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Amyloid fibrils are excellent self-assembling nanotemplates for organic molecules such as dyes.

Here, we demonstrate that laser dye-doped lysozyme type fibrils exhibit significantly reduced

threshold for stimulated emission compared to that observed in usual matrices. Laser action was

studied in slab planar waveguides of the amyloids doped with Stilbene 420 laser dye prepared using

a film casting technique. The lowering of the threshold of stimulated emission is analyzed in the

context of intrinsic structure of the amyloid nanotemplates, electrostatic interaction of different

microstructures with dye molecules, as well as material properties of the cast layers. All these fac-

tors are considered to be of importance for introducing gain for random laser operation. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905782]

Proteins are a large and very diverse class of complex

organic chemical compounds that are essential for living

organisms.1 Their distinct and varied three-dimensional struc-

tures are composed of one or more long chains of amino acids

connected by peptide bonds, typically forming a-helices and

b-sheets, as well as looping and folded chains.2 Distinguishing

microstructures can be found in amyloid fibrils, the aggregated

state proteins that are considered to be involved in serious neu-

rodegenerative diseases such as Alzheimer’s,3 Parkinson’s,4 or

Huntington’s.5 Generally, amyloid fibrils are composed of

antiparallel b-sheets oriented perpendicular to the long-axis of

the fibril, which can be as long as several micrometres but

with a diameter of only some 8–10 nm.6 In the case of lyso-

zyme fibrils, mixed unstructured regions can appear, such as

a-helices7 or random coils,8 which may co-exist in equilibrium

with the b-sheets.

Amyloid fibrils are attracting much attention not only

because of their biological relevance but also because of their

unique and unusual material properties as self-assembling

nanotemplates exhibiting, e.g., the pull strength comparable to

steel, mechanical shear stiffness similar to that of silk, and

extreme persistence length and mechanical rigidity.9 Recently,

we reported on surprisingly strong multiphoton interaction of

femtosecond laser light pulses with amyloid fibrils.10 The fact

that the fibrillization process can be induced in laboratory con-

ditions in almost any type of protein makes amyloid-based

structures interesting nanomaterials for a broad spectrum of

technological applications spanning from biophotonics10 to

bottom-up designed optoelectronic devices.11

An important issue for detecting specific types and

structures present in amyloid fibrils by optical means, rele-

vant for diagnostics of neurodegenerative diseases, is finding

specific staining agents capable of being sensed at high

signal-to-noise ratio. In this article, we present results of

studies performed on lysozyme-type amyloids doped with

the Stilbene 420 laser dye, whose emission in the bound state

is found to exhibit features that appear to be related to the

intrinsic microstructure of the fibrils. We conclude that the

ordering of chromophores achieved using the amyloid fibril

nanotemplates leads to a biologically derived lasing medium

showing remarkably lowered amplified spontaneous emis-

sion (ASE) threshold.

Binding of Stilbene 420 molecules to the amyloid struc-

tures was proven by Linear Dichroism (LD) spectra measure-

ments. LD of amyloid-dye complexes flow-oriented in

solution can provide general information if the dye molecule

is capable of binding to amyloid fibrils. The geometry of the

bound chromophore relative to the tyrosine position in fibrils

protofilaments can then be determined according to Ref. 12.

In the present case, the LD spectra contain a strong positive

band around 360 nm, as shown in Fig. 1(a), which is an indi-

cation of the binding. This is likely to be the result of the

negatively charged �SO3
� groups of Stilbene 420 dye mole-

cules interacting electrostatically with positively charged

amino acid residues of the amyloids which leads to the

dye molecules becoming spatially organized (Fig. 1(b)).

