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Abstract
Synchronization of concurrent threads is the central problem in order to design efficient

concurrent data-structures. The compute systems widely available in market are increas-
ingly becoming heterogeneous involving multi-core Central Processing Units (CPUs) and
many-core Graphics Processing Units (GPUs). This thesis contributes to the research of ef-
ficient synchronization in concurrent data-structures in more than one way. It is divided into
two parts. In the first part, a novel design of a Set Abstract Data Type (ADT) based on an
efficient lock-free Binary Search Tree (BST) with improved amortized bounds of the time
complexity of set operations - ADD, REMOVE and CONTAINS, is presented. In the second
part, a comprehensive evaluation of concurrent Queue implementations on multi-core CPUs
as well as many-core GPUs are presented.

Efficient Lock-free BST To the best of our knowledge, the lock-free BST presented in
this thesis is the first to achieve an amortized time complexity of O(H(n) + c) for all Set
operations where H(n) is the height of a BST on n nodes and c is the contention measure.
Also, the presented lock-free algorithm of BST comes with an improved disjoint-access-
parallelism compared to the previously existing concurrent BST algorithms. This algorithm
uses single-word compare-and-swap (CAS) primitives. The presented algorithm is lineariz-
able. We implemented the algorithm in Java and it shows good scalability.

Evaluation of concurrent data-structures We have evaluated the performance of a
number of concurrent FIFO Queue algorithms on multi-core CPUs and many-core GPUs.
We studied the portability of existing design of concurrent Queues from CPUs to GPUs
which are inherently designed for SIMD programs. We observed that in general concurrent
queues offer them to efficient implementation on GPUs with faster cache memory and better
performance support for atomic synchronization primitives such as CAS. To the best of our
knowledge, this is the first attempt to evaluate a concurrent data-structure on GPUs.
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ABSTRACT
Synchronization of concurrent threads is the central problem in order to

design efficient concurrent data-structures. The compute systems widely avail-
able in market are increasingly becoming heterogeneous involving multi-core
Central Processing Units (CPUs) and many-core Graphics Processing Units
(GPUs). This thesis contributes to the research of efficient synchronization in
concurrent data-structures in more than one way. It is divided into two parts.
In the first part, a novel design of a Set Abstract Data Type (ADT) based on an
efficient lock-free Binary Search Tree (BST) with improved amortized bounds
of the time complexity of set operations - ADD, REMOVE and CONTAINS, is
presented. In the second part, a comprehensive evaluation of concurrent Queue
implementations on multi-core CPUs as well as many-core GPUs are presented.

Efficient Lock-free BST To the best of our knowledge, the lock-free
BST presented in this thesis is the first to achieve an amortized complexity
of O(H(n) + c) for all Set operations where H(n) is the height of a BST on
n nodes and c is the contention measure. Also, the presented lock-free algo-
rithm of BST comes with an improved disjoint-access-parallelism compared to
the previously existing concurrent BST algorithms. This algorithm uses single-
word compare-and-swap (CAS) primitives. The presented algorithm is lineariz-
able. We implemented the algorithm in Java and it shows good scalability.

Evaluation of concurrent data-structures We have evaluated the perfor-
mance of a number of concurrent FIFO Queue algorithms on multi-core CPUs
and many-core GPUs. We studied the portability of existing design of concur-
rent Queues from CPUs to GPUs which are inherently designed for SIMD pro-
grams. We observed that in general concurrent queues offer them to efficient
implementation on GPUs with faster cache memory and better performance
support for atomic synchronization primitives such as CAS. To the best of our
knowledge, this is the first attempt to evaluate a concurrent data-structure on
GPUs.
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1
Introduction

It is widely known now that in single-core compute processors higher computa-
tion performance could be achieved only by way of increased clock frequency
and that would come with the drawbacks ranging from large power require-
ments to unmanageably high heat dissipation. A ubiquitous device to solve the
optimization problem of maximizing the computation under the constraints of
power-consumption and heat-dissipation in contemporary computers is a multi-
core Central Processing Unit (CPU). To further enhance the processing of data-
parallel components in a program, multi-core CPUs are supported by many-core
co-processors such as Graphics Processing Units (GPUs). These co-processors
can run hundreds of lightweight processing threads concurrently. The process-
ing units in such co-processors often have their independent memory hierarchy
to store the data to be processed close to compute units. The computer archi-
tecture comprising of CPUs and co-processors like GPUs i.e. heterogenous
compute units with added heterogeneity in memory hierarchy is known as het-
erogeneous computer architecture.

However, harnessing the maximum available processing power in the ma-
chines equipped with multi-core and many-core processors is not plain sailing.
An algorithm may not always lend itself for easy parallelization, specially when
it involves concurrency of multiple threads to modify shared data. For example,
consider the case of two threads that increment a shared counter which broadly

3



4 CHAPTER 1. INTRODUCTION

happens in three compute steps - (1) read the counter (2) increment the counter
(3) store the incremented value at the shared memory word. We can list out all
possible

(
6
3

)
= 20 valid interleavings1 of the instructions by the two threads.

But it is not hard to see that there can be only 2 valid interleavings which will
increase the counter meaningfully. The problem of finding a valid interleaving
that can resolve the conflict between concurrent threads to produce a correct
solution of a problem involving concurrent access of shared memory is called
synchronization. An algorithm is called a synchronization algorithm that solves
the synchronization problem in a concurrent program. A synchronization algo-
rithm becomes more complex with increasing number of shared memory words
to be modified in order to accomplish an operation. And, the challenge of op-
timizing such an algorithm is immense because there is no guarantee provided
by the implementation platform about the relative speeds of the threads.

A data-structure in a concurrent setup, usually, has to deal with the concur-
rent access of one or more shared memory words that are needed to be modified
in an operation. The multi-core and many-core architecture, with more than a
single level of hierarchy in the memory access, adds further complexity to it
as the size of the cache memory comes to play important role in the perfor-
mance of such data structures. Thus the design, analysis and implementation
of concurrent data-structures on multi-core and many-core architectures is a
reasonably challenging task. This thesis contributes towards a comprehensive
description of the synchronization algorithms from the perspective of efficient
implementation of concurrent data structures on the computers with both multi-
core and many-core compute units. Rest of this chapter is as following. In
section 1.1 a discussion on the design of the synchronization algorithms and
concurrent data structure is presented. The section 1.2 discusses the correctness
and the complexity of the concurrent data structures. The section 1.3 presents
the fundamentals of the heterogeneous computer architecture. And finally, in
the section 1.4 the chapter is concluded with a discussion on the related work
and the contribution of this thesis. To describe a shared-memory system, we bor-
row terminologies and definitions from [10], however the discussion presented
here is self-contend.

1There are altogether 6 instructions and a thread executes 3. We pick-up any 3 out of 6 in(6
3

)
ways for one thread and 3 out of remaining 3 in

(3
3

)
for the second thread. Counter will be

increased by 2 counts only if the first thread performs all its instructions in order before the second
thread starts and does the same or vice-versa.
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1.1 Synchronization Algorithm
The Synchronization algorithms are categorized in two classes - (a) blocking
and (b) non-blocking. At the heart of a blocking synchronization algorithm is
the critical section which is a piece of code that needs to be executed by mul-
tiple concurrent threads and in which threads need to access shared memory
words. If the critical section is executed by more than one thread, it can result
in unexpected and unwanted return by the concurrent program. Given the as-
sumption that a thread can not fail or stop during its critical section and it can
take only a finite number of steps in it, a blocking synchronization algorithm
satisfies following properties -

(a) Mutual Exclusion : Two threads executing concurrently can not be in their
critical section simultaneously.

(b) Deadlock-freedom : If a thread attempts to enter its critical section, then
some thread, not necessarily the same one eventually enters its critical sec-
tion.

To satisfy the property of mutual exclusion, when a thread is in critical section,
all but one threads keep essentially blocked from executing the same and (con-
sequently) the body of the program after the critical section. However, the avail-
able machines and popular programming languages for concurrent programs in
general do not provide a guarantee that a thread can not become infinitely de-
layed (if not faulty) during the execution of the critical section. And that may
result in a situation in which a thread gets delayed infinitely (i.e. becomes
faulty) in the critical section, and other threads may remain blocked for that
thread to come out of it. Thus the blocking synchronization algorithm are not
very interesting quite often.

Alternatively a non-blocking synchronization method provides the guaran-
tee that even if a thread becomes faulty in course of its execution path at any
point, at least one non-faulty thread will complete its execution in finite num-
ber of its own steps. Essentially no thread needs to be blocked from executing
any (atomic) step on any shared memory word in a non-blocking synchroniza-
tion algorithm. A non-blocking synchronization algorithm is also known as a
lock-free synchronization algorithm.

In case of blocking synchronization, the mutual exclusion property is called
a liveness property and the deadlock-freedom is called a progress property. An-
other stronger and quite desirable progress property is

(c) Starvation-freedom : A thread, that attempts to enter its critical section,
must eventually succeed.
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A non-blocking synchronization algorithm that provides starvation-freedom is
called a wait-free algorithm.

We consider a concurrent shared memory system in which a finite set of
threads communicate asynchronously by reading and writing on shared memory
words. Asynchrony implies that there is no assumption on the relative speeds
of the threads. Each thread is considered to be executing a sequential program
over a finite set of variables as memory words each of which consists of one or
more bits. A variable is local to a thread if the thread holds an exclusive access
to it, and is shared when two or more threads can access it. The sequential
program consists of steps and a step can contain computation on local variables
and at most a single access to a shared-variable.

Access to a shared-variable happens by means of an atomic operation. Atomic
operations are also known as synchronization primitives in general. Some of the
widely used synchronization primitives in concurrent data structures are listed
here. The shared-variables (Sv) passed as arguments are passed by reference
whereas the value type (Vt) arguments are passed by value.

1. Read

Vt read(Sv r){
return r;

}

2. Write

void write(Sv r, Vt v){
r = v;

}

3. Test-and-set (TAS)

Vt TAS(Sv r, Vt v){
initial = r;
r = v;
return initial;

}

4. Compare-and-swap (CAS)

bool CAS(Sv r, Vt old, Vt new){
if(old = r){
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r = old; return true;
} else {

return false;
}

}

The synchronization primitives listed above are natively provided by almost
all of the multi-core and many-core architectures available in market. Using
these primitives blocking and non-blocking concurrent data structures are im-
plemented via the respective synchronization methods. Next we describe the
design of these concurrent data structures.

1.1.1 Blocking concurrent data structures
The design of a blocking concurrent data structure is primarily based on mutual
exclusion locks. A simple test-and-set (TAS) lock works as described below:

while(!TAS(Sv lock, Vt 1)){}
critical_section{}

lock = 0;

The shared-variable lock is called to be acquired by a thread if the thread
succeeds to set 1 at it given that it was initially 0. Setting the variable lock
back to 0 is called releasing the lock. In the next section, we shall describe the
various hardware components that play role in the performance of synchroniza-
tion algorithms but here we mention that if the number of threads increases and
the memory bus is locked by many threads continuously then the performance
drops drastically. Therefore, a better and optimized version can be written as

while(lock!=0 || !TAS(Sv lock, Vt 1)){}
critical_section{}

lock = 0;

In the revised format a thread reads the variable lock first and if it is avail-
able then only tries to acquire the lock. Using the CAS synchronization primi-
tive also we can construct a lock as below

while(!CAS(Sv lock, Vt 0, Vt 1)){}
critical_section{}

lock = 0;

All the above formulations of locks essentially bring busy waiting because
of high degree of contention for the variable lock. A way to lower the con-
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tention on a lock is to use some backoff function. A backoff function tells a
process to wait for a certain amount of time before checking again. A popular
backoff function is exponential backoff in which the backoff time is increased
exponentially for every failed attempt to acquire the lock. But still the problem
to tune the backoff function persists in the sense that some processes might have
to wait much longer than other processes before acquiring the lock.

In the above lock designs it is easy to notice that the available cores in a
processor are used for useless works during busy waiting and so it is imperative
to minimize that. An alternative method of lock implementation is queue lock
in which when a process fails to acquire a lock it adds itself to a queue asso-
ciated with the lock and does a context switch so that another thread can use
the processor while it is waiting to acquire the lock. After a thread finishes its
critical section and releases the lock, it notifies the next thread waiting in the
associated queue about it and context switches itself. Unfortunately the cost
of context switching in multiprocessors could be high and therefore the queue
locks get outperformed by the TAS or CAS locks.

Not just the above problems that arise with locks but also there is problem
of lock conveying described as the situation in which a thread acquiring the lock
gets preempted by the thread scheduler. This causes other threads to wait longer
than necessary because the thread that got swapped could not release the lock
and this results into overall slowdown of the entire program. A related problem
is that of the priority inversion when a high priority thread has to wait for a
low priority thread holding lock. This problem can be solved by increasing
the priority of the lower priority thread that holds the lock to a certain high
ceiling priority or to the priority of the higher priority thread. The first method
is called the priority-ceiling-protocol(PCP) and the second method is called the
priority-inheritance-protocol(PIP).

