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Abstract

Background: Computational homogenization is a well-established approach in
material modeling with the purpose to account for strong micro-heterogeneity in an
approximate fashion without excessive computational cost. However, the case of
macroscopically incompressible response is still unresolved.

Methods: The computational framework for Variationally Consistent Homogenization
(VCH) of (near) incompressible solids is discussed. A canonical formulation of the
subscale problem, pertinent to a Representative Volume Element (RVE), is established,
whereby complete macroscale incompressibility is obtained as the limit situation when
all constituents are incompressible.

Results: Numerical results for single RVEs demonstrate the seamless character of the
computational algorithm at the fully incompressible limit.

Conclusions: The suggested framework can seamlessly handle the transition from
(macroscopically) compressible to incompressible response. The framework allows for
the classical boundary conditions on the RVE as well as the generalized situation of
weakly periodic boundary conditions.

Keywords: Multiscale; Computational homogenization; Incompressibility; Mixed
variational formulations

Background
Computational homogenization is a well-established approach in material modeling
with the purpose to account for strong micro-heterogeneity in an approximate fashion
without excessive computational cost. Such an approach can be applied to the situa-
tion when the intrinsic material properties are linear, leading to direct “upscaling”. It
can also be applied to the more complex situation when the subscale properties are
nonlinear and/or the subscale problem is inherently transient, whereby it is necessary
to resort to nested macro-subscale computation (FE2). Since the literature on classi-
cal as well as computational homogenization is abundant, it is neither necessary nor
possible to give a comprehensive account. Selected references are [1-3] addressing dif-
ferent aspects on homogenization and multiscale modeling. An important issue is the
choice of boundary conditions (and data) for the subscale RVE-problem. Selected ref-

© 2015 Öhman et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: mikael.ohman@chalmers.se
http://creativecommons.org/licenses/by/4.0


Öhman et al. AdvancedModeling and Simulation in Engineering Sciences  (2015) 2:1 Page 2 of 29

erences are [4-8]. In particular, [8] presents a quite general framework based on “weak
periodicity”. How to accommodate the coalescence of microcracks presents a special
challenge, e.g. [9]. How to incorporate interfaces and thin membranes are discussed in
[10-12].
Despite the extensive developments, there are still fundamental issues that need to

be further addressed. Among these issues we note, (i) variational consistency and the
macrohomogeneity condition in the context of selective homogenization (in particular,
for multi-field problems) (cf. [13,14]), (ii) how to establish bounds on the effective prop-
erties within a given confidence interval, and (iii) high contrast material properties of the
constituents (e.g. rigid inclusions or pores) for which the classical Dirichlet and Neumann
conditions give poor results.
The particular aspect considered in this paper, which represents an unresolved

issue even in the simplest case of elastic response, is that of Variationally Con-
sistent Homogenization (VCH) in the limit of macroscopic incompressibility. This
situation is encountered when the micro-constituents of a composite are intrinsi-
cally incompressible (or nearly incompressible), which infers macroscale incompress-
ibility as well. An example is when a composite of metallic particles (or fibers)
embedded in an elastomer matrix is subjected to stresses that are sufficiently
large to cause significant plastic deformations in the particles. Another class of
problems is characterized by an initially compressible macroscale response, which
may become incompressible as the result of the deformation process. An impor-
tant example is the evolving porous microstructure of a PM-product during the
process of sintering, whereby the homogenized response is compressible until the
porosity vanishes inferring incompressible macroscale response, cf. [15]. This pro-
cess is thus characterized by a transition from the compressible to incompressible
regimes.
Applying traditional deformation controlled boundary conditions to macroscopi-

cally incompressible RVEs is technically possible, see e.g. Moran et al. [16] and
Öhman et al. [14]. However, in such cases, special care must then be taken in
applying compatible deformations (i.e. no scaling). This leads to a singular, but solv-
able, RVE-problem. This approach, however, raises three significant issues: (i) FE2 is
only possible with approximate penalty methods, (ii), the situations of macroscopi-
cally compressible and incompressible response require different solution strategies,
(iii) the average pressure is not coupled between the scales. One attempt to adress
these issues based on a mixed variational framework, was presented by Öhman et al.
[17]. In this paper, an alternative formulation is presented, where the mixed vari-
ational format on the macroscale is derived directly via homogenization. As com-
pared to [17], extension is also made to weakly periodic boundary condition for the
RVE.
The paper is outlined as follows: The appropriate variational setting of the fine-scale

elasticity problem in a mixed format is given. Next, the corresponding VCH frame-
work and macroscale problem are outlined. The canonical form of the RVE-problem,
based on weakly periodic boundary conditions is established, followed by the Dirichlet
and Neumann type boundary conditions resulting in upper and lower bounds on the
RVE response. Numerical examples of RVE-problems are then shown, followed by
conclusions.
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Methods
Subscale modeling of isotropic elasticity allowing for the incompressible limit

Amixed displacement-pressure weak format

We consider a generic micro-heterogeneous, i.e. polycrystalline, material in a given
body whose macroscopic configuration occupies the region � in space with (presumed
smooth) boundary �. We are then lead to defining a Representative Volume Element
(RVE), that represents the topology of themicro-heterogeneousmicrostructure, as shown
in Figure 1. The total domain occupied by the cubic RVE is denoted �� with external
boundary ��.
We consider a model material as follows: The stress is decomposed in terms of deviator

and pressure as σ = σ d − pI where p def= − 1
3 tr(σ), and the strain is decomposed in terms

of deviator and dilation as ε = εd + 1
3eI where e

def= tr(ε) = u · ∇. With the kinematic
definition εd[u]

def= [u ⊗ ∇]sym − 1
3 [u · ∇] I, we introduce the constitutive relations

σ d = σ̂ d(εd[u]), u · ∇ = e = ê(p) (1)

Hence, σ̂ d(•) and ê(•) denote suitable constitutive functions. Obviously, in the sim-
plest case of linear isotropic elasticity, we have σ̂ d(εd) = 2Gεd and ê(p) = − 1

K p, where
G(x),K(x) for x ∈ � are the standard elastic moduli that fluctuate strongly. Moreover,
intrinsic incompressibility is defined as ê(p) = 0 for any value of p.We are now in the posi-
tion to formulate the strong format of the fine-scale problem under standard quasistatic
conditions and small strain kinematics:

− [σ̂ d(εd[u]) − pI
] · ∇ = f in � (2a)

−u · ∇ + ê(p) = 0 in � (2b)

u = upre on �D (2c)

t def= [σ̂ d(εd[u]) − pI
] · n = tpre on �N (2d)

The corresponding weak format is: Find u ∈ U, p ∈ P s.t.

a(u; δu) + b(p, δu) = l(δu) ∀δu ∈ U
0 (3a)

b(δp,u) + c∗(p; δp) = 0 ∀δp ∈ P (3b)

Figure 1 Generic micro-heterogeneous material consisting of inclusions in matrix (example).
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where

a(v;w)
def=
∫

�

εd[w] : σ̂ d(εd[v])dV (4)

b(q, v) def= −
∫

�

q v · ∇dV (5)

c∗(q; r) def=
∫

�

r ê(q)dV (6)

l(v) def=
∫

�

v · f dV +
∫

�N
v · tpredS (7)

The solution spaceU and the test spaceU0 are defined in standard fashion. In particular,
all v ∈ U are characterized by v = upre on �D, whereas all v ∈ U

0 satisfy v = 0 on �D.
The pressure space P does not satisfy any boundary conditions.
It is illuminating (although not necessary from an operational point of view) to invoke

the potential �(u, p)

�(u, p) def= �(u, p) − l(u) with �(u, p) def=
∫

�

[
ψu(εd[u]) − pu · ∇ + ψ∗

p (p)
]
dV

(8)

where ψu(εd) and ψ∗
p (p) are constitutive energy densitiesa such that

σ̂ d(εd) = ∂ψu(εd)

∂εd
, ê(p) = ∂ψ∗

p (p)
∂p

(9)

The stationarity conditions of �(u, p) are

�′
u(u, p; δu) = a(u; δu) + b(p, δu) − l(δu) = 0 ∀δu ∈ U

0 (10a)

�′
p(u, p; δp) = b(δp,u) + c∗(p; δp) = 0 ∀δp ∈ P (10b)

which are identical to the weak form in (3).

