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Abstract
The mobile industry is preparing to scale up the network capacity by a factor of 1000x in order to

cope with the staggering growth in mobile traffic. As a consequence, there is a tremendous pressure on the

network infrastructure, where more cost-effective, flexible, high speed connectivity solutions are being

sought for. In this regard, massive multiple-input multiple-output (MIMO) systems, and millimeter-wave

communication systems are new physical layer technologies, which promise to facilitate the 1000 fold

increase in network capacity. However, these technologies are extremely prone to hardware impairments

like phase noise caused by noisy oscillators. Furthermore, wireless backhaul networks are an effective

solution to transport data by using high-order signal constellations, which are also susceptible to phase

noise impairments.

Analyzing the performance of wireless communication systems impaired by oscillator phase noise,

and designing systems to operate efficiently in strong phase noise conditions are critical problems in

communication theory. The criticality of these problems is accentuated with the growing interest in the

new physical layer technologies, and the deployment of wireless backhaul networks. This forms the main

motivation for this thesis where we analyze the impact of phase noise on the system performance, and we

also design algorithms in order to mitigate phase noise and its effects.

First, we address the problem of maximum a posteriori (MAP) detection of data in the presence of

strong phase noise in single-antenna systems. This is achieved by designing a low-complexity joint phase-

estimator data-detector. We show that the proposed method outperforms existing detectors, especially

when high order signal constellations are used. Then, in order to further improve system performance,

we consider the problem of optimizing signal constellations for transmission over channels impaired

by phase noise. Specifically, we design signal constellations such that the error rate performance of

the system is minimized, and the information rate of the system is maximized. We observe that these

optimized constellations significantly improve the system performance, when compared to conventional

constellations, and those proposed in the literature.

Next, we derive the MAP symbol detector for a MIMO system where each antenna at the transceiver

has its own oscillator. We propose three suboptimal, low-complexity algorithms for approximately im-

plementing the MAP symbol detector, which involve joint phase noise estimation and data detection. We

observe that the proposed techniques significantly outperform the other algorithms in prior works. Finally,

we study the impact of phase noise on the performance of a massive MIMO system, where we analyze

both uplink and downlink performances. Based on rigorous analyses of the achievable rates, we provide

interesting insights for the following question: how should oscillators be connected to the antennas at a

base station, which employs a large number of antennas?

Keywords: Oscillator, phase noise, maximum likelihood (ML) detection, maximum a posteriori (MAP)

detection, extended Kalman filter (EKF), constellations, symbol error probability, mutual information,

sum-product algorithm (SPA), factor graph, variational Bayesian method, multiple-input multiple-output

(MIMO), massive MIMO, random matrix theory, free probability.
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Chapter 1

Introduction

Since the landmark paper by Shannon [1], substantial research has been done in order to design commu-

nications systems that operate close to the ultimate performance limit, i.e., the channel capacity, with an

arbitrary small probability of error. Particularly in single-input single-output (SISO) and multiple-input

multiple-output (MIMO) wireless systems, much of these efforts have been based on several idealized

assumptions like perfect channel state information (CSI), perfect synchronization, ideal hardware, un-

tethered implementation complexity, and much more.

As a result of the idealized assumptions, there is a significant gap between the performance realized

in state-of-the-art communication systems, and that promised by theory. A major contributor to this

performance gap are the impairments due to non-ideal hardware components used in communication

transceivers [2]. In particular, erroneous CSI is a substantial source of performance loss—about 2− 3 dB

loss is incurred even with the best CSI estimates in LTE-A, and upto 14% throughput is lost owing to the

use of pilots. Hardware impairments adversely affect the CSI quality, and in particular, errors due to phase

noise caused by noisy oscillators used in the transceivers can result in significant performance degradation

[3]. Some of the other important hardware impairments that drastically affect the system performance

include amplifier nonlinearities, and the quantization noise caused by finite-resolution signal-converters

[4].

Oscillators are central to the design of wireless communication systems, and they should be accurate,

inexpensive, and compact. They provide the carrier signals required for passband transmission, and also

the reference clock signal for purposes like sampling and synchronization. All practical oscillators suf-

fer from phase noise. Thus, when information is conveyed from a source (transmitter) to a destination

(receiver), random time-varying phase variations manifest in the signal obtained at the receiver. Ran-

dom time-varying phase variations result in rotation of the transmitted information. Furthermore, phase

noise causes the effective channel phase to drift randomly between the time instant that a pilot symbol is

transmitted/received for CSI acquisition, and the instant that a data symbol is transmitted/received. Thus,

the actual effective channel phase during data transmission can become significantly different from the

CSI acquired. This is detrimental given that many communication systems are designed to operate syn-

chronously and coherently [2]. If the issues pertaining to phase noise are not appropriately addressed, it

can result in undesirably high error rates.

1.1 Aim and Flow of the Thesis

This thesis analyzes the impact of random phase noise on the performance of communication systems,

and investigates methods for compensating them. Broadly, we try to address the following questions in

the papers that are appended to this thesis:
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[a] In the presence of oscillator phase noise, how can we systematically derive low-complexity receiver

algorithms for SISO and MIMO systems that are (near) optimal in performance? This question is

addressed in Papers A and C [5, 6].

[b] How can we optimize signal constellations for transmission over a channel impaired by random

phase noise? This problem is investigated in Paper B [7].

[c] What is the impact of phase noise on the achievable rate of a massive MIMO system? How should

oscillators be connected to the antennas in a massive MIMO base station? These problems are

studied in Papers D and E [8, 9].

In order to comprehensively answer the aforementioned questions, it is imperative to understand the

source of phase noise, and its impact on the system performance. Therefore, in the introductory chapters

of this thesis, we will review prior works that are relevant to the following questions:

• What is the source of oscillator phase noise, and how is it mathematically modeled?

• What is the optimal receiver structure (i.e., the optimal detector) in the presence of random phase

noise, which minimizes the symbol error probability (SEP) performance in a communication sys-

tem? Furthermore, what are the bounds for estimating random phase noise, which is required in

order to minimize the SEP performance of a communication system?

• How can error correcting codes be designed in order to improve system performance when impaired

by phase noise?

• What is the capacity of channels impaired by phase noise?

1.1.1 Thesis Outline

The thesis is organized as follows. In Chapter 2, we review the phase noise generation mechanism in

the oscillators used in communication transceivers. Then, we discuss the system models that capture

the effects of phase noise in SISO, MIMO, and massive MIMO systems in Chapter 3. In Chapter 4, we

present an assortment of the mathematical tools and results, which are used in this thesis. Specifically, we

discuss about the application of Bayesian inference methods such as the sum-product algorithm (SPA),

and the variational Bayesian (VB) method. These methods are used for designing detectors for joint

phase noise estimation and data detection in SISO and MIMO systems. Furthermore, we discuss the

Shannon capacity of a SISO phase noise channel, and the basics of random matrix theory (RMT), which

are employed for analyzing massive MIMO systems. In Chapter 5, we review prior work related to the

design of communication systems that are impaired by phase noise. Finally, we summarize our papers,

and the main contributions in Chapter 6.



Chapter 2

Phase Noise in Oscillators

An oscillator is an autonomous electronic circuit, which ideally produces a periodic, oscillating electric

signal at a precise frequency. This frequency is commonly used to provide clock signals for timing and

frequency synchronization, and carrier signals for passband transmission and reception in communication

systems. Oscillators used in communication transceivers are imperfect, in that their output signals are

affected by random amplitude and phase instabilities. The signal at the output is written as

v(t) = (1 + a(t)) cos(2πfosct+ θ(t)), (2.1)

where fosc is the center frequency of the oscillator, a(t) represents the random amplitude variations, and

θ(t) denotes the random phase variations. In the time domain, the instabilities manifest as a random jitter

in the zero-crossings of the desired signal as shown in Fig. 2.1 (a). In the frequency domain, a spectrum of

noise around fosc appears as shown in Fig. 2.1 (b). The amplitude perturbations are typically attenuated

by a limiting mechanism in the oscillator circuitry, and hence can be ignored [10]. Phase noise in the

signal from the oscillators is the focus of this thesis (2.1). In the remainder of this chapter, we will briefly

review the various sources and models for phase noise from a noisy oscillator.

2.1 Noise Sources in an Oscillator

The phase of the oscillator signal is affected by a number of noise sources. Broadly speaking, these

sources can be categorized as short-term instabilities, deterministic instabilities and long-term instabilities

[11]. Short-term instabilities, which typically last for a few seconds, are mainly caused by the following

noise sources:

• Thermal Noise - This refers to the memoryless white noise caused by random motion of thermally

excited electrons, and its power is equal to kTB, where k is the Boltzman constant, T is the

absolute temperature in Kelvin, and B is the 3-dB noise bandwidth [11].

• Colored Noise - This is the spectral noise dominated by low-frequency components that mixes

with frequencies close to the center frequency of the oscillator [12]. The instantaneous fluctuations

resulting from this noise depends on its past, and therefore has memory. This noise source is

primarily dominated by the 1/f Noise or flicker noise.

