 

Figure 3.1 shows the behaviour of two states of granular flow as solid-like and fluid-

like. Solid-like behaviour occurs when the particles have collective behaviour. The 

motion of the particles is correlated to some length scale longer than particle 

diameter [Mueth 2003]. Sheets of particles sliding over each other, as in the figure, is 

one example, and particle clusters tumbling around is another. The rapid regime is 

described as a fluid-like state, which means that the properties of the flow are locally 

determined. In the quasi-static flow regime, dissipative frictional interactions make 

the behaviour plastic in the sense that stresses in the material have no strain-rate 

dependence. This is in contrast to flow in the rapid regime which displays a quadratic 

stress-strain relationship. The differences in rheological behaviour stem from the 

different mechanisms for the two flow types. In a quasi-static flow the main 

mechanism is frictional interactions. Frictional gliding can be well described by the 

Coulomb law of friction which is strain-rate dependent [Coulomb 1776]. In contrast, 

the momentum transfer in the rapid regime is governed by particle translation and 
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binary particle collisions. The rate of the translation and collisions of particles is 

determined by particle velocity fluctuations around the mean flow velocity. This is 

because, in a shear field, this property will be the reason for particles of one mean 

velocity to either collide with a particle with a different mean velocity, or move into a 

region with a different mean velocity. These velocity fluctuations in the fluid-like 

state are analogous to the temperature of a molecular fluid, and are often called the 

granular temperature, defined as Equation 3.1. 

    Eq.3.1 

   

Granular flows in high-shear mixers include both of these regimes, as stated in the 

previous chapter. This leads to regions in which the flow situation is a mixture of the 

two conditions. Such a mixed condition has not yet been well described rheologically, 

and the limits for when each model is applicable have not been fully determined 

either.  

To study the behaviours of granular flows, model systems are often used for 

experimental studies of sheared granular flows at high solid volume fractions [GDR 

MiDi 2004]. A suitable system for investigating the dynamics of such systems is the 

Couette shear cell. Bagnold studied the rheology of suspended spherical wax 

particles, 1.3mm in diameter, in a Couette configuration in 1954 [Bagnold 1954]. The 

experiments showed a quadratic relation between stress and strain in the rapid 

granular flow regime. This observation implies that the momentum transfer in the 

granular media is determined by binary instantaneous collisions. When the solid 

volume fraction approaches close packing, the nature of the particle interaction 

changes towards the existence of long duration contacts with possible frictional 

interactions. Frictional interactions are well described by the Coulomb friction law 

[Coulomb 1776], which is rate-independent. Savage and Sayed 1984 [Savage and 

Sayed 1984] have shown that the dependence of shear rate on strain rate moves 

towards a rate-independent relation when the solid volume fraction is increased 

above 0.5, at low shear rates, when spherical glass beads, 1.8 mm diameter, are 

sheared in a Couette device. By studying the flow of walnut shell pieces, the same 

authors were able to show that the deviation from the rapid flow regime starts at 

different values of the solid volume fraction depending on the frictional properties of 

the material. As the solid volume fraction approaches that of the close packing of 

spheres, there is a change in the behaviour of the system from fluid-like, where 

transport properties are dependent on local conditions, to solid-like behaviour where 

particles exhibit collective behaviour. This was observed by Mueth 2003 [Mueth 

2

3

1
CT 
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2003] who found both spatial and temporal correlations in particle movements at 

volume approaching close packing. When the solids volume fraction is increased 

further, there is no longer a flow of individual granules, but rather the packed 

granules exhibit solid-like behaviour. The conditions for when the transition between 

these states start have not been clearly determined, and neither has the rate of 

change in the transport properties as the system progresses towards a purely 

frictional behaviour. Hsiau and Shien 2000 [Hsiau and Shien 2000] have studied the 

influence of the solid volume fraction on the flow of glass spheres in a Couette 

device, and found a strong dependence of the velocity profile on small changes in the 

volume fraction when the latter is above 0.53. The rate of the divergence of the 

momentum transfer remains to be determined.  

 

In the rapid flow regime, where momentum transfer is governed by particle 

collisions, the velocity fluctuations around the mean particle velocity determine the 

rate of collisions in the flow. The behaviour of the velocity fluctuations at high solid 

volume fractions has been studied in Couette devices by; for example, [Hsiau and 

Shien 2000] [Bocquet et.al. 2001]. These authors found that in sheared flows of a 

high solid volume fraction, the fluctuations in the flow direction show a relative 

increase [Hsiau and Shien 2000], whereas the velocity fluctuations in dilute particle 

flows with small velocity gradients are isotropic. Bouquet et. al. 2001 [Bouquet et. al. 

2001 ] have found that velocity fluctuations decay slower than the average motion of 

particles as the solid volume fraction approaches close packing. The difference in the 

rate of divergence of the rate of momentum and the velocity fluctuations is 

important in the transition between solid-like and fluid-like behaviour. This statement 

will be further addressed below.  

 

An important discussion has focussed on the clustering and stability of rapid granular 

flows in fluidized beds, where dilute to intermediate volume fractions are treated, 

and where drag is of large importance[Agrawal et.al. 2001]. This is also of importance 

in the more dilute regions of a high shear granulator. The reasons for the clustering 

can be attributed to either drag interaction between the phases, the resolution used 

in the numerical simulations or the inelasticity of particle collisions [Agrawal et.al. 

2001] [Mirtano et.al. 2014]. This effect is important in order to resolve meso-scale 

flow structures in the dilute to intermediate phase in a high shear granulator. 

 

In brief, the properties that are being sought for in a model for high shear granulation 

are: a model that is able to describe the transition between fluid-like and solid-like 

behaviour which means that the rates of divergence of momentum transfer and 
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velocity fluctuations must be determined. This transition should be dependent on the 

frictional properties of the material. A model should also be able to predict the 

anisotropy of fluctuating velocity in a sheared system and the formation of meso-

scale clusters in inelastic particle flows. 
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4. Experimental techniques 
In this research, high speed camera imaging was used in Papers II and IV combined 

with Particle Image Velocimetry (PIV) to validate the surface velocities of the model 

used in the disk impeller system. In this chapter, a short description of the technique 

and the equipment will be given.  

4.1 Equipment 

The system used for the measurements was a Plexiglas disc impeller system with a 

diameter of 7.2cm. The system is similar to those used in Knight et.al. [Knight et.al. 

2001], and was chosen for its simple geometry and presumed dense sheared flow. 

The system is shown in Figure 4.1 in which the camera setup is also shown. The 

particles used for the experiments were 1.3mm glass particles sieved to a precision of 

± 0.05 mm. The choice of particles was dependent on the availability of data for the 

parameters in the rheology model. The motor for the impeller was mounted to a 

dynamometer that held it in place and measured the force needed to keep it in place, 

which corresponds to the force input to the impeller. 