Calculating the reduced linear dichroism LDr (Ref. 12) and

taking S¼ 0.08 as the orientation factor of fibrils13 allows to

estimate the average binding angle of Stilbene 420 molecules

with respect to the fibril axis as 20�. This value indicates that

the long axis of the dye essentially lies along the fibril struc-

ture. The geometry is thus similar to that proposed for other

amyloid staining agents including the most common ones,

Thioflavin T (Ref. 14) and Congo Red.15

Stimulated emission was investigated on solid samples

of the amyloid-dye adduct12 that were solution cast on silica

plates and left to dry. The samples were illuminated with

k¼ 355 nm nanosecond pulses using the third harmonic of a

Nd:YAG laser.12 This wavelength fits well to the absorption

maximum of Stilbene 420 [Fig. 1, blue solid line].

The emission was recorded at various spots of the layers,

which appeared to contain different morphology microdo-

mains formed upon drying, as evident from fluorescence mi-

croscopy images shown in Fig. 2. Typically, three types of
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surface morphology could be discerned in the layers. Briefly,

the central region of the cast film, denoted as “inhomogenous”

in Fig. 2, contained defects and had low optical transparency.

The defects could be due to the crystallization of non-

fibrillized proteins and/or the dye. The surrounding area,

denoted as “homogenous,” was optically transparent, with

no defects visible. The edges of the sample had multiple

cracks where enhanced emission could be seen. Fluorescence

images presented in Fig. 2 show examples of mentioned

sample regions.

The emission recorded in regions denoted as inhomoge-

neous showed no indications of ASE behaviour. The scatter-

ing point defects seen in the microscope images could be in

fact aggregates of phase-separated dye molecules, since a

similar pattern could be seen for the dye itself cast on glass

from solution.12 We cannot also rule out the presence of

trace amounts of non-fibrillized proteins present in the inho-

mogeneous region as a side effect in preparation protocol of

the fibrils. It needs to be remarked that, as indicated by our

results, Stilbene 420 does not interact with native lysozyme

protein and binds exclusively to amyloid fibrils.12

In contrast to the inhomogeneous regions, in which light

amplification was apparently made not plausible by excess

losses and lasing did not occur, measurements performed in

the homogeneous regions and at the edges of the layers exhib-

ited distinct spectral narrowing of the emission upon reaching

a certain threshold level, which is typical for processes based

on stimulated emission, like ASE or random lasing (RL).16–18

Comparing stimulated emission spectra and fluorescence of

the bound Stilbene 420 [Fig. 3] one can observe coinciding of

the stimulated emission peak with one of the vibrational

modes seen in the fluorescence, which indicates that the emis-

sion occurs in this mode with the highest efficiency. Knowing

that the vibrational spectrum of stilbene depends on the

molecule planarity as well as surrounding local environment19

one may suggest that interactions with specific microstruc-

tures in amyloids (b-sheet, a-helix, random coil, etc.) are cru-

cial for inducing stimulated emission in the amyloid-dye

adduct. It is plausible that some binding geometries are fav-

oured to induce stimulated emission, analogically to DNA

systems where intercalation between the nucleobases is sug-

gested to be most favourable to achieve light

amplification.17,20

The emission intensity dependence on the pumping

energy density is presented in log-log scale as inset in Fig. 3.

The stimulated emission occurs above the threshold level of

pumping, which can be observed as spectrum narrowing and

increase of intensity. In the case of probing the homogenous

FIG. 1. LD spectrum (black line) of

amyloid-Stilbene 420 adduct in pH¼ 2

buffer and normalized absorbance

(blue line). The inset presents molecu-

lar structure of the dye (a). Schematic

illustration of the dye binding to the

amyloid fibril (b).

FIG. 2. Comparison of fluorescence

microscope images showing three dif-

ferent spots on the amyloid-Stilbene

420 layer. The regions are denoted

as inhomogeneous, homogeneous, and

the edge.