Variationally Consistent Homogenization

VMS-ansatz and scale separation

The appropriate variational setting of the homogenized problem is obtained upon
replacing the integrands in the weak forms in (4)–(7) by running averages of the type

y �→ 〈y〉�
def= 1

|��|
∫

��

y dV (11)

representing a smoothing approximation on a RVE. In practice, the RVE’s are finite-sized
and occupies the subscale region �� with boundary ��. The typical dimension of an RVE
is L� = |��|1/3. The RVE is centered at the macroscale position x̄ def= 1

|��|
∫
��

x dS for any
given x̄ ∈ �. Boundary integrals can be homogenized in similar fashion, by considering
Representative Surface Elements �#

y → 〈y〉# def= 1
|�#|
∫

�#
y dS (12)
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The weak forms in (4)–(7) are thus approximated as

a(v;w) ≈
∫

�

a�(v;w) dV (13)

b(q, v) ≈
∫

�

b�(q, v) dV (14)

c∗(q; r) ≈
∫

�

c∗�(q; r) dV (15)

l(v) ≈
∫

�

l�(v) dV +
∫

�N
l#(v) dS (16)

where the RVE-functionals in (13)–(16) are defined as

a�(v;w)
def= 〈εd[w] : σ̂ d(εd[v])〉� (17)

b�(q, v)
def= −〈q v · ∇〉� (18)

c∗�(q; r)
def= 〈r ê(q)〉� (19)

l�(v)
def= 〈v · f 〉�, l#(v)

def= 〈v · tpre〉# (20)

Likewise, we homogenize the volume-specific energy potential �(u, p):

�(v, q) ≈
∫

�

��(v, q) dV (21)

where the RVE-functional ��(v, q) is given as

��(v, q)
def= 〈ψu(εd[v])〉� − 〈p v · ∇〉� + 〈ψ∗

p (q)〉
�

(22)

In the spirit of the Variational MultiScale method (VMS) [18], we introduce the ansatz
that the fields u ∈ U and p ∈ P can be decomposed into macroscale (smooth) and sub-
scale (fluctuating) parts inside each RVE via the unique hierarchical split U = U

M ⊕ U
s

and P = P
M⊕P

s. As a result, we may assume that it is possible to solve for the fluctuation
fields us ∈ U

s and ps ∈ P
s as “local approximations” on each RVE for given macroscale

solutions uM ∈ U
M and pM ∈ P

M, i.e. we construct the complete solution on each RVE
asb.

u ≈ ũ
{
uM, pM

} def= uM + ũs
{
uM, pM

}
in �� (23a)

p ≈ p̃
{
uM, pM

} def= pM + p̃s
{
uM, pM

}
in �� (23b)

On the boundary of the macroscale domain, �, we assume smooth variation of u
defined by the explicit relations u = uM, p = pM on �#.
In addition, the test function δu ∈ U

0 in (3a) is replaced by δuM ∈ U
M,0, whereas δp ∈ P

in (3b) is replaced by δpM ∈ P
M. Altogether, these assumptions infer that uM ∈ U

M and
pM ∈ P

M can be solved from the homogenized problem

a
(
ũ
{
uM, pM

}
; δuM
)+ b
(
p̃
{
uM, pM

}
, δuM
) = l
(
δuM
) ∀δuM ∈ U

M,0 (24a)

b
(
δpM, ũ
{
uM, pM

})+ c∗
(
p̃
{
uM, pM

}
; δpM
) = 0 ∀δpM ∈ P

M (24b)

Explicit format ofmacroscale (homogenized) problem

In practice, the scales are linked by expressing uM(x̄, x)c and pM(x̄, x) using Taylor series
expansions of suitable order for x̄ ∈ � and x ∈ ��(x̄) in terms of the macroscale solution
ū(x̄) and p̄(x̄) respectively. We thus introduce the macroscale fields (ū, p̄) ∈ Ū × P̄ such
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that the macroscale solutions uM, pM inside each RVE are expanded as follows:

uM(x̄; x) = ū(x̄) + h̄(x̄)·[x − x̄] , h̄ def= ū ⊗ ∇, x ∈ �� (25a)

pM(x̄; x) = p̄(x̄) x ∈ �� (25b)

Hence, uM is assumed to have linear variation in �� pertinent to standard “first order
homogenization”, whereas pM is constant in ��. Now, we require that

1
|��|
∫

��

u dS = ū, 〈u ⊗ ∇〉� = h̄ (26a)

〈p〉� = p̄ (26b)

which leads to the constraints
1

|��|
∫

��

us dS = 0, 〈us ⊗ ∇〉� = 0 (27a)

〈ps〉� = 0 (27b)

As a result, the hierarchical split (U = U
M ⊕ U

s and P = P
M ⊕ P

s) is guaranteed.
We can thus establish at the outset, before any further analysis, that the displacement

and pressure fields within each RVE are implicit functions of the values ū, h̄, p̄, such that
u = ũ{ū, h̄, p̄} and p = p̃{ū, h̄, p̄}.
With the representations in (25) and the constraints in (26) and (27), we are in the

position to compute the homogenized quantities that enter the system (24):

a�

(
u; δuM
) = εd[δū] : σ̄ d (28)

b�

(
p, δuM
) = −p̄ δū · ∇ (29)

b�

(
δpM,u
) = −δp̄ ū · ∇ (30)

c∗�(p; δpM) = δp̄ ē (31)

l�
(
δuM
) = δū · f̄+ [δū ⊗ ∇] : ¯̄f (32)

l#
(
δuM
) = δū · t̄pre+ [δū ⊗ ∇] : ¯̄tpre (33)

The applied macroscale loads f̄ , t̄pre and “moments” ¯̄f , ¯̄tpre are defined as

f̄ = 〈 f 〉�,
¯̄f = 〈 f⊗[x − x̄]〉� (34)

t̄pre = 〈tpre〉#, ¯̄tpre = 〈tpre⊗[x − x̄]〉# (35)

Remark. Henceforth, we restrict to the situation when |��| → 0 and |�#| → 0; hence ¯̄f
and ¯̄tpre will vanish. We will also focus on the homogenization of σ̄ d and ē, so f̄ and t̄pre
are considered as given macroscopic quantities.

The variationally consistent macroscale “flux” variables σ̄ d and ē are obtained from
homogenization of the constitutive functions as follows:

σ̄ d
def= 〈σ̂ d(εd[u])〉�, ē def= 〈ê(p)〉� (36)

By combining (23) with (25) we note that σ̄ d and ē are indeed implicit functions of the
values of the macroscale variables ū, h̄ and p̄, pertinent to the considered RVE.
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Finally, upon inserting (28)–(33) into the system (24), we obtain the macroscale
problem: Find (ū, p̄) ∈ Ū × P̄ that solve

ā(ū, p̄; δū) + b̄(p̄, δū) = l̄(δū) ∀δū ∈ Ū
0 (37a)

b̄(δp̄, ū) + c̄∗(ū, p̄; δp̄) = 0 ∀δp̄ ∈ P̄ (37b)

where

ā(ū, p̄; w̄)
def=
∫

�

εd[w̄] : σ̄ d{ū, p̄} dV (38)

b̄(q̄, ū)
def= −
∫

�

q̄ ū · ∇ dV (39)

c̄∗(ū, p̄; r̄) def=
∫

�

r̄ ē{ū, p̄} dV (40)

l̄(ū)
def=
∫

�

ū · f̄ dV +
∫

�N
ū · t̄pre dS (41)

If we consider the macroscale fields, σ̄ d and ē, we conclude that they are implicit func-
tions of the fields ū and p̄. The macroscale spaces Ū and P̄ are chosen as the standard ones
for the fine-scale problem.

Canonical formulation of RVE-problem

Preliminaries – Concept of weak periodicity of fluctuation displacement

To avoid unnecessary technical complexity, we henceforth consider the situation without
volume load, i.e. f = 0. As a preliminary for establishing the proper variational format of
the RVE-problem, we consider themost general weak form of the quasi-static momentum
balance by introducing the boundary integral with boundary tractions:

a�(u; δu) + b�(δu, p) − 1
|��|
∫

��

t · δu dS = 0 (42a)

b�(u, δp) + c∗�(p; δp) = 0 (42b)

or, more explicitly,

1
|��|
[∫

��

εd[δu] : σ̂ d(εd[u]) dV −
∫

��

p δu · ∇ dV −
∫

��

t · δu dS
]

= 0 (43a)

1
|��|
[
−
∫

��

δpu · ∇ dV +
∫

��

δp ê(p) dV
]

= 0 (43b)

which is supposed to hold true for all possible δu, δp in suitable function spaces (as dis-
cussed below). However, this problem is not solvable without further specification of
the solution fields u, p, t. In this paper we adopt a recently proposed variational frame-
work allowing for weak satisfaction of micro-periodicity, cf. Larsson et al. [8], and this
framework will be briefly summarized in what follows. We then assume that the subscale
fluctuation field us is periodic across the RVE boundaries w.r.t. the chosen local coor-
dinate axes. This model assumption, which may be termed “micro-periodicity”, is a key
ingredient (and frequently adopted) in the literature on mathematical homogenization
and can be viewed as an approximation between the stiffer Dirichlet and the weaker Neu-
mann boundary conditions. Indeed, both these cases can be obtained as special cases of
the most general variational format of periodicity (as will be discussed further below).
In order to formulate the conditions on micro-periodicity, we consider the RVE in

Figure 2, where the boundary �� has been split into two parts: �� = �−
� ∪ �+

� . Here, �+
�
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Figure 2 RVE in 2D with “image” and “mirror” boundaries.

is the image boundary (later chosen as the computational domain for boundary integra-
tion), whereas �−

� is the mirror boundary. We shall now introduce the proper mapping
ϕper : �+

� → �−
� such that any point x+ ∈ �+

� is mirrored in a self-similar fashion to the
corresponding point x− ∈ �−

� ; hence, x− = ϕper(x+).
In particular, we express micro-periodicity of the displacement fluctuation field as

us(x) = us(ϕper(x)), ∀x ∈ �+
� (44)

or, equivalently, in terms of the “jump” between the fluctuation fields on the image and
mirror parts of the boundary as follows:

[[us]]= 0 on �+
� , [[us]] (x) def= us(x) − us(ϕper(x)) (45)

Subsequently, we shall not enforce the condition (45) strongly as the point of departure;
rather it is done weakly. To this end, we assume that the boundary tractions t def= σ · n
satisfy the following anti-symmetry condition for any regular mirror point

t(x) = −t(ϕper(x)), ∀x ∈ �+
� (46)

as depicted in Figure 2. We now evaluate, upon using (46), the boundary term in (42a)
and (43a), as follows:∫