 
Figure 4.1. The disc impeller system used in Papers II and IV.  

 

4.2 High speed camera and PIV 

The high speed camera used was set to an imaging rate of 500 fps with a resolution of 

240 times 512 pixels. The pictures were paired up in Matlab to allow for calculations 

of the particle displacement between each pair using the PIV software DaVis 6 by 

LaVision. The PIV analysis was conducted with a so called multi-pass method with 

interrogation window sizes ranging from 32 times 32 to 64 times 64 pixels. The pixels 

were determined to correspond to 0.13mm in the pictures, giving approximately 10 

to 40 particles per interrogation window. This size is considered to give a good 

representation of the mean field velocity, and enables finding regions with velocity 

fluctuations, although it cannot resolve individual particle motion. Averages were 
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then made over a picture sequence of 2s for the mean field velocities, and the 

standard deviation of the velocities was used to find fluctuating regions.  
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5. Continuum modelling of granular flow 
Continuum modelling of particle flows is built on an averaging procedure in which the 

transport of discrete entities is translated into a continuous medium. Three different 

forms of averages are considered here; volume average, time average and ensemble 

average. Ensemble average is an average based on the measurements from several 

independent realizations of the same property. The use of an ensemble average is 

unrestricted, but the formation of it is restricted to uncorrelated measurements. 

Time and volume averages can, in contrast, be formed in all systems. The use of 

volume and time averages is restricted in the sense that they provide relevant 

information to systems in which there is a separation of scales [Enwald et.al. 1996]. 

Separation of scales means that the characteristic time and length scales of the 

particles in a flow are much smaller than the characteristic time and length scales of 

the flow. Figure 5.1 shows a representation of an average value as the averaging 

interval, time or volume, is increased.  

 

  
 

            

              

              

              

              

              

              

              

              

              

              

              

              

        Averaging interval    

Figure 5.1. A representation of a measured average as the size of the measured 

interval is increased, in a system with a separation of  

microscopic and macroscopic flow scales. 

When the averaging interval is smaller than the particles characteristic property, the 

mean will be based on whether or not a particle is present in the measurement. The 

microscopic properties of the system dominate the measurement. This is seen as the 

first part of the graph in Figure 5.1 in which the value starts at zero and jumps to the 

value of the first particle. This jumping behaviour continues as long as the action of 

single particles entering or leaving the measurement has a strong influence on the 

mean value. Eventually, if there is a separation of scales, there will be a plateau of the 

mean value that will well represent the state of the system. Increasing the interval 

Macroscopic 

Microscopic 

Plateau 



16 
 

further will lead to the inclusion of regions with different macroscopic properties. To 

resolve macroscopic fluctuations, the averaging interval needs to be smaller than the 

scale of the macroscopic fluctuations. 

Molecular flows usually have a clear separation of scales. This is, in general, not so 

clear in granular flows. This difference between molecular systems and granular 

systems stems not only from the size of the entities, but also from the difference in 

that granular systems are dissipative through their inelastic particle collisions [Glasser 

and Goldhirsch 2001]. This can be seen in an analysis of flow scales as done in 

[Glasser and Goldhirsch 2001]. In condensed form, the analysis starts with the so 

called equation of state for rapid granular flows, Equation 5.1. 

𝑇 = 𝐶
𝛾2𝑙2

𝝐
.       Eq.5.1 

Where 𝑇 is the granular temperature, 𝑙 is the mean free path, 𝛾 is the shear rate, 𝝐 is 

the inelasticity (ranging from 0 = elastic to 1 = inelastic) and 𝐶 is a volume fraction 

dependent constant in the size range of unity, O(1). The time scales are also defined 

as in Equations 5.2 and 5.3. 

𝜏𝑀𝑖𝑐𝑟𝑜 =
𝑙

√𝑇
      Eq.5.2 

𝜏𝑀𝑎𝑐𝑟𝑜 = 𝛾−1    Eq.5.3 

From Equation 5.1 and the notion of the microscopic and macroscopic time scales, 

Equation  5.4 can be derived.  

𝜏𝑀𝑖𝑐𝑟𝑜

𝜏𝑀𝑎𝑐𝑟𝑜
=

√𝝐

√𝐶
 =O(1)     Eq.5.4 

Since 𝐶=O(1), the ratio in Equation 5.4 is also of the same order of magnitude as long 

as the inelasticity of the system is not much smaller than one. A similar analysis can 

also be made for length scales, see [Glasser and Goldhirsch 2001]. 

This inherent lack of scale separation in granular flows is an important feature in the 

modelling of these systems. The effects of the lack of separation of scales have not 

been considered in continuum modelling of granular flows in high shear mixers. The 

attached Paper II is a study of the implications of this property on sheared high solid 

volume fraction flows, when the frictional stress model by Shaefer [Shaefer 1987] 

and Johnson and Jackson [Johnson and Jackson 1987] is applied. Even if there is 

intrinsic scale dependence for dense granular flows, there remains much evidence 

that an applicable model may be found using experimentally based semi empirical 

models that treat dense granular flow. Bocquet et.al. 2001 [Bocquet et.al. 2001] have 
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developed an experimentally supported modification to the shear viscosity in a 

Kinetic theory of granular flow framework.  Jop et.al. [Jop et.al. 2006] used shut flow 

experiments to derive a pressure  dependent modification of a Hershel-Bulkely fluid. 

This led to a scale independent set of equations, which were shown to be able to give 

relevant predictions for the material used in different flow setups [Jop et.al. 2006]. 

Another way is to incorporate scale dependence in the derivation of the equations. 

For example, in the revised Enskog theory [van Beijeren and Ernst 1979], which will 

be described in a following chapter, the solution is expanded around a reference 

state that is dependent on the local properties of the flow, and can correctly describe 

granular systems at equilibrium for all time and length scales [Garzo and Dufty 1999].   

These approaches will be investigated in this thesis for use in high-shear granulation, 

and the theory behind them will be presented in Chapter 7. In the next chapter, the 

state of continuum models of granular flows in high shear granulation at the start of 

this project will be addressed. 
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6. Review of previous research in the field 
Continuum modelling of the particle phase in high-shear granulation equipment has 

previously been done in [Darelius et.al 2008]and [Ng et.al 2009]. In both attempts, 

the same modelling framework was used; the kinetic theory of granular flow 

developed in  [Gidaspow et.al. 1992] with the added frictional stress model 

developed in [Shaeffer 1987]. More details about this modelling framework will be 

given in Chapter 7. In [Darelius et.al 2008] a MiPro system with a three-bladed 

impeller was modelled during the powder mixing phase. The powder was micro 

crystalline cellulose with a particle diameter of 60µm. No chopper was present. The 

simulations were compared with velocity data extracted from a series of high-speed 

image photos at the vessel wall.  