FIG. 3. Comparison of emission spectra obtained for lysozyme fibrils doped

with Stilbene 420 laser dye. Black line is for liquid sample in water buffer

(pH¼ 2), blue line is for stimulated emission coming from solid thin film,

and red line is for emission from solid thin film below threshold of stimu-

lated emission. Inset shows the dependence of the emission intensity on flu-

ence of the pumping light in log-log scale.
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area of the film, the value of the threshold was estimated to

be around qth� 200 lJ/cm2, which is an order of magnitude

lower than typical values for chromophores incorporated in

polymer matrices21 and the same magnitude as the value

reported for silk fibroin.22 However, the most striking effect

was observed when probing the edge area that contained

cracks [Fig. 2(c)]. The stimulated emission threshold was

found to be significantly reduced in that case and its value

was as low as qth¼ 70 lJ/cm2, depending on the number and

size of cracks [see the inset in Fig. 4(a)]. This is the one of

the lowest values recorded for any biologically derived mate-

rial used for lasing experiments. The mechanism behind it

can be explained by positive feedback, reducing the stimu-

lated emission threshold that could be introduced to the sys-

tem through the numerous defects like those shown in

Fig. 4(b).18 The cracks of certain size can play the same role

as tightly packed grains of laser material in powder lasers.23

The emission spectra are in the present case narrower. The

full width at half maximum for the emission excited with

energy density q¼ 1 mJ/cm2 was reduced from 27 nm to

4 nm, which was the resolution limit of the used spectrome-

ter. In order to investigate how surface defects influence the

emitted light, a CCD camera and a microscope objective

were placed in front of the amyloid-dye layer in such a way

that the illuminated area was imaged on the CCD array with

5� magnification (the excitation beam was incident at 30�

with respect to the surface normal to prevent direct exposure

of the CCD camera sensor to the beam).

The obtained images confirmed the contribution of

cracks to the feedback. This type of defects is responsible for

multiple light scattering which gives rise to diffusive-like

propagation of light in the sample plane. Such propagation

creates positive, but incoherent, feedback for the stimulated

emission, thus, the observed emission spectra are rather

“smooth,” without evidence of narrow emission lines typical

for coherent random lasing. Random lasing emission type

(coherent or incoherent) is strongly dependent on experimen-

tal conditions. In our case, the illuminated area had a circular

shape with diameter of 3 mm which covered whole micro-

scopic images as shown in Fig. 4(b). The circular shape of

that area together with planar waveguide design of the sam-

ple creates a quasi, two-dimensional system for amplified

light propagation. Top and middle pictures show the same

part of the layer edge excited below and above the threshold

level, respectively. A brighter region highlighted with a

white ellipsoid indicates the region where the lasing occurs.

The emergence of this bright region coincided with the

appearance of the lasing peak in the emission spectra, thus it

can be interpreted as the region where the interplay between

gain and disorder satisfies conditions for random lasing.

Bright spots that appear at the edges of crack when the

threshold level is reached are an evidence of the scattering of

emitted light taking place at this type of defects. The micro-

scopic picture presented in the bottom of Fig. 4(b) shows a

region where the number of defects was higher (and had the

lowest observed threshold) thus the average distance

between them was smaller. This leads to shortening of the

mean free photon path and thus more effective scattering.

The region, where the laser light is generated, is then much

more expanded in this case and directly indicates that num-

ber of defects, their size, and relative position determines the

lasing performance. The average distance between scattering

for the situation depicted in Fig. 4(b) in the top and in the

bottom pictures is around 109 and 43 lm, respectively. A

possible explanation of the emergence of cracks at the edges

of the sample can be related to the mechanical properties of

amyloid fibrils. High rigidity leads to spontaneous breaking

of long fibril filaments (�10 lm) within time regime of

minutes in solution.9 In the case of solvent evaporation, the

breaking process can be accelerated by internal stress, in the

fashion similar to organic polymers that form crack defects

during layer formation.24

In conclusion, we have shown that self-assembling amy-

loid fibrils are excellent nanotemplates for organizing

chromophores, as shown on the example of Stilbene 420.