��

t · δu dS =
∫

�+
�

t·[[δu]] dS (47)

A weak statement of the micro-periodicity constraint, given in strong form in (46), is

d�(δt,us)
def= 1

|��|
∫

�+
�

δt·[[us]] dS = 0, ∀δt ∈ T� (48)

where the space of test functions that “live” only on the image boundary �+
� is given as

T� = [L2(�+
�

)]3.
RVE-problem –Original “variationally consistent” weak format

In order to establish the most straightforward formulation of the RVE-problem, based on
micro-periodicity, we first use the constraints in (27) and introduce the following spaces
for the fluctuation fields:
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U
s
� =
{
v ∈ [H1(��)

]3 | 1
|��|
∫

��

v dS = 0, 〈v ⊗ ∇〉� = 0
}

(49)

P
s
� = {q ∈ L2(��) | 〈q〉� = 0

}
(50)

It is then obvious that, for given macroscale values ū, h̄, and p̄, we can introduce the
unique decompositions

u = ū + h̄·[x − x̄]+us, us ∈ U
s
� (51a)

p = p̄ + ps, ps ∈ P
s
� (51b)

Next, we aim for a unique decomposition of the tractions (which are anti-periodic by
assumption) in a fashion that is similar to (51). To this end, we first associate each traction
field t along �� with the average stress τ̄ [t]∈ R

3×3, defined as

τ̄ [t]= 1
|��|
∫

�+
�

t ⊗ [[x − x̄]] dS (52)

This definition for the average stress is chosen so that for any stress field τ in equi-
librium and such that t = τ · n on �+

� we obtain τ̄ = 〈τ 〉�. We also conclude that

d�(τ̄ · n,us) = 0 ∀us ∈ U
s
�, τ̄ ∈ R

3×3. (53)

As a direct consequence of (52), we may introduce the unique split

t = τ̄ · n + ts, τ̄ ∈ R
3×3, ts ∈ T

s
� (54)

where T
s
� is the space of the traction fluctuations that are self-equilibrating and thus

defined as

T
s
� =
{
s ∈ [L2(�+

�

)]3 | τ̄ [s]= 1
|��|
∫

�+
�

s⊗ [[x − x̄]] dS = 0
}

(55)

The proof of uniqueness of the split in (54) follows from the identity

t = τ̄ [t] ·n+ [t − τ̄ [t] ·n] (56)

and the fact that

τ̄ [t − τ̄ [ t] ·n]= τ̄ [t]−τ̄ [τ̄ [ t] ·n]= τ̄ [t]−τ̄ [t]= 0 (57)

Hence, ts def= t − τ̄ [t] ·n ∈ T
s
�. �

As preliminaries for establishing the RVE-problem, we establish two identities: Firstly,
from (53) and (54) follows that

d�(t, δus) = d�(ts, δus) ∀δus ∈ U
s
� (58)

Secondly, it follows from (25a) and the properties of Ps
� that

b�(δps,u) = b�(δps,us) ∀δps ∈ P
s
� (59)

whereby it is noted that the macroscale part of u is “filtered out”.
We are now in the position to establish the subscale problem: For given values ū, h̄, and

p̄, that represent the macroscale fields (and which solve the macroscale problem), find the
subscale fluctuations (us, ps, ts) ∈ U

s
� × P

s
� × T

s
� that solve the system

a�(ε̄d·[x − x̄]+us; δus) + b�(p̄ + ps, δus) + d�(ts, δus) = 0 ∀δus ∈ U
s
� (60a)

b�(δps,us) + c∗�(p̄ + ps; δps) = 0 ∀δps ∈ P
s
� (60b)

d�(δts,us) = 0 ∀δts ∈ T
s
� (60c)
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where the RVE-functionals were introduced in (17)–(19) and (48).
By inspecting the system in (60), we note that it is not the entire h̄ that is used as input

to the RVE-problem. In fact, it is readily concluded that it is only the deviatoric part
ε̄d = h̄symd that enters as “data” to the RVE-problem. In other words, neither ū, the vol-
umetric part h̄v

def= h̄ : I, nor the skew-symmetric part h̄skw = 1
2

[
h̄ − h̄T

]
will affect

the RVE-solution. In conclusion, (ε̄d, p̄) are the macroscale variables that are used as data
for the RVE-problem; hence, the solution of (60) is parameterized as us = us{ε̄d, p̄},
ps = ps{ε̄d, p̄}, and ts = ts{ε̄d, p̄}. In a postprocessing step the homogenized “fluxes” can
be represented as

σ̄ d{ε̄d, p̄} def= 〈σ̂ d(εd[u])〉� = 〈σ̂ d
(
ε̄d + εd

[
us{ε̄d, p̄}

])〉
�

(61a)

ē{ε̄d, p̄} def= 〈ê(p)〉� = 〈ê(p̄ + ps{ε̄d, p̄})〉� (61b)

Note that ē{ε̄d, p̄} �= h̄v in general!
From the aforesaid, it appears that there is a problem associated with the presented

“consistent” format in the sense that the strong form of the continuity equation does not
(necessarily) represent that one of the fine scale. The reason is that the formulation (60b)
“filters out” any imposed constant volumetric strain λ̄; hence, the strong format generally
reads

−u · ∇ + ê(p) + λ̄ = 0, λ̄ ∈ R (62)

Clearly, testing (62) with a constant pressure, we obtain λ̄ = h̄v + 〈us · ∇ − ê(p)〉�.

Remark. In the special case of intrinsically incompressible material response, defined by
ê(p) = 0 in ��, for any p, then we have λ̄ = h̄v + 〈us · ∇〉�. However, from (60b), (60c) it
is concluded that the solution of the RVE-problem is us · ∇ = 0 in ��, whereby we obtain
λ̄ = h̄v �= 0. It is only when the macroscale solution represents incompressible response,
i.e. when h̄v = 0, that we obtain λ̄ = 0. In conclusion, the RVE-problem is able to pro-
vide an “incompressible solution” even in the case that the macroscale solution represents
compressible response. This anomaly is the main motivation for establishing an alternative
format of the problem, which is discussed next.

Macrohomogeneity condition (VCMC)

The Variationally Consistent Macrohomogeneity Condition (VCMC) (or generalized
Hill-Mandel condition) is reviewed in Appendix ‘Variationally Consistent Homogeniza-
tion (VCH)’. In order to establish its localized form for the present problem, we first
identify the tangent spaces

U
′s
�

(
uM, pM

) def={
U
s
� � dus = (us)′

{
uM, pM; duM, dpM

}
, duM ∈ U

M,0
� , dpM ∈ P

M
�

}
(63a)

P
′s
�

(
uM, pM

) def={
P
s
� � dps = (ps)′

{
uM, pM; duM, dpM

}
, duM ∈ U

M,0
� , dpM ∈ P

M
�

}
(63b)

whereby dus ∈ U
′s
� and dps ∈ P

′s
� represent sensitivity fields (or directional derivatives)

for given changes duM ∈ U
M,0
� and dpM ∈ P

M,0
� of the macroscale fields within each RVE.
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The macrohomogeneity condition is satisfied if, for any given state uM, pM localized to
the considered RVE, the following relations hold:

a�

(
uM + us

{
uM, pM

}
; dus
)+ b�

(
pM + ps

{
uM, pM

}
, dus
) = 0

∀dus ∈ U
′s
�

(
uM, pM

)
(64a)

b�

(
dps,us
{
uM, pM

})+ c∗�
(
pM + ps

{
uM, pM

}
; dps
) = 0

∀dps ∈ P
′s
�

(
uM, pM

)
(64b)

In order to show that this condition is, indeed, satisfied automatically by the solution of
the RVE-problem as defined in (60), it suffices to consider (60c). Upon differentiating this
relation w.r.t. uM and pM, we obtain

d�(δts, dus) = 0 ∀δts ∈ T
s
� (65)

for any dus ∈ U
′s
�

(
uM, pM

)
(by definition of (us)′

{
uM, pM; duM, dpM

}
). Now choosing

δts = ts in (65), we obtain

d�(ts, dus) = 0 ∀dus ∈ U
′s
�

(
uM, pM

) ⊆ U
s
� (66)

Finally, upon choosing δus = dus ∈ U
′s
� ⊆ U

s
� in (60a) and δps = dps ∈ P

′s
� ⊆ P

s
� in (60b)

while noting the identity in (66) we recover (64). In conclusion the VCMC is satisfied.

Remark. In the present case there is, obviously, no need to compute the sensitivities dus =
(us)′ and dps = (ps)′ explicitly. However, it is always possible to compute the sensitivities
of all the fluctuation fields, us, ps, and ts from the (linear) system obtained by linearizing
(60). This system is closely related to the sensitivity problem that must be established as
part of computing the pertinent macroscale tangent tensors exploited in Newton iterations
on the macroscale problem. The explicit format of that sensitivity problem is discussed
in Appendix ‘Sensitivity problem’ for the Canonical format of the RVE-problem that is
introduced subsequently.