A comparison between the simulations and the experimental data showed that the 

bed height could be well predicted as well as the velocity magnitude near the wall. 

When the velocity was divided into its components and analysed, differences 

between the model and the experiments were found. Tangential motion was 

underestimated by the model while the axial velocity was overestimated. The model 

also had a general underestimation of the viscosity in the near-wall region. Some 

different explanations were offered by the authors: that the cohesion of the powder 

was not included in the model; that the partial slip boundary condition used was 

inadequate for dense particle flows; that the mesh resolution was inadequate near 

the wall; but the most probable reason was the inadequacy of the frictional stress 

model.   

In [Ng et.al. 2009], a vertical high shear mixer was studied during the powder mixing 

phase with calcium carbonate particles of 60µm size. Their simulations were 

compared to positron emission particle tracking (PEPT) experiments. This technique 

follows a radioactive tracer particle inside the equipment, and, can, consequently, 

give a picture of the entire flow field in the equipment. It was found that this model 

also gave poor predictions for the distribution between the velocity components, 

with a general over-prediction for the tangential velocity in the bulk flow, and the 

simulation results predicted a decrease in the tangential velocity at the wall that was 

too steep. This is in accordance with the findings by [Darelius et.al. 2008]. In [Ng et.al. 

2009], a no-slip boundary condition was used. The reason for this is that  the 

boundary condition is not the only reason for the near-wall discrepancy in the model. 

Calcium carbonate particles are less cohesive than micro-crystalline cellulose 

particles. A spatial resolution dependence study was done, but only for general flow 

features and not specifically for the problematic near-wall region.  
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The conclusion was that this modelling framework showed some ability to model 

high-shear granulation, and further studies of the dynamics of this modelling 

framework would be useful. However, it was also found that the discrepancies in the 

spatial resolution dependence of the dense regions needed to be further studied, and 

if no remedy could be found, it would be useful to investigate other approaches to 

modelling dense granular flows as a continuum. 
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7. Model theory 
This chapter will introduce the theory behind the models used in this research. It will 

begin with a general description of the KTGF models with a focus on the assumptions 

made in the derivation. This will be followed by descriptions of the alternative models 

applied in the attached articles. 

 

7.1 Kinetic theory of granular flow 

To define a particle system, the positions and velocities of all particles need to be 

known. These can be described with a probability function which pinpoints the 

likelihood of finding a particle with a certain velocity in a certain position. The 

Boltzmann Equation describes the evolution in time of this so called probability 

density function (Equation 7.1).   

𝜕

𝜕𝑡
𝑓(𝑟1, 𝑣1, 𝑡) + 𝑣1 ∙ 𝛻𝑓(𝑟1, 𝑣1, 𝑡) +

𝜕𝐹𝑓

𝜕𝑣1
= 𝐽𝐸[𝑟1, 𝑣1, 𝑓(𝑡)]      Eq.7.1           

The changes in the distribution are assumed to come from three phenomena; the 

translation of particles (described by the second term), the external forces acting on 

the particles (described by the third term) and the collisions between particles 

(described by the last term). In [Gidaspow et.al. 1992] the external forces included 

were gravity, buoyancy and drag forces from the surrounding gas. 

In order to obtain an expression for the collision term, 𝐽𝐸[𝑟1, 𝑣1, 𝑓(𝑡)], the conditions 

for the particle-particle interactions must be determined. In the KTGF, it is assumed 

that all collisions are binary and instantaneous. This assumption implies that the 

system is dilute, since the occurrence of multi-body contacts is neglected. It also 

implies that the particles are hard, meaning that there is no deformation of the 

particles during a collision since that would imply that the collisions are not 

instantaneous. The collisions are elastic or allowed to be slightly inelastic, meaning 

that only a small fraction of the kinetic energy is lost. With these assumptions, an 

expression for the collisional contribution to the change in the probability density 

function can be written as Equation 7.2.  

𝐽𝐸[𝒓𝟏, 𝒗𝟏, 𝑓(𝑡)] =

𝜎2 ∫ 𝑑𝒗𝟐 ∫ 𝑑�̂�𝜽(�̂� ∙ (𝒗𝟏 − 𝒗𝟐))(�̂� ∙ (𝒗𝟏 − 𝒗𝟐)) × {𝑒−2𝑓(2)(𝒓𝟏, 𝒓𝟏 − 𝝈, 𝒗�́�, 𝒗�́�
́ , 𝑡) −

𝑓(2)(𝒓𝟏, 𝒓𝟏 + 𝝈, 𝒗𝟏, 𝒗𝟐, 𝑡)}   Eq.7.2 

Where 𝑓(2) is the pair particle distribution function, the distribution of particle pairs 

with the properties needed for a collision. e is the restitution coefficient and v' is the 
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precollisional velocity and v is the post collisional velocity related through the relation 

𝒗 = 𝒗 ±
𝟏

𝟐
(1 + 𝑒−1)(�̂� ∙ (𝒗𝟏 − 𝒗𝟐))�̂�. 

Assuming that the properties of each single particle in each particle pair are 

uncorrelated to the properties of the other particle, the pair particle distribution 

function can be written as the product of the individual particle distribution functions 

Equation  7.3. This is called the assumption of molecular chaos [Jeans 1962]. 

𝑓(2)(𝒓𝟏, 𝒓𝟐, 𝒗𝟏, 𝒗𝟐) ≈ 𝑔0(𝒓𝟏, 𝒓𝟐, 𝑛(𝑡))𝑓(𝒓𝟏, 𝒗𝟏, 𝑡)𝑓(𝒓𝟏, 𝒗𝟏, 𝑡) Eq.7.3 

To adjust for the fact that the particles have a volume, and, consequently, a larger 

probability of colliding, a function is introduced 𝑔0(𝒓𝟏, 𝒓𝟐, 𝑛(𝑡)). It is called the 

equilibrium radial distribution function in which 𝑛(𝑡) is the non-equilibrium density 

function defined by 𝑛(𝑡) = ∫ 𝑑𝒗𝑓(𝒓, 𝒗, 𝑡). The equilibrium radial distribution 

function describes the system from the perspective of the single particle in relation to 

the experienced available space. This decreases the amount of possible 

configurations due to the volume occupied by other particles. It contains strong 

volume fraction dependence and the function chosen depends on the regime of flow 

[Luding 2009]. Luding [Luding 2009] reviews a number of functions used for 2D 

systems showing the diversity of expressions available.  

 

7.1.1 The transport equations 

Solving the full Boltzmann Equation is possible but not trivial. Instead, it can be 

sufficient to find a solution that preserves the properties of interest in the system. In 

such a case, the first three statistical moments of the Boltzmann Equation are 

typically considered. They represent mass, momentum and fluctuating kinetic energy 

(or granular temperature). In this step, it is assumed that ensemble averaging can be 

applied, or, if not, large time averages can be used, but then the small time scale 

dynamics will be lost. The equations are presented in the same form as in [Gidaspow 

et.al. 1992] in Equations 7.4-7.6. 