The main deterministic sources of oscillator noise are the following [13]:

• Power supply feed-through and other interfering sources - Coupling can happen between the oscil-

lator signal and the other signals present in an oscillator circuitry. This can result in amplitude/phase

modulation of the output signal from the oscillator.
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Figure 2.1: Signal output of an oscillator: (a) Time-domain signal, (b) Power spread in the frequency-

domain.

• Spurious signals - Generally, an oscillator is designed to have just one feedback path for phase

correction, and to generate the desired output signal. However, several feedback paths may exist,

which may in turn result in spurious output signals.

Long term instabilities occur in oscillators due to aging of the constituent resonator material. Typi-

cally, these are slow variations that occur over hours, days, months, or even years, and are therefore less

critical. In the sequel, we present statistical models for the phase noise process for the various noise

sources in the oscillator.

2.2 Phase Noise Models

Consider a noisy oscillator operating at fosc, and affected by white noise and colored noise sources as

described before. Let θ̃(t) represent the sum of all these noise processes. Then, the phase noise at the

output signal of the oscillator is given as [14]

θ(t) ∝
∫ t

0

θ̃(t1) dt1, (2.2)

where θ̃(t1) is a Gaussian process by the central limit theorem. Furthermore, the variance of θ(t) in (2.2)

increases with time [14]. In other words, the phase noise in an oscillator is an accumulative Gaussian

process that results from integrating both the white and colored noise perturbations over time. The power

spectral density (PSD) of the phase noise process θ(t) in (2.2) is approximately [15]

Sθ(f) ∝
k2
f2

+
k3
f3

, (2.3)

where k2 and k3 are positive constants that depend on the quality of the oscillator. The PSD of a real

oscillator operating at fosc = 9.85 GHz is presented in Fig. 2.2, where 1/f2 and 1/f3 dependencies of

the oscillator PSD are evident.

Now consider the phase noise during a time interval τ , and define

∆(τ) , θ(t+ τ)− θ(t) ∝
∫ t+τ

t

θ̃(t1) dt1. (2.4)

Here ∆(τ) refers to the phase noise increment, which is described as the phase noise that has accumulated

over the time interval τ . The increment process in (2.4) is also called an innovation process. As shown

in [17], the increment process is stationary and Gaussian, and its variance is given as

σ2
∆(τ) =

∫ ∞

−∞

Sθ(f)4 sin (πfτ)
2
df. (2.5)
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Figure 2.2: PSD of a real oscillator from measurements [16].

When the cumulative noise process θ(t) in the oscillator is assumed to be only white and Gaussian,

then the phase noise θ(t) defined in (2.2) is a continuous Wiener process [14]. Furthermore, the variance

of the increment process in (2.4) reduces to

σ2
∆(τ) = 4π2Kwτ, (2.6)

where Kw is a constant, which depends on the cumulative white noise processes in the oscillator. For

the remainder of the thesis, we will assume that the oscillator has only white noise sources, and θ(t)
is a continuous Wiener process [14]. This assumption is widely used, and is reasonable since in many

practical oscillators, white noise sources are dominant when compared to colored sources.



Chapter 3

Communication System Models in the

Presence of Phase Noise

In this chapter, we mathematically model the effect of phase noise in a communication system, and,

we show the distortion caused by phase noise on the transmitted signal. To this end, first, we describe

the effect of phase noise on a SISO system by analyzing the received signal after matched filtering and

Nyquist sampling. Then, we briefly discuss the effect of phase noise on the information signal in the

presence of channel fading, and additive white Gaussian noise (AWGN). Finally, we review the basics

of MIMO and massive MIMO systems [18, 19], and discuss the impact of phase noise on these systems.

Within the scope of MIMO systems, we examine different oscillator setups at the transceiver, and describe

the effect of phase noise in the considered setup.

3.1 SISO System Model With Phase Noise

Consider a SISO link, and define the information signal c(t) as

c(t) =

L−1∑

l=0

clp(t− lTs), (3.1)

where Ts is the symbol period, p(·) is a bandlimited square root Nyquist pulse [20], and L is the number

of information symbols transmitted. The symbols ck in (3.1) are drawn from the signal constellation

M = {ci} ∀ i ∈ {1, ..., C}, where C is the size of the constellation. Using the signal from the oscillator

at the transmitter, c(t) is up-converted to obtain the passband information signal as [20]

cpb(t) = ℜ{
√
2c(t)ej(2πfosct+φ(t))}, (3.2)

where ℜ{·} denotes the real part of a complex number, and φ(t) is the Wiener phase noise process caused

by the oscillator at the transmitter.

The passband signal cpb(t) is transmitted from the source to the destination, and is further affected

by phase noise and AWGN at the receiver. Specifically, let rpb(t) denote the passband signal received at

the destination, where

rpb(t) = cpb(t) + ñpb(t), (3.3)
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and ñpb(t) is the passband AWGN process with double-sided noise PSD denoted by N0. The passband

signal rpb(t) is down-converted to base-band at the receiver as

r′(t) = ℜ{
√
2rpb(t)e

j(2πfosct+ϕ(t))}, (3.4)

where ϕ(t) is the phase noise caused by the oscillator at the receiver. The signal r′(t) is then low-pass

filtered to obtain r(t), which is written as

r(t) = c(t)ejθ(t) + ñ′(t), (3.5)

where θ(t) = φ(t) + ϕ(t), and ñ′(t) is an AWGN process with double-sided noise PSD N0, which

corresponds to the complex envelope of ñpb(t). The noise processes θ(t), ñ′(t) are independent of each

other, and also of c(t).
The received signal (3.5) is passed through a matched filter p∗(−t) and sampled at the Nyquist rate,

Ts, as

r(kTs) =

L−1∑

l=0

cl

∫ ∞

−∞

p(kTs − lTs − τ)p∗(−τ)e(θ(kTs)−τ)dτ

+

∫ ∞

−∞

ñ′(kTs − τ)p∗(−τ)dτ

= cke
jθ(kTs) + ñ(kTs), (3.6)

where k ∈ Z+, r(kTs) is the received signal sample, ñ(kTs) is the complex Gaussian noise sample with

E{ñ(kTs)} = 0, E{ñ(kTs)ñ
∗(kTs)} = N0, and θ(kTs) is the phase noise sample in the kth time instant.

Here, E denotes the expectation operator. The simplification in (3.6) results because p(t) is a square root

Nyquist pulse, and it is assumed that the phase noise variation is constant within Ts
1. The discrete phase

noise process θ(kTs) can be written using (2.2) and (2.4) as

θ(kTs) =

k∑

i=1

∫ iTs

(i−1)Ts

θ(t)dt =

k∑

i=1

∆(iTs)

= θ((k − 1)Ts) + ∆(kTs). (3.7)

With a slight change in notation, we rewrite the discrete phase noise process in (3.7) as

θk = θk−1 +∆k, (3.8)

where θ0 is a uniform random variable (RV), and ∆k ∼ N (0, σ2
∆) is the innovation of the Wiener phase

noise process. For the discrete Wiener process in (3.8), the innovation process is white and distributed as

∆k ∼ N (0, σ2
∆), where σ2

∆ is defined in (2.6) as σ2
∆ = 4π2KwTs.

Finally, we rewrite the discrete system model in (3.6) as

rk = cke
jθk + ñk. (3.9)

The discrete signal rk in (3.9) forms a sufficient statistics for the continuous time model in (3.5) [22],

under the assumption that the phase noise variation is constant within Ts. As we can see in (3.9), phase

noise results in the random rotation of the transmitted information symbol, ck. As an example, let us

now visualize in Fig. 3.1 the effect of the Gaussian phase error on a 16-QAM constellation, where the

signal-to-noise (SNR) per bit is 30 dB, and the innovation variance2 is set to σ2
∆ = 10−4 rad2.

1In [21], multi-sample receivers, where the received signal is sampled multiple times per symbol, have been considered upon

relaxing this assumption.
2The innovation variance can be computed from the oscillator specifications [8].
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Figure 3.1: 16-QAM constellation at SNR per bit of 30 dB, when (a) no phase noise is present, and

when (b) the signal is affected by the Wiener phase noise process with innovation variance

σ2
∆ = 1× 10−4 rad2.

For the remainder of the thesis, we will use the discrete model in (3.9) to represent an information

signal that is affected by phase noise and AWGN in a SISO system. In order to recover ck, receiver

algorithms have to be designed to estimate θk, followed by the appropriate compensation of rk , and the

detection of ck. But, before delving into the problem of receiver design for systems impaired by phase

noise, it is important to understand the effect of channel fading on ck, in addition to phase noise and

AWGN.