RVE-problem – Canonical weak format

A generalized formulation of the RVE-problem that does not contain the above-
mentioned inconsistency with the strong format is considered next. Firstly, we introduce
the following spaces for the total (macroscale and fluctuation) fields:

U� =
{
v ∈ [H1(��)

]3 | 1
|��|
∫

��

vdS = 0
}

(67)

P� = {q ∈ L2(��)} (68)

T� =
{
s ∈ [L2(�+

�

)]3} (69)

Secondly, the fine-scale fields within an RVE are decomposed as

u = ε̄d·[x − x̄]+ē xm + us, us ∈ U
s (70a)

p = p̄ + ps, ps ∈ P
s
� (70b)

where xm
def= 1

3 [x − x̄], and where ē is an additional scalar quantity which, at the outset,
does not depend on the macroscale field(s).
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Remark. As a consequence of the ansatz in (70a), the rigid body motion is removed; ū = 0
and h̄skw = 0. Hence, the ansatz u is not identical to the solution u = uM+us as expressed
in (51a).

We now propose the alternative, subsequently denoted canonical, formulation of the
RVE-problem as follows: For given values ε̄d, p̄, that represent the macroscale fields
(which solve themacroscale problem), find the subscale fields (u, p, t, ē) ∈ U�×P�×T�×R

that solve the system

a�(u; δu) + b�(p, δu) + d�(t, δu) = 0 ∀δu ∈ U� (71a)

b�(δp,u) + c∗�(p; δp) = 0 ∀δp ∈ P� (71b)

d�(δt,u) − d�(δt, ē xm) = d�(δt, ε̄d·[x − x̄]) ∀δt ∈ T� (71c)

−d�(t, δē xm) = −p̄ δē ∀δē ∈ R (71d)

If follows from (71) that the new variable ē correctly obtains the value ē = 〈ê(p)〉� in
accordance with (61b). To show this result, we first use the divergence theorem to obtain
the identities

b�(1, •) = d�(n, •), d�(n, xm) = b�(1, xm) = 1 (72)

Using these identities together with (71b), (71c), we deduce

〈ê(p)〉� = c∗�(p; 1) = −b�(1,u) = d�(n,u) = −ē d�(n, xm) − d�(n, ε̄d·[x − x̄])

= ē +
[

1
|��|
∫

�+
�

n⊗ [[x − x̄]] dS
]
: ε̄d = ē + I : ε̄d = ē. (73)

The solution of the “canonical” problem (71) contains, in fact, the solution of the orig-
inal “variationally consistent” problem in (60); however, without the apparent drawback
that is associated with that format. The fluctuations

us{ε̄d, p̄} = u{ε̄d, p̄} − ε̄d·[x − x̄]−ē{ε̄d, p̄} xm (74a)

ps{ε̄d, p̄} = p{ε̄d, p̄} − p̄ (74b)

ts{ε̄d, p̄} = t{ε̄d, p̄} − [σ̄ d{ε̄d, p̄} − p̄I
] · n (74c)

are identical to (us, ps, ts) ∈ U
s
� ×P

s
� ×T

s
� that solve the system (60). This important result

can be shown by introducing the unique split of the unknowns

u = ȟ·[x − x̄]+us, δu = δȟ·[ x − x̄]+δus, ȟ, δȟ ∈ R
3×3, us, δus ∈ U

s
� (75)

p = p̌ + ps, δp = δp̌ + δps, p̌, δp̌ ∈ R, ps, δps ∈ P
s
� (76)

t = τ̌ · n + ts, δt = δτ̌ · n + δts, τ̌ , δτ̌ ∈ R
3×3, ts, δts ∈ T

s
� (77)

Firstly, inserting these relations into (71c) and testing with δτ̌ we obtain

d�(δτ̌ · n, ȟ·[x − x̄]) − d�(δτ̌ · n, ē xm) = d�(δτ̌ · n, ε̄d·[x − x̄])

∀δτ̌ ∈ R
3×3 (78)

which gives

δτ̌ :
[
ȟ − ε̄d − 1

3
ēI
]

= 0 ∀δτ̌ ∈ R
3×3 =⇒ ȟ = ε̄d + 1

3
ē I. (79)
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Next, testing (71a) with δȟ we obtain

a�(u; δȟ·[x − x̄]) + b�(p̌, δȟ·[x − x̄]) + d�(τ̌ · n, δȟ·[ x − x̄]) = 0

∀δȟ ∈ R
3×3 (80)

which gives

δȟ :[σ̄ d − p̌I − τ̌ ]= 0 ∀δȟ ∈ R
3×3 =⇒ τ̌ = σ̄ d − p̌I. (81)

Lastly, from (71d) we obtain

−d�(τ̌ · n, δē xm) = −p̄ δē ∀δē ∈ R =⇒ −1
3
τ̌ : I = p̄ (82)

With (81), this result implies that p̌ = p̄.
Now, testing (71a)–(71c) with the fluctuations δus, δps, and δts respectively, we obtain

exactly the original system in (60). Hence, we compute the identical quantities us{ε̄d, p̄}
and ps{ε̄d, p̄}. Finally, the canonical form results in the identical responses σ̄ d{ε̄d, p̄} and
ē{ε̄d, p̄} as expressed in (61). Since the macroscopic response variables are identical, the
VCMC is still fulfilled.
An illustrative comparison between the two RVE formulations are shown Figure 3.

Despite the different displacement fields, the homogenized responses, σ̄ d and ē, are the
same.

Remark. Fine-scale incompressibility within the RVE is defined by ê(p) = 0 ∀x ∈ ��,
which gives c∗�(p; δp) = 0 ∀δp ∈ P�. As a result, ē{ε̄d, p̄} = 〈ê(p)〉� = 0. In practice, there is
(of course) no need to establish s a separate system, since ē = 0 is obtained directly as part
of the solution of (71) in this case.

Variational properties of the RVE-problem – Energy bounds from RVE-functional

Variational properties for the canonical formulation of the RVE-problem – The RVE-potential

In order to establish bounds on the homogenized properties based on the results from
the Dirichlet and Neumann problems, we shall introduce an appropriate “RVE-potential”
as follows:

��(ε̄d, p̄;u, p, t, ē) = ��(u, p) + p̄ ē + d�(t,u − ε̄d·[x − x̄]−ē xm) (83)

where ��(u, p) is the “intrinsic” energy potential that was defined in (22).

Figure 3 Comparison of the RVE-problem formulations. Original formulation (left) and Canonical
formulation (right).
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We now define the volume-specific “macroscale energy density”d as the value of �� at
the following generalized saddle-point:

ψ̄�{ε̄d, p̄} = inf
û∈U�

sup
p̂∈P�

t̂∈T�

inf
ˆ̄e∈R

��(ε̄d, p̄; û, p̂, t̂, ˆ̄e) (84)

A stationary point of �� is defined by the relations

(��)
′
u(ε̄d, p̄;u, p, t, ē; δu) = 0 ∀δu ∈ U� (85a)

(��)
′
p(ε̄d, p̄;u, p, t, ē; δp) = 0 ∀δp ∈ P� (85b)

(��)
′
t(ε̄d, p̄;u, p, t, ē; δt) = 0 ∀δt ∈ T� (85c)

(��)
′̄
e(ε̄d, p̄;u, p, t, ē; δē) = 0 ∀δē ∈ R (85d)

It is readily seen that the system in (85) is precisely that of (71), andwemay parameterize
its solution as

u = u{ε̄d, p̄}, p = p{ε̄d, p̄}, t = t{ε̄d, p̄}, ē = ē{ε̄d, p̄} (86)

At the stationary point, we may use the result in (85c) to conclude that

d�(t{ε̄d, p̄},u{ε̄d, p̄} − ε̄d·[x − x̄]−ē{ε̄d, p̄} xm) = 0 (87)

whereby the energy at the stationary point is deduced to become

ψ̄�{ε̄d, p̄} = ��(u{ε̄d, p̄}, p{ε̄d, p̄}) + p̄ ē{ε̄d, p̄} (88)

We now deduce that ψ̄� serves as the “macroscale energy density” for σ̄ d and ē in the
sense that we have the macroscale constitutive relations

σ̄ d{ε̄d, p̄} = ∂ψ̄�{ε̄d, p̄}
∂ ε̄d

, ē{ε̄d, p̄} = ∂ψ̄�{ε̄d, p̄}
∂ p̄

(89)

Details of the proof are given in Appendix ‘Homogenized macroscale energy’.
From the solution of the RVE-problem, ē is obtained directly as a primary variable. The

deviatoric stress σ̄ d is obtained by post-processing:

σ̄ d = 〈σ d〉� = 1
|��|
∫

�+
�

t⊗ [[x − x̄]] dS + p̄I (90)

Variational properties for Dirichlet boundary conditions

In order to establish a suitable variational setting we replace the solution space U� with
U
D
� ⊆ U� defined as

U
D
� =
{
v | v = ε̌d·[x − x̄]+ě xm + vs,

(
ε̌d, ě, vs

) ∈ R
3×3
d × R × U

D,s
�

}
(91)

where

U
D,s
� = {v ∈ U

s
� | v = 0 on ��

}
(92)

while PD
� = P�, TD

� = T� are the same spaces as for the generic problem. The generalized
saddle-point problem (84) can now be rephrased as

ψ̄D
� {ε̄d, p̄} = inf

ûs∈UD,s
�

ε̌d∈R3×3
d

ě∈R

sup
p̂∈P�

t̂∈T�

inf
ˆ̄e∈R

��(ε̄d, p̄; ε̌d·[ x − x̄]+ě xm + ûs, p̂, t̂, ˆ̄e) (93)
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where

��(ε̄d, p̄; ε̌d·[x − x̄]+ě xm + ûs, p̂, t̂, ˆ̄e) =
��(ε̌d·[x − x̄]+ě xm + ûs, p̂) + p̄ ˆ̄e + d�(t̂, [ε̌d − ε̄d] ·[x − x̄]+[ě − ˆ̄e] xm)