𝜕

𝜕𝑡
(𝛼𝑠𝜌𝑠) + 𝛻(𝛼𝑠𝜌𝑠𝑣𝑖) = 0   Eq.7.4 

𝜕

𝜕𝑡
(𝛼𝑠𝜌𝑠𝑣𝑖) + 𝛻(𝛼𝑠𝜌𝑠𝑣𝑖𝑣𝑗) =  

−𝛼𝑠
𝜕𝑝

𝜕𝑥𝑖
+ 𝛼𝑠𝜌𝑠𝑔𝑖 + 𝛽(𝑢𝑖 − 𝑣𝑖) +

𝜕

𝜕𝑥𝑗
(𝜏𝑖𝑗

𝑘 + 𝜏𝑖𝑗
𝑐 )  Eq.7.5 
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Where β is the drag coefficient and 𝜏𝑖𝑗
𝑘  and 𝜏𝑖𝑗

𝑐  are the kinetic and collisional 

contributions to the stress tensor. The subscripts denote if the bulk solid phase is 

considered, xs, or if it is the property of a single particle, xp. 

[
𝜕

𝜕𝑡
(𝛼𝑠𝜌𝑝

〈𝐶2〉

2
) + 𝛻 (𝛼𝑠𝜌𝑝𝑣𝑗

〈𝐶2〉

2
)] =  

−𝜏𝑖𝑗
𝜕𝑣𝑖

𝜕𝑥𝑗
−

𝜕(𝑞𝑗
𝑘+𝑞𝑗

𝑐)

𝜕𝑥𝑗
− 𝛾 + 𝛽〈𝐶𝑔𝑖𝐶𝑖 − 𝐶𝑖𝐶𝑖〉  Eq.7.6 

〈  〉 denotes the ensemble average. The flux of fluctuating kinetic energy, q, is divided 

into a kinetic and a collisional part. The terms on the right-hand side are in the 

following order: energy production due to deformation work, energy transfer, 𝛾 is the 

dissipation of energy due to collisions and the last term describes the transfer of 

fluctuating energy between phases (air and granular phases). This expression can be 

simplified if the system is assumed to be in local equilibrium. In such a case, the 

equations simplify to an algebraic expression, thus balancing local production and the 

dissipation of the fluctuations [van Wachem et.al 2001]. Equation 7.6 is then reduced 

to Equation 7.7. 

0 = (−𝜏𝑖𝑗
𝜕𝑣𝑖

𝜕𝑥𝑗
) − 𝛾    Eq.7.7 

This assumption has been made in all previous continuum simulations of high-shear 

granulation and in the attached Papers I and III. The validity of the assumption has 

been tested in bubbling fluidized beds, with good results, and can, consequently, be 

believed to be valid for the rapid flow regime.    

To be able to solve the full equations expressed above, the fluxes 𝜏𝑖𝑗
𝑘  and  𝜏𝑖𝑗

𝑐 , for 

momentum, and 𝑞𝑗
𝑘and 𝑞𝑗

𝑐 plus the rate of dissipation, 𝛾, for the fluctuating velocity 

are needed. Equation 7.8 is used for energy transfer. 

𝑞 = 𝜅∇𝑇 + µ𝜅∇𝛼𝑠     Eq.7.8 

Where 𝜅 can be seen as the conductivity of the velocity fluctuations or granular 

temperature. The second term with the coefficient µ𝜅 is significant only for flows of 

inelastic particles and is further discussed in Paper VII.  

For the momentum transfer, the combined stress tensor can be written in the form 

of Newton’s Law of Viscosity (Equation 7.9).    

  SI  2
3

2









 u

   Eq.7.9 
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Where 𝜆 represents the bulk viscosity and 𝜇 the shear viscosity.  

All the transport coefficients and the dissipation rate can now be written as functions 

of 𝑓(𝑟1, 𝑣1, 𝑡) only. To get a closed system of equations, 𝑓(𝑟1, 𝑣1, 𝑡) must be described 

as a function of the above stated fields (mass, momentum and fluctuating kinetic 

energy). 

 

7.1.2 The Chapman-Enskog method 

The Chapman-Enskog method [Chapman and Cowling 1970] is a way of solving the 

Boltzmann Equation for systems near equilibrium. The method is based on  expansion 

in a series of powers of 𝑓(𝑟1, 𝑣1, 𝑡) around some known solution. This is called a 

pertubative solution method. The solution used is the equilibrium solution, meaning 

that it describes a system that is uniform in all fields. The solution is then expanded in 

a parameter, 𝛿, with a small value and in the gradient of one of the field properties, x, 

(Equation 7.10).  

𝑓 = 𝑓0(1 + 𝛿∇x+ 𝛿2∇2x+...)   Eq.7.10 

The number of terms that are taken into account will affect the properties of the 

model. Retaining only 𝑓0 gives an equilibrium solution represented by a Maxwellian 

velocity distribution in all positions in the system. First-order expansion is considered 

in the standard solution. The resulting expressions for the transport coefficient are 

called the Navier-Stokes order. Many investigations use only Navier-Stokes 

expressions to derive the transport equations of hydrodynamic fields, and such 

expressions have proven to provide good agreement for dilute systems near 

equilibrium[Glasser and Goldhirsch 2001] [Montanero et.al. 1999] [Santos et.al. 

1998]. There are alternative ways of carrying out the expansion around an 

equilibrium solution. The choice of a small parameter and a hydrodynamic field 

derivative will determine the way in which the solution will deviate from equilibrium. 

The parameter and the field gradients still need to be small in order for the solution 

to converge as the number of terms is increased. In the original Chapman-Enskog 

expansion, the Knudsen number, 𝐾, defined as the ratio between the mean free path 

of the particles and the characteristic length-scale of the flow, is used. This implies 

that 𝐾  is small, meaning that there is a separation of scales between the flow of 

individual particles and the macroscopic flow of the particle phase. For systems of 

slightly inelastic particles, the so-called inelasticity parameter 𝜖, defined as 𝜖 = 1 − 𝑒, 

is often used [Sela and Goldhirsh 1998]. Both of these modifications will give 

improved models for use in high shear mixers; however, for modelling they will only 
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give one feature at a time. Sela and Goldhirsh 1998 [Sela and Goldhirsh 1998] made a 

double expansion in both 𝐾 and 𝜖, and this gave a different dependence of viscosity 

on 𝜖 and the number density of particles. The difference was found to be due to this 

form of expansion which leads to the inclusion of a quasi-microscopic rate of decay in 

the particle velocity fluctuations that had not been accounted for previously. 

Examples of Navier-Stokes order expressions for shear viscosity [Gidaspow et.al. 