3.2 SISO System Model with Phase Noise and Channel Fading

In (3.9), the effect of channel fading on the received signal has not been taken into account. In practice,

the transmitted signal experiences channel fading, in addition to AWGN and phase noise. In particular,

we are concerned about the effect of time-varying channel fading on the received signal, which depends

on the relative velocity, v, between the transmitter and the receiver. In the presence of channel fading and

phase noise [23, 24], the discrete-time system model in (3.9) can be rewritten as

rk = hkcke
jθk + ñk. (3.10)

Here, hk denotes the channel gain between the transmitter and the receiver, and we assume that the

channel fading process is based on the Clarke’s model [24],

hk ∼ CN (0, 1), E{hkh
∗
l } = J0(2πfDTs|l − k|). (3.11)

In (3.11), J0 is the zero-order Bessel function of the first kind, and fD is the maximum Doppler frequency

given by

fD =
vfosc
c

, (3.12)

where c = 3× 108 [m/s]. From (2.6), (3.10), and (3.12), it can be seen that the relative severity of phase

noise and channel fading depends on fosc, bandwidth, v, and the quality of the oscillators used in the
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received signal, as a function of the relative velocity v. Note that the transition from one

region to another depends on the quality of the oscillator.
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Figure 3.3: Channel vs Phase Variations for σ2
∆ = 10−3 rad2 or σ∆ = 2◦ and fDTs = 10−2, (a)

Correlation, (b) Phase variation.

transceivers. As shown in Fig. 3.2, when v is small, we can expect phase noise to be more dominant.

However, as v increases, we expect the channel fading to be more dominant, and this scenario has been

extensively studied in the literature [25]. Between these extreme scenarios, we anticipate a region where

both phase noise and channel fading are equally dominant, which is discussed in Sec. 3.2.1.

In this thesis, we are particularly interested in the scenarios where the channel fading is less dominant

than phase noise, i.e., the channel varies much slower than the phase noise, and can be considered to

be quasi-static. These scenarios are elucidated in the following, based on which we motivate a system

model where the channel is known or estimated accurately. First, we present the phase noise process, the

channel phase process, and their respective autocorrelation functions for σ2
∆ ≈ 2◦ (σ2

∆ ≈ 103 rad−2),

fDTs = 10−2 in Fig. 3.3, and fDTs = 10−4 in Fig. 3.4. It can be seen in Fig. 3.3 that as the Doppler

spread increases, the channel phase varies much faster than the phase noise. However, in low Doppler

spread scenarios, the opposite becomes true. As can be seen in Fig. 3.4, phase noise tends to have

large variations from one sample to the next, and varies much faster than the channel phase process.

Furthermore, based on Fig. 3.4, it is possible to consider the channel process as a block fading process,

given the slow-varying nature of the channel—i.e., it is possible to define transmission blocks that are

small enough such that the channel is a blockwise constant.

Examples: Scenarios where the phase noise process changes much faster than the channel process
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Figure 3.5: Frame Structure from [28]

typically occurs in microwave backhaul networks. In these networks, the channel essentially remains

constant for a long period of time (quasi-static fading), and the phase noise is much more severe than the

channel. This is also similar to the case of line-of-sight (LoS) MIMO systems, where a full-rank channel

matrix is achieved by a careful placement of the antennas [26]. In this case, the channel is almost constant,

and the phase noise is a major impairment. Lastly, as the carrier frequency increases, it is expected that

the phase noise innovation variance will increase significantly, which will make the phase noise a limiting

factor in millimeter-wave systems [27]. △

Motivated by the aforementioned scenarios, in this thesis, we assume that the channel gains are es-

timated accurately at the receiver. In order to estimate the channel, a frame structure as in Fig. 3.5 is

employed. Based on a training sequence of Lt symbols, joint channel and phase noise estimation is per-

formed using a least-square (LS) estimator [28]. This is followed by the transmission of data symbols,

embedded with a pilot symbol every Lp data symbols that are used for phase noise estimation [28, p.

4793]. The estimates obtained from the LS estimator are used as the true channel realizations in the

phase noise estimation algorithm. Thus, we assume that hk in (3.10) is known, and we design algorithms

to estimate the phase noise, and further detect the transmitted data. This corresponds to the system model

used in Papers A, B, and C.
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3.2.1 Joint Models for Phase Noise and Channel Fading in SISO Systems

In this section, we take a detour by describing a system model where the transmitted signal is impaired

by both phase noise and channel fading, and both the processes are equally severe (see Fig. 3.2). That is,

here, both phase noise and the channel vary at comparable rates. In an attempt to simplify the problem

description and the analysis, based on (3.10) we combine the phase noise and the channel variations as

gk , hke
jθk . The joint channel-phase noise process gk can then be approximated as a 1st order auto-

regressive (AR) process,

gk ≈ ρgk−1 + vk, (3.13)

where vk ∼ CN (0, σ2
v). The variance of vk, which is denoted by σ2

v, is calculated as

σ2
v = E(gk − ρgk−1)(gk − ρgk−1)

∗ (3.14)

= E|gk|2 + ρ2E|gk−1|2 − 2ρEℜ{gkgk−1
∗} (3.15)

= 1 + ρ2 − 2ρEℜ{hkh
∗
k−1e

θk−θk−1} (3.16)

= 1 + ρ2 − 2ρJ0(2πfDTs)e
−

σ2
∆
2 . (3.17)

We now find ρ that minimizes σ2
v by differentiating (3.17) with respect to ρ, and setting the result to zero.

This yields

ρ = J0(2πfDTs)e
−

σ2
∆
2 (3.18)

=⇒ σ2
v = 1− ρ2. (3.19)

Based on (3.19), a joint channel-phase noise estimator can be designed using a Kalman Filter or the SPA.

However, the problem of designing receivers based on the joint model described is not considered in this

thesis, and is identified as future work in Chapter 6.

Till now, we focussed on a SISO system, which is considered in Papers A and B. Now, we shift our

focus to multiple-antenna systems, and discuss about the impact of phase noise in these systems.

3.3 MIMO Systems

An avenue for increasing the data rate in a communication link is to use multiple antennas both at the

transmitter and the receiver [29]. Such a system combined with transmission/reception techniques to

exploit the degrees of freedom provided by the multi-path fading channel is referred to as a MIMO system.

Beamforming is one technique that can be used along with multiple antennas in order to improve the

receive SNR (array gain), and reliability (diversity gain). However, this technique requires the availability

of reliable CSI. In the absence of reliable CSI, space-time coded transmission can be performed, which

offers a diversity gain at the receiver, but does not improve the array gain. Compared to SISO systems,

MIMO systems have higher spectral efficiency and diversity gain.

In the power-limited regime, the capacity of a MIMO system grows with the number of transmit

antennas, Nt, and the receive antennas, Nr, as C = min (Nt, Nr) log2(SNR) +O(1) [18], where SNR

denotes the SNR at the receiver. This is referred to as the spatial multiplexing gain. It is also possible

to achieve spatial multiplexing gains in an LoS MIMO system. This is realized by a careful geometric

placement of the antennas at the transmitter and the receiver.

3.3.1 MIMO System Model with Phase Noise

In general, the analysis and the design of a MIMO system is based on the assumption that the carrier phase

is perfectly known at the receiver, and that there is no phase noise in the system. However, in the presence
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(a) (b)

Figure 3.6: (a) The common oscillator setup, and (b) the distributed oscillator setup in point-to-point

MIMO system.

of noisy local oscillators, phase noise results in a time-varying phase difference between the transmitter

and the receiver. In MIMO systems, the antennas at the transmitter and the receiver can be connected to

the oscillators in different ways. Two setups are particularly interesting, and they are shown in Fig. 3.6.

In the first, a common oscillator is connected to all antennas at the transmitter/receiver (referred to as the

common oscillator (CO) setup). In the second, each antennas has its own oscillator (referred to as the

distributed oscillator (DO) setup). In the sequel, we will illustrate some aspects of the DO setup, which

makes it inherently different from the CO setup.

The system model for the DO setup is as follows3. Data is transmitted as frames of symbols, and the

channel between the transmit and receive antennas is assumed to be a constant over the length of a frame,

as in the SISO case. Each antenna is equipped with an independent free-running oscillator that causes

phase noise, which varies symbol by symbol, and much faster than the channel [30]. We assume that

for a given frame, the channel and phase noise are first jointly estimated as discussed in Section 3.2.1.

The training sequence is then followed by the transmission of data symbols, during which an autonomous

phase noise estimator is used to track the phase noise, followed by a data detector. The joint channel and

phase noise estimates obtained from the training sequence are used as the true channel values in the phase

noise estimation and the data detection algorithm.

Assuming square-root Nyquist pulses for transmission, and matched filtering followed by sampling

at symbol period Ts, the received signal in the kth time instant at the nth receive antenna is

r
(n)
k =

Nt∑

m=1

h
(m,n)
k c

(m)
k e(φ

(m)
k +ϕ

(n)
k ) + w

(n)
k

,

Nt∑

m=1

c
(m,n)
k eθ

(m,n)
k + w

(n)
k . (3.20)

In (3.20), c
(m)
k ∈ M is the symbol transmitted from the mth transmit antenna at the kth time instant, and

drawn equiprobably from a C-ary signal constellation set M, h
(m,n)
k represents the known (or estimated)

channel realization between the mth transmit and nth receive antenna, c
(m,n)
k , c

(m)
k h

(m,n)
k and w

(n)
k ∼

CN (0, N0) denotes the zero-mean AWGN at the nth receive antenna. The phase noise at time instant k in

the (m,n)th link is θ
(m,n)
k , φ

(m)
k +ϕ

(n)
k , where φ

(m)
k and ϕ

(n)
k denote the oscillator phase noise sample

at the mth transmit and the nth receive antennas, respectively.