(94)

The only possibility to obtain a finite value of ψ̄D
� while evaluating the sup over t̂ ∈ T�

is to set ε̌d = ε̄d and ě = ˆ̄e. Hence, we replace the saddle-point problem by

ψ̄D
� {ε̄d, p̄} = inf

ûs∈UD,s
�

sup
p̂∈P�

inf
ˆ̄e∈R

�D
�

(
ε̄d, p̄; ûs, p̂, ˆ̄e

)
(95)

where

�D
�

(
ε̄d, p̄; ûs, p̂, ˆ̄e

)
= ��

(
ε̄d·[x − x̄]+ˆ̄e xm + ûs, p̂

)
− p̄ ˆ̄e (96)

A stationary point of �D
� is defined by the relations(

�D
�

)′
u
(
ε̄d, p̄;us, p, ē; δus

) = 0 ∀δus ∈ U
D,s
� (97a)(

�D
�

)′
p
(
ε̄d, p̄;us, p, ē; δp

) = 0 ∀δp ∈ P� (97b)(
�D

�

)′
ē
(
ε̄d, p̄;us, p, t, ē; δē

) = 0 ∀δē ∈ R (97c)

and this system of equations takes the explicit form: For given values ε̄d, p̄, find the
subscale fields (us, p, ē) ∈ U

D,s
� × P� × R that solve the system

a�(ε̄d·[x − x̄]+us; δus) + b�(p, δus) = 0 ∀δus ∈ U
D,s
� (98a)

b�(δp,us) + b�(δp, ē xm) + c∗�(p; δp) = 0 ∀δp ∈ P� (98b)

b�(p, δē xm) = −p̄ δē ∀δē ∈ R (98c)

Finally, the macroscale energy density at the stationary point becomes

ψ̄D
� {ε̄d, p̄} = ��(ε̄d·[x − x̄]+ē{ε̄d, p̄} xm + us{ε̄d, p̄}, p{ε̄d, p̄}) + p̄ ē{ε̄d, p̄} (99)

From the RVE-problem in (98), ē is obtained directly as a primary variable. The
deviatoric stress σ̄ d is obtained by post-processing:

σ̄ d = 〈σ d〉� = 1
|��|
∫

�+
�

t ⊗ [[x − x̄]] dS + p̄I (100)

However in practice σ̄ d is conveniently obtained as the reaction forces associated with
the prescribed ε̄d.

Remark. The VMCM in (64) is still valid for the restricted space U
D,s
� ⊂ U

s
�. Since

d�(δts,us) = 0 ∀us ∈ U
D,s
� , (64a) is satisfied for all δus ∈ U

D,s.

Variational properties for Neumann boundary conditions

The Neumann condition represents the weakest possible way of enforcing the micro-
periodicity condition. Here it is considered as a model assumption; however, it is also
possible to view this choice as a (crude) FE-approximation of the deviatoric traction field.
The pertinent RVE-problem is obtained from the general format upon restricting the
space T�, i.e. introducing TN

� ⊆ T� defined as

T
N
� =
{
t ∈ T� | ∃(σ̌ d, p̌) ∈ R

3×3
d × R s.t. t = [σ̌ d − p̌I

] · n on �+
�

}
(101)
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while UN
� = U� and P

N
� = P� are left unrestricted. Clearly, the choice of TN

� restricts the
tractions to become piecewise constant on each of the three positive boundary faces of
the RVE-cube. The generalized saddle-point problem (84) can then be rephrased as

ψ̄N
� {ε̄d, p̄} = inf

û∈U�

sup
p̂∈P�

σ̌ d∈R3×3
d

p̌∈R

inf
ˆ̄e∈R

��

(
ε̄d, p̄; û, p̂,

[
σ̌ d − p̌I

] · n, ˆ̄e) (102)

where

��(ε̄d, p̄; û, p̂,
[
σ̌ d − p̌I

] · n, ˆ̄e) =
��(û, p̂) + p̄ ˆ̄e + d�

([
σ̌ d − p̌I

] · n, û − ε̄d·[x − x̄]−ˆ̄e xm
)

(103)

The only possibility to obtain a finite value of ψ̄N
� while evaluating the inf over ˆ̄e ∈ R is

to set p̌ = p̄. As a direct consequence the variable ˆ̄e disappears in the resulting expression,
cf. (105) below. Moreover, from (90) we see that for tractions t ∈ T

N
� we obtain σ̌ d =

〈σ̂ d(εd[u{ε̄d, p̄}])〉� = σ̄ d{ε̄d, p̄}.
Hence, we replace the saddle-point problem by

ψ̄N
� {ε̄d, p̄} = inf

û∈U�

sup
p̂∈P�

σ̄ d∈R3×3
d

�N
� (ε̄d, p̄; û, p̂, σ̄ d) (104)

where

�N
� (ε̄d, p̄; û, p̂, σ̄ d) = ��(û, p̂) + d�([ σ̄ d − p̄I] ·n, û − ε̄d·[ x − x̄]) (105)

A stationary point of �N
� is defined by the relations

(�N
� )′u(ε̄d, p̄;u, p, σ̄ d; δu) = 0 ∀δu ∈ U� (106a)

(�N
� )′p(ε̄d, p̄;u, p, σ̄ d; δp) = 0 ∀δp ∈ P� (106b)

(�N
� )′̄σ (ε̄d, p̄;u, p, σ̄ d; δσ̄ d) = 0 ∀δσ̄ d ∈ R

3×3
d (106c)

and this system of equations takes the explicit form: For given values ε̄d, p̄, find the
subscale fields u, p, σ̄ d ∈ U� × P� × R

3×3
d that solve the system

a�(u; δu) + b�(p, δu) + d�(σ̄ d · n, δu) = d�(p̄n, δu) ∀δu ∈ U� (107a)

b�(δp,u) + c∗�(p; δp) = 0 ∀δp ∈ P� (107b)

d�(δσ̄ d · n,u) = −ε̄d : δσ̄ d ∀δσ̄ d ∈ R
3×3
d (107c)

Finally, we obtain the macroscale energy density as

ψ̄N
� {ε̄d, p̄} = ��(u{ε̄d, p̄}, p{ε̄d, p̄}) + p̄ 〈u{ε̄d, p̄} · ∇〉� (108)

From the RVE-problem in (107), σ̄ d is obtained directly as a primary variable. The
volumetric strain ē is obtained by post-processing:

ē = 〈u · ∇〉� = 1
|��|
∫

��

u · n dS. (109)

Remark. The VMCM in (64) is still valid for the restricted spaceTs
� = {0}. Since d�(0, •) =

0, (64a) is valid for all δus ∈ U
s
�.
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Macroscale tangent relations

In order to solve the (generally nonlinear) macroscale problem (37) in the FE2-setting
using Newton iterations, we need the pertinent tangent operators. Linearizing the
implicit relations σ̄ d{ε̄d, p̄} and ē{ε̄d, p̄} we obtain

dσ̄ d = Ē : dε̄d + Ē dp̄, dē = C̄ : dε̄d − C̄ dp̄ (110)

thereby defining the tangents Ē (4th order), Ē (2nd order), C̄ (2nd order), and C̄ (scalar).
Since a potential exists, it follows that Ē possesses major symmetry and that Ē = C̄, cf.
Öhman et al. [14].
In order to compute the tangent operators, it is necessary to first compute the relevant

sensitivity fields w.r.t. changes of the macroscale variables ε̄d and p̄, and they are solved
from the pertinent tangent problem. On should then note that the particular sensitivity
fields that are actually exploited (and needed) and the corresponding explicit formulation
of the tangent problem depend on the chosen formulation of the RVE-problem (in terms
of the boundary conditions: Weakly Periodic, Dirichlet, Neumann). Here, we shall give
details only on the “generic” choice of the weakly periodic conditions.

Remark. In the case of macroscale incompressibility, C̄ and C̄ will vanish.

As a point of departure for computing the tangent tensors, we note that ē{ε̄d, p̄} is a
primary variable in the RVE-problem, whereas σ̄ d{ε̄d, p̄} is post-processed via (90). We
thus need to compute sensitivities of ē and t from the tangent problem. To begin with, we
establish the linearized form of (71) at the solution state to obtain

(a�)
′(u; δu, du) + b�(dp, δu) + d�(dt, δu) = 0 ∀δu ∈ U� (111a)

b�(δp, du) + (c∗�)′(p; δp, dp) = 0 ∀δp ∈ P� (111b)

d�(δt, du) − d�(δt, dē xm) = d�(δt, dε̄d·[x − x̄]) ∀δt ∈ T� (111c)

−d�(dt, δē xm) = −dp̄ δē ∀δē ∈ R (111d)

which must be valid for any given perturbations dε̄d and dp̄ giving rize to the correspond-
ing perturbations du, dp, dt, and dē in the solution fields.
Next, we introduce orthonormal base dyads Gi, i = 1, 2, . . . , 8 to ensure that the devia-

toric tensors εd and σ d are, indeed, deviatoric in character. In other words we do not use
the conventional base dyads ei ⊗ ej, i, j = 1, 2, 3, but we rather introduce the new set of
base dyads such that the requirement Gi : I = 0 for i = 1, 2, . . . , 8 is fulfilled. Examples of
such (generally unsymmetric) dyads with Cartesian components, are