And finally the most commonly known problem that occurs in blocking
synchronization algorithms is that of deadlock when we compose two or more
concurrent data structures using blocking synchronization. Although the indi-
vidual concurrent data structures could be deadlock-free as described before but
in the composed one two threads could keep on waiting for each other to release
their respective locks while holding their own locks.

The above described problems make it important to design and implement
concurrent data structures which do not use locks and that is what the non-
blocking synchronization methods provide.
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1.1.2 Non-blocking concurrent data structures

Unlike the blocking method of synchronization, in the non-blocking synchro-
nization there is always a progress guarantee. The basic idea is that instead of
holding any kind of lock, the threads copy the value of shared-variable using an
atomic read primitive to its local variable, makes the changes as needed locally
and then changes the shared-variable using a stronger synchronization primitive
like CAS in one atomic step. In case it fails to successfully perform CAS, be-
cause another thread would have applied its own changes on the shared-variable
since this thread read the value, it retries after updating its local value. This way
a greater fault-tolerance comes with avoiding lock convoying and priority inver-
sion.

Often an operation in a concurrent data structure needs more than a single
shared-variable to be modified. As there is no assumption on the relative speeds
of the threads therefore if a thread gets delayed then other threads in order
to progress without getting blocked in any manner actually helps the delayed
thread. This is called helping mechanism in a non-blocking synchronization
scheme to implement a concurrent data structure. In the core of a helping mech-
anism is the idea that whenever in an operation more than one shared-variable
is needed to be modified then the modifications should be done in an orderly
manner and some indicator should be used in order to indicate the progress of
the operation. However, helping should always be optimized as it makes the
threads perform many atomic accesses to shared-variables even when that is
not needed.

CAS is the most widely used synchronization primitive for modifying the
shared-variables in a non-blocking synchronization method. One reason is that
it is available in almost all the available multi-core and many-core architectures.
However, use of CAS brings one of the most interesting problems in a concur-
rent setup known as ABA problem. CAS(Sv A, Vt A, Vt C) is not able
to discover whether A was changed to B and then changed back to A between it
was read and CAS is performed. In many situations it causes problems in which
a concurrent data structure can become malformed which we shall see in the
next chapter. Not in many architectures present now, but another synchroniza-
tion primitive used for updating a shared-variable in the similar lines as CAS
is Load-Link/Store-Conditional. Unlike CAS, it succeeds only if A
when changed in Store-Conditional to C has not changed since it was read in
Load-link.
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1.2 Correctness and Complexity

1.2.1 Correctness

The concurrent data structures in which operations are executed by multiple
threads concurrently are very hard to debug. The reason is asynchrony in the
shared memory systems which makes it difficult to replicate a bug. But even
before the implementation a concurrent data structure needs rigourous proof of
correctness. Correctness of a concurrent data structure is expressed as consis-
tency of operations with respect to their sequential specifications that the data
structure provides. A concurrent data structure implementation is considered
to be correct if the operations performed during an execution can be ordered in
a way that it gives an illusion to an observer to have an implementation of a
sequential data structure with same sequential specifications of the operations.

The most often used correctness condition to reason about the consistency of
concurrent data structures is linearizability [8]. In simple terms linearizability
can be viewed as a property which ensures that an operation provided by the
data structure with a return as expressed in its sequential specification takes
effect at a point in time between the invocation and the response point of the
operation. The point of time at which the effect of the operation is seen to
be taking place is called its linearization point. Formally, a history H is a
sequence of operations in a concurrent data structure. If the invocation point
of an operation op′ is after the response point of another operation op then in
the history H they must be arranged as H = {. . . , op, op′, . . .}. The time
interval between the invocation and response point of an operation is known as
its execution interval. If the execution interval of two operations overlap then
they can be arranged in any order in H and are said to be concurrent. Hence,
the obtained history must satisfy the sequential specifications of the operations
with respect to the return of them when applied on the concurrent data structure.
Being so, the concurrent data structure is called linearizable.

A weaker consistency condition is sequential consistency. A sequentially
consistent concurrent data structure guarantees that the threads executing dif-
ferent operations provided by the data structure will see the effect of the data
structure in their respective program order. It is weaker than the linearizability
in the sense that in a linearizable implementation a user looking from outside
the threads gets the illusion of operations running in their program order. An
even weaker consistency condition is quiescent consistency which ensures that
to operations separated by a period of quiescence take effect in their real time
order but concurrent operations i.e. those whose execution interval overlap can
take any order. The sequential consistency and quiescent consistency are less
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often used in proving consistency of concurrent data structures. The former is
often useful in describing the correctness of low level concurrent systems such
as hardware memory interfaces and the latter is used to provide even weaker
constraints in object behaviours, mostly in order to obtain a higher computa-
tional performance.

1.2.2 Complexity

It is difficult to derive the time complexity in the traditional sense of an al-
gorithm involving synchronization because of the obvious reason that there is
no assumption on the relative speeds of the the threads. For concurrent algo-
rithms we count the total number of steps taken by all the operations in an
execution. It is referred as the step complexity of the execution. In a step, to
a thread, at most one atomic access to any shared-variable is allowed. How-
ever, depending on the architecture of the machine and the memory hierarchy,
access to a shared-variable that is cached in a memory close to the processor is
some magnitude faster than the access to a shared-variable that is not cached.
Therefore it becomes imperative to count only those steps in which an access
to a remote shared-variable is performed. This is called Remote Memory Ac-
cess measure. A remote memory access may refer to an attempt by a thread to
access a shared-variable residing at either a central shared memory location or
in the local memory of a core in which thread is not running. In both the cases
the memory access attempt goes across the memory bus. Depending on the
architecture there are two possible remote memory access complexity models

1. Coherent Caching (CC) model - An access to a shared-variable not in the
cache memory of the core running the thread is called a remote access.

2. Distributed Shared Memory (DSM) model - An access to a shared-variable
in the cache memory of a core that the thread is not running is called a
remote access.

Often we need to derive the bounds of operations provided by a concurrent
data structure. For this purpose amortized analysis is the most popular method,
specifically in the contexts where the operations are not run in isolation. In
concurrent data structures the amortized analysis can be used to give the bounds
of complexity of operations. For a blocking concurrent data structure, it is
impossible to give any upper bound of an operation which follows from the
following result due to Alur and Taubenfield [2], we mention it here without its
proof.
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Theorem 1. There is no two (or more) process mutual exclusion algorithm,
with an upper bound on the number of times a winning process may need to
access the shared memory in order to enter its critical section in presence of
contention.

Nevertheless, for a non-blocking concurrent data structure, an amortized
analysis of its upper bound can be presented in terms of the size of the data
structure and the measure of contention. In principle the measure of contention
is the number of concurrent threads in the recent history of a thread during an
interval. Starting with the size of the data structure at the invocation of the
operation, the change in size of the data structure during the execution interval
of an operation can be accounted to a measure of contention. Moreover the
number of extra steps that a thread incurs on account of helping other threads
during a given operation can be measured using a measure of contention and
hence on amortization we could count total number of steps taken by all the
threads performing the operations in a finite execution. Some of the often used
measures of contention during an operation are as following.

Let op be an operation with ti and tr as its invocation and response points
respectively,

• Interval Contention [1] - Total number of operations whose execution
interval overlaps the interval [ti, tr].

• Point Contention [3] - Maximum number of operations being executed
concurrently at any point in the interval [ti, tr].

• Overlapping-Interval Contention [9] - Maximum interval contention of
any operation whose execution interval overlaps the interval [ti, tr].

Some authors name the interval contention as cumulative contention and point
contention as concurrent contention [7]. Point contention is a tighter measure
of contention compared to interval contention. As explained before the number
of extra steps that a thread needs to take on account of the helping mechanism
in the design of a concurrent data structure should always be optimized. How-
ever, in some cases a thread may end up taking extra read steps due to extended
traversal path in a linked concurrent data structure which may arise because of
conservative helping. Overlapping interval contention is used in these cases in
which a thread has to incur extra steps during an operation which can be ac-
counted to the operations whose execution interval do not overlap with that of
itself. For example, in a double linked-list if the insert operations do not help
a concurrent insert then there can be such a situation (example taken directly
from [9]). Consider that out of two links connecting two nodes in a double
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linked-list, a link gets updated by an insert and the other is pending while the
thread performing insert gets delayed. In the meantime many insert operations
succeed to insert multiple nodes between the node whose insert is pending and
the node that has been connected by one of its link. Now if after the successful
insert operations return, a predecessor query travels extra steps from one direc-
tion to the other, these extra steps can not be accounted to an operation whose
execution interval overlaps the predecessor query. In such cases overlapping
interval contention is used.

1.3 Multi-core and Many-core Processors

At the outset we discuss the observations in the Figure 1.1. The figure presents
the plotting of average throughput of CAS per milliseconds vs number of threads
on two different multi-core architectures. We performed our experiments on -
(a) An Intel machine consisting of 2 sockets populated with 6-cores of Xeon
E5645 (Nehalem) CPU capable of running 12 hardware threads apiece (24 log-
ical cores in total) at 2.4 GHz and (b) An AMD machine consisting of 4 sockets
populated with 12-core Opteron 6238 (Bulldozer) CPU capable of running 12
hardware threads apiece (48 logical cores in total) at 2.6 GHz. Both the ma-
chines have DDR3 RAM at 1366 MHz. The Intel machine is provided with
Quick-Path Interconnect for connectivity between chips and I/O subsystem; the
AMD machine has Hyper-Transport for the same. The implementation of Si-
multaneous Multi-Threading [12] differs between the two machines - in Intel
(Nehalem) processors two hardware threads share the resources on each phys-
ical core [11], whereas the AMD (Bulldozer) processors follow a modular ar-
chitecture [4] in which each physical core runs at most one hardware thread
at a time. The experiments were coded in C## and run in Mono 2.10.5 open
source .Net framework and the host operating systems on both the machines
were based on Linux kernel version 3.0.0. From the plot it can be observed that
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Figure 1.1: Throughput vs. #threads of CAS operations on three architectures.
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the performance of CAS when implemented on different architectures shows
entirely different behaviour. A comprehensive evaluation of various synchro-
nization methods on the above mentioned architectures and implementation on
most popular high level programming languages with regard to both throughput
and fairness2 is presented in [5] in the context of performance of concurrent
queue and concurrent hash-table data structures. Similar observations can be
seen for many-core GPUs in the figure 3.3(a). These observations give an im-
portant insight that understanding the behaviour of concurrent data structures
on different implementation platforms is as important as their algorithmic de-
sign. Therefore, we discuss the hardware parameters of multi-core and many-
core processors which play important roles in the scalability of concurrent data
structures.

1. Multi-core CPUs

(a) Cache hierarchy - Cache hierarchy in a given architecture has impor-
tant role in the performance of a synchronization primitive. In case of
local access the latency to access Last Level Cache (LLC) determines
the throughput of all the primitives. In general, in a single socket
the latency of accessing the LLC by all the cores is same. Increasing
cache hierarchy improves the local load throughput and in general
stores behave similarly regardless of the previous state of the cache
line.

(b) I/O subsystem - If an atomic operation is performed on a shared-
variable residing at the LLC of a socket other than the one in which
the thread runs in one of its core the performance drops substantially
and therefore we can see in the plotting when the number of threads
increases and the OS scheduler tries to schedule different threads on
different sockets the performance drops. Not only that if the shared-
variable is not found in the LLC of the socket then the access goes
across the memory bus and that also creates drop in the performance
of the synchronization algorithm. So, the I/O subsystem with im-
proved bandwidth can improve the performance of a concurrent data
structure.

2Fairness of a concurrent data structure is a property that measures the degree of starvation
freedom as described before. Fairness is defined as

fairness∆t = min

{
N · min(ni∆t

)∑
i ni∆t

,

∑
i ni∆t

N · max(ni∆t
)

}
where ni∆t

is the number of successfully performed operations by the thread i, in the time interval
∆t.
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(c) Simultaneous Multi-Threading - The mechanism of simultaneous multi-
threading (SMT) has its own role in the performance of a synchro-
nization algorithm and hence the concurrent data structure. The SMT
implementation differ in the two architectures used in the experi-
ment shown above. The Intel (Nehalem) architecture is equipped
with hyper-threading and a physical core is shared by two hardware
threads and in the AMD (Bulldozer) architecture there is no such
sharing. Clearly the performance difference highlights that sharing
the resources of a core favours the performance of synchronization
primitives and hence the performance of concurrent data structures.