Traditionally, for the system model in (3.20), MIMO receiver design has focused on developing algo-

rithms for joint channel estimation and data detection (we refer the readers to [25, 31] and the references

3The received signal model for the DO setup can be trivially reduced to that of the CO setup.
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therein). It is perceived that the phase noise can be handled by existing channel estimation-data detection

algorithms, since the phase noise can be treated to be part of the channel [23]. However, for the scenarios

discussed in 3.2.1, phase noise cannot be treated to be a part of the channel, and has to be compensated

separately. Thus, joint phase noise estimation and data detection algorithms have to be designed by as-

suming that the channel is known (estimated), and that the channel varies much slower than the phase

noise process.

For the DO setup, it is worth noting that the actual number of phase variables to be estimated can be

reduced to Nt +Nr − 1, as opposed to estimating NtNr variables (in NtNr links). This is made possible

by subtracting all the transmit phases by any one of the transmit phases and adding the same amount to

all the receive antenna phases. For instance, in (3.20) the phase states to be estimated are {θ(m,n)
k }, m =

1, . . . , Nt, n = 1, . . . , Nr, implying that there are NtNr phase noise variables to be estimated. However,

the transmit phase noise variables can be transformed to {0, φ(m)
k −φ

(1)
k }, m = 2, . . . , Nt, and the receive

phase noise variables can be changed to {ϕ(n)
k + φ

(1)
k }, n = 1, . . . , Nr. This transformation, in effect,

produces the same received signal model in (3.20), even though the transmit and receive phase states to

be estimated have been altered, and reduced to Nt +Nr − 1 states.

Furthermore, in contrast to a SISO system or a MIMO system with the CO setup, it is interesting to

see that connecting each of the antennas to a different oscillator gives rise to both phase distortions and

amplitude distortions in the received signal. This can be illustrated using a simple example:- for a 2 × 2
MIMO system, the received signal at receive antenna n = 1 at high SNR can be written as

r
(1)
k ≈ eθ

1,1
k h

(1,1)
k c

(1)
k + eθ

(2,1)
k h

(2,1)
k c

(2)
k ,

r
(1)
k r

(1)
k

∗
= |r(1)k |2 = c

(1)
k c

(1)
k

∗
h
(1,1)
k h

(1,1)
k

∗
+ c

(2)
k c

(2)
k h

(2,1)
k h

(2,1)
k

∗

+2ℜ{c(1)k c
(2)
k

∗
h
(1,1)
k h

(2,1)
k

∗
e(θ

(1,1)
k −θ

(2,1)
k )}. (3.21)

As evident from (3.21), the amplitude of the received signal depends on the phase difference between

the signals arriving at the receive antenna. In addition, it is shown that phase noise in the DO setup can

cause relatively more severe estimation errors in the capacity for a MIMO link. This results from the

incorrect calculation of the channel rank from channel sounding experiments [23]. Receiver algorithm

design for the CO setup is similar to that for a SISO system. However, in the DO setup, new algorithms

based on the maximum a posteriori (MAP) detection theory have to be derived. This forms the crux of

our contribution in Paper C [6].

The performance of point-to-point MIMO systems depends on the availability of a rich scattering en-

vironment. In the absence of such an environment, the system performance experiences severe degrada-

tion. This shortcoming is overcome by considering a multiuser (MU) MIMO system, which is explained

in the following section.

3.4 Multiuser MIMO and Massive MIMO Systems

The linear growth of the capacity with min (Nt, Nr) for a point-to-point MIMO link is achievable only

in the presence of sufficient scatterers—in the absence of scatterers, the channel matrix becomes rank-

deficient causing the spatial multiplexing gains to vanish. In a cellular system, it is possible to have

multiple antennas at the base station (BS), while the users may have a relatively lower number of antennas,

due to size and cost constraints. Therefore, the capacity of the point-to-point link is limited by the

number of antennas at the users. An alternative is to consider a multi-user MIMO (MU-MIMO) system

[32, 33], which uses MU transmission and reception methods. Here, spatial diversity that arises from the

geographical separation between the users, irrespective of the number of antennas at the user, helps to

realize the array and diversity gain achievable in a point-to-point MIMO system. Some key advantages

of a MU-MIMO system are as follows.
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• The MU multiplexing gain can be realized without multiple antennas at the users, thereby allowing

the development of small and cheap terminals.

• The system performance is more resilient to the limitations imposed by the propagation environ-

ment and channel correlations.

The benefits of a MU-MIMO system have triggered tremendous interest in the area of massive MIMO,

which is a MU-MIMO system, where the BS has a large number of antennas. This is discussed in the

sequel.

3.4.1 Potential and Challenges of Massive MIMO

Massive MIMO is considered to be a key enabler for the development of future broadband wireless

networks [18, 19]. It is envisioned that a massive MIMO system will comprise of BSs that use antenna

arrays consisting of several hundreds or thousands of antennas. These BSs are expected to serve multiple

user equipments (UEs) (with single antenna) in the same time-frequency resource blocks. That is, a

massive MIMO system is a MU-MIMO system with a large number of BS antennas. The cardinal aspect

of a massive MIMO system is that the channel vectors between the UEs and the BS antennas are pairwise

orthogonal, which is referred to as the favorable propagation (f.p.) condition. The f.p. condition arises

due to the spatial separation of the multiple UEs, and the fact that the channel vectors are asymptotically

long due to a large number of BS antennas. The main benefits of massive MIMO are as follows.

• Massive MIMO can significantly increase capacity. This arises from the MU multiplexing gain due

to MU transmission and reception methods.

• The radiated energy efficiency increases dramatically. This stems from the fact that as the antenna

aperture increases, energy can be focussed into small spatial regions.

• Massive MIMO can be built with inexpensive, low-power components. In effect, massive MIMO

is expected to reduce the constraints on the quality of the individual components, since the mas-

siveness will average out some of the impairments, which results from using nonideal hardware

components in the transceiver.

• Massive MIMO facilitates reduction in latency, and also simplifies the multiple access layer due to

the averaging of the small-scale fading channels (channel hardening).

• The f.p. condition facilitates the use of simple linear transmission and reception methods, which

have close-to-optimum performance.

Benefits of a massive MIMO system can be reaped only in the presence of reliable CSI at the BS for

both uplink and downlink transmissions. In conventional MIMO systems, the BS transmits pilot signals,

which are used by the UEs to estimate the CSI, and this information is fed back to the BS. Such a channel

training scheme is not feasible in a massive MIMO system given the large number of BS antennas and

the finite channel coherence time. Hence, it is expected that a massive MIMO system will benefit from

a time division duplex (TDD) mode by exploiting the reciprocity between the uplink and the downlink

channels [19]. In addition to acquiring reliable CSI, the other challenges in a massive MIMO are the

following [18, 19]:

• TDD operation relies on channel reciprocity. However, the difference in the transceiver chain at the

UE and the BS results in non-reciprocity between the uplink and downlink channels.
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Figure 3.7: The general oscillator (GO) setup, where the BS has Mosc free-running oscillators, and

M/Mosc ∈ Z
+ BS antennas are connected to each oscillator

• Ideally, the uplink pilot signals assigned to all the UEs in the network should be orthogonal. This

cannot be realized in practice, and thus non-orthogonal pilots are used across the cells in the net-

work. This results in pilot contamination, where the estimate of the channel between a UE and the

BS is contaminated by the non-orthogonal pilots transmitted concurrently by the other UEs.

• Massive MIMO is expected to be constructed using low-cost, and low-energy hardware [34]. This

is on the pretext of the law of large numbers, which is expected to average out noise due to imperfect

hardware. Some of the impairments include high levels of quantization noise that can get injected

into the transceiver due to (low power) low resolution A/D converters. Low-cost phase locked-

loops or free-running oscillators on each RF chain feeding an antenna at the BS can result in severe

phase noise impairment, which can significantly affect system performance.

3.4.2 Massive MIMO and Phase Noise

As discussed before, it is well understood that the performance of massive MIMO systems can be severely

limited by impairments arising from the non-ideal transceiver hardware components [34]. Implementing

transceiver algorithms mandates the availability of reliable CSI at the BS [18]. This is challenging as the

coherence time of the channels between the BS and its associated UEs is finite, and thus the BS is required

to update its CSI regularly. Furthermore, hardware impairments affect the CSI quality drastically, and the

problem exacerbates in the presence of phase noise due to noisy local oscillators [9, 34, 35].

In massive MIMO systems, phase noise causes random rotation of the transmitted data symbols.

Furthermore, as seen in [9, 35], phase noise causes the actual effective channel phase during the data

transmission period to become significantly different from that during the training period. This is because

the effective channel phase drifts randomly between the time instant that a pilot symbol is received and the

instant that a data symbol is transmitted/received. This is referred to as the channel-aging phenomenon

[36]. In this light, it becomes important to analyze the impact of phase noise on the performance of

massive MIMO systems.