Molecular interactions with the bio-derived matrix can

improve the emission efficiency compared to that of organic

polymer systems (poly(vinyl) alcohol, poly(methyl metha-

crylate), etc.) doped with dyes, because the chromophores

are equally distributed over the binding sites and no dye

aggregation appears. This allows for higher local concentra-

tions of the chromophores in the nanotemplate and for short-

ening the distances between the bound molecules.

The data shown here indicate that the threshold for

stimulated emission in chromophore-doped amyloids is

exceptionally low and can be further lowered, especially

when random feedback is introduced. This strategy may be

particularly promising for a scenario of using non-toxic

FIG. 4. Stimulated emission spectra of

amyloids-Stilbene 420 layer containing

cracks (a). Inset shows the dependence

of emission intensity on the pumping

energy density. Microscopic images of

the cast layer showing fluorescence of

Stilbene 420 bound to amyloid fibrils

below and above the threshold of

stimulated emission (b).
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histological chromophores for staining disease related fibrils.

However, it will be crucial to determine how the stimulated

emission is influenced by specific amyloid microstructures

and the particulars of binding of the dye molecules to them.

On the other hand, materials based on dye-amyloid systems

might be promising for more efficient solid state laser devi-

ces if their lasing threshold can be further significantly

reduced using more controllable mechanisms of feedback,

like the distributed feedback (DFB) or distributed Bragg

reflection (DBR). Moreover, intentional introduction of spe-

cific structures in the amyloid layers could be used in order

to fabricate well-defined and high quality and performance

micro-laser systems. Thus, the discovery that chromophores

bound to amyloid fibrils show efficient lasing may have both

medical and technological significance.
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Science Centre (Grant Nos. DEC-2013/09/D/ST4/03780 and

DEC-2013/10/A/ST4/00114), the Foundation for Polish

Science (MISTRZ program) and Wroclaw University of

Technology. P.H. thanks Catherine Kitts for introduction

into the amyloid-dye field.

1T. E. Creighton, Proteins: Structures and Molecular Properties (W. H.

Freeman and Company, 1993).
2P. E. Wright and H. J. Dyson, J. Mol. Biol. 293(2), 321 (1999).
3J. X. Lu, W. Qiang, W. M. Yau, C. D. Schwieters, S. C. Meredith, and R.

Tycko, Cell 154, 1257 (2013).
4G. Comellas, L. R. Lemkau, A. J. Nieuwkoop, K. D. Kloepper, D. T.

Ladror, R. Ebisu, W. S. Woods, A. S. Lipton, J. M. George, and C. M.

Rienstra, J. Mol. Biol. 411(4), 881 (2011).
5R. Truant, R. S. Atwal, C. Desmond, L. Munsie, and T. Tran, FEBS J.

275(17), 4252 (2008).

6J. L. Jimenez, E. J. Nettleton, M. Bouchard, C. V. Robison, and C. M.

Dobson, Proc. Natl. Acad. Sci. U.S.A. 99(14), 9196 (2002).
7I. K. Lednev, Biological Applications of Ultraviolet Raman Spectroscopy

(Nova Science Publishers, Inc., 2007), Chap. I, p. 16.
8Y. Tokunaga, Y. Sakakibara, Y. Kamada, K.-i. Watanabe, and Y.

Sugimoto, Int. J. Biol. Sci. 9(2), 219 (2013).
9J. F. Smith, T. P. J. Knowles, C. M. Dobson, C. E. MacPhee, and M. E.

Welland, Proc. Natl. Acad. Sci. U.S.A. 103, 15806 (2006).
10P. Hanczyc, M. Samoc, and B. Norden, Nat. Photonics 7(12), 969 (2013).
11M. Hamedi, A. Herland, R. H. Karlsson, and O. Ingenas, Nano Lett. 8(6),

1736 (2008).
12See supplementary material at http://dx.doi.org/10.1063/1.4905782 for

sample preparation, calculations of linear dichroism, experimental details,

supporting spectroscopic data and microscopic image of Stilbene 420 dye

in solid state.
13C. Kitts, T. Beke-Somfai, and B. Norden, Biochemistry 50(17), 3451

(2011).
14A. K. Buell, E. K. Esbj€orner, P. J. Riss, D. A. White, F. I. Aigbirhio, G.