2. Many-core GPU Architecture - The many-core architecture of a GPU has
some more hardware parameters to look into compared to a multi-core
CPU, when analysing the behaviour of a concurrent data structure imple-
mentation. The GPUs are designed to improve the processing of Single
Instruction Multiple Data (SIMD) component of a program. The most
popular GPUs are marketed by Nvidia and AMD and the preferred pro-
gramming technology to write program for these GPUs are CUDA and
OpenCL respectively. OpenCL is an open source programming technol-
ogy which can be used to write programs for GPUs of all the vendors.
The terms that we use here are that from CUDA, which we use for cod-
ing in our experiments. A warp is the minimum number of consecutive
threads that should be running the same instruction in the SIMD program.
In case of Nvidia GPUs 32 consecutive threads make a warp. To imple-
ment a concurrent data structure in which a synchronization primitive can
not be executed by more than a single thread, the inherent SIMD model
of GPU programming is the biggest hurdle. For that matter to program a
concurrent data structure for a GPU, we take a representative thread from
a warp to execute the synchronization primitive; and other threads in the
same warp either can be used to perform the local computation if needed
and suitable to be parallelized or just remain idle. In this way a concur-
rent data structure implementation on a GPU is scalable according to the
number of warps that can be run on a core at a time. The memory hierar-
chy in a GPU in general has global and shared memory levels. The global
memory is shared by all the warps and therefore by the threads running in
the GPU at a time. The share memory is shared by threads running in the
same multiprocessor. This is the reason that accessing a shared-variable
in the global memory is way slower than accessing a shared-variable in
the shared memory. This kind of memory hierarchy implies that a con-
current data structure should be implemented in a hierarchical way. We
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shall discuss the GPU implementation of the concurrent data structures
in more detail in the chapter 3.

Along with the architecture of implementation, the programming language and
its concurrency support has an important role in the performance of a concurrent
data structure implementation. A structured guideline to choose a programming
environment to implement a concurrent data structure is presented in our work
in [5].

1.4 Contributions and Future Work
The present thesis contributes to the research of concurrent data structures in
two important ways -

(a) Improved algorithm of concurrent lock-free BSTs - We present a lock-free
concurrent internal binary search tree which was an improvement upon the
existing algorithms in the following ways. To the best of our knowledge,
the amortized analysis of the operations in a concurrent search tree was first
presented in our work. Our work proposed the first design of a lock-free
BST in which the modify operations run inO(H(n)+c), whereH(n) is the
height of the BST with n number of nodes and c is the contention during the
execution. The presented algorithm in our work also improved the disjoint
access parallelism in an internal lock-free BST. The thesis presents the first
experimental results of the proposed algorithm which was published in [6].

(b) Concurrent Data Structures on GPUs - We present the first evaluation of
any concurrent data structure on GPUs. Our work examines the perfor-
mance portability of concurrent data structures with regard to the move
from conventional CPUs to graphics processors and found that they are in
general performance portable. This work presented important insight on
the programming paradigm of GPUs that present inherent limitations on
the implementation of synchronization algorithms on GPUs. Our work also
discussed the hardware parameter of a GPU that play role in the perfor-
mance of concurrent data structure implementations.

Continuing the present work we plan to study the design and analysis of other
important concurrent data structures algorithmically as well as from implemen-
tation point of view. The present work presented amortized analysis of upper
bound of set operations in a lock-free BST, whereas the area of lower bound
analysis of any lock-free data structure is an important open area. We plan
to study the lower bound of important algorithms that use the concurrent data
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structures and hence can be implemented and made scalable using lock-free
concurrent data structures. We also plan to implement more complex concur-
rent data structures on the GPUs and other heterogenous architectures.
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PAPER I

Abstract
In this paper we present a novel algorithm for concurrent lock-free internal bi-
nary search trees (BST) and implement a Set abstract data type (ADT) based
on that. We show that in the presented lock-free BST algorithm the amortized
step complexity of each set operation - ADD, REMOVE and CONTAINS - is
O(H(n) + c), where H(n) is the height of the BST with n number of nodes
and c is the contention during the execution. It uses single-word compare-and-
swap (CAS) operations. We show that our algorithm has improved disjoint-
access-parallelism compared to similar existing algorithms. We prove that the
presented algorithm is linearizable. To the best of our knowledge, this is the first
algorithm for a concurrent internal binary search tree data-structure in which the
modify operations are performed with an additive term of contention measure.
The experimental results show that the presented algorithm is scalable and out-
performs existing algorithms for similar data structures.

2.1 Introduction

With the wide and ever-growing availability of multi-core processors it is ever-
more compelling to design and develop more efficient concurrent data-structures.

23
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Being immune to deadlocks due to various fault-causing factors beyond the con-
trol of the data-structure designers, the non-blocking concurrent data-structures
are more attractive than their blocking counterparts.

In literature, there are lock-free as well as wait-free singly linked-lists [12,
25], lock-free doubly linked-list [24], lock-free hash-tables [18] and lock-free
skip-lists [12, 23]. However, not many performance-efficient non-blocking con-
current search trees are available. A multi-word compare-and-swap (MCAS)
based lock-free BST implementation was presented by Fraser in [13]. How-
ever, MCAS is not a native atomic primitive provided by available multi-core
chips and is very costly to be implemented using single-word CAS. Bronson
et al. proposed an optimistic lock-based partially-external BST with relaxed
balance [3]. Ellen et al. presented lock-free external binary search tree [11]
based on co-operative helping technique presented by Barnes [2]. Though their
work did not include an analysis of complexity or any empirical evaluation of
the algorithm, the contention window of update operations in the data-structure
is large. Also, because it is an external binary search tree, REMOVE is simpler
at the cost of extra memory to maintain internal nodes without data. Howley et
al. presented a lock-free internal BST [16] based on similar technique. A soft-
ware transactional memory based approach was presented by Crain et al. [7] to
design a concurrent red-black tree. While it seems to outperform some coarse-
grained locking methods, it easily falls behind in performance when compared
to a carefully tailored locking scheme as in [3]. Recently, two lock-free exter-
nal BSTs [4, 20] and a lock-based internal BST [9] have been proposed. All of
these works lack theoretical complexity analysis.

A common predicament for the existing lock-free BST algorithms is that if
multiple modify operations contend at a leaf node, and, if a REMOVE operation
among them succeeds then all other operations have to restart from the root. It
results in the complexity of a modify operation to be O(cH(n)) where H(n)
is the height of the BST on n nodes and c is the measure of contention. It may
grow dramatically with the growth in the size of the tree and the contention. In
addition to that, CONTAINS operations have to be aware of an ongoing REMOVE
of a node with two children, otherwise it may return an invalid result. Hence
in the existing implementations of lock-free internal BST [16], a CONTAINS
operation may have to restart from the root on realizing that the return may be
invalid if more nodes are not scanned. The external or partially-external BSTs
remain immune to this problem at the cost of extra memory used by the routing
internal nodes. Our algorithm solves both these problems elegantly. The CON-
TAINS operations in our BST enjoy oblivion of any kind of modify operation.
And, the modify operations after helping a concurrent modify operation restart
not from the root, rather from a level in the vicinity of failure. It ensures that
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all the operations in our algorithm run in O(H(n) + c). This is our main con-
tribution. Ellen et al. [10] improved the external BST by Ellen et al. [11] using
thread local stacks for each thread to achieve similar complexity as ours.

Given the requirements of a concurrent data-structure in terms of number
of shared-memory words to modify in order to update, we always strive to ex-
ploit maximum possible disjoint-access-parallelism [17], so that if an operation
needs to modify multiple shared memory words in order to complete its steps
then the progress of concurrent operations could be maximized. The lock-free
methods for BST [11, 16], in order to use single-word CAS for atomically mod-
ifying the links outgoing from a node, and yet maintain correctness, store a flag
as an operation field or some version indicator in the node itself, and hence a
modify operation “holds” a node. This mechanism of holding a node, specif-
ically for a REMOVE, can reduce the progress of two concurrent operations
which may be otherwise non-conflicting. In [20], a flag is stored in a link in-
stead of a node in an external BST. We found that even in an internal BST it
is indeed possible that a REMOVE operation, instead of holding the node, just
holds the links connected to and from a node in a predetermined order so that
improved progress of concurrent operations working at disjoint memory words
corresponding to the links could be achieved. The presented lock-free design
using “storing a flag” at a link instead of a node significantly improves the
disjoint-access-parallelism compared to the existing design as in [16]. This is
our next contribution.

Helping mechanism which ensures non-blocking progress may prove coun-
terproductive to the performance if not used judiciously. In the conference ver-
sion of this paper [6] we proposed an adaptive helping mechanism to choose
depending on the read-write load. However, with empirical observations we
found that helping during traversal always reduces the performance and so it
is better not to help a pending REMOVE operation during traversal. Our algo-
rithm requires only single-word atomic CAS primitives along with single-word
atomic read and write which practically exist in all the widely available multi-
core processors in the market. Based on our design, we implement a Set ADT.
We prove that our algorithm is linearizable [15]. We also present complexity
analysis of our implementation which is novel in in the context of concurrent
BST algorithms. This is another contribution in this paper.

The body of our paper will further consist of the following sections. In sec-
tion 2.2, we present the basic tree terminologies. In section 2.3, the proposed
algorithm is described. The section 2.4 presents a discussion on the correctness
and the progress of our concurrent implementation along with an amortized
analysis of its time complexity. The section 2.5 presents the detail of the imple-
mentation of the algorithm and a discussion on the ABA problem. The paper is
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concluded in section 3.6.

2.2 Preliminaries

A binary tree is an ordered tree in which each node x has a left-child and a right-
child denoted as left(x) and right(x) respectively, either or both of which may
be external. When both the children are external the node is called a leaf, with
one external child a unary node and with no external child a binary node, and all
the non-external nodes are called internal nodes. If a node is used to store data
it is called a data node else it remains in the tree for just facilitating a traversal
and is called a routing-node. We denote the parent of a node x by p(x) and
there is a unique node called root s.t. p(root) = null. Each parent is connected
with its children by links.

We are primarily interested in implementing an ordered Set ADT - binary
search tree using a binary tree in which each node is associated with a unique
key k selected from a totally ordered universe. A node with a key k is denoted
as x(k) and x if the context is otherwise understood. Determined by the total
order of the keys, each node x has a predecessor and a successor, denoted as
pre(x) and suc(x), respectively. We denote height of x by ht(x), which is
defined as the distance of the deepest leaf in the subtree rooted at x from x.
Height of a BST is ht(root).

In an internal BST, all the internal nodes are data-nodes and the external
nodes are usually denoted by null. There is a symmetric order of arranging the
data - all the nodes in the left subtree of x(k) have keys less than k and those
in its right subtree have keys greater than k, and so no two nodes can have
the same key. To query whether a BST CONTAINS a data with key k, at every
search-step we utilize this order to look for the desired node either in the left
or in the right subtree of the current node if the key not matched at it, unless
we reach an external node. If the key matches at a node then we return true (or
address of the node if needed), otherwise false. To ADD data we query by its
key k. If the query reaches an external node we replace this node with a new leaf
node x(k). To REMOVE a data-node corresponding to key k we check whether
x(k) is in the BST. If the BST does not contain x(k), false is returned. On
finding x(k), we perform delete as following. If it is a leaf then we just replace
it with an external node. In case of a unary node its only child is connected to
its parent. For a binary node x, it is first replaced with pre(x) or suc(x) which
may happen to be a leaf or a unary node, and then the replacer is REMOVEd.

In an alternate form - an external BST, all the external nodes are data-nodes
and the internal nodes are routing-nodes. The symmetric order is different from
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an internal BST - all the nodes in the left subtree of a node x(k) have keys less
than k whereas, in its right subtree the nodes have keys at least k. It increases
the depth of the BST compared to an internal BST for an equal amount of
data. Also, because all the data-nodes are external, a query traversal always
terminates at an external node making the average traversal length increase for a
set of queries comprising large number of search operations. However, because
the data-nodes are external, REMOVE of a node becomes simpler compared to
an internal BST (in fact, REMOVE of a node here is effectively equivalent to
REMOVE of a unary node as in an internal BST). In this paper we focus on
internal BSTs, and hence forward by a BST we shall mean an internal BST.

2.3 Our Algorithm

2.3.1 The Efficient Lock-free BST Design
To implement a lock-free BST, we represent it in a threaded format [22]. In this
format, if the left or right -child link at a node x points to null and hence points
to an external node, it is instead connected to pre(x) or suc(x) respectively. An
indicator is stored to indicate whether a child-link is used for such a connection.
This is called threading of the child-links. In our design, we use the child-links
at the leaf and unary nodes as following: right-child link, if pointing to null, is
threaded and is used to point to the successor node, whereas a similar left-child
link is threaded and pointed to the node itself, see Fig. 2.1(a). In this represen-
tation a BST can be viewed as an ordered list with exactly two outgoing and
two incoming links per node, as shown in Fig. 2.1(b). Also among the two in-
coming links, exactly one is threaded and the other is not. In this representation,
if x(ki) and x(kj) are two consecutive nodes in the corresponding ordered list
and hence in the BST and there is no node x(k) such that ki≤k≤kj then we
call the interval [ki, kj ] to be associated with the threaded link incoming at kj .
The unique incoming threaded-link on a node is called its order-link. We name
the node where the order-link of x emanates from - the order-node of x.