In this thesis, we investigate the uplink and downlink performance of a massive MIMO system in

the presence of phase noise. In Paper D [8], we consider the downlink channel where we analyze linear

precoding schemes. We consider a single-cell massive MIMO system comprising of one BS with M
antennas serving K single-antenna UEs. We analyze a general oscillator (GO) setup, shown in Fig. 3.7,

where the BS has Mosc free-running oscillators, and M/Mosc ∈ Z+ BS antennas are connected to each
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oscillator. The CO and DO setups, which are discussed earlier, are special cases of this general setup.

In Paper E [9], we analyze the impact of phase noise due to noisy local oscillators for a massive MIMO

system that consists of a BS and a single-antenna UE, and orthogonal-time division multiplexing trans-

mission (OFDM) is considered [37]. We study the effect of channel-aging in the CO and the DO setups,

and we analyze the SNR on each subcarrier for M → ∞, when a maximum-ratio combining (MRC)

receiver is used. In order to conduct our analysis for both uplink and downlink transmissions, we use

tools from random matrix theory (RMT) and free probability [38]. Relevant mathematical preliminaries

are provided in Chapter 4.



Chapter 4

Tools for Analysis and Design of

Communication Systems with Phase

Noise

This chapter is an assortment of the various tools and results used in this thesis for analyzing and design-

ing communication systems in the presence of phase noise. First, we discuss about Bayesian inference

methods, and their application to derive the MAP symbol detector for the SISO phase noise channel.

This is followed by a brief description of the sum-product algorithn (SPA), and the variational Bayesian

technique. These tools are employed in Papers A, B, and C. Then, we discuss about results related to the

Shannon capacity of the SISO phase noise channel. Finally, we present a short tutorial on random matrix

theory (RMT). RMT is used to analyze the performance of massive MIMO systems in the presence of

phase noise in Papers D and E.

4.1 Bayesian Inference Methods and Their Applications to SISO

Systems with Phase Noise

Bayesian inference methods use Bayes’ rule to update the probability estimates of different hypotheses

in an experiment [39, 40]. Updating the probability estimate of a hypothesis is particularly important

when analyzing data. In communication systems, Bayesian inference methods are useful for analyzing

the noisy received signals. In particular, they can be used for estimating nuisance parameters, such as

phase noise or channel coefficients, and detecting the transmitted information [41, 42]. One of the early

works that studied the problem of optimal signal detector in a Bayesian setting is [43]. In this work,

a SISO channel with AWGN is considered, and the optimal signal detector is determined such that the

detection rate is maximized for a given false alarm rate (i.e., the chance for pure noise to be detected as

information). This approach has been extended to more realistic communication systems in [44]. In recent

times, the popularity of designing receivers based on the MAP theory has increased with the development

of powerful, low-complexity algorithm frameworks like the SPA, variational Bayesian method, graphical

method etc. [45].

In the following, we study the optimal receiver, which minimizes symbol error probability (SEP) for

uncoded data transmission in the presence of oscillator phase noise [46]. The optimal receiver is realized

by the MAP symbol detector. Furthermore, we study the basics of factor graphs (FGs), and the variational

Bayesian frameworks, which helps to realize the optimal receiver algorithm.
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4.1.1 MAP Symbol Detector

In this section, we discuss the MAP symbol detector derived in [46] for the SISO phase noise channel.

For the system model in (3.6), the MAP symbol detector is written as

ĉk = argmax
ck

∑

c\{ck}

P (c|r) (4.1)

∝ argmax
ck

∫

θk

P (ck)p(rk|ck, θk)p(θk|r̄k)dθk, (4.2)

where c = [c1, . . . , cL], r̄k = [r1, . . . , rk−1, rk+1, . . . , rL], L is the number of symbols transmitted, and

\ denotes a set-subtract.

In uncoded systems, the MAP detector that minimizes the SEP for uncoded data transmission deter-

mines the transmitted symbols based on (4.2). In this receiver, the symbols are detected based on the

a posteriori pdf of the phase noise process conditioned on r̄k. This is in contrast to many estimator-

detector structures studied in the literature [46], where the symbol detection is performed based on the

MAP estimate of the phase noise process. For the Wiener phase noise process, determining p(θk|r̄k) is

analytically intractable, which also makes the MAP detector intractable and unimplementable in prac-

tice [46]. Thus, it is imperative to make approximations of the MAP symbol detector. We consider two

Bayesian approaches for performing approximations, namely, the SPA based on factor graphs [45], and

the variational Bayesian algorithm [47].

4.1.2 Factor Graphs and the Sum Product Algorithm

In this section, we introduce FGs and the SPA by deriving the MAP symbol detector in (4.2) for the

system model in (3.6)1. Broadly, FGs belong to the family of graphical models, which are used to

represent factorization of multivariate functions—they can be used to visualize interaction between the

variables of a function. In order to represent a multivariate function in the form of an FG, we express

the actual (global) function as a product of simpler (local) functions, each of which depends only on a

subset of variables. The graphical representation of the factorized function yields a bipartite graph, which

expresses the dependencies between the variables, and the local functions. FGs combined with SPA can

be used for computing marginals of probability functions. In our problem setting, marginalization of the

phase noise process is an important step towards realizing the MAP symbol detector.

In order to derive the MAP detector using the SPA, we rewrite (4.1) as

ĉk = argmax
ck

∑

c\{ck}

P (c|r)

= argmax
ck

∑

c\{ck}

∫

θ

P (c, θ|r)dθ. (4.3)

Factorizing the integrand, we obtain

P (c, θ|r) ∝ P (c)p(θ|c)p(r|c, θ),

= P (θ0)
L∏

k=1

P (ck) p(θk|θk−1)︸ ︷︷ ︸
p∆(θk−θk−1)

p(rk|θk, ck). (4.4)

1For a basic tutorial on FGs and the sum product algorithm, we refer the readers to [45].
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Figure 4.1: Factor Graph and the SPA messages based on (4.4)

To factorize the function in (4.4) we exploit the fact that θk is a discrete Wiener process as in (3.8). The

FG associated with the global function in (4.4) is shown in Fig. 4.1. The messages on the graph are

P
(c)
d (ck) = P (ck) (4.5)

p
(θ)
d (θk) =

∑

ck

P
(c)
d (ck)p(rk|ck, θk) (4.6)

p
(θ)
f (θk) =

∫

θk−1

p
(θ)
f (θk−1)p

(θ)
d (θk−1) · p∆(θk − θk−1)dθk−1 (4.7)

p
(θ)
b (θk) =

∫

θk+1

p
(θ)
b (θk+1)p

(θ)
d (θk+1)p∆(θk+1 − θk)dθk+1 (4.8)

P (c)
u (ck) =

∫

θk

p
(θ)
f (θk)p

(θ)
b (θk)p(rk|ck, θk)dθk. (4.9)

As can be seen in Fig. 4.1, P
(c)
d (ck) in (4.5) is the message from variable node ck towards the factor node

p(rk|θk, ck). In (4.6), p
(θ)
d (θk) is the message from the factor node p(rk|θk, ck) towards the variable node

θk. p
(θ)
f (θk) in (4.7) and p

(θ)
b (θk) in (4.8) are the messages from the factor nodes p∆(θk − θk−1) and

p∆(θk+1 − θk), respectively, towards θk. Finally, P
(c)
u (ck) in (4.9) is the message from the factor node

p(rk|θk, ck) towards the variable node ck.

Note that the FG in Fig. 4.1 is a tree, and thus applying the SPA on this graph gives the exact MAP

symbol detector (4.2). Hence, p
(θ)
b (θk)p

(θ)
f (θk) is the a posteriori pdf p(θk|r̄k) given in (4.2). Thus, the
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detector in (4.2) can also be expressed as

ĉk = argmax
ck

P (c)
u (ck)P

(c)
d (ck)

∝ argmax
ck

P (c)
u (ck). (4.10)

Here, P
(c)
d (ck) (which is also equal to P (ck)) is uniform for uncoded transmission2. The messages in

(4.5)-(4.9) form the core for the SPA-based implementation of the MAP detector. However, the imple-

mentation of the exact SPA is impractical because it involves the computation of the continuous pdfs of θk
in (4.5)-(4.8), which are analytically intractable. The intractability of the exact MAP symbol detector in

(4.2) and (4.10) motivates the need to explore practical, low complexity receiver algorithms based on the

cannonical distribution approach in the SPA [49]. This approach involves constraining the messages on

the FG to a specific family of pdfs, which can compactly and completely be described by a finite number

of parameters. Thus, the task of computing the exact pdf is reduced to computing the parameters of the

pdf. For instance, when the messages on the FG are constrained to belong to the exponential family of

pdfs, then it suffices to determine the mean and variance to completely describe the pdf.

4.1.3 Variational Bayesian Framework

An alternative for realizing the optimal receiver in (4.2) is to use an algorithm that iteratively performs

joint Bayesian estimation and symbol a posteriori probability computation. This can be realized by ap-

plying the variational Bayesian (VB) technique, which has been widely used by the communication en-

gineering community for deriving efficient receiver algorithms, when the received signal is corrupted by

random nuisance parameters [50]. A tutorial on the basics of this framework is available in [47], and in

the sequel, we demonstrate the application of the VB framework for approximating the receiver in (4.2).