1992], bulk viscosity [Lun et.al 1984], and dissipation rate [Lun et.al 1984] are shown 

in Equations 7.11-7.13. The expressions are those used in previous attempts at 

continuum modelling of high shear granulation as well as in the attached Papers I and 

III.  
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𝛾 =
12(1−𝑒2)𝑔0

𝑑𝑝√𝜋
𝜌𝑠𝛼𝑠

2𝑇3 2⁄     Eq.7.13  

where 𝑔0 is the radial distribution function and 𝑇 is the granular temperature. 

Keeping the second-order terms in Equation 7.10 will lead to the so called Burnett 

Equations [Sela and Goldhirsh 1998] [Brey et.al. 1998]. Sela and Goldhirsh’s doubled 

expansion in 𝐾 and 𝜖 was also carried out to the Burnett order. The resulting 

expressions have proven to resolve some important features of non-equilibrium 

particle systems in a uniform shear flow. The results show that the equations are able 

to resolve the anisotropy of fluctuating kinetic energy, something that the Navier-

Stokes equations are not capable of. They continue to describe the solution, pointing 

to the problem that the Burnett order terms are mathematically ill-posed for 

unstationary problems.   

The equilibrium solution, that is the starting term of the expansion, should also be 

examined in order to improve the model for sheared high solid volume fraction flows 

of inelastic particles. It is a problem as such to have an equilibrium solution of a 

system in which energy dissipates through inelastic collisions. The next section will 

discuss a method for improving the equilibrium solution for high solid volume 

fraction flows. 
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7.2 The revised Enskog theory 

The Revised Enskog Theory (RET) was developed by Beijeren and Ernst 1979 [Beijeren 

and Ernst 1979]. The authors developed equations for 𝑓(𝑟1, 𝑣1, 𝑡) in systems with 

hard spheres, similar to the Boltzmann Equation, but used a fractional dependence of 

𝑓 on field variables. This led to a correct description of the system at equilibrium in all 

states; from gas-like to solid-like.  

Hydrodynamic models based on RET, in which the first three statistical moments of 

𝑓(𝑟1, 𝑣1, 𝑡) are described, were presented by Dufty et.al. 1996 [Dufty et.al. 1996]. The 

models for the transport coefficients show good agreement for equilibrium systems. 

The models have also been tested for non-equilibrium [Santos et.al. 1998] systems 

subjected to uniform shear, and have shown good agreement with DEM simulations. 

It is possible to predict the qualitative dependence of viscosity on shear rate, with a 

shear thinning at low shear rates followed by a shear thickening as the rate increases. 

This RET approach was used by Garzo and Dufty 1999 [Garzo and Dufty 1999], and 

was expanded to be valid for inelastic spheres. 

The RET concept gives a correct description of equilibrium systems to the limit of 

close packing of spheres. The kinetic equations from this approach have also proven 

to give good agreement for non-equilibrium systems of uniform shear flows. This 

approach is able to describe the switch from shear thinning to shear thickening. The 

use of this model for real non-equilibrium and high solid volume fraction systems still 

remains questionable since it does not include any effects of long duration contacts 

or frictional dissipation in the expression for the collision integral.   

 

7.3 The friction model 

Shaeffer [Shaeffer 1987] and Johnson and Jackson [Johnson and Jackson 1987] have 

extended the KTGF approach to account for dense particle flows. 

In [Shaeffer 1987] continuum equations for use in, for example, emptying silos are 

derived. This type of equation is intended to describe the limit of no-flow or flow in 

the quasi-static regime. The resulting expression for the frictional stresses, 𝜇𝑠,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛, 

is calculated from Equation 7.14. 

𝜇𝑠,𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑁𝑓sin (𝜑)    Eq.7.14 
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where 𝜑 is a frictional parameter of the material, called the angle of internal friction, 

and 𝑁𝑓 is the normal stress. 𝑁𝑓 is assumed to rapidly diverge as the volume fraction 

approaches the maximum packing of the material, according to Equation 7.15. 

𝑁𝑓 =
𝐹𝑟

(𝛼𝑚𝑎𝑥−𝛼)𝑛
    Eq.7.15 

In Equation 7.15, 𝐹𝑟 is a constant determined by curve fitting to the experimental 

data from the Couette shear cell experiments done in [Savage and Sayed 1984]. The 

exponent, n, is set equal to 40 [Johnson and Jackson 1987].  

The model was validated against experimental data from [Savage and Sayed 1984]. It 

gives reasonable fits for volume fractions from 0.477 to 0.522.  

The assumption that the frictional stress is additive to the other stress contributions, 

derived from KTGF, was first used in [Johnson and Jackson 1987]. In that paper the 

authors stress the simplicity of the assumption. The final sentence of the paper says, 

"... a theory of the present type can only be regarded as an expedient substitute for a 

proper treatment of particle-particle contact interactions of a dissipative nature, with 

arbitrary duration.".   

 

7.4 Empirical adaptations to observations 

The fact that shear viscosity diverges faster than the transport rate of velocity 

fluctuations [Bocquet et.al. 2001] has led to the development of models that use the 

Navier-Stokes hydrodynamic expressions; however, modified in such a way that the 

discussed property of viscosity is present. The expression used for shear viscosity is 

shown in Equation 7.16.  

𝜇 = 𝜇1
√𝑇

(1−𝛼𝑠 𝛼𝑠,𝑚𝑎𝑥⁄ )
𝛽    Eq.7.16 

Where 𝛽 is the rate-determining exponent and is 2.58 for hard spheres [Barrat et.al. 

1989] for the shear viscosity and unity for all other coefficients. This earlier 

divergence-rate behaviour was also studied by Garcia-Rojo et.al 2006 [Garcia-Rojo 

et.al 2006], in which those authors used MD simulations to show this relation for 

elastic hard disks. Khain and Meerson 2006 [Khain and Meerson 2006] have used this 

relation for modelling the slightly inelastic shear flow of hard spheres. They found 

that the faster divergence of shear viscosity, in comparison to other transport 

coefficients, allows for the existence of liquid-like and solid-like regions when sheared 
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high solid volume fraction flows are studied. The expression they used is shown in 

Equation 7.17. 

𝜇 = 𝜇1
𝛼𝑠,𝑚𝑎𝑥√𝑇

(𝛼𝑠,𝑚𝑎𝑥
∗ −𝛼𝑠)𝑑2

    Eq.7.17 

Where 𝛼𝑠,𝑚𝑎𝑥
∗  is smaller than 𝛼𝑠,𝑚𝑎𝑥. The other transport coefficients all diverge at 

the rate of (𝛼𝑠,𝑚𝑎𝑥 − 𝛼𝑠)
−1

. These types of adaptions to experimental observations, 

or DEM simulation, presented here, result in qualitative agreement in the behaviour 
of flows with solid-like and fluid-like regions approaching close packing. The method 
is somewhat empirical, and there is a question about the generality of the results in 
predicting the point of transition in a flow from a fluid-like to a solid-like behaviour. 
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7.5 The Rheology model 

The model, here called the rheology model, was proposed by Jop et al. in [Jop et al., 

2006]. The model is based on a functional expression found through observations of 

hopper flows and particle flows on slides. The model is specifically devised for dense 

granular flows, and even includes the assumption of a constant solid volume fraction. 