We utilize this symmetry of the equal number of incoming and outgoing
links. A usual traversal in the BST following its symmetric order for a prede-
cessor query, is equivalent to a traversal over a sublist of the ordered-list shown
in Fig. 2.1(b). This list is essentially produced by an in-order traversal of the
BST. This is made possible by the threaded right-links at leaf or unary nodes.
Though in this representation, there are two links in both incoming and outgo-
ing directions at each node, a single link needs to be modified to ADD a node in
the list. To REMOVE a node we may have to modify up to four links. Therefore,
ADD can be as simple as that in a lock-free single linked-list [12], and REMOVE
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Figure 2.1: (a) Threaded BST (b) Equivalent ordered list.

should be no more complex than that in a lock-free double linked-list [24]. A
traversal in a lock-free linked-list is not affected by a concurrent REMOVE of a
node. In our design of internal BST also, a traversal can remain undeterred by
any ongoing modification, unlike that in the existing lock-free implementations
of internal BSTs [13, 16].

In designing an internal BST in a concurrent setup, specifically a lock-free
one, the most difficult part is to perform an error-free REMOVE of a binary
node. To remove a binary node we replace it with its predecessor, which is
its order-node, and hence the incoming and outgoing links of the predecessor
also need to be updated in addition to the links incoming to the node itself.
According to the number of links needed to be modified in order to remove a
node, unlike traditional categorization of nodes of a BST into leaf, unary and
binary, we categorize them into three categories as shown in Fig. 2.2(b). The
categorization characteristic is the position of the order-node of a node. A node
belonging to category 1 is that which is order-node of itself; for a category 2
node, the order-node is its left-child; and for a category 3 node its order-node is
the rightmost node in its left-subtree.

Figure 2.2: (a) Threaded BST with backlinks (b) Categorization of nodes for REMOVE

(c) An empty tree.
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To remove a node of category 1, only the incoming parent-link needs to
be modified to connect to the node pointed by the right-link. For a category
2 node, the parent-link is updated to connect to the node pointed by the left-
link and the order-link is modified to point to the node which the right-link was
pointing to. In order to remove a category 3 node, its order-node replaces it
and the incoming and outgoing links of the order-node are updated to take the
values of that of the REMOVEd node. Parent-link of the order-node is connected
to the node which its left-link was pointing to before it got shifted. Observing
carefully, the removal of a node is essentially replacing it with its order-node if
the order-node is not same as itself, and in order to do that, the corresponding
links of the order-node and the parent are updated. If the order-node of the
node is same as itself then only the incoming link from the parent is needed
to be updated. Also, when a link is updated the thread indicator value of the
link, which it updates to, is copied to it. Note that in this categorization a left-
unary (i.e. whose right-child is null) or a binary node whose left-child is either
a left-unary or a leaf node gets classified in to category 2. Category 1 includes
conventional leaf and right-unary nodes (whose left-child is null).

The number of steps required to remove a category 1 or a category 2 node is
much less compared to that required in case of a category 3 node because of the
greater number of links that need to be modified. Obviously the REMOVE of
a category 3 node is much more complex than that of the other two categories
of nodes. Also, it can be observed that if the order-node of a category 3 node
is shifted up in a way that it is connected in between the left-child of the node
and the node, the category 3 node is transformed to a category 2 node with its
order-link emanating from its left-child, without violating the BST order. We
will use this observation while removing a category 3 node which we will do in
two stages - first shift the order-node to make it the left-child of the node under
REMOVE and then follow the steps required for the REMOVE of a category 2
node.

In all the existing designs of a lock-free BST, when an operation fails at
a link connected to a leaf node because of a concurrent modify operation, it
retries from the scratch i.e. it restarts the operation from the root of the tree,
after helping the obstructing concurrent operation. In our design an operation
restarts from a node at the vicinity of the link where it fails, after the required
helping. To achieve that, we need to get hold of the appropriate node(s) to restart
at. For that, we use a backlink per node similar to [12], that points to a node
present in the tree from where the failure spot is a single link away. It should
be noted that a backlink is not used for the tree traversal, see Fig. 2.2(a). In
a category 3 node under REMOVE, we also store the address of its order-node,
so that a concurrent operation failing at one of its child-links does not have to
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traverse down the tree to search the order-node to replace, while helping after
being obstructed. For that we use a prelink per node which ensures a single link
traversal for recovery due to obstruction by a concurrent REMOVE of a category
3 node.

With the description of the steps to remove nodes of different categories
as above, we describe the synchronization of threads performing modifications
of links associated with a node undergoing REMOVE. A REMOVE operation
first sets indicators using atomic CAS at the links associated with the node (and
its order-node) and then updates the incoming links to it in order to correctly
synchronize with a concurrent operation. During the steps of setting indica-
tors, if any atomic CAS fails because of that of a concurrent modify operation
then it goes to help the obstructing operation before retrying to ensure the lock-
freedom in the BST implementation. Also it is likely that when an operation is
helping a concurrent operation, it may itself be obstructing another concurrent
operation and hence can get helped. Because of this mechanism of interleaved
helping and multiple CAS operations needed to complete the REMOVE of a
node, it is worthwhile to keep note of the state of the node when REMOVE has
been affected so that some unnecessary CAS executions could be saved. To do
that we can set an indicator on one of the outgoing links of a node whose parent
link gets modified to point to the node that replaces the removed node.

In our design we need to maintain as many states of a link as it could be
sufficient to indicate various stages of link updates during a REMOVE. Given
that, we need following states of a link: (a) a clean unthreaded link (b) a clean
threaded link (c) a threaded / unthreaded link with indicator implying it as out-
going from a node under REMOVE (d) a threaded link with indicator implying
it as order-link of a node under REMOVE (e) an unthreaded link with indicator
implying it as a parent-link of a node under REMOVE (f) an unthreaded link
with indicator implying it as a parent-link of the order node of a node under
REMOVE (g) a threaded / unthreaded link with indicator implying it as a left-
link of the order-node of a category 3 node under REMOVE. We observed that
eight different state-indicators of a link are sufficient for maintaining all the
aforementioned states effectively. Apart from the above states we also maintain
one more state of a threaded / unthreaded right-link of a node that has been re-
moved to save some helping steps of an obstructed operation. Hence we need
ten state-indicators for the links in our design.

We use the terms - (a) mark, (b) flag and (c) tag to denote the state change
of a link by setting indicators on it using an atomic CAS. They respectively
denote that a link from a clean unthreaded or threaded state modifies to become
a link (a) outgoing from a node under REMOVE (b) incoming as parent-link or
order-link of a node under REMOVE and (c) incoming parent-link or outgoing
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left-link of the order-node of a category 3 node under REMOVE. The order-link
of a category 1 node is though outgoing from the node itself but it is flagged.
And we call the state change of a marked right-link as finalize to indicate the
completion of a REMOVE. Once a link is marked, flagged or tagged it can not
be a point of injection of a new ADD or REMOVE operation. Also no state
change over such a state is permitted except that a marked right-link changes to
finalized only after the all the incoming links to the removed node are updated.
The flagging and marking are performed in such a predetermined order so that
a malformed structure of the BST is avoided. Following are the order of state
changes of links associated with a node undergoing REMOVE.

(a) Category 1: (I) flag the order-link of the node (II) mark the right-link of the
node (III) flag the incoming parent-link of the node (IV) update the parent
link to connect to the right-child (V) finalize the marked right-link.

(b) Category 2: (I) flag the order-link of the node (II) mark the right-link of
the node (III) mark the left-link of the node (IV) flag the incoming parent-
link of the node (V) update the order link to connect to the right-child (VI)
update the parent link to connect to the left-child (VII) finalize the marked
right-link.

(c) Category 3: As explained before, a category 3 node can be transformed
to a category 2 node without violating the symmetric order of the BST by
shifting its order-node to connect in between the node and its left-child.
Therefore, to remove a category 3 node, we shall proceed in two stages.
Following are the steps in the first stage - (I) flag the order-link of the node
(II) tag the incoming parent-link of the order-node (III) tag the left-link of
the order-node (IV) set the pre-link of the node to point to the order-node
(V) mark the right-link of the node (VI) mark the left-link of the node (VII)
update the parent-link of the order node to connect it to the left-child of the
order-node (VIII) update the left-link of the order node to connect it to the
left-child of the node under REMOVE (IX) update the left-link of the node
to connect it to the order-node and keep it marked. After the first stage is
over, the category 3 node under REMOVE gets converted to a category 2
node under REMOVE with the first three steps of the state change applied
to it. In the second stage the remaining steps as described for a category 2
node are completed.

In the very first step of flagging the order-link of a node to remove, if
the atomic CAS succeeds then eventually that node is removed from the BST.
Whenever a parent-link or an order-link is updated to connect to the right-child
of a node that is removed, the thread indicator status of the right-link is also
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copied to the updated link. Also, before a flagged or tagged link is updated to
connect to a new node, the backLink of the new node is updated to connect to
the node where the link emanates from, if the corresponding marked or tagged
link was not threaded. See Fig. 2.3. Please note that, there can be concurrent
REMOVE of the order-node of a category 3 node undergoing REMOVE itself.
In that case the order-link of the category 3 node is the right-link of the order-
node and the order-link of the order-node is the left-link of the order-node of
the category 3 node. Therefore, if the REMOVE operations at both the nodes
have successfully flagged the order-link of the respective nodes, they are syn-
chronized as following: (a) the REMOVE of the order-node, say o1, is put to
help the concurrent REMOVE of the node, say o2 (b) o1 or o2 having tagged
the parent-link of the order-node and finding the left-link of the order-node as
threaded and flagged, updates the parent-link of the order node to become the
new flagged order-link of the category 3 node (c) it then finalizes the flagged
right-link of the order-node and thus o2 would terminate before retrying (d) o1
reassesses the node category of the node that it was removing before attempting
the step (II) of REMOVE now. In all the other cases of helping, on failing at an
atomic CAS an operation retries the same CAS at the same step.

Figure 2.3: Remove steps of nodes

Because we follow orderly modifications of the links, it never allows a node
to be missed by a traversal in the BST unless both its incoming links are pointed
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away. However, because a node may shift “upward” to replace its successor, the
interval associated with the order-link of its successor may shift “rightward”
i.e. to the right subtree of the node after the successor is REMOVEd. Given
that, the intuitive terminal criterion at a threaded link of a traversal may not
work. Therefore, in order to terminate a traversal correctly, we use the stopping
criterion given in Condition 1. It follows from the fact that the threaded left-
link of a node is connected to the node itself and a traversal in the BST uses the
order in the equivalent list.

CONDITION 1. Let k be the search key and kcurr be the key of the current node
in the search path. If (k = kcurr) then stop. Else, if the next link is a threaded
left-link then stop. Else, if the next link is a threaded right-link and the next
node has key knext then check if k < knext. If true then stop, else continue.

This stopping criterion not only solves the problem of synchronization be-
tween a concurrent REMOVE and a traversal for a predecessor query but also
enables to achieve bound on the length of the traversal path. We shall explain
that in section 2.4. A similar stopping criterion is used in [9] for conventional
doubly-threaded BSTs.

We can observe that in our BST design, because we do not store a flag or
version indicator at a node, two modify operations that need to change two dis-
joint memory-words have significantly improved conditions for progress. First,
an ADD operation does not store any flag so two ADD operations operating at
two outgoing threaded links of a leaf node can progress without any synchro-
nization, which is not the case if a flag is stored at a node by an ADD. Then, to
REMOVE a category 2 node the left-link of its predecessor is never marked or
flagged, therefore when such a node goes under REMOVE, a concurrent injec-
tion of ADD or REMOVE at the left-link of the predecessor is possible. These
progress conditions are not possible in the existing algorithms that use “node
holding” [11, 16]. It shows that our algorithm has improved disjoint-access-
parallelism.

2.3.2 The Algorithm

We consider our concurrent system as a shared memory machine in which
threads are fully asynchronous and arbitrary delay of a thread is allowed. The
read and write of a single memory-word is guaranteed to be atomic. The system
provides atomic single-word compare-and-swap (CAS) primitives. An execu-
tion of CAS(R, old, new) returns true, iff (old = R), after updating R to new,
else it returns false without any update. The language specific implementation
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Figure 2.4: The hierarchy of the class

of the algorithm will be described in the section 2.5 and here we shall describe
the algorithm borrowing terms from a Java implementation.