We first compute the log of the a prior probability of r as

log p(r) = log
∑

c

∫

θ

p(c, θ, r)dθ

= log
∑

c

∫

θ

Q(c, θ)
p(c, θ, r)

Q(c, θ)
dθ

≥
∑

c

∫

θ

Q(c, θ) log
p(c, θ, r)

Q(c, θ)
dθ. (4.11)

When the variational distribution Q(c, θ) is set to P (c, θ|r), the lower bound in (4.11) is achieved.

However, the algorithm is restricted to search over a family of factorized distributions of the form:

Q(c, θ) = Q(c, θ) = qc(c)qθ(θ). This corresponds to assuming that c and θ are independent of each

other given r. Hence the lower bound is given by

logP (r) ≥
∑

c

∫

θ

qc(c)qθ(θ) log
P (c, θ, r)

qc(c)qθ(θ)
dθ,

, H(qc(c), qθ(θ), r). (4.12)

Here, H(qc(c), qθ(θ), r) is referred to as the inverse Gibbs or variational free energy, whose maxi-

mization results in the minimization of the Kullback-Leibler (KL) divergence measure between qc(c)qθ(θ)

2In coded systems, the same messages in (4.5)-(4.9) will be used, but P
(c)
d (ck) is not the a priori pmf P (ck), but rather the

extrinsic symbol pmf provided by the decoder. Also, the message P
(c)
u (ck) in (4.9) is used for computing the bit log-likelihood

ratios (LLRs) for soft decoding [5, 48].
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and P (c, θ|r). In order to determine the factorized free distributions qc(c) and qθ(θ) that maximize H, a

coordinate ascent algorithm is used that alternatingly maximizes over one free distribution while keeping

the other fixed. Based on the functional derivatives of H with respect to the free distributions, the update

equations are given as

qθ(θ) ∝ P (θ)e
∑

c
qc(c) lnP (r|c,θ), (4.13)

qc(c) ∝ P (c)e
∫
θ
qθ(θ) lnP (r|c,θ)dθ.

The coordinate ascent algorithm converges to a fixed point [47], and in general global optimality is not

guaranteed.

4.2 Capacity of Phase Noise Channels

A fundamental way to analyze the impact of random phase noise on the performance of a communication

system is to determine the Shannon capacity. In [51], bounds for the capacity for a SISO system with

uniform phase noise are derived. It is also shown that the capacity achieving pdf is discrete with infinite

mass points. A similar conjecture is presented for partially coherent channels. In [52], the capacity

achieving input pdf for partially coherent channels is found to be circularly symmetric, but not necessarily

Gaussian distributed. In [53], upper bounds on the capacity for phase noise channels with and without

memory are derived. Specifically, for the SISO channel given in (3.10), an upper bound for the achievable

rate is given as

CPN = min{C1,PN, C2,PN}, (4.14)

where

C1,PN ≤ log2

(
1 +

|h|2
σ2
w

)
(4.15)

C2,PN ≤ 1

2
log2

(
2π|h|2
σ2
w

)
− 1

2
log2

(
2πeτ(σ2

ϕ + δpnσ
2
φ)
)

(4.16)

In (4.16), the second term represents the differential entropy of the phase noise process, ϕk + φk. The

result in (4.16) holds under the assumption that the phase-noise process is stationary, and has a finite

differential-entropy rate. The results in (4.14), (4.15) and (4.16) are used in Papers D and E in order

to analyze the performance of the massive MIMO systems. For a survey of capacity results relevant to

MIMO systems, refer to [54].

4.3 Random Matrix Theory and Asymptotic Results

RMT is widely applied to problems in physics, statistics, data analysis and engineering [38, 55]. In the

last few years, a large body of work has emerged in the field of communications and information theory

that have not only employed RMT results, but also have made fundamental contributions to RMT [56].

Tools from RMT have been particularly attractive to researchers for analyzing the performance of massive

MIMO systems, where typically the analysis involves random matrices of large dimensions.

Consider a random matrix denoted by H of size M × K , whose entries are Gaussian i.i.d. RVs.

Specifically, the element in the ith row and the jth column in H is denoted by H|i,j ∼ CN (0, 1
M ). In

a massive MIMO system, H can represent the small-scale Rayleigh fading channel matrix between K
users and M BS antennas. As the number of rows and columns in H grows, i.e., M,K → ∞, while

M/K = β, the empirical cumulative distribution function of the eigenvalues (also called the spectrum) of
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H shows interesting convergence properties. Specifically, the spectrum of H and its functionals become

deterministic in the asymptotic limit. This observation leads to the central notion in asymptotic random

matrix theory that the empirical distribution of the moments of the eigenvalues of H and its functionals

become deterministic, and this is independent of the distribution of the matrix entries. Specifically, the

spectrum of HHH converges almost surely to a non-random distribution function called the Marchenko-

Pastur law. These results are particularly useful given that eigenvalues of random matrices are used to

characterize the performance of communication links (for e.g., MIMO links). Note that the nth moment

of the eigenvalues of H is calculated as

1

M

M∑

m=1

λn
m =

1

M
tr{Hn}, (4.17)

where λm denotes an eigenvalue of H . This implies that the normalized trace of the functionals of

H , 1
M tr{Hn}, becomes deterministic in the asymptotic limit. Even though the convergence of the

spectrum is based on the assumption that both M and K become asymptotically large, this result is a

good approximation even for small dimensions of H [57].

4.3.1 Stieltjes Transform

For a wide class of random matrices, the asymptotic eigenvalue distributions are either explicitly known or

can be calculated numerically. However, the problem of determining an unknown probability distribution

given its moments is addressed using the Stieltjes Transform.

DEFINITION 1 Stieltjes Transform [56, Section 2.2]: Let X be a real-valued RV with distribution F .

Then the Stieltjes transform m(z) of F , for z ∈ C such that ℑ{z} > 0, is defined as

m(z) = E

[
1

X − z

]
=

∫ ∞

−∞

1

x− z
dF (x) (4.18)

= −1

z

∞∑

n=1

E[Xn]

zn
. (4.19)

The pdf of X , p(x), can be obtained by invoking the Stieltjes inversion formula, which is given as

p(x) = lim
ω→0+

1

π
m(x+ ω). (4.20)

Based on (4.17), the Stieltjes transform can be viewed as the moment generating function of a random

Hermitian matrix whose empirical eigenvalue distribution is p(X).

4.3.2 Free Probability and Asymptotic Freeness

An important concept in asymptotic RMT analysis is that of non-commutative free probability theory [55,

Chap. 22]. In free probability theory, a random matrix is viewed as a linear random operator, which is

non-commutative, and the notion of statistical independence of random variables is overidden by that of

“free independence” of random matrices. Consider the RVs, X and Y , and the expectation operator E.

Then,

E(XY )m = EXmY m = EXm
EY m, (4.21)
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if x and y are statistically independent of each other. Now consider the random matrices (operators) X

and Y of size M ×M , and the expectation operator for random matrices given as

1

M
tr(XY )m 6= 1

M
tr(X)m(Y )m 6= 1

M
tr(X)m

1

M
tr(Y )m, (4.22)

even if the entries of X and Y are statistically independent of each other, for M → ∞. This is due

to the non-commutative nature of matrix multiplication. In order to analyze the expectation operations

in (4.22), free probability theory and the concept of free asymptotic independence have to be employed.

Denote the expectation operator as Tr(·) = 1
M tr(·). Then, the matrices X and Y are asymptotically

freely independent from each other if

Tr ((PX(X)− TrPX(X))(PY (Y )− TrPY (Y )))
M→∞−→ 0 (4.23)

where PX(X) and PY (Y ) are polynomials in X and Y . In this thesis, we use free probability in order

to simplify the algebra involving random matrices. Of particular interest is Lemma 1, which is given as

follows.

LEMMA 1 Let X,Y ∈ CM×M be freely independent random matrices with uniformly bounded spectral

norm for all M [38, Page 207]. Further, let all the moments of the entries of X ,Y be finite, then,

TrXY − TrXTrY
M→∞−→ 0. (4.24)

In general, establishing free independence between random matrices is a non trivial problem. How-

ever, several interesting random matrices have been shown to be asymptotically free under certain condi-

tions [56]. In Paper E, we use the following lemma to prove prove independence.

LEMMA 2 Let X,Y ∈ CM×M be random matrices such that their asymptotic spectrum exists for M →
∞ [38, Page 207]; the entries of X and Y are statistically independent, and either X or Y are unitarily

invariant. Then X and Y are almost surely asymptotically free.



Chapter 5

System Design in the Presence of Phase

Noise

Most certainly, one way of addressing the phase noise problem is to carefully design oscillators such that

they have low and controlled levels of random phase variations. Such oscillators, in turn, can have higher

power consumption, and can be costly. Given the ubiquity of wireless devices, and the exponential growth

in their use, oscillator design has to be optimized in terms of cost and power. This renders the use of noisy

oscillators inevitable. Therefore, it becomes important to appropriately design transceiver algorithms, and

compensate for the effects of phase noise. In the sequel, we review prior work on designing systems in

order to handle phase noise.