Shear stresses are formulated as a function of isentropic pressure and a complex 

friction coefficient, µ, in Equation 7.18. 

PI)(       Eq.7.18 

The friction coefficient is defined in Equation 7.19, and it is a function fitted to an 

experimentally found behaviour of the coefficient.  
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     Eq.7.19 

The subscript indexes in s and a represent start and stop. This means that they are 

either the values taken or the friction coefficient at the angle at which flow starts 

down an inclined plane and the value at which flow stops if already in progress. The 

function interpolates between the values of s and a through a functional 

dependence on I which is a dimensionless number called the inertial number, 

Equation 7.20. 

  5.0



P

d
I      Eq.7.20 

where d is the particle size,   is the particle density,   is the shear rate and P  is the 

isentropic pressure. The inertial number relates the shear forces in the material to 

the normal forces due to isentropic pressure. This gives a measure of the likelihood of 

a particle to move out of its lattice-like cage of surrounding particles, or a relation 

between the time scale of the rearrangement of particles (tmicro) to the time scale of 

the translation of the bulk (tmacro). It can be used as a flow regime indicator [da Cruz 

et al. 2005] in which large values of I  mean relatively large shear, and a high degree 

of rearrangements among the particles giving a more rapid system while higher 

confining pressures leads to that bulk motion is dominant with solid like behaviour. In 

[Pouliquen et.al. 2006] Pouliquen et.al. show that 3.0I defines the switch point at 

which the rheology model is no longer valid. For the particles used here, a direct 

relation can be found to the solid volume fraction, thus giving a value of 0.5-0.55 

[Pouliquen et.al. 2006]. 



30 
 

0I  is a constant related to the particle properties, defined according to Equation 

7.21. 
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     Eq.7.21  

where d is the diameter of the particle,  and 0L  are constants that are 

experimentally found [Hatano, 2007] [Jop et al. 2005],   is the volume fraction of 

solids,   is an average value for the angle of the inclined surface. 

The model expression can also be rearranged to describe an effective viscosity 

according to Equation 7.22. 

 



P

IP )(, 

     Eq.7.22  

This shows an inverse relation to the shear rate and a direct relation to the pressure. 

This means that viscosity diverges at low shear rates, thus giving a solid like 

behaviour and a yield criterion according to Equation 7.23. 

  5.0
5.0 ijijs Pwhere  

    Eq.7.23 

The material used in the attached Papers II and IV were 1.3mm glass beads. The 

material data for these particles were taken from Pouliquen 1999 [Pouliquen, 1999]. 
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8. Connecting flow information to the evolution of particle 

properties (Papers I and VI) 
The evolution of particle properties is commonly modelled with population balance 
equations. The choice of what properties to follow is not only determined by the 
information of interest in the final product, but also an important choice because of 
the properties that affect the flow conditions in a vessel. Darelius et.al. [Darelius 
et.al. 2007] experimentally determined the evolution of a number of bulk properties 
of a granulate during granulation. In Paper I this information is used to investigate the 
parameterization of the KTGF framework. The development of mechanistic kernels 
also shows the importance of keeping track of the internal properties of granules in 
order to use time-resolved meso-scale flow information. In [Ramachandran et.al. 
2009] and [Liu et.al. 2000] aggregation and breakage properties are related to the 
internal strengths of granules, strengths which can be attributed to the liquid content 
and compaction of the aggregates. This implies that the use of flow information from 
a continuum simulation is strongly related to the choice of properties that are 
monitored and modelled, and the choice of mechanisms and kernels that affect those 
properties. In this thesis, a first trial to couple a CFD solution to a PBM solver was 
made. In this trial a relatively simple two-dimensional PBM model was used in which 
the properties of granular solid and liquid mass were modelled according to Equation 
8.1. 
 
 
𝑉𝑖𝜕𝑛𝑖(𝑚𝑠,𝑚𝑙,𝑡)

𝜕𝑡
=

𝑉𝑖𝐵0
0𝐵(𝑚𝑠, 𝑚𝑙) + 𝑉𝑖𝑅𝑤

0 𝑅𝑤(𝑚𝑠, 𝑚𝑙) + 𝑉𝑖𝐺0
𝜕𝑛𝑖(𝑚𝑠,𝑚𝑙,𝑡)𝐺(𝑚𝑠,𝑚𝑙,𝑡)
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𝑉𝑖

𝑘
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𝑗=1,𝑗≠𝑖 𝑛𝑗(𝑚𝑠, 𝑚𝑙 , 𝑡)    Eq.8.1 

 
where 𝒎𝒔, 𝒎𝒍are the mass in kg of solid and liquid, respectively, in a granule, V is the 

compartment volume in m3 and Q is the flow rate to and from compartments in 
𝒎𝟑

𝒔
. n 

is the density function, 
𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔

𝒌𝒈𝟐𝒎𝟑
. G, B, R and β are layering, nucleation, 

rewetting and aggregation, respectively, which are the mechanisms used.  
 
The aggregation kernel used was that by Tan et al [Tan et.al. 2004]. The derivation of 
the aggregation kernel is based on the principles of the kinetic theory of granular flow 
(KTGF) and the Equipartition of Kinetic Energy Kernel (EKE) developed by Hounslow 
[Hounslow 1998]. The aggregation kernel can be seen in Equation 8.2 below 
 

𝛽𝑖,𝑗 = 𝜓𝑔𝑖,𝑗√
3𝜃𝑠

𝜌
(𝑙𝑖 + 𝑙𝑗)

2
√

1

𝑙𝑖
3 +

1

𝑙𝑗
3   Eq.8.2 
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where ψ is the aggregation efficiency, θ_s is the mixture granular temperature which 
is similar to the description of granular temperature in KTGF, Equation 8.3. 
 

𝜃𝑠 =
1

3
𝑚𝑛〈𝐶 ∙ 𝐶〉 = 𝑚𝑛𝜃    Eq.8.3 

 
where mn is the average mass of a particle and C is the random fluctuating part of the 
decomposed actual particle velocity from the KTGF. The aggregation kernel consists 
of one size-dependent part, which is the EKE kernel, Equation 8.4. 

𝛽(𝑙𝑖 , 𝑙𝑗) = (𝑙𝑖 + 𝑙𝑗)
2

√
1

𝑙𝑖
3 +

1

𝑙𝑗
3    Eq.8.4 

and a time-dependent part, Equation 8.5. 
 