G1 = 1√
6

⎡
⎢⎣ 2 0 0
0 −1 0
0 0 −1

⎤
⎥⎦ , G2 =

⎡
⎢⎣ 0 0 0
0 1 0
0 0 −1

⎤
⎥⎦ , G3 =

⎡
⎢⎣ 0 1 0
0 0 0
0 0 0

⎤
⎥⎦ , . . . , G8 =

⎡
⎢⎣ 0 0 0
0 0 0
0 1 0

⎤
⎥⎦ .
(112)

with respect to this basis, we have the representation

εd =
∑
k

(εd)k Gk , (εd)k = Gk : εd (113)

σ d =
∑
k

(σ d)k Gk , (σ d)k = Gk : σ d (114)
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Next, we express the pertinent sensitivities via the representations

du =
∑
k

u(k)
d (dε̄d)k + up dp̄ (115a)

dp =
∑
k

p(k)
d (dε̄d)k + pp dp̄ (115b)

dt =
∑
k

t(k)d (dε̄d)k + tp dp̄ (115c)

dē =
∑
k

ē(k)d (dε̄d)k + ēp dp̄ (115d)

We thus obtain the following sets of tangent problems:

• dε̄d = Gk while dp̄ = 0: For k = 1, . . . , 8, solve for the sensitivities u(k)
d , p(k)

d , t(k)d , ē(k)d
from the system

(a�)
′(u; δu,u(k)

d

)
+ b�

(
p(k)
d , δu
)

+ d�

(
t(k)d , δu

)
= 0 ∀δu ∈ U� (116a)

b�

(
δp,u(k)

d

)
+ (c∗�)′

(
p; δp, p(k)

d

)
= 0 ∀δp ∈ P� (116b)

d�

(
δt,u(k)

d

)
− d�

(
δt, ē(k)d xm

)
= d�(δt,Gk ·[x − x̄]) ∀δt ∈ T� (116c)

−d�

(
t(k)d , δē xm

)
= 0 ∀δē ∈ R (116d)

• dp̄ = 1 while dε̄d = 0: Solve for the sensitivities up, pp, tp, ēp from the system

(a�)
′(u; δu,up) + b�(pp, δu) + d�(tp, δu) = 0 ∀δu ∈ U� (117a)

b�(δp,up) + (c∗�)′(p; δp, pp) = 0 ∀δp ∈ P� (117b)

d�(δt,up) − d�(δt, ēp xm) = 0 ∀δt ∈ T� (117c)

−d�(tp, δē xm) = −δē ∀δē ∈ R (117d)

Now, upon linearizing (90) and using the representation for dt in (115c), we obtain

dσ̄ d = 1
|��|
∫

�+
�

dt ⊗ [[x − x̄]] dS + dp̄I (118)

=
∑
k

1
|��|
∫

�+
�

t(k)d ⊗ [[x − x̄]] xcdS ⊗ Gk

︸ ︷︷ ︸
Ē

: dε̄d

+
[

1
|��|
∫

�+
�

tp ⊗ [[x − x̄]] dS + I
]

︸ ︷︷ ︸
Ē

dp̄ (119)

Directly from (115d), we obtain

dē =
∑
k

ē(k)d Gk

︸ ︷︷ ︸
C̄

: dε̄d + ēp︸︷︷︸
−C̄

dp̄ (120)

Macroscale tangent relations for the Dirichlet and Neumann boundary conditions are
detailed in Appendix ‘Sensitivity problem’.
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Bounds on themacroscale energy density

Since we have derived the Dirichlet and Neumann problems by respectively restricting
the solution spaces as

U
D
� ⊂ U�, T

N
� ⊂ T� (121)

it follows from (93), (102), and (84) that

ψ̄D
� {ε̄d, p̄} ≥ ψ̄{ε̄d, p̄} ≥ ψ̄N{ε̄d, p̄}. (122)

In other words, the Dirichlet and Neumann boundary conditions represent upper and
lower bounds on the macroscale energy density that is obtained with periodic boundary
conditions for any given realization of the RVE and for a given macroscale state (ε̄d, p̄).
We note that choosing any discretization of T� in (84) leads to a lower bound of ψ̄{ε̄d, p̄}.
In the case of linear elasticity, the tangent operators represent the upscaled (=homoge-

nized) constant operators in the representations

σ̄ d = Ē : ε̄d + Ē p̄, ē = C̄ : ε̄d − C̄ p̄ (123)

whereby we obtain

ψ̄�{ε̄d, p̄} = 1
2
ε̄d : Ē : ε̄d − 1

2
p̄ C̄ p̄ ∀ ε̄d, p̄ =⇒

Ē
D ≥ Ē ≥ Ē

N, C̄D ≤ C̄ ≤ C̄N

(124)

Results and discussion
Preliminaries

Computations were carried out for a random composite with spherical particles embed-
ded in a matrix, whereby both constituents are assumed to be homogeneous and isotropic
linear elastic. The intrinsic properties are thus defined by the free energy expressions

ψu(εd) = G|εd|2, ψ∗
p = −1

2
C p2 (125)

where G and C (= K−1) are the shear stiffness and bulk compliance respectively. This
choice corresponds to the standard relations σ̂ d(εd) = 2G εd and ê(p) = −C p. The
parameter set associated with the matrix and particles are (Gmat,Cmat) and (Gpart,Cpart),
respectively.
All computational results were obtained for cubic Statistical Volume Elements (SVEs).

The target volume fraction of (non-overlapping, spherical particles) if 10% and their size-
distribution, in terms of diameter, is uniform in the range

[ 2
3 ,

4
3
]
, thus with a mean value

of 1. Two examples of realizations with SVE-size L� = 6 and L� = 9 are shown in Figure 4
and Figure 5, respectively.
Now, for sufficiently large size of the SVE (for any given realization of a random com-

posite), we may assume that the macroscale response is isotropic corresponding to the
effective moduli Ḡ and C̄ (= K̄−1). However, even for a smaller SVE-size, it is possible to
compute an “apparent” value of Ḡ by the minimization

min
1
2
∑
ijkl

(Ē − 2ḠId)2ijkl =⇒ Ḡ = 1
2

∑
ijkl(Id)ijkl(Ē)ijkl∑

ijkl(Id)
2
ijkl

(126)
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Figure 4 SVE-cube with sample realization of particle composite of size 6 × 6 × 6.

where Id is the deviatoric fourth order identity tensor such that the isotropic part of Ē can
be expressed as Ēiso = 2ḠId in standard fashion.
For the finite element analysis of the SVE-problems, tetrahedral elements with so-

called Mini-element approximations are utilized. This type of element is defined by linear
approximation plus a bubble function for u and linear approximation for p, cf. [19].
The RVE-problems with the different boundary conditions are implemented in the

open source C++ code OOFEM (www.oofem.org) [20] and are available under the
name MixedGradientPressure. However, due to the difficulty of constructing T�,
the present implementation of the weakly periodic boundary conditions is based on global
polynomials for discretizing T�. Thus, only a lower bound for the true periodicity is
obtained. Due to the high computational cost, only the Neumann and Dirichlet boundary
conditions are used in the numerical examples in this paper.

Homogenization of macroscopically incompressible response—A convergence study

The first series of SVE-computations were carried out formacroscopically incompressible
response, which is obtained when both matrix and particles are completely incompress-
ible. Taking the shear modulus for the matrix, Gmat, as the reference modulus, we choose
Gpart = 5Gmat, whereas Cmat = Cpart = 0. Convergence results for the two extremes of
Dirichlet and Neumann boundary conditions are shown in Figure 6. The mean value and

Figure 5 SVE-cube with sample realization of particle composite of size 9 × 9 × 9.

www.oofem.org
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Figure 6 Statistical comparison of the influence of the boundary conditions (Dirichlet, Neumann) on
the macroscale shear modulus, Ḡ.

variance of the homogenized shear modulus Ḡ are shown for increasing SVE-size, repre-
sented by L�. Here, a certain number of realizations are used for each value of L�, starting
with 200 realizations for the smallest SVE size (L� = 1) and ending up with only 4 real-
izations for the largest SVE-size (L� = 9) that has approximately 500 thousand degrees of
freedom. The Salome platform was used for generating the SVEs and the decrease of the
number of realizations was due to the meshing code failing when inclusions badly inter-
sect the boundary, which becomes increasingly likely with increasing L�. However, as seen
in Figure 6, the variance is small in the homogenized results for L� ≥ 3 and the mean val-
ues are still accurate. An RVE is obtained when the variance goes to zero, and the mean
value converges, which is the case when the SVE-size is sufficiently large. In the present
case, for engineering purposes, we consider L� = 9 sufficiently large to qualify as an RVE.

Seamless transition frommacroscopically compressible to incompressible response

In the second series of computations, we show how the homogenization scheme can
seamlessly handle the transition from the macroscopically compressible to the incom-
pressible response. Here, it is assumed that incompressible particles, defined by Gpart =
5Gmat and Cpart = 0 (as before), are embedded in a matrix material with Cmat ≥ 0.
Only the situation with Dirichlet boundary conditions is considered (without affecting
the generality of the main conclusion from the results). In Figure 7 it is shown how the
homogenized properties are affected by the matrix compliance, Cmat, for a given (fixed)
realization and given SVE-size (L� = 9, cf. Figure 5), thus defining an RVE. Clearly, rather
than choosing Cmat as the variable material property, one may choose Poisson’s ratio νmat
via the elementary relation

ν = 3 − 2C G
6 + 2C G

(127)

which is also used in Figure 7.