1 class Node {
2 KType key;
3 Link lChild, rChild;
4 Node backLink, preLink;
5 };

6 class Link {
7 KType key;
8 Node ref ;
9 };

/* Global variable with the fixed value of members. */
10 Node pRoot = Node (∞1, UtLink(∞0, cRoot), null, null, null);
11 Node cRoot = Node (∞0, ThLink(∞0, cRoot), ThLink(∞1, pRoot), pRoot, null);

A typical node x(k) in our BST implementation is represented by an in-
stance of the class Node consisting of five fields corresponding to - (a) a key
key, (b) two child-links : lChild := left(x) and rChild := right(x), (c) a
backLink and (d) a preLink. See lines 1 to 5. The child-links are instances of
the class Link which has two fields - (a) the key of the node that it points to as
key and (b) the reference of the node that it points to. We could have done with
only the reference field in a Link, however keeping the key gives an optimiza-
tion to read the key of the nodes during traversal. The Link class has subclasses
representing states of a link as described before. The hierarchy of the subclasses
of Link is shown in the figure 2.4. See lines 6 to 9. We shall use the terms in-
stanceof and typeof to mean a variable that is an instance of a class or any of its
subclasses and a variable that is an instance of a class only (not its subclasses),
respectively. Being applied on by the functions ·mark(), ·flag() and ·tag() a
variable of type of UtLink with fields key = k and ref = r gives a new vari-
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able of type of MkLink, FgLink and TgLink with fields key = k and ref = r;
and, similarly for a variable of type of ThLink. The function ·finalize() when
applied on a variable of type of MkLink or ThMkLink gives a new variable of
type of MkLinkFinal and ThMkLinkFinal respectively. Also, for a variable
of type ThFgLink, the function ·finalize() generates a new ThMkLinkFinal
with the same key and ref fields. A variable of type of MkLink and ThMk-
Link when applied on by the function ·unmark() gives a new variable of type
UtLink and ThLink respectively with the same fields of key and ref . And,
a variable of type of TgLink and ThTgLink when applied on by the function
·untag() gives a new variable of type UtLink and ThLink respectively. A link
that is instanceof ThLink, when applied on by the function ·isThd() returns
true and that which is instanceof UtLink return false for the same.

We use two global variables pRoot = x(∞1) and cRoot = x(∞0). The
keys∞1 and∞0 satisfy the relation k<∞0<∞1 for all the nodes x(k) present
ever in the BST. Effectively, cRoot is always left-child and order node of pRoot
and all the nodes ever present in the BST are always in the left-subtree of cRoot.
Also, the node with the largest key in the BST is the order-node of cRoot. See
lines 10 and 11. Having mentioned the terminologies used, we next describe
the pseudo-code of the functions in our algorithm.

Locating a Node

The set operations - CONTAINS, ADD and REMOVE, need to perform a prede-
cessor query using a given key k to locate either the node x(k) or a threaded
order-link incoming at the node x(kj) such that an interval [ki, kj ] associates
with it and {ki≤k≤kj}. x(ki) is either the order-node of x(kj) or a node in
whose right-subtree x(kj) is the leftmost node. The function LOCATE is used
for that, which starts from a node preNode and follows the symmetric order of
the internal BST. The return value of LOCATE is an instance of the class Loca-
tion, say l. The class Location comprises of two fields pre and cur as address
of nodes. The variable l·cur = x(kcurr) satisfies the above requirements in the
following way - if the key k is equal to kcurr then the desired node is located,
if k is less than kcurr then the desired link is the left threaded link at x(kcurr)
and for the greater than case it is the right threaded link at the same. The node
referred by the variable l·pre is connected to the node x(kcurr) by a single link.
The termination criterion for LOCATE implements Condition 1. Lines 22 to 44.

It is important to note here that an operation during the traversal does not
help a concurrent modify operation in the BST. However, the respective posi-
tions of the nodes can change during traversal causing it to move in a loop. To
take care of that we have to do extra checks and adjustments in lines 37 to 44.
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12 class Location {
13 Node pre, cur;
14 };

15 Location LOCATE(Node preNode, KType key)
16 begin
17 bool turn = key≤ preNode·key, lastTurn;/* Convention of turn: true =

left, false = right. */
18 Node prePrev; Link rtPrePrev, rtprePrevNow;
19 Node curr = preNode·(turn ? lChild : rChild)·ref ;
20 while true do
21 if (key = curr·key) then
22 return Location (preNode, curr);
23 else
24 lastTurn = turn;
25 prePrev = preNode;
26 rtprePrev = prePrev·rChild;
27 if (key> curr·key) then
28 next = curr·rChild;
29 if ((next instanceof ThLink ) and (key< next·ref ·key)) then
30 return Location (preNode, curr);

31 else
32 next = curr·lChild;
33 if (next instanceof ThLink ) then
34 return Location (preNode, curr);

35 preNode = curr;
36 curr = next;
37 if ((lastTurn = false ) and (turn = true )) then
38 rtPrePrevNow = prePrev·rChild;
39 if (rtPrePrevNow·ref 6= preNode ) then
40 curr = rtPrePrevNow·rchild·ref ;
41 preNode = prePrev;
42 else if (rtPrePrevNow·isThd() 6= rtprePrev·isThd() ) then
43 curr = prePrev;
44 preNode = curr·backLink;

45 bool CONTAINS(KType key)
46 begin
47 Location loc = LOCATE(pRoot, key); Node curr = loc·cur;
48 return (curr·key = key ? true : false);
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Here we first check whether the present move of the traversal is from right to
left. If it is so then we need to check whether the last node the we had read has
been shifted to replace its successor by a concurrent REMOVE operation. That
is indicated by reading the right-child link of the node that we leave behind. If
either the right-child node or the thread status of the right-child link changed
since we moved from there then it may be possible that the present node has
been either shifted or deleted. In both cases if we backtrack by a single link
then we do not have to visit the present node again as we meet a threaded right-
link whose key will be greater than the query key and so the LOCATE may
terminate.

To perform a CONTAINS operation for a key key, we start from the node
pRoot. Having performed LOCATE, if the node at the returned address has the
key equal to the query key key then it indicates that the key was present in the
BST at the point of termination of LOCATE. And therefore, CONTAINS returns
true. If the query key does not match with that of the node whose address is
returned then false is returned by CONTAINS. See lines 45 to 48.

Remove operation

To REMOVE a node x(k) present in the BST, we locate its order-link. In order
to do that, starting from the node pRoot we locate the threaded link which the
interval containing the key (k−ε) associates with, see line 53. Here the function
LOCATE returns the possible node to remove x(k) and its parent as loc·cur and
loc·pre respectively. Having located the threaded link we need to ascertain that
the node x(k) is present in the BST. If x(k) is present in the BST then the
located threaded link must be pointing to it and if that is not found then false
is returned at line 61. If x(k) is located then we try to flag its order-link which
is the located threaded link. In the while loop, in lines 65 to 90, during the
repeated attempt to flag the order-link, we check if the right-link of the node is
already marked before attempting the CAS to flag the order-link. It gives a good
optimization as the contention grows. If the right-link is found marked then we
directly go to finish the remaining steps of REMOVE and false is returned, line
66. This also takes care of the scenario in which if the right-link is finalized then
the REMOVE returns readily; this is done in the function HELPMARKRIGHT.

If the CAS execution fails then it may have been that either the link is
flagged, marked or tagged, or a new node is added at the threaded link. If
the link is flagged then it indicates that a concurrent thread started the REMOVE
of the same node and so that is helped. In case of marked order-link, it shows
that the order-node is being removed and so that is helped first. Please note
that a marked and threaded link can only be the right-link of a node because
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49 bool REMOVE(KType key)
50 begin
51 bool turn = false;
52 Node preNode = pRoot, delNode;
53 Location loc = LOCATE(preNode, key− ε);
54 if (key = loc·cur·key) then
55 preNode = delNode = loc·cur;
56 turn = true;
57 else if (key = (l·cur·rChild)·key) then
58 preNode = loc·pre;
59 delNode = loc·cur;
60 else
61 return false;

62 Link delRtLink, oLink;
63 while (true ) do
64 delRtLink = delNode·rChild;
65 if ((delRtLink instanceof MkLink) or (delRtLink instanceof ThMkLink)) then
66 HELPMARKRIGHT(delNode); return false;

67 oLink = preNode·(turn ? lChild : rChild);
68 if ((oLink typeof ThLink ) and (oLink·ref = delNode)) then
69 if CAS(preNode·(turn ? lChild : rChild), oLink, oLink·flag() ) then
70 HELPTHFLAGGED(preNode, delNode);
71 return true;

72 if (oLink·ref = delNode) then
73 if (oLink typeof ThFgLink ) then
74 HELPTHFLAGGED(preNode, delNode);
75 return false;
76 else if (oLink typeof ThMkLink ) then
77 preNode = HELPMARKRIGHT(preNode); continue;
78 else if (oLink typeof ThTgLink ) then
79 Node delRightNode = delRtLink·ref ;
80 if ((delRtLink instanceof ThFgLink ) and (delRightNode·preLink =

delNode)) then
81 HELPTAGPRELEFT(delRightNode);

82 preNode = loc·pre; continue;

83 loc = LOCATE(preNode, key);
84 if (l·cur = delNode) then
85 if (delNode·lChild·ref = delNode) then
86 preNode = delNode; turn = true;
87 else
88 preNode = loc·pre; turn = false;

89 else
90 return false;
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a threaded left-link can only be the order-link of a category 1 node which is
flagged in order to remove the node or tagged if the successor node of the node
is being removed. If the order-link is found marked then the node to restart is
returned by the function HELPMARKRIGHT. If the order-link is found tagged
then after helping steps, the node x(k) shifts to replace its successor and then
node located as its parent, which was loc·pre, becomes its order-node and its
threaded right-link becomes the desired order-link. Therefore we restart from
the node loc·pre. In case a new node is added at the order-link then the order-
link itself get shifted down in the BST and therefore we call LOCATE again. It
can also happen that the node x(k) is removed from the BST concurrently and
it is not located and then false is returned. See lines 50 to 90.

Having flagged the order-link, it becomes ensured that the node x(k) will be
eventually removed and we move to the next step of marking right-link in case
of category 1 and category 2 nodes and tagging the parent-link of the order node
in case of category 3 nodes. This is done in the function HELPTHFLAGGED,
see lines 92 to 134. Here also during the repeated attempts to perform the CAS
to mark or tag the desired link, the right-link of the node x(k) is checked, and if
it is found marked then only the remaining steps are performed or the REMOVE
returns in case the right-link is found finalized. If before a reattempt the order-
link is found not connected to the node x(k) then it indicates that a concurrent
helping operation may already have taken steps up to the update of the order-
link and only the final step of the update of the parent-link may have remained,
this is taken care of in the lines 129 to 134. Also note that, a category 3 node
may get changed to a lower category node before reattempt after the failure to
execute the desired CAS at the parent-link of the order-node. These scenarios
are taken care of in checking the category of the node before every reattempt
at the line 102. Here, effectively it is checked if either the order-node or the
parent of the order-node is same as the node to remove. In the former case
it is a category 1 node and in the latter case it is a category 2 node. In both
these cases the second step is marking the right-link of the node to remove. If
both these conditions are not met then it may possibly be a category 3 node and
therefore the tagging of the parent-link of its order-node is attempted. During
tagging of the parent-link of the order-node, if there is an obstruction then it
is appropriately helped. However, if the parent-link of the order-node is found
connected to the node under REMOVE and in the state threaded and flagged then
it shows that the order-node has been removed concurrently and therefore the
parent of the order-node becomes new order-node during reattempt, line 126.