𝛽0(𝑡) = 𝜓𝑔0√
3𝜃𝑠

𝜌
    Eq.8.5 

 
where 𝑙 is particle size, g0 the radial distribution function of the particle volume 
fraction defined as in Equation 8.6. 
 

𝑔0 = [1 − (
𝛼𝑠

𝛼𝑠,𝑚𝑎𝑥
)

1
3⁄

]

−1

    Eq.8.6 

 
Of special interest is the time-dependent part of the aggregation kernel, Equation 8.6, 
which will be calculated from CFD simulations rather than found experimentally. 
Benefits from actually calculating this is not only that no experiments for the specific 
granulator are needed, but it is also a way to estimate the actual rate of aggregation 
locally in the system. 
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9. Results and discussion 
This section contains summaries of the results in attached papers. All of the papers 

address continuum modelling of granular flows in high shear mixers. Papers I and VI 

use the  KTGF + friction continuum model to study its parametrization and the change 

in granular properties as the granulation progresses. Paper II shows the impact of the 

resolution dependence of the KTGF + friction model while Papers III, IV, V and VII 

introduce improved approaches for modelling dense sheared flows in high shear 

mixers.   

 

9.1 Parameterization and connection to PBM (Papers I and VI) 

Paper I investigates the parameterization of the KTGF models, considering particle 

properties and the ability of the model to resolve property changes during a 

granulation process. The parameters in the model that were chosen for the study 

were: the angle of internal friction (𝜑), the restitution coefficient (e), the particle 

diameter (dp), the particle density (ρs), the packing limit and the granular phase 

velocity wall boundary condition (slip condition). These are the parameters that 

characterize the powder or granules used in the simulation. Changes in these 

parameters can be seen as a comparison of the use of different materials. These 

parameters are also expected to change during granulation [Darelius et.al. 2007]. The 

parameter settings for the base case and variations are given in Table 9.1. 

Table 9.1. The parameter settings for the base case (0) and the variations (+,-). 

Parameter - 0 + 

Particle Velocity B.C.  0.01 10 No slip 

dp 0.855mm 1.355mm 1.855mm 

𝝋  28o 38o 48o 

E 0.46 0.9 0.99 

ρs 2000kg/m3 2700kg/m3 3400kg/m3 

Frictional Packing limit  0.45 0.5 0.55 

Packing limit - 0.63 0.68 

 

The study shows that both the KTGF part and the frictional model are important for 

the solution. This can be seen by the influence of parameters only present in the 

KTGF model (e and dp) as well as an influence of the frictional parameter 𝜑. This 

indicates that the flow is a mixture of quasi-static and rapid flow. Only a change in the 

boundary conditions for granular phase velocity, from partial slip to no slip, 
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fundamentally changes the flow. This is shown in Figure 9.1 where it can be seen that 

the extra energy input from the impeller has dispersed the flow. 

 

  
Figure 9.1. The change in solid volume fraction in the flow when changing from a 

partial slip to a no slip boundary condition. 

The most important particle parameters were, therefore, concluded to be e and 𝜑. 

The model is sensitive to changes in e in the region of validity for the KTGF model, 

close to elastic collisions. 𝜑 is the determining parameter in the frictional model, and 

its importance proves the influence of the frictional model.  

A test was made to investigate if the parameterization of the model is able to predict 

the increase in impeller torque that is normally seen when going from the dry powder 

mixing stage to the wet massing stage [Leuenberger 1982]. The test result showed 

that the model can predict the change in impeller torque, and that the adhesion of 

the powder to the vessel walls and impeller is the most important factor causing this 

increase. 

After investigating the parameterization of the KTGF model and its possible use for 

feeding a PBM solver with flow field information, the question remained how to 

couple the two modelling approaches. In manuscript VI a coupled continuum CFD 

simulation and PBM solver were used to analyse meso-scale properties in the flow 

field. The connection was made with a compartment model in which properties and 

fluxes between compartments were extracted from the CFD solution. The 

compartment approach was based on the aggregation rate in the compartments, 

which is a function of granular temperature and volume fraction, and showed that 

separate regions could be found; for example, a high aggregation compartment was 

found at the impeller blade, shown in Figure 9.2 (left). Figure 9.2 (right) also shows 

the distribution of experienced aggregation rates over the mass of the granules in the 

vessel. For the three CFD cases this represents an evolution in time.   
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Figure 9.2. Impeller compartments separated based on aggregation rate (β0). 
Coordinate axes are distance in meters (left) and the particle mass distribution of β0 in 

the vessel for three flow cases representing temporal changes during a granulation. 

The high fluxes between the compartments prevented the spatial 

compartmentalization from having any effect on the PBM solution for this case. The 

temporal changes seen in Figure 9.2 (right) led to changes in the overall average 

aggregation rate, the values of which are presented in Table 9.2.  

Table 9.2. Averages aggregation rate values for the three flow cases. 

Case 1 4 6 

β0 x 106 0.65 3.12 3.06 

 

It is believed that for a more elaborate set of mechanisms, in which thresholds for 

breakage or memory effects from compaction are included, the spatial compartment 

analysis would also be of importance.  

 

9.2 Evaluation of the KTGF + friction framework (Paper III) 

One of the assumed reasons for the deficiencies found in [Darelius et.al. 2008] and 

Ng et.al. 2009] was the mesh resolution close to the walls. No study of the mesh 

dependence of the solution was done in [Darelius et.al. 2008]. Only a global mesh 

refinement was made in [Ng et.al. 2009], and those authors only examined changes 

in global flow. This same procedure was used in the attached Paper I, but with the 

conclusion that a much finer mesh was needed, in respect to particle size, than in 

both [Darelius et.al. 2008] and [Ng et.al. 2009] in order to obtain only a small change 

in solid viscosity. It is also important to investigate the effect of the lack of separation 

of scales on the solution by investigating what happens as the mesh size goes 

towards particle size. It was, therefore, decided to investigate the effects of spatial 

resolution on the KTGF + friction framework.  
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The system studied was a Couette shear cell, which consisted of two concentric 

cylinders with a gap in between in which an inner cylinder rotates. The study was 

done by gradually increasing the resolution, and investigating the velocity profile and 

comparing it to literature data, profiles of the frictional contribution to the solid 

viscosity, here called frictional viscosity, the ratio of frictional viscosity to the 

collisional and translational contributions, and the solid volume fraction. The results 

are shown in Figure 9.3. 

 

Figure 9.3.Top left: viscosity ratio profiles, top right: frictional viscosity profiles, 

bottom left: solid volume fraction profiles and bottom right: dimensionless tangential 

velocity profiles. The dimensionless distance from the inner wall is plotted on the x 

axis for the figures defined as distance divided by the particle diameter. The same 

legend is used for all four figures.  