Figure 7 Homogenized results from a single RVE with Dirichlet boundary condition. Dependence of
effective properties C̄ and Ḡ on the bulk compliance Cmat for fixed values of Gpart = 5Gmat and Cpart = 0.
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The computational results verify that the homogenization framework is able to han-
dle the transition from macroscale compressibility to incompressibility when Cmat →
0 in a seamless fashion without any algorithmic changes. That macroscopical incom-
pressibility is verified by the computed value C̄ = 0. It is also noted in Figure 7 that
the affect on Ḡ is more pronounced, however quite limited, when incompressibility is
approached.

Conclusions
In this paper we have introduced a variationally consistent homogenization scheme for
heterogeneous solids, whose constituents may be incompressible in the extreme case.
The mixed control of the homogenized quantities, (ε̄d, p̄) → (σ̄ d, ē), is what enables the
macroscopically incompressible response, whereas traditional strain-controlled homog-
enization, ε̄ → σ̄ , leads to a singular problem when applied to fully incompressible
microstructures. The transition from macroscopically compressible to incompressible
states (which is the extreme result when all constituents are incompressible) is handled
in a completely seamless fashion. Based on a mixed formulation on the fine scale, it has
been demonstrated how the concept of variationally consistent homogenization can be
adopted to derive the pertinent two-scale problem. The proposed canonical formulation
of the problem on an underlying Representative Volume Element (RVE) is an exten-
sion of the formulation presented in Öhman et al. (2013), allowing for a general choice
of boundary conditions. Moreover, the canonical formulation has been shown to satisfy
the generalized macrohomogeneity condition. The FE-setting on both scales (macroscale
and RVE) is based on the standard (u, p)-formulation, and the Mini-element approxi-
mation with a bubble function is adopted for the RVE-problem. All implementation and
numerical results pertain to 3D-cubes.
It was shown that theoretical bounds on the “homogenized energy density” for weakly

periodic boundary conditions on the RVE are obtained by imposing Dirichlet and Neu-
mann boundary conditions. The computational results from a statistical analysis verify
the convergence of these bounds with increasing SVE-size. As to the computational cost
of solving the RVE-problem with the different types of boundary conditions for the stan-
dard compressible problem and the present (in)compressible one, it is concluded that
the Neumann boundary condition is quite cost-neutral. However, applying the Dirich-
let boundary condition to the canonical RVE-format means a noticeable additional cost,
since the additional (global) variable ē is required in order to account for the (possibly
vanishing) macroscale volumetric deformation. In this context, we remark that imposing
weak periodicity would infer a further increased computational cost associated with the
boundary discretization of tractions inT�; hence, it is conjectured that exploiting the stan-
dard Dirichlet and Neumann conditions computations and drawing conclusions about
their bounding character would be a most competitive approach in FE2-computations.
As to future developments, it is desirable to further exploit the concept of weakly peri-

odic boundary conditions; however, constructing basis functions for T� in 3D is not a
trivial task. Of course, it is also of interest to compare with the classical condition of
strongly periodic fluctuations, which is defined by replacing (92) with

U
P,s
� = {v ∈ U

s
� | [[v]] = 0 on ��

}
(128)
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and performing the corresponding steps up to (98). However, this method has the definite
drawback that the meshing software must produce strictly periodic meshes.
In a forthcoming paper, the proposed theoretical framework will be applied to the

problem of sintering, a characteristic of which is that the microstructure evolves from
being highly porous to becoming completely dense. The “compaction” process is driven
by surface tension along the particle-pores boundaries until the pore have completely
disappeared, cf. Öhman et al. (2013).

Endnotes
a* indicates “complementary energy”
bCurly brackets {(•)} indicate implicit and/or nonlocal functional dependence on (•).
cDouble arguments, i.e. u(x̄, x), are used to explicitly point out the underlying scale

separation.
dψ̄� → ψ̄ , the “effective energy density”, for sufficiently large RVE.

Appendix
Variationally Consistent Homogenization (VCH)

VMS-approach – Scale separation and homogenization

Classical model-based homogenization can be formulated in the spirit of the Variational
MultiScalemethod (VMS), cf. [21,22].We introduce the abbreviated notation z = (u, p) ∈
Z = U × P, where Z represents the space of fine-scale (non-homogenized) solutions to
the system (3), which may conveniently be abbreviated in abstract form as the residual
equatione

R(z; δz) def= R�(z; δz) + R�(z; δz) = 0 ∀ δz ∈ Z
0 (129)

where Z0 = U
0 ×P is the test space and where each u ∈ U

0 vanishes on the Dirichlet part
of �.
A multiscale formulation of (129) is defined by the hierarchical split Z = Z

M ⊕ Z
s,

where ZM contains smooth macroscale functions and Z
s is the hierarchical complement

of ZM that, typically, represents the fine-scale features. It is assumed that each z ∈ Z can
be split uniquely as z = zM+zs such that zM ∈ Z

M and zs ∈ Z
s. Therefore, solve zM ∈ Z

M,
zs ∈ Z

s such that (129) can be represented by the set of equations

R
(
zM + zs; δzM

) = 0 ∀ δzM ∈ Z
M,0 (130a)

R
(
zM + zs; δzs

) = 0 ∀ δzs ∈ Z
s (130b)

Without introducing further assumptions (approximations), the dimension of the orig-
inal problem has not changed, i.e. (130) represent two global problems whose solution
requires the same computational effort as does (129). In order to reduce the prob-
lem dimension based on homogenization (via the assumption of scale separation), we
introduce the following key assumptions:

• The integrands in the pertinent volume integrals are replaced by a running volume
average on RVE’s of the type introduced in (11) such that, typically, the residual in
(130a) can be rewritten in terms of the contributions defined on each RVE as

R�(z; δz) =
∫

�

R�(z; δz)(x̄)d� (131)
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where R� is the RVE-residual that is localized to the Representative Volume Element
(RVE). In practice (in FE-analysis), quadrature is used such that the evaluation of R�

is carried out only in the Gauss points.
Furthermore, for the sake of simplicity we assume smoothness of boundary terms,
such that R�(z; δzM) ≈ R�(zM; δzM), i.e. no boundary homogenization is necessary.

• Local approximations for the fluctuation field zs are introduced in the spirit of VMS.
This means that zs ≈ z̃s{zM} ∈ Z

s
� is the approximate solutionf of the fine-scale

equation (130b) for given zM, i.e. (130b) is replaced by “closed” RVE-problems (in the
macroscale quadrature points) associated with a particular choice of boundary
conditions on ��. In this paper we obtain such “closed” RVE-problems by choosing
weakly periodic boundary conditions.

Returning to (130a), we now replace this problem by the approximate, homogenized,
problem

R(zM + z̃s{zM}; δzM) =
∫

�

R�

(
zM + z̃s

{
zM
}
; δzM
)
(x̄)d�

+R�

(
zM, δzM

)=0 ∀ δzM ∈ Z
M,0

(132)

which has the same dimension as (130a). We note that (132) represents a valid homog-
enization problem for any given choice of Zs

�; however, to preserve typical Galerkin
properties, such as symmetry of the macroscale tangent operator when such symmetry is
inherent in the underlying fine-scale problem, it is crucial to satisfy the VCMC.

Variationally Consistent Macrohomogeneity Condition (VCMC)

We shall assume that there exists a potential�(z) such that (132) represents the stationary
point of �(z), i.e. it is assumed that

R(z; δz) = �′(z; δz) def= d
dε

�(z + εδz)|ε=0 = 0 ∀ δz ∈ Z
0 (133)

Next, we introduce the crucial approximation (restriction) z ≈ zM + z̃s{zM} before
evaluation of the stationarity conditions, whereby we obtain

�′
zM{zM; δzM} def= d

dε
�(zM + εδzM + z̃s{zM + εδzM})|ε=0

= R(zM + z̃s{zM}; δzM + (z̃s)′{zM; δzM}) = 0 ∀ δzM ∈ Z
M,0

(134)

where (z̃s)′{zM; δzM} denotes the sensitivity (or directional derivative) of z̃s for a variation
δzM of the macroscale solution zM. Hence, the choice of test function in (134) is restricted
as compared to (133), and this restriction represents a “generalized Galerkin property”
in terms of the underlying macroscale functions in Z

M. Moreover, and most importantly,
(134) is completely equivalent to the homogenized problem (132) if it is possible, for any
given zM ∈ Z

M, to satisfy the constraint

R(zM + z̃s{zM}; (z̃s)′{zM; dzM}) = 0 ∀ dzM ∈ Z
M,0(zM) (135)

or, equivalently,

R(zM + z̃s{zM}; dz̃s) = 0 ∀ dz̃s ∈ Z̃
′s(zM) (136)

where the test space Z̃
′s(zM), which is the tangent space to the approximation space, is

defined as

Z̃
′s(zM)

def= {Zs � dzs = (z̃s)′{zM; dzM}, dzM ∈ Z
M,0} (137)
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Hence, any dz̃s ∈ Z̃
′s(zM) is a sensitivity of the fluctuation field z̃s for a differential

change of the macroscale field zM within the considered RVE. It is computed from the
tangent problem that is associated with the RVE-problem. We refer to (135) or (136) as
a “Variationally Consistent (generalized) Macrohomogeneity Condition” (VCMC). Obvi-
ously, a sufficient condition for these identities to hold true is to require the RVE-residual
to vanish on each RVE (in each quadrature point), i.e. to ensure that