Having performed the marking of right-link of x(k) or tagging of the parent-
link of its order-node we take next steps in the functions HELPMARKRIGHT
or HELPTAGGEDPREPAR respectively. We first discuss the function HELP-
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91 void HELPTHFLAGGED(Node preNode, Node dNode)
92 begin
93 Link oLink, rtLink, ptLink, rtRightLink, ptRtLink;
94 Node preParent, rightNode, parent; bool ptDir;
95 while (true ) do
96 preParent = preNode·backLink;
97 oLink = preNode·((preNode = dNode ) ? lChild : rChild);
98 rtLink = dNode·rChild;
99 if ((rtLink instanceof MkLink) or (rtLink instanceof ThMkLink)) then

100 HELPMARKRIGHT(dNode); break;

101 if ((oLink typeof ThFgLink ) and (oLink·ref = dNode )) then
102 if ((preNode = dNode ) or (preParent = dNode )) then
103 if ((rtLink typeof UtLink ) or (rtLink typeof ThLink )) then
104 if CAS(dNode·rChild, rtLink, rtLink·mark()) then
105 HELPMARKRIGHT(dNode ); break;

106 rightNode = rtLink·ref ;
107 if (rtLink typeof FgLink ) then
108 HELPFLAGGED(dNode , rtLink, false );
109 else if (rtLink typeof ThFgLink ) then
110 HELPTHFLAGGED(dNode , rightNode);
111 else if (rtLink typeof TgLink ) then
112 rtRightLink = rightNode·rChild;
113 if (rtRightLink typeof ThFgLink ) then
114 HELPTAGGEDPREPAR(dNode , rightNode, rtRightLink·ref);

115 else
116 ptDir = preNode·key < preParent·key;
117 ptLink = preParent·(ptDir ? lChild : rChild);
118 if (!ptDir and (ptLink·ref = preNode ) and (ptLink typeof UtLink )) then
119 if CAS(preParent·rChild, ptLink, ptLink·tag()) then
120 HELPTAGGEDPREPAR(preParent, preNode, dNode ); break;

121 if (!ptDir and (ptLink typeof TgLink ) and (ptLink·ref = preNode )) then
122 HELPTAGGEDPREPAR(preParent, preNode, dNode ); break;
123 if (!ptDir and (ptLink typeof MkLink ) and (ptLink·ref = preNode )) then
124 HELPMARKRIGHT(preParent);
125 if ((ptLink typeof ThFgLink ) and (ptLink·ref = dNode )) then
126 preNode = dNode;
127 else if (ptLink typeof FgLink ) then
128 HELPFLAGGED(preParent, ptLink, ptDir);

129 else
130 parent = dNode·backLink; ptDir = dNode·key < parent·key;
131 ptLink = parent·(ptDir ? lChild : rChild);
132 if ((ptLink typeof FgLink ) and (ptLink·ref = dNode )) then
133 HELPFLAGGED(parent, ptLink, ptDir);

134 break;
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135 void HELPTAGGEDPREPAR(Node preParent, Node preNode, Node dNode)
136 begin
137 Link oLink, preParLink, preLtLink;
138 while (true ) do
139 preLtLink = preNode·lChild;
140 preParLink = preParent·backLink;
141 oLink = preNode·rChild;
142 rtLink = dNode·rChild;
143 if ((rtLink instanceof MkLink) or (rtLink instanceof ThMkLink)) then
144 HELPMARKRIGHT(dNode); break;

145 if ((oLink typeof ThFgLink ) and (oLink·ref = dNode )) then
146 if ((preParLink typeof TgLink ) and (preParLink·ref = preNode )) then
147 if ((preLtLink typeof UtLink ) or (preLtLink typeof ThLink )) then
148 if CAS(preNode·lChild, preLtLink, preLtLink·tag()) then
149 if (dNode·preLink = null ) then
150 dNode·preLink = preNode;

151 HELPTAGGEDPRELEFT(dNode ); break;

152 else if (preLtLink typeof ThFgLink ) then
153 CAS(preParent·rChild, preParLink, oLink·tag());
154 CAS(preNode·rChild, oLink, oLink·finalize());
155 HELPTHFLAGGED(preParent, dNode ); break;
156 else if ((preLtLink typeof TgLink) or (preLtLink typeof ThTgLink)) then
157 if (dNode·preLink = null ) then
158 dNode·preLink = preNode;

159 HELPTAGGEDPRELEFT(dNode ); break;
160 else if (preLtLink typeof FgLink ) then
161 HELPFLAGGED(preNode, preLtLink, true );

162 else
163 if ((preLtLink typeof TgLink ) or (preLtLink typeof ThTgLink )) then
164 HELPTAGGEDPRELEFT(dNode );

165 break;

166 else
167 if ((preParLink typeof ThFgLink ) and (preParLink·ref = dNode )) then
168 HELPTHFLAGGED(preParent, dNode ); break;
169 else
170 parent = dNode·backLink; ptDir = dNode·key < parent·key;
171 ptLink = parent·(ptDir ? lChild : rChild);
172 if ((ptLink typeof FgLink ) and (ptLink·ref = dNode )) then
173 HELPFLAGGED(parent, ptLink, ptDir);

174 break;
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TAGGEDPREPAR which takes care of the next step in the REMOVE of a cate-
gory 3 node, see lines 136 to 174. Here the next step is to tag the left-link of the
order-node only if it is either a clean threaded or a clean unthreaded link. Please
note that this link can not be found marked as the right-link of the order-node
is flagged. If the link to tag is found unthreaded and flagged then it indicates
that the left-child node of the order node is being removed and that is helped.
However, if this link is found threaded and flagged then it indicates that the
order node itself is undergoing REMOVE. To handle that scenario, we just up-
date the parent-link of the order-node to connect to the node x(k) by copying
the flagged order-link of x(k) at the right-link of the parent of the order-node.
After that we finalize the right-link of the order-node to indicate that it has been
removed from the BST. After that the category 3 node may have changed to a
category 2 node or a category 3 node with a different order-node with its order-
link flagged. Hence we go back to the function HELPTHFLAGGED to take the
next appropriate step. As earlier, here also before any attempt of a desired CAS,
the right-link of the node x(k) is checked and if found marked then we directly
go to perform the remaining steps. Before an attempt to tag the left-link of
the order-node, if the order-link is found not connected to the node x(k) or not
threaded and flagged then it indicates that either it has been updated in the final
link update steps or it has been finalized indicating the removed order-node. All
these scenarios are handled in the lines 166 to 174. Having tagged or having
found tagged the left-link of the order-node of x(k) we set its preLink to point
to the order-node if it is not already set, lines 150 and 158, before going to mark
its right-link as the next step in the function HELPTAGGEDPRELEFT.

The function HELPTAGGEDPRELEFT performs the step of marking the
right-link of a category 3 node. As mentioned before, the right-link is marked
only if it is a clean link, otherwise appropriate helping is performed before a
reattempt. See lines 176 to 192.

The step after marking the right-link of the node x(k) is either to flag its
incoming parent-link (category 1 nodes) or to mark its left-link (category 2 or 3
nodes). That is done in the function HELPMARKRIGHT, lines 194 to 217. Here
before taking any CAS step it is checked whether the right-link has already been
finalized. If that is so then the node to which the right-node is connected, is
returned. In case of a category 1 node it is the parent-node referred by the back-
link of x(k) and in case of category 2 or 3 nodes it is the order node of x(k)
which is referred by the marked left-link before the right-link is finalized. See
line 197. If the node is a category 2 or 3 node, which is ascertained by checking
whether the left-child of x(k) points to itself, before an attempt to mark the
left-link of the node, the right-link is checked and if it is finalized then the
function returns accordingly. If the left-link is found flagged then the concurrent



2.3. OUR ALGORITHM 43

175 void HELPTAGGEDPRELEFT(Node dNode)
176 begin
177 Link rtLink, rtRightLink; Node rtNode;
178 while (true ) do
179 rtLink = preNode·rChild; rtNode = rtLink·ref ;
180 if ((rtLink typeof UtLink ) or (rtLink typeof ThLink )) then
181 if CAS(dNode·rChild, rtLink, rtLink·mark()) then
182 HELPMARKRIGHT(dNode ); break;

183 else if ((rtLink instanceof MkLink ) or (rtLink instanceof ThMkLink )) then
184 HELPMARKRIGHT(dNode ); break;
185 else if (rtLink typeof FgLink ) then
186 HELPFLAGGED(dNode, rtLink, false );
187 else if (rtLink typeof ThFgLink ) then
188 HELPTHFLAGGED(dNode, rtNode);
189 else if (rtLink typeof TgLink ) then
190 rtRightLink = rtNode·rChild;
191 if (rtRightLink typeof ThFgLink ) then
192 HELPTAGGEDPREPAR(dNode , rtNode, rtRightLink·ref);

193 Node HELPMARKRIGHT(dNode)
194 begin
195 Link rtLink = dNode·rChild, ltLink= dNode·lChild; Node ltNode = ltLink·ref ;
196 if ((rtLink typeof MkLinkFinal ) or (rtLink typeof ThMkLinkFinal )) then
197 return (ltNode = dNode ? dNode·backLink : ltNode);

198 if (ltNode = dNode ) then
199 Node parent = FLAGPARENT(dNode );
200 if (parent 6= null ) then
201 bool parentDir = dNode·key < parent·key;
202 Link parentLink = parent·(ptDir ? lChild : rChild);
203 if ((parentLink typeof FgLink ) and (parentLink·ref = dNode )) then
204 CLEANFIRST(parent, parentLink, dNode, rtLink, parentDir);

205 return dNode·backLink;
206 else
207 while (true ) do
208 rtLink = dNode·rChild, ltLink= dNode·lChild; ltNode = ltLink·ref ;
209 if ((rtLink typeof MkLinkFinal ) or (rtLink typeof ThMkLinkFinal )) then break;
210 if (ltLink typeof UtLink ) then
211 if CAS(dNode·lChild, ltLink, ltLink·mark()) then
212 HELPMARKLEFT(dNode ); break;

213 else if (ltLink typeof MkLink ) then
214 HELPMARKLEFT(dNode ); break;
215 else if (ltLink typeof FgLink ) then
216 HELPFLAGGED(dNode , ltLink, true );

217 return dNode·lChild·ref ;
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REMOVE of the left node is helped before reattempting the CAS. Here in case of
category 1 nodes, with flagging of the parent-link all its incoming and outgoing
traversal links become fixed and the steps of updating the incoming links and
finalizing the right-link is done in the function CLEANFIRST, see lines 265 to
270.

218 void HELPMARKLEFT(dNode)
219 begin
220 Link ltLink = dNode·lChild;
221 Node ltNode = ltLink·ref , preNode = dNode·preLink ;
222 if ((preNode 6= null ) and (ltNode 6= preNode)) then
223 Node preParent = preNode·backLink;
224 Link preParentLink = preParent·rChild;
225 Link preLeftLink = preNode·lChild; oLink = preNode·rChild; Node

preLeftNode = preLeftLink·ref ;
226 if ((oLink typeof ThFgLink ) and (oLink·ref = dNode )) then
227 if ((preLeftLink typeof TgLink ) or (preLeftLink typeof ThTgLink )) then
228 if ((preParentLink typeof TgLink ) and

(preParentLink·ref = preNode)) then
229 if (preLeftNode 6= preNode) then
230 CAS(preLeftNode·backLink, preNode, preParent);

231 CAS(preParent·rChild, preParentLink, UtLink(preLeftNode));

232 CAS(ltNode·backLink, dNode, preNode);
233 CAS(preNode·lChild, preLeftLink, UtLink(leftNode));

234 CAS(preNode·backLink, preParentNode,dNode);
235 if ((ltLink typeof MkLink ) and (ltLink·ref = preNode)) or CAS(dNode

·lChild, ltLink, MkLink(preNode)) then
236 HELPMARKLEFT(dNode );

237 else
238 Node parent = dNode·backLink;
239 bool parentDir = dNode·key < parent·key;
240 Link parentLink = parent·(ptDir ? lChild : rChild);
241 if ((parentLink typeof FgLink ) and (parentLink·ref = dNode )) then
242 Link rtLink= dNode·rChild;
243 if ((rtLink typeof MkLink ) or (rtLink typeof ThMkLink )) then
244 CLEANSECOND(parent, parentLink, dNode,

ltNode, rtLink, parentDir);

245 else
246 Node parent = FLAGPARENT(dNode );
247 if (parent 6= null ) then
248 bool parentDir = dNode·key < parent·key;
249 Link parentLink = parent·(ptDir ? lChild : rChild);
250 if ((parentLink typeof FgLink ) and (parentLink·ref = dNode )) then
251 Link rtLink= dNode·rChild;
252 if ((rtLink typeof MkLink ) or (rtLink typeof ThMkLink )) then
253 CLEANSECOND(parent, parentLink, dNode,

ltNode, rtLink, parentDir);

Having marked the left-link of a category 2 node, the next step is to flag the
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incoming parent-link. That is done in the function HELPMARKLEFT, lines 219
to 253. The preLink of a category 2 node is never set and so it is null and that
is checked to distinguish between a category 2 and category 3 node whose left-
link is marked, 222. Same as before, the flagging of the parent-link, line 246, is
the last state change step of a link connected with a category 2 node and after
that the update of the incoming links and finalizing the right-link is performed
in the function CLEANSECOND, see lines 272 to 280.