5.1 Design Approaches for SISO Systems with Phase Noise

The problem of designing wireless communication systems in the presence of phase noise has been in-

vestigated for decades. The main design approaches to this problem can be summarized as follows.

[a] Design phase noise trackers that track or estimate the phase noise process in the received signals,

and compensate for its effects, followed by coherent detection of the transmitted symbols [3, 58].

[b] Design joint phase-estimation data-detection algorithms for compensating phase noise and detect-

ing data [59].

[c] Design constellations that are optimized for the phase noise channel [60].

[d] Design error correcting codes that incorporate the effect of phase noise [61].

5.1.1 Phase Noise Tracking

We will first briefly review some methods for phase noise tracking/estimation used in communication

receivers by considering the following question: How can phase noise estimators be designed such that

optimal error rate performance can be achieved?

Trackers are used to track or estimate the phase noise based on the received samples, which are

obtained after matched filtering and sampling of r(t). The phase noise estimate is then used to compensate
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Figure 5.1: PLL Tracking

the received samples as

rk , rke
−jθ̂k = cke

φk + nk (5.1)

φk , θk − θ̂k, nk , ñke
−θ̂k . (5.2)

Here, θ̂k is the phase noise estimate, and φk is the residual phase error. Following this compensation,

coherent detection of the transmitted symbols is performed by treating φk to be zero.

The most widely used tracker is the phase locked loop (PLL) [3, 58], which is shown in Fig. 5.1. Its

operation can be summarized as follows: Let θ̂k be the tracked phase from a loop filter and θk be the

phase noise in the received signal, which are the inputs to the phase discriminator. Let φk , θk − θ̂k
denote the phase error process. This error signal is then fed to the loop filter, which produces θ̂k, such

that φk is minimized. When a PLL initially seeks to track the phase of the incoming signal, φk is large,

which steadily decreases with time. This transient operating mode is called the acquisition mode of the

PLL. When φk is small, the PLL is said to be locked to the incoming signal. Another tracker that is

commonly used is the extended Kalman Filter (EKF) [50, 62], which has been shown to have a structure

and performance similar to that of a PLL (refer to [63, 64]).

The performance of trackers can be evaluated by comparing their mean square error (MSE) with a

lower bound on the phase noise estimation MSE. One way of characterizing the MSE lower bound is

to evaluate the Bayesian Cramer-Rao bound (CRB) [65] for the phase noise model in (3.8). Particle

filters [66], extended Kalman filters or smoothers, the MAP estimation algorithms in [64, 67] have been

shown to achieve the CRB performance. Note that the closed-form analytical forms of the CRB are not

available in general for the model in (3.8), when the data is unknown, or when the estimator has limited

a priori information about the transmitted data [65].

In recent times, there has been significant efforts towards improving the performance of coded systems

(like turbo codes) in the presence of phase noise. To address this problem, the per-survivor processing

(PSP) algorithm proposed in [68] has been widely used. Here, phase noise estimation is first performed

using an estimator like the PLL followed by sequence detection (using Viterbi or the BCJR algorithm)

[69]. Another widely used technique for this problem is called turbo synchronization [70], where phase

noise estimation is performed using the expectation-maximization (EM) algorithm. The phase estimates

are then used to compute the a posteriori bit and symbol probabilities using algorithms like the BCJR

[71–73]. In both PSP and turbo synchronization methods, the phase noise estimates obtained from the

estimation algorithm are treated as the true value of phase noise. For MIMO systems with phase noise,

similar design approaches have been reported in [28, 74, 75]. Note that the traditional approach can be
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∆ = 10−2rad2.

viewed as a special case of the approach where algorithms for phase-estimation data-detection are jointly

designed for compensating phase noise.

Phase Error Models

In the context of phase noise tracking, it is important to study models for the residual phase error process

φk. So far, we considered receiver algorithms where φk is treated to be zero while performing coherent

detection on the compensated received signals [71–73]. However, φk is an RV, and its statistics can be

used for designing joint phase-estimation data-detection algorithms, which can significantly improve the

error rate performance [60]. It is usually assumed that φk resulting from the estimator/tracker is Tikhonov

distributed [76]. The Tikhonov or Von Mises pdf with circular mean 0 and variance 1/ρ is given as

p(φk) =
eρ cos(φk)

2πI0(ρ)
, φk ∈ [−π, π], (5.3)

This pdf is approximately Gaussian for large values of ρ, and is also used to model the phase error after

compensation using an estimator/tracker. Another pdf that is used to model φk is the wrapped Gaussian

distribution [77],

p(φk) =
1√
2πσ2

p

∑

l∈Z

e
−(φk−2lπ)2

2σ2
p , φk ∈ [−π, π], (5.4)

where σ2
p denotes the variance. As an example, we present the empirical phase error in Fig. 5.2, which is

approximately Gaussian or Tikhonov distributed for a given symbol amplitude.

5.1.2 Joint Phase-Estimation Data-Detection Algorithms

We now review prior work, which addresses the following question: When the transmitted information

signal is affected by AWGN and phase noise, how can a low-complexity joint phase noise estimation
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data-detection algorithms be designed such that (near) optimal system performance is achieved?

The problem of designing receiver algorithms that perform joint phase noise estimation and data

detection in SISO links has been extensively studied, e.g., refer to [3, 58] and references therein. Some of

the early works addressing this problem is [78, 79], which proposes simultaneous maximum-likelihood

(ML) estimation of the data symbols, the carrier phase and the timing offset. In [80], MAP estimation

based on the Viterbi algorithm is proposed for joint estimation of phase noise and data. The phase noise

model considered in this work is similar to the random walk model in (3.8), but the innovations ∆k are

restricted to be discrete binary jumps. This shortcoming is addressed in [81], where the discrete Wiener

process (3.8) is used. Specifically, the phase noise RV is assumed to be discrete in the range [−π, π],
and the Viterbi algorithm is used to determine the MAP phase noise and symbol estimates. A similar

approach using the BCJR algorithm is proposed in [82]. The algorithms in [81, 82] are considered to be

approximate implementations of the MAP symbol detector in this thesis, and are used as a benchmark

when comparing the performance of various receiver algorithms. An analytical treatise of the MAP

symbol detector for the system model in (3.9) can be found in [46], where it is shown that the optimal

detector has a separable estimator-detector structure. The received signals are first used to compute the

a posteriori pdf of phase noise. This phase noise pdf is then used for performing symbol detection. The

problem of computing the a posteriori pdf of phase noise based on the received signals is shown to be

intractable in general.

In order to derive the MAP symbol detector, it is possible to restrict the a posteriori phase noise pdf

to a canonical family of distributions. This approach is reported in a much earlier work by Foschini et

al. [60]. In their work, it is assumed that the phase of the received signal is tracked and compensated

using a PLL. Then the a posteriori phase error pdf is approximated as a Tikhonov pdf [76], and is used to

derive the ML detector. In a more recent effort, a similar detector is derived in [83] for the same phase

noise model.

When the transmitted symbols are affected by random phase noise, methods based on the SPA [45]

have been used for designing receiver algorithms. A joint phase-estimator data-detector based on the SPA,

which is similar to an extended Kalman smoother is proposed in [62, 84]. In [59], the messages used in the

SPA are restricted to be Tikhonov distributed. An extension of this approach is presented in [85] in order

to handle both phase noise and a constant frequency offset. As a low complexity alternative to SPA, [50]

employs the variational Bayesian framework. In [69], an algorithm based on the BCJR algorithm with

forward and backward recursions is proposed for phase noise estimation and data detection. Applications

of Monte Carlo sampling methods for joint phase noise estimation and data detection is investigated

in [86] for both coded and uncoded systems.

Let us now see how the various low-complexity estimator-detectors proposed in prior work perform

in terms of SEP with respect to the MAP algorithm [81, 82]. We consider uncoded data transmission of

symbols from a 16-QAM constellation. The phase noise model used is the discrete Wiener phase noise

model in (3.8) with σ2
∆ = 10−2 rad2. The comparison is shown in Fig. 5.3, where we observe that

the gap in performance between the various proposed algorithms and the MAP is significant. The gap

in performance motivates the need to design new low-complexity algorithms for performing joint phase

noise estimation and data detection for severely strong phase noise scenarios, particularly considering

high order constellations. This is investigated in our works in Paper A [5, 48], which is appended to

this thesis. Furthermore, a low-complexity phase noise estimator and data detector based on the SPA is

proposed in Paper C for a MIMO system [6], which is impaired by phase noise as shown in Fig. 3.6(b).

5.1.3 Constellation Design

Another approach for improving system performance when affected by phase noise is to optimize the

signal constellation that is used for transmission over the wireless link. In this regard, we summarize

prior work that addresses the following question: How can two-dimensional signal constellations be
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designed for channels with phase noise, such that a target objective function like error rate performance

or the mutual information (MI) is optimized?