R�(zM + z̃s{zM}; (z̃s)′{zM; δzM}) = 0 ∀ zM, δzM ∈ Z
M|��

× Z
M,0|��

(138)

An even stronger condition is to require that R�(z; δzs) = 0 for any δzs in a given set
of functions that is defined locally for the considered RVE without requiring any implicit
(or explicit) coupling to the sensitivity field (z̃s)′{zM; δzM}, which obviously defines a
restricted choice of test functions. In such a case, the VCMC can be identified as precisely
the classical Hill-Mandel macrohomogeneity condition.
Finally, we remark that the VCMC ensures that the macroscale tangent operator

becomes symmetrical, since it holds that

R′(z; δz1, δz2) = �′′(z; δz1, δz2)
def= d

dε
�′(z + εδz2; δz1)|ε=0 ∀ δz1, δz2 ∈ Z

0 (139)

With the introduced approximation zs ≈ z̃s{zM}, the test functions in (139) are chosen
as

δzi ≈ δzMi + (z̃s)′{zM; δzMi } ∀ δzMi ∈ Z
M,0, i = 1, 2 (140)

Homogenized macroscale energy

In order to show that ψ̄�{ε̄d, p̄} serves as the “macroscale energy density” for σ̄ d and ē,
expressed by the relations (89), we first recall the identity

ψ̄�{ε̄d, p̄} = ��(ε̄d, p̄;u{ε̄d, p̄}, p{ε̄d, p̄}, t{ε̄d, p̄}, ē{ε̄d, p̄}) (141)

where the RVE-potential �� was defined in (83). Working out the total differential w.r.t.
ε̄d and p̄ at equilibrium, we obtain

dψ̄�{ε̄d, p̄} = ��(dε̄d, p̄;u{ε̄d, p̄}, p{ε̄d, p̄}, t{ε̄d, p̄}, ē{ε̄d, p̄})+
��(ε̄d, dp̄;u{ε̄d, p̄}, p{ε̄d, p̄}, t{ε̄d, p̄}, ē{ε̄d, p̄})+
(��)

′
u(ε̄d, p̄;u{ε̄d, p̄}, p{ε̄d, p̄}, t{ε̄d, p̄}, ē{ε̄d, p̄}; du)+

(��)
′
p(ε̄d, p̄;u{ε̄d, p̄}, p{ε̄d, p̄}, t{ε̄d, p̄}, ē{ε̄d, p̄}; dp)+

(��)
′
t(ε̄d, p̄;u{ε̄d, p̄}, p{ε̄d, p̄}, t{ε̄d, p̄}, ē{ε̄d, p̄}; dt)+

(��)
′̄
e(ε̄d, p̄;u{ε̄d, p̄}, p{ε̄d, p̄}, t{ε̄d, p̄}, ē{ε̄d, p̄}; dē)

(142)

where we introduced the sensitivities w.r.t. changes in ε̄d and p̄ as follows:

du = (u)′{ε̄d, p̄; dε̄d, dp̄} ∈ U� (143)

dp = (p)′{ε̄d, p̄; dε̄d, dp̄} ∈ P� (144)

dt = (t)′{ε̄d, p̄; dε̄d, dp̄} ∈ T� (145)

dē = (ē)′{ε̄d, p̄; dε̄d, dp̄} ∈ R (146)

Combining these with the (85), we can see that the last four terms in (142) vanish, i.e.
(��)

′•(. . . ; d•) = 0. What remains of the total differential is thus

dψ̄�{ε̄d, p̄} = d�(t{ε̄d, p̄},−dε̄d·[x − x̄]) + dp̄ ē{ε̄d, p̄} (147)
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Now, we may use (85a) and choose δu = dε̄·[x − x̄] to obtain

−d�(t{ε̄d, p̄}, dε̄d·[x − x̄]) =
a�(u{ε̄d, p̄}, dε̄d·[x − x̄]) + b�(p{ε̄d, p̄}, dε̄d·[x − x̄] )

= 〈σ d〉� : dε̄d + 〈p〉� dε̄d : I︸ ︷︷ ︸
=0

= σ̄ d{ε̄d, p̄} : dε̄d

(148)

Finally, combining this result with (147), we obtain

dψ̄�{ε̄d, p̄} = σ̄ d{ε̄d, p̄} : dε̄d + ē{ε̄d, p̄} dp̄ (149)

which proves (89).

Sensitivity problem

Dirichlet boundary condition

Using the perturbations ε̄d + dε̄d and p̄+ dp̄ in the linearized form of (98) at equilibrium
we obtain

(a�)
′(u; δus, dε̄d·[ x − x̄]+dus) + b�(dp, δus) = 0 ∀δus ∈ U

D,s
� (150a)

b�(δp, dus + dē xm) + (c∗�)′(p; δp, dp) = 0 ∀δp ∈ P� (150b)

b�(dp, δē xm) = −dp̄ δē ∀δē ∈ R (150c)

which must hold for any given dε̄d and dp̄. We thus consider the cases:

• dε̄d = Gk while dp̄ = 0 (with uM(k)
d

def= Gk ·[x − x̄]): For k = 1, . . . , 8, solve for the
sensitivities us(k)d , p(k)

d , ē(k)d from the system

(a�)
′(u; δus,us(k)d

)
+ b�

(
p(k)
d , δus
)

= −(a�)
′(u; δus,uM(k)

d

)
∀δus ∈ U

D,s
� (151a)

b�

(
δp,us(k)d + ē(k)d xm

)
+ (c∗�)′

(
p; δp, p(k)

d

)
= 0 ∀δp ∈ P� (151b)

b�

(
p(k)
d , δē xm

)
= 0 ∀δē ∈ R (151c)

• dp̄ = 1 while dε̄d = 0: Solve for the sensitivities usp, pp, ēp from the system

(a�)
′(u; δus,usp)+ b�(pp, δus) = 0 ∀δus ∈ U

D,s
� (152a)

b�

(
δp,usp
)

+ b�(δp, ēp xm) + (c∗�)′(p; δp, pp) = 0 ∀δp ∈ P� (152b)

b�(pp, δē xm) = −δē ∀δē ∈ R (152c)
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Upon using the identity σ̄ = 1
|��|
∫
��

t⊗[ x − x̄] dS, we deduce the tangent operators
from

dσ̄ d =
∑
i
dσ̄ : Gi ⊗ Gi =

∑
i
d
[

1
|��|
∫

��

t · Gi·[x − x̄] dS
]
Gi

=
∑
i

(a�)
′(u;uM(i)

d , du
)
Gi

=
∑
i,j

(a�)
′(u;uM(i)

d ,uM(j)
d + us(j)d

)
Gi ⊗ Gj

︸ ︷︷ ︸
Ē

: dε̄d

+
∑
i

(a�)
′(u;uM(i)

d ,usp
)
Gi︸ ︷︷ ︸

Ē

dp̄

(153)

Tangent operators associated with ē are obtained directly from the sensitivity analysis

dē =
∑
k

ē(k)d Gk

︸ ︷︷ ︸
C̄

: dε̄d + ēp︸︷︷︸
−C̄

dp̄ (154)

Neumann boundary condition

Using the perturbations ε̄d +dε̄d and p̄+dp̄ in the linearized form of (107) at equilibrium
we obtain

(a�)
′(u; δu, du) + b�(dp, δu) + d�(dσ̄ d · n, δu) = d�(dp̄n, δu) ∀δu ∈ U� (155a)

b�(δp, du) + (c∗�)′(p; δp, dp) = 0 ∀δp ∈ P� (155b)

d�(δσ̄ d · n, du) = −dε̄d : δσ̄ d ∀δσ̄ d ∈ R
3×3
d (155c)

which must hold for any given ε̄d and dp̄. We thus consider the cases:

• dε̄d = Gk while dp̄ = 0: For k = 1, . . . , 8, solve for the sensitivities u(k)
d , p(k)

d , σ̄ (k)
d,d

from the system

(a�)
′(u; δu,u(k)

d

)
+ b�

(
p(k)
d , δu
)

+ d�

(
σ̄

(k)
d,d · n, δu

)
= 0 ∀δu ∈ U� (156a)

b�

(
δp,u(k)

d

)
+ (c∗�)′

(
p; δp, p(k)

d

)
= 0 ∀δp ∈ P� (156b)

d�

(
δσ̄ d · n,u(k)

d

)
= −Gk :δσ̄ d ∀δσ̄ d ∈ R

3×3
d (156c)

• dp̄ = 1 while dε̄d = 0: Solve for the sensitivities up, pp, σ̄ d,p from the system

(a�)
′(u; δu,up) + b�(pp, δu) + d�(σ̄ d,p · n, δu) = d�(n, δu) ∀δu ∈ U� (157a)

b�(δp,up) + (c∗�)′(p; δp, pp) = 0 ∀δp ∈ P� (157b)

d�(δσ̄ d · n,up) = 0 ∀δσ̄ d ∈ R
3×3
d (157c)

Directly from the solution we obtain tangent operators associated with σ̄ d:

dσ̄ d =
∑
k

σ̄
(k)
d,d ⊗ Gk

︸ ︷︷ ︸
Ē

: dε̄d + σ̄ d,p︸︷︷︸
Ē

dp̄ (158)
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For tangent operators associated with ē, we obtain

dē = 〈du · ∇〉� =
∑
k

〈
u(k)
d · ∇
〉
�
Gk

︸ ︷︷ ︸
C̄

: dε̄d + 〈up · ∇〉
�︸ ︷︷ ︸

−C̄

dp̄. (159)
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