Figure 9.3 shows clearly that the lack of separation of scales in granular flows affects 

both the distribution and the magnitude of the solid phase stresses. The change is 



37 
 

towards an increase in the importance of frictional stresses and towards a general 

increase in solid viscosity as the resolution is improved. The results show that the 

KTGF + friction framework is resolution-dependent down to the particle length-scale. 

When these results were related to the simulations of high shear granulation 

equipment [Darelius et.al. 2008, Ng et.al. 2009], it was concluded that an 

underestimated viscosity in the near wall region also needed to be analysed in the 

perspective of spatial resolution in relation to particle size.  

 

9.3 Modifications of the KTGF equations for dense granular flows 

(Papers II, IV, V and VII) 

Two approaches to modifications of the KTGF equations were made in this research 

to try to improve the predictions for dense, inelastic sheared flows. The near-wall and 

impeller regions in a high shear granulator are non-equilibrium regions (large 

gradients in both volume fraction and velocity) with densely packed inelastic 

particles. Such a system is not well modelled by the traditional KTGF equation, and 

the added frictional model does not give adequate predictions. There are existing 

derivations of KTGF equations in which the assumptions behind the original theory 

are relaxed in order to better describe denser systems or systems farther from 

equilibrium.  

In [Bouquet et.al. 2001] it was found in Couette cell experiments that shear viscosity 

diverges faster than other transport coefficients. This has proven important in 

modelling the transition between the solid-like and fluid-like behaviour of a flow. In 

[Khain and Meerson 2006] this was used to develop a model for dense granular flow 

that was able to predict the fluid-like to solid-like transition for a uniform shear flow 

of slightly inelastic particles. The model in that article was an adaptation of 

experimental findings or DEM models, and, for that reason, it would be preferable to 

achieve the same behaviour in a rigorous way. In Paper V, a study using this approach 

was conducted at high solid volume fraction and under shear. Comparisons were 

made between KTGF, KTGF + friction and viscosity divergence approaches. Figure 9.4 

shows experimental and model predicted values of stress strain relations.  
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Figure 9.4. The stress strain relation for the models used in Paper V. 

 

Figure 9.4 shows that the viscosity divergence model can qualitatively match the 

behaviour of the experimental data found in the literature, in contrast to the 

KTGF+Friction and the pure KTGF models. 

The results of Paper V were considered to demonstrate that the viscosity divergence 

model contains an important feature for the volume fraction dependence of the 

transport coefficients in dense granular flows. This was an experimentally found 

relation, and, in Paper VII, it was combined with the theoretical framework of the 

RET. The RET version used was the one derived in Garzo et.al. [Garzo et.al. 1999] for 

inelastic particles at all densities at equilibrium. The idea was to introduce viscosity 

divergence volume fraction dependence through the radial distribution function. The 

reason for introducing this was to improve the predictions for dense non-equilibrium 

systems by introducing an experimentally found property in which effects such as 

long duration contacts and frictional sliding are present. The results showed that 

there were improvements when the viscosity divergence distribution function was 

used. Figure 9.5 shows the velocity and granular temperature profiles of the models 

evaluated.  
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Figure 9.5. Velocity profiles (left) and granular temperature profiles (right). 

 

However, the new model failed to predict the phase transition and the change in the 

stress strain relation which accompanied that. This is shown in Figure 9.6.  

 
Figure 9.6. Stress strain relation for the new model with e = 0.7.  

 

The reason for the inability of the model to make the same predictions as in Paper V 

is that the inelasticity of the system led to a large drop in granular temperature over 

the annulus, as seen in Figure 9.5 (right). Since viscosity is related to granular 

temperature, it will remain low despite the divergence caused by the high volume 

fraction. It was concluded that this set of transport coefficients are best suited for 

dilute to intermediate granular flows.  
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Figure 9.7. Profiles of the standard deviation of instantaneous velocity, experimental 

data (left) and model predictions (right). 

 

In Papers II and IV an approach to handling dense granular flows different to the one 

in the KTGF model was evaluated and developed for use in HSG equipment. The 

models were based on Jop et.al. [Jop et.al. 2006]. In Paper II the model was used in a 

disc impeller granulator with the assumption of a constant volume fraction in the 

system. The left graph in Figure 9.7 shows the experimentally obtained values of the 

velocity standard deviation. The figure indicates that the system was diluted by the 

random motion of the particles. An interesting secondary observation was that the 

excitation of the system was not proportional to impeller velocity. Instead, it showed 

a maximum excitation at 800 rpm which then decreased at 1500 and 3000 rpm. This 

shows that the velocity boundary condition is of great importance, and, for this 

reason, a torque-fitted partial slip expression was used as described in Paper II. The 

velocity predictions by the model used in Paper II gave indications that the model can 

give improved predictions for dense granular flows, Figure 9.8 (bottom right). The 

model needs to be connected with a model for the dilute parts, like a KTGF model, in 

order to redistribute some of the tangential velocity to random particle motion and 

to resolve the volume fraction changes near the impeller.  
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Figure 9.8. Velocity profiles comparing experimental data (left) to the Rheology model 

(bottom right) and Rheology + KTGF model (top right) predictions. 

 

Figure 9.8 shows that the rheology approach has great potential to model dense 

parts of an HSG. The use of the switch criterion to a KTGF-type of model also worked 

well and showed that this approach has potential. However, the conclusion was that 

the standard KTGF model used was not adequate for the moderate volume fractions 

around the switch value. This led to the conclusion that a combination of model 

approaches tested here; a RET viscosity divergence model and a Rheology model, has 

the potential to give further improved model predictions. This notion has not yet 

been tested, and will be included in future research.  
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10. Conclusions 

Several approaches to modelling were tested and evaluated for use with HSG 

equipment. The KTGF+friction approach was not good enough because of its 

resolution dependence, and it was also found to give qualitatively wrong predictions 

for the stress strain relations in a Couette cell. Several models with improved 

predictions were suggested: a viscosity divergence approach, and a RET and  

Rheology model. These models have shown improved predictions on their own, but 

the most promising approach would be a combination. The KTGF combined Rheology 

model showed better prediction abilities. In combination with the RET, this model is 

believed to give even further improvements.   

The parameterization of this model framework seemed, at a first trial, to be able to 

describe a granulation process. The boundary condition is the most important factor 

for capturing the changes in impeller torque as granulation progresses. A 

compartment approach connected to a PBM solver of desired particle properties was 

also developed and showed promising potential to give meso-scale information. This 

is useful in the evaluation of new equipment designs and in up-scaling to full-scale 

production.  
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11. Future work 
Final steps are needed to conclude the work of continuum modelling for HSG 

equipment. The full combination of possible models still remains to be tested in 

different equipment and validated with experimental data. The continuum model 

needs to be incorporated into the compartment model and tested with different PBM 

approaches, in order to examine the effects of a flow field on the properties and 

mechanisms of granules such as compaction, hardness and mechanistic breakage.  
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