The problem of arrangingM points in a two-dimensional plane such that a target objective function is

optimized is a classical problem in communication theory [87]. For decades, this problem has been stud-

ied for different channel conditions and communication models [88–91]. SEP and mutual information

(MI) are some of the performance measures that have been used as the target objective function. Constel-

lations that minimize SEP for the phase noise channel are desirable in uncoded systems. Also, there are

latency limited systems, and applications such as coordination of base stations in 4G cellular networks,

and feedback loops in control systems that are preferably uncoded. In coded systems, some levels of

processing such as clock recovery, forward error correcting (FEC) frame preamble decoding, and adap-

tive equalization depend on the SEP performance. Constellations that maximize the MI provide an upper

bound on the achievable rate for any decoder [92], and is particularly relevant for symbol-based decoders

such as in trellis-coded modulation or LDPC-based nonbinary coded schemes, and for systems that em-

ploy binary capacity-achieving codes like multilevel codes [93]. By properly designing non-binary codes

to match the optimized constellations, or using binary multilevel codes, the MI of the constellation can

be approached.

The design of constellations for wireless systems impaired by phase noise is addressed by Foschini

et al. in [60]. In their work, an approximate MAP detector and its SEP are derived for the phase noise

channel in (3.9). Then, constellations that minimize the SEP are obtained using a heuristic algorithm

in [87]. In [94], constellations robust to phase noise are constructed heuristically such that they have low

decoding complexity or simple decision regions (thus enabling quadrant or threshold-based decoding).

In [95], the approximate SEP for a given phase offset in (3.9) is derived, which is minimized for designing

constellations. In [96], a simple method for constructing spiral-shaped constellations is presented, and

their performances are compared to that of the conventional constellations in the presence of memoryless

phase noise. In a more recent effort [97], the problem of designing constellations that maximize the MI

of the memoryless phase noise channel is addressed. In their work, first the (approximate) MI for the
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channel is derived, and constellations are optimized by maximizing the so derived MI using the simulated

annealing algorithm.

Prior works have demonstrated that constellations designed for phase noise substantially outperform

conventional constellations in terms of SEP and MI. However, in most prior work (except [60] and [97])

ad-hoc methods have been used. There has been very limited effort to address this problem based on

rigorous optimization formulations. These factors motivate the need to revisit the problem of constellation

design based on optimization formulations that use target objective functions like SEP or MI. This is the

theme of our work in [7] that is appended to this thesis as Paper B. Using this approach, we demonstrate

that the optimized constellations obtained outperform the conventional constellations, and those proposed

in the literature.

5.1.4 Coding

Designing error correcting codes that achieve the channel capacity with arbitrarily small probability of

error at affordable complexity is the holy grail for researchers in coding theory [98]. Though the problem

of designing codes that are resilient to phase noise is not directly addressed in this thesis, it is relevant

to shed light on prior work that has addressed the following question: How can capacity-achieving error

correcting codes be designed for systems impaired by phase noise?

Designing error correcting codes such that they are amenable for phase noise scenarios is a challeng-

ing problem. In [83], the impact of phase noise on the error rate performance of standard error correcting

codes is investigated. It is concluded that standard LDPC and turbo codes are effective in reducing the

performance degradation incurred by phase noise. It is also noted that trellis coded modulation schemes

experience significant performance degradation in the presence of strong phase noise. The design of codes

for the phase noise channel is studied in [99–101]. These designs aided by phase noise estimation have

been demonstrated to achieve good performance for channels with strong phase noise. In [102], LDPC

codes are designed by dividing the codewords into sub-blocks such that the variation of phase noise over

each sub-block is small. Phase estimates are then used to correct each sub-block, and phase ambiguity

checks are applied using local check nodes. In [61], repeat-accumulate (RA) codes are designed where

the phase ambiguity is resolved through differential encoding.



Chapter 6

Contributions and Future Directions

In this chapter, we summarize the papers that are appended to this thesis, and outline our main contribu-

tions.

[a] Paper A: Soft metrics and their Performance Analysis for Optimal Data Detection in the

Presence of Strong Oscillator Phase Noise

In this paper, we address the classical problem of deriving an approximate MAP detector in the

presence of random phase noise. We consider a system where the received signal that is impaired

by phase noise is first compensated by a tracker, and then the resulting phase error pdf is assumed

to be Gaussian distributed in order to derive an approximation of the MAP detector in [46]. Then,

for the so derived detector, we analytically characterize the performance in terms of symbol error

probability. Finally, by simulations, we show that the detector developed in our work outperforms

those available in the literature for the considered signal constellations, phase noise scenarios and

SNR values.

[b] Paper B: Constellation Optimization in the Presence of Strong Phase Noise

In this paper, we address the problem of optimizing signal constellations for strong phase noise.

The problem is investigated by considering different optimization formulations, which provide an

analytical framework for constellation design. The considered formulations optimize different ob-

jective functions such as the symbol error probability for the detector developed in Paper A, and the

mutual information of the memoryless phase noise channel. We show that the optimized constella-

tions significantly outperform conventional constellations and those proposed in the literature.

[c] Paper C: Algorithms for Joint Phase Estimation and Decoding for MIMO Systems in the

Presence of Phase Noise

In this work, we derive the MAP symbol detector for the MIMO system in Fig. 3.6(b), where each

transceiver antenna has its own oscillator. As in SISO systems [46], we observe that the compu-

tation of the optimum receiver is an analytically intractable problem, and is unimplementable in

practice. In this light, we propose three suboptimal, low-complexity algorithms for approximately

implementing the MAP symbol detector. These algorithms involve joint phase noise estimation and

data detection. We obtain the first algorithm by means of the SPA, where we use the multivariate

Tikhonov canonical distribution approach [59]. In our next algorithm, we derive an approximate

MAP detector based on the smoother-detector framework developed in Paper A. The third algo-

rithm is derived based on the variational Bayesian framework [50]. By simulations, we observe

that the proposed techniques significantly outperform the other algorithms from prior works.



6.1 FUTURE WORK 31

[d] Paper D: Linear Precoding in the Presence of Phase Noise in Massive MIMO Systems: Design

and Performance Analysis

In this work, we study the impact of phase noise on the downlink performance of a MU-massive-

MIMO system, where the base station employs a large number of transmit antennas M . We con-

sider a setup as illustrated in Fig. 3.7, where the BS employs Mosc free-running oscillators, and

M/Mosc antennas are connected to each oscillator. For this setup, we analyze the impact of phase

noise on the performance of the zero-forcing (ZF), regularized ZF, and matched filter precoders

when M and the number of users K are asymptotically large, while M/K = β is a bounded con-

stant. We analytically show that the impact of phase noise on the SINR can be quantified as an

effective reduction in the quality of the CSI available at the BS when compared to a system without

phase noise. The main result of this paper is that, for all the considered precoders, when β is small,

the performance of the CO setup is superior to that of the DO setup. However, the opposite is true

when β is large and the SNR at the users is low.

[e] Paper E: On the Impact of Oscillator Phase Noise in Uplink Transmission for Massive MIMO-

OFDM Systems

In this work, we study the effect of oscillator phase noise on the uplink performance of a massive

MIMO system, where a base station with a large number of antennas serves a single-antenna user.

Specifically, we consider an OFDM-based uplink transmission, and analyze the effect of channel

aging due to phase noise on the throughput performance for the CO and the DO setups. We derive

the instantaneous SNR on each subcarrier, and analyze the ergodic capacity when a linear receiver

is used. We discuss the averaging effects on phase noise in both setups, and finally, we propose a

phase noise tracking algorithm based on Kalman filtering that mitigates the effect of channel aging

due to phase noise on the system performance.

6.1 Future Work

Ongoing research and some possible topics for future research are described in the following:

• In the area of massive MIMO and phase noise, some of the relevant and interesting problems are:

– Extend our work in Paper D to analyze the uplink performance of a MU-massive-MIMO

system considering different oscillator setups at the base station.

– Analyze the performance of hybrid precoders in a MU-massive-MIMO system in the presence

of phase noise, with reduced RF chains and finite signal-conversion resolution.

– Analyze the massive MIMO system performance considering amplifier nonlinearities and

phase noise.

– Develop blind, low-complexity phase noise estimation algorithms for massive MIMO sys-

tems.

– Analyze the energy efficiency of a massive MIMO system considering imperfect oscillators

(and the different setups), reduced RF chains, finite signal-converter resolution, and nonlinear

amplifiers.

• In the context of MIMO systems, the following interesting problems have been identified:

– Design differential space-time coding and detection methods in the presence of phase noise.

– Design the MAP detector by accounting for both channel variations and phase noise.
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– Derive the approximate MAP detector using the SPA by considering an AR approximation

for the phasor process.

• In the context of SISO systems, the following problems have been identified as challenging:

– Design error correcting codes that incorporate the effect of phase noise impairments.

– Design constellations for the Wiener phase noise channel.

– Design approximate MAP detectors by considering multimodality in the phase error pdf or

the a priori symbol probability distribution.

– Design the MAP detector by accounting for both channel variations and phase noise.
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