254 void HELPFLAGGED(Node parent, Link pLink, bool pDir)
255 begin
256 Node delNode = pLink·ref ;
257 Link rtLink = delNode·rChild;
258 if ((rtLink typeof MkLink ) or (rtLink typeof ThMkLink )) then
259 ltNode = dNode·lChild·ref ;
260 if (ltNode = delNode) then
261 CLEANFISRT(parent, pLink, delNode, rtLink, pDir );
262 else
263 CLEANSECOND(parent, pLink, delNode, ltNode, rtLink, pDir );

264 void CLEANFISRT(Node parent, Link pLink, Node dNode, Link rtLink, bool pDir)
265 begin
266 Node rtNode = rtLink·ref ;
267 if ((rtLink typeof MkLink ) and (rtNode·backLink = dNode )) then
268 CAS(rtNode·backLink, dNode, parent);

269 CAS(parent·(pDir ? lChild : rChild), pLink, rtLink ·unmark());
270 CAS(dNode·rChild, rtLink, rtLink ·finalize());

271 void CLEANSECOND(Node parent, Link pLink, Node dNode, Node oNode, Link rtLink, bool pDir)
272 begin
273 Node rtNode = rtLink·ref ; Link oLink = oNode·rChild;
274 if ((oLink typeof ThFgLink ) and (oLink·ref = dNode )) then
275 if ((rtLink typeof MkLink ) and (rtNode·backLink = dNode )) then
276 CAS(rtNode·backLink, dNode, oNode);

277 CAS(oNode·rChild, oLink, rtLink ·unmark());

278 CAS(oNode·backLink, dNode, parent);
279 CAS(parent·(pDir ? lChild : rChild), pLink, UtLink (oNode));
280 CAS(dNode·rChild, rtLink, rtLink ·finalize());

For a category 3 node, before its parent-link is flagged, its order-node is
shifted to get connected in between the node and its left-child, lines 229 to 234.
This way of converting a category 3 node undergoing REMOVE to a category
2 node with its left-link marked reduces the contention window significantly
and the remaining steps of its REMOVE become much simplified. After this
modification the function HELPMARKLEFT is again called and the check at
line 222 ensures that the next step will be flagging of the incoming parent-link
to the node x(k).

In the function CLEANFIRST, if the marked right-link points to the right-
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281 Node FLAGPARENT(Node dNode)
282 begin
283 Node parent, ptRtNode, ptLtNode; bool ptDir;
284 Link ptLink, rtLink, ptLtLink, ptRtLink ;
285 Link ptLtLtLink, ptLtRtLink, ptRtLtLink, ptRtRtLink;
286 while (true ) do
287 parent = dNode·backLink;
288 ptLtLink = parent·lChild; ptRtLink = parent·rChild;
289 ptLtNode = ptLtLink·ref ; ptRtNode = ptRtLink·ref ;
290 ptLtLtLink = ptLtNode·lChild; ptLtRtLink = ptLtNode·rChild;
291 ptRtLtLink = ptRtNode·lChild; ptRtRtLink = ptRtNode·rChild;
292 ptDir = dNode·key < parent·key;
293 ptLink = parent·(ptDir ? lChild : rChild);
294 rtLink = dNode·rChild;
295 if ((rtLink typeof MkLinkFinal ) or (rtLink typeof ThMkLinkFinal )) then return null;
296 if (ptLink·ref = dNode ) then
297 if (ptLink typeof UtLink ) then
298 if CAS(parent·(ptDir ? lChild : rChild), ptLink, ptLink·flag()) then
299 return parent;

300 else if (ptLink typeof FgLink ) then
301 return parent;
302 else if (ptLink typeof MkLink ) then
303 if (ptDir) then
304 HELPMARKLEFT(parent);
305 else
306 HELPMARKRIGHT(parent);

307 else if (ptDir and (ptLink typeof TgLink )) then
308 if ((ptRtLink typeof ThFgLink ) and (ptRtNode·preLink = parent)) then
309 HELPTAGGEDPRELEFT(ptRtNode);

310 else
311 if (ptRtLtLink·ref = dNode) then
312 if (ptRtLink typeof ThFgLink and ptRtLtLink typeof MkLink) then
313 HELPMARKLEFT(ptRtNode);continue;
314 else if (ptRtLink typeof FgLink and ptRtLtLink typeof MkLink) then
315 HELPFLAGGED(parent, ptRtLink, false );continue;
316 else if (ptRtLink typeof TgLink and ptRtLtLink typeof TgLink) then
317 If(ptRtRtLink typeof ThFgLink and ptRtRtLink·ref ·preLink =

ptRtNode) HELPTAGGEDPRELEFT(ptRtRtLink·ref); continue;

318 else if (ptRtRtLink·ref = dNode) then
319 if (ptRtLink typeof FgLink and ptRtRtLink typeof MkLink) then
320 HELPFLAGGED(parent, ptRtLink, false);
321 else if (ptRtLink typeof ThFgLink and ptRtRtLink typeof MkLink) then
322 HELPMARKRIGHT(ptRtNode);

323 else if (ptLtLtLink·ref = dNode) then
324 if (ptLtLink typeof FgLink and ptLtLtLink typeof MkLink) then
325 HELPFLAGGED(parent, ptLtLink, true);

326 else if (ptLtRtLink·ref = dNode) then
327 if (ptLtLink typeof FgLink and ptLtRtLink typeof MkLink) then
328 HELPFLAGGED(parent, ptLtLink, true);

329 else
330 return null;
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child node (and not the successor node had it been threaded), its backLink is
connected to the parent of the node x(k), line 268. After that the incoming
flagged parent-link is connected to either the right-child or the successor node of
the x(k). If it is connected to the successor it becomes clean and threaded oth-
erwise it becomes a clean and unthreaded link, line 269. After that the marked
right-link is finalized to indicate the completion of REMOVE operation, line 270.
The function CLEANSECOND in the same way is used to update the incoming
links of a category 2 node or a category 3 node whose left-link has been already
connected to the order-node. Here the flagged parent-link is connected to the
order-node and becomes a clean and unthreaded link and the flagged order-link
is connected to either the successor or the right-child of the node. And as before,
the backLinks of the left-child and right-child nodes are updated before they are
respectively connected to the parent and the order node of x(k), see lines 272 to
280. Please note that it ensures that whenever we read the backLink of a node
it is guaranteed to be connected to a node which is at most 2 links away from
the node. This fact is utilized when we try to flag the incoming parent-link in
the function FLAGPARENT. The function HELPFLAGGED, lines 255 to 263,
is used to direct a helping operation to the appropriate clean function, if it is
obstructed at some state-change step.

The function FLAGPARENT, lines 282 to 330, first reads the node referred
by the backLink of the node x(k). Before the CAS is attempted, the outgoing
links of both left and right children of the parent are read and stored locally.
This is done because on failing the CAS due to the reason that the read parent-
link was not connected to the node x(k), we need to help the pending REMOVE
operation at the node pointed by the backLink. As explained before, the back-
Link of a node can point to a node which is at most two links away, we find
the appropriate helping to perform by reading outgoing links of the node that
is connected with the read parent-link, see lines 310 to 330. However, before
going further to attempt the CAS execution to flag the incoming parent-link,
the right-link of the node is checked to make sure that the node is still part of
the BST if its right-link is not finalized. If on a failed CAS, the parent-link is
found connected to the node x(k) then either the required helping is performed
or if a concurrent helping operation had already flagged the link then the parent
is returned, see lines 300, 302 and 307. The function returns null if either the
right-link is found finalized or the node pointed by the backLink is found con-
nected to a node from which the node x(k) is not reachable by traversing up to
two nodes. In both the cases the REMOVE operation is considered finished.

The return value of REMOVE(x(k)) is true only if it could successfully flag
the order-link of the node x(k) otherwise false is returned.
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Add operation

331 bool ADD(KType key)
332 begin
333 Location loc; bool turn; KType curKey;
334 Node par = pRoot, cur, next, curRight, nextLeft, nextRight ;
335 Link curLink, curRtLink, nextRtLink;
336 Node node = new Node(key,ThLink(key, node), null, null, node);
337 while (true) do
338 loc = LOCATE(par, key), cur = loc·cur;
339 curRtLink = cur·rChild, curKey = cur·key;
340 if (curKey = key) then /* key exists in the BST */
341 return false;
342 else
343 turn = key < curKey;
344 curLink = cur·(turn ? lChild : rChild); next = curLink·ref ;
345 if ((curLink typeof ThLink) and (curLink·ref = next)) then
346 node·rChild = curLink; node·backLink = cur;
347 if CAS(cur·(turn ? lChild : rChild), curLink, UtLink(key, node)) then
348 return true;

349 if (curLink·ref = next) then
350 if (curLink typeof ThMkLink) then
351 par = HELPMARKRIGHT(cur);
352 else if (curLink typeof ThFgLink) then
353 HELPTHFLAGGED(cur, next);
354 nextLeft = next·lChild·ref ;
355 if (curLeft = cur) then
356 par = next·backLink ;
357 else
358 par = nextLeft;

359 else if (curLink typeof ThTgLink) then
360 nextRtLink = next·rChild; nextRight = nextRtLink·ref ;
361 if ((nextRtLink typeof ThFgLink) and (nextRight·preLink = next)) then
362 HELPTAGGEDPRELEFT(nextRight);

363 par = loc·pre;

To ADD a new node with key k in a BST, starting from the node pRoot we
LOCATE the target interval [ki, kj ] that k belongs to, associated with a threaded
link. If the Location variable returned by LOCATE is loc and the node loc·cur
has the key as the query key then it indicates that the BST already contains a
node with the query key and therefore ADD returns false, line 341. If such a
node is not found in the BST then the created new node at line 336 is to be
ADDed. Having ascertained the left or right link of loc·cur which the new node
must be attached to, we check the state of the link. If it was a clean and threaded
link then the right-link of the new node takes the value of the link to which it
needs to be connected, and the backlink is pointed to the node loc·cur, line
346. Note that when a new node is ADDed to a BST, both its outgoing links
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are threaded. The link which it needs to connect to is modified in one atomic
step to point to the new node using a CAS. If the CAS succeeds then true is
returned, line 347. On failure, if the threaded link, which was the new node
to connect to, is found flagged, marked or tagged then appropriate helping is
performed. However if the target link was found connected to a new node then
another ADD operation succeeded to add a new node after we read the link and
therefore we locate the target link before reattempt. See lines 332 to 363.

2.4 Correctness and Complexity

2.4.1 Correctness

In this section we present the formal proof of correctness of the presented algo-
rithm and show that the algorithm is linearizable to a sequential BST and then
prove its lock-freedom. First we give some basic definitions that will be used in
the proof.

We consider a shared memory system U . In U let Λ be the finite set of
threads and V be the finite set of shared variables on which a thread λ∈Λ
executes atomic operations provided by the system i.e. atomic read, write and
compare-and-swap (CAS) in order to communicate. Each thread λ∈Λ performs
a sequence of steps on shared variables v∈V . A step comprises of local com-
putations of the thread and at most a single atomic operation o on a v∈V . The
state of a thread λ, denoted by S(λ), is defined as a variable consisting of the
values of the thread’s local variables, registers and program counter. Let S be
the set of states of all the threads. A configuration C of the shared memory sys-
tem U is defined as a set assembly consisting of the set of state of all the threads
and the set of shared variables i.e. C = {S, V }, so that |C| = |S| + |V |. An
execution E is a sequence of the form {C−k , sk, C

+
k }k∈K where the index set

K can be finite or countably infinite. E starts from an initial configuration Ck0

consisting of initial set of shared variable states in the system and all λ∈Λ in
their initial states. We express C+

ki
�ski(C

−
ki

) to mean that on being operated
with step ski in an execution E, the configuration C−ki changes to C+

ki
.

In U a binary search tree is an object that supports the set operations ADD
(A(k)), REMOVE (R(k)) and CONTAINS (C(k)). The state of a BST Υ at
time t is a finite set of nodes denoted as Υt = {xi(ki)}r−1i=0 forming a directed
graph. The nodes are connected with links and the nodes and the links to-
gether have properties as described in the section 2.2. There is a specific node
Root∈Υt from where every node xi(ki)∈Υt is reachable following the lChild
and rChild links of other nodes. It implies that to remove the node xi(ki) from
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Υt, we need to ensure that it can not be reached from any other node and hence
from the node Root.

Definition 2.1. At time t the BST state Υt is called valid iff ∀ nodes x(kx), y(ky)
∈ Υt, x(kx)6=y(ky) ⇒ kx 6=ky . Further if y(ky) is in the left-subtree of x(kx)
then ky<kx and if that is in the right-subtree of the same then ky>kx.

At time t = 0, the BST state Υ0 = {cRoot, pRoot} satisfies the above
requirement in which cRoot is the only node in the left-subtree of the node
pRoot. The right-subtree of pRoot as well as both the subtrees of cRoot are
null.