Toth, M. E. Welland, Ch. M. Dobsona, and T. P. J. Knowles, Phys. Chem.

Chem. Phys. 13, 20044 (2011).
15A. K. Sch€utz, A. Soragni, S. Hornemann, A. Aguzzi, M. Ernst, A.

B€ockmann, and B. H. Meier, Angew. Chem. Int. Ed. 50(26), 5956 (2011).
16A. Costela, O. Garcia, L. Cerdan, I. Garcia-Moreno, and R. Sastre, Opt.

Express 16(10), 7023 (2008).
17P. D. Garcia, M. Ibisate, R. Sapienza, D. S. Wiersma, and C. Lopez,

Phys. Rev. A 80(1), 013833 (2009).
18H. Cao, Waves in Random Media 13(3), R1 (2003); A. A. Costela, L.

Cerdan, and I. Garcia-Moreno, Prog. Quantum Electron. 37(6), 348

(2013).
19K. J. Smit and K. P. Ghiggino, Dyes Pigm. 8, 83 (1987).
20W. Lee and X. Fan, Anal. Chem. 84(21), 9558 (2012).
21K. Yamashita, M. Arimatsu, M. Takayama, K. Oe, and H. Yanagi, Appl.

Phys. Lett. 92, 243306 (2008).
22S. Toffanin, S. Kim, S. Cavallini, M. Natali, V. Benfenati, J. J. Amsden,

D. L. Kaplan, R. Zamboni, M. Muccini, and F. G. Omenetto, Appl. Phys.

Lett. 101, 091110 (2012).
23M. Bahoura and M. A. Noginov, J. Opt. Soc. Am. B 20, 2389 (2003).
24G. C. Costa, A. Z. Sim~oes, G. Gasparotto, M. A. Zaghette, B. Stojanovic,

M. Cilense, and J. A. Varela, Mater. Res. 6(3), 347 (2003).

023702-4 Sznitko et al. Appl. Phys. Lett. 106, 023702 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

128.111.8.138 On: Wed, 25 Feb 2015 22:39:52

http://dx.doi.org/10.1006/jmbi.1999.3110
http://dx.doi.org/10.1016/j.cell.2013.08.035
http://dx.doi.org/10.1016/j.jmb.2011.06.026
http://dx.doi.org/10.1111/j.1742-4658.2008.06561.x
http://dx.doi.org/10.1073/pnas.142459399
http://dx.doi.org/10.7150/ijbs.5380
http://dx.doi.org/10.1073/pnas.0604035103
http://dx.doi.org/10.1038/nphoton.2013.282
http://dx.doi.org/10.1021/nl0808233
http://dx.doi.org/10.1063/1.4905782
http://dx.doi.org/10.1021/bi102016p
http://dx.doi.org/10.1039/c1cp22283j
http://dx.doi.org/10.1039/c1cp22283j
http://dx.doi.org/10.1002/anie.201008276
http://dx.doi.org/10.1364/OE.16.007023
http://dx.doi.org/10.1364/OE.16.007023
http://dx.doi.org/10.1103/PhysRevA.80.013833
http://dx.doi.org/10.1088/0959-7174/13/3/201
http://dx.doi.org/10.1016/j.pquantelec.2013.10.001
http://dx.doi.org/10.1016/0143-7208(87)85008-8
http://dx.doi.org/10.1021/ac302416g
http://dx.doi.org/10.1063/1.2945632
http://dx.doi.org/10.1063/1.2945632
http://dx.doi.org/10.1063/1.4748120
http://dx.doi.org/10.1063/1.4748120
http://dx.doi.org/10.1364/JOSAB.20.002389
http://dx.doi.org/10.1590/S1516-14392003000300008