A valid BST state Υt = {xi(ki)}r−1i=0 corresponds to an abstract set K =

{ki}r−1i=0 with r elements and the set operations A(k), R(k) and C(k) provide
following sequential specifications. The if clause on the LHS of⇒ is the precon-
dition of the set transition on RHS of the same which itself is the postcondition
of the execution in the then clause.

if k∈K then C(k)(Υt)=true ⇒ K � K (2.1)
if k/∈K then C(k)(Υt)=false ⇒ K � K (2.2)
if k/∈K then A(k)(Υt)=true ⇒ K � K∪{k} and (2.3)

K∪{k} corresponds to a valid BST

if k∈K then A(k)(Υt)=false ⇒ K � K (2.4)
if k∈K then R(k)(Υt)=true ⇒ K � K\{k} and (2.5)

K\{k} corresponds to a valid BST

if k/∈K then R(k)(Υt)=false ⇒ K � K (2.6)

Definition 2.2. A concurrent BST is a shared object in which (address of) nodes
and links are shared variables v∈V having the properties of a BST and whose
operations in the shared memory system U are linearizable [15] to the opera-
tions maintaining a valid BST as defined in DEFINITION 2.1. Further, a con-
current BST is said to be lock-free if at least one non-faulty thread λ∈Λ in an
executionE in U is guaranteed to finish its operation in finite number of its own
steps in E.

Now we prove some invariants of the presented algorithm in form of lem-
mas in order to prove that at all time t≥0 it maintains a valid BST. Essentially,
the lemmas will show that no null variable is dereferenced and further if in an
executionE, a step s is performed by a λ∈Λ over a configuration C⊇Υt so that
it changes to a configuration C ′⊇Υ′t then Υt is valid ⇒ Υ′t is also valid. Af-
ter that we shall prove the linearizability of the set operations to prove a correct
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concurrent linearizable implementation. And finally we shall prove the lock-
freedom and hence we shall prove that the efficient lock-free BST algorithm
presented in this paper implements a correct linearizable lock-free concurrent
BST.

It is trivial to observe that after a node is ADDed in a BST following our
algorithm, its key never changes and all the links outgoing from it are modified
using atomic CAS only. Because we can not ADD or REMOVE a key k such that
k ≥ (∞0) so the sentinel nodes can neither be REMOVEd nor the right-link of
cRoot and the links of pRoot can change and for that matter nor the backLink
or preLink of these nodes after once they are set as shown in the Fig. 2.2 (c).
We use the node pRoot as the node Root to prove the validity of the abstract
BST as described above.

Lemma 2.1. A null is never dereferenced at any step s during an execution E.

Proof. It can be observed that when a node is ADDed in the BST, all its fields
except preLink are non-null. To turn a node to be unreachable, depending on the
category of node, the incoming pointers are turned away from it in the functions
HELPMARKLEFT, CLEANFIRST and CLEANSECOND at lines using atomic
CAS. The preLink field of a category 3 node is updated only once in the al-
gorithm in the function HELPTAGGEDPRELEFT. After that when we need to
retrieve the fields of the order-node referred by the preLink of a category 3 node
in the function HELPMARKLEFT, we first check if it is non-null at line 222 and
if not then it is categorised as a category 2 node, whose preLink is never derefer-
enced. The return of the function LOCATE is a class containing address of two
non-null node variables and the HELPMARKLEFT never returns a null value.
As the parameters passed to functions other than LOCATE are computed by
dereferencing link fields of nodes either in function LOCATE or in other func-
tions, no null pointer is passed to them. And whenever a LOCATE is called in
the functions ADD REMOVE or CONTAINS the address passed to it is either that
of pRoot, which is never REMOVEd as noted before, or the address returned by
LOCATE or HELPMARKRIGHT. Hence a null pointer is never dereferenced at
any s in E.

Lemma 2.2. In a BST state Υt a link that connects a node to any of its children
is not threaded.

Proof. In the initial state Υ0 it is trivially true. Now suppose it is true in a
state Υi−1 and ADD(x)(Υi−1)�Υi. At line 347 after CAS succeeds, the link
between the node to which x is connected and x, is a UtLink. Hence, by
induction the lemma proves.
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Corollary 2.1. A threaded link outgoing from a node ensures the subtree of the
node in that direction is null.

Proof. We observed in the function ADD that a new node that has been initial-
ized at line 336 its left and right outgoing links are threaded at the lines 336 and
346 and it has null subtrees in both the directions. Using the induction as in
Lemma 2.1 this is proved.

Lemma 2.3. In a BST state Υt, if a call to LOCATE terminates returning address
of a node as x(k) = loc.cur, then either k = key or x(k)·rChild·isThd() = 1,
if key> k or x(k)·lChild·isThd() = 1, if key< k.

Proof. A LOCATE terminates either at line 22 or 30 or 34. If termination hap-
pens at line 22 then k = key. If it happens at line 30 then x(k)·rChild·isThd() =
1 and k < key. And if it happens at line 34 then x(k)·lChild·isThd() = 1 and
k > key.

Corollary 2.2. An ADD always happens at a clean and threaded link.

Proof. By lemma 2.3, when the LOCATE at line 338 terminates, if the key key
does not match at the node loc·cur then the left or right child link at loc·cur
must be threaded according to the above lemma. The CAS at line 347 ensures
that the link that is modified here is clean and threaded.

Lemma 2.4. At any step s in an execution E, a call of CONTAINS(key) over a
valid BST state Υt at a t≥0 satisfies the sequential specifications (2.1) and (2.2)
in Definition 2.1.

Proof. In a step s executed by a thread λ∈Λ, if a call to CONTAINS returns
true at line 48, key = curr·key where curr = loc·cur and loc is returned
by LOCATE. Now if that is not the case then either key < curr·key or key
> curr·key. By the validity of BST state Υt, and the fact that the locate has
exited at a link which was threaded using Corollary 2.1, there can not be a node
in the left-subtree if key > curr·key and similarly there can not be a node in
the right-subtree if key < curr·key. Hence the precondition of the sequential
specifications is satisfied. It is trivial to observe that there is no update on a
shared variable either in CONTAINS or in LOCATE and hence the postcondition
is satisfied.

Lemma 2.5. At any step s in an execution E, a call of ADD(key) over a valid
BST state Υt at a t≥0 satisfies the sequential specifications (2.3) and (2.4) in
Definition 2.1.
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Proof. The proof of satisfying the precondition is along the lines of proof of
Lemma 2.4. A call to ADD can return false only at line 341 and that can happen
if either the rest of the lines are not executed or the CAS fails at line 347 and then
in course of reattempt the ADD returns at line 341. In both the cases no change
is made to Υt. If the CAS succeeds at the line 347 then there is an unthreaded
link between the node curr∈Υt and x(key) and so x(key) can be reached from
pRoot via curr. If a successful CAS at line 347 is executed then by the validity
of Υt and using lemma 2.2, Υt∪x(key) is valid. Hence and ADD operation in
our algorithm always maintains the validity of a BST.

Lemma 2.6. At any step s in an execution E, from a valid BST state Υt at a
t≥0, the REMOVE of a node x(k)∈Υt starts with flagging its order link.

Proof. By Lemma 2.3, if x(k)∈Υt then the key (k-ε) belongs to the interval
associated with the order-link of x(k). If x(k)∈Υt is a category 1 node then a
LOCATE(k-ε) will terminate returning address of x(k) = loc·cur whose order-
link emanates from itself and if it is a category 2 or category 3 node then it will
terminate returning address of order-node of x(k) as loc·cur. Hence the link
that is flagged is always order-link of x(k).

Lemma 2.7. (a) Whenever the function HELPTHFLAGGED is called the link
connecting the nodes preNode and dNode is of type ThFgLink.

(b) Whenever the function HELPFLAGGED is called the the link pLink is of
type FgLink.

(c) Whenever the functions HELPMARKLEFT is called the the left-link of the
node dNode is of type MkLink.

(d) Whenever the functions HELPMARKRIGHT is called the the right-link of
the node dNode is of type MkLink.

Proof. Trivial by observations.

Lemma 2.8. For a link belonging to a node x(k)∈Υt,

(a) once it is marked it can not be updated again.

(b) if it is tagged or flagged then it can only be updated to a clean unthreaded
or threaded state.

Proof. Trivial by observations at the CAS operations performed in the algo-
rithm.
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Lemma 2.9. At any step s in an execution E, in a valid BST state Υt at a t≥0,
the rChild link of a node x(k)∈Υt can not be marked unless its order-link is
flagged and further if its lChild link does not point to its order-node then its
preLink must point to the correct order-node.

Proof. rChild link of a node is marked only at line 104 in the function HELPTH-
FLAG or at line 181 in the function HELPTAGGEDPRELEFT. Before these func-
tions could be called in any execution, the function REMOVE must have been
called with a successful CAS at line 69. This proves that the order-link must
have been flagged for the node. Further the right-link is marked in the function
HELPTHFLAG only after passing through the check at the line 102. This en-
sures that the node to remove either coincides with its order-node or the parent
of the order-node. Now order-node of a node is always its predecessor by the
design of the BST. So, it must be that the left-child link of the node must have
been pointing to its order-node. Now, if the right-link is marked at the line 181
in the function HELPTAGGEDPRELEFT, then it must have been called from the
function HELPTAGGEDPREPAR and in that case is preLink must have been
pointed to the correct order-node either at line 150 or at line 158.

Lemma 2.10. At any step s in an executionE, in a valid BST state Υt at a t≥0,
for a node x(k)∈Υt following hold

1. If x(k) is a category 1 node, then before its incoming parent-link is
flagged, its order-link is flagged and its rChild link is marked.

2. If x(k) is a category 2, then before its lChild is marked, its order-link is
flagged and its rChild link is marked.

3. If x(k) is a category 2, then before its parent-link is flagged, its order-link
is flagged and its rChild and lChild links are marked.

4. If x(k) is the order-node of a category 3 node, then before its incoming
parent-link is tagged, its rChild link is flagged and threaded.

5. If x(k) is the order-node of a category 3 node, then before its lChild is
tagged, its rChild link is flagged and its incoming parent-link is tagged.

6. If x(k) is a category 2 node, then before its lChild is marked, its order-
link is flagged and its rChild link is marked.

7. If x(k) is a category 3 node, then before its incoming parent-link is
flagged, its lChild link is marked and points to its order-node.
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Proof. The FLAGPARENT function for a category 1 node is called only from a
HELPMARKRIGHT function and using the lemma 2.9 before the rChild link
of a node is marked its order-link must have been flagged. Therefore, before the
parent-link of a category 1 node is flagged, its order-link must have been flagged
and its rChildmarked. In the same way for a category 2 node before its lChild
link is marked in the function HELPMARKRIGHT, its order-link must have been
flagged and its rChild link marked. And the FLAGPARENT function on such
a node is called only from the function HELPMARKLEFT. That proves that
before the incoming parent-link is flagged for a category 2 node its its order-
link is flagged and lChild and rChild links are marked. In the same way we
can observe the order of call of tagging and flagging of the links connected to
a category 3 node and its order-node. Clearly, the incoming parent-link of the
order-node of a category 3 node is tagged in the function HELPTHFLAGGED
and that ensures a flagged order-link of the node i.e. a flagged and threaded
right-link of the order-node. The left-link of the order-node of a category 3
node is tagged only in the function HELPTAGGEDPREPAR at line 148. The
call of the function HELPTAGGEDPREPAR ensures a tagged parent-link of the
order-node. Similar to the case of a category 2 node, the left-child link of a
category 3 node is marked only after its right-link is marked. And finally before
the call of FLAGPARENT at the line 246, it must have been that the left-link
points to the order-node by check at the line 222 ensuring that the left-link is
marked and pointed to the order-node.

Lemma 2.11. At any step s in an execution E, before any traversal link (i.e.
left-link or right-link of a node present in the BST) incoming to a node x(k)∈Υt

at a t≥0, is moved away from it, following hold

1. If x(k) is a category 1 node then its (a) order-link is flagged, (b) rChild
link is marked, and the (c) incoming parent-link is flagged.

2. If x(k) is a category 2 node then its (a) order-link is flagged, (b) rChild
link is marked, (c) lChild link is marked, and the (c) incoming parent-
link is flagged.

3. If x(k) is a category 3 node, (a) order-link is flagged, (b) rChild link
is marked, c) lChild link is marked, and the (c) incoming parent-link is
flagged.

Proof. The first incoming link to be pointed away from a category 1 node is its
parent-link and that for a category 2 or 3 node is its order-link. The update of
the parent-link of a category 1 node happens in the function CLEANFIRST and
the update of the order-link of a category 2 or 3 node happens in the function
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CLEANSECOND. These functions are called only if the parent-link is flagged
and then using lemma 2.10, it follows.

Lemma 2.12. At any step s in an execution E, before the parent-link incoming
to a node x(k)∈Υt at a t≥0, is moved away from it all other links, including
the backLink of its children if any, are moved away from it.

Proof. The update of the flagged parent-link of a node happens in the func-
tion CLEANFIRST or CLEANSECOND as the absolutely last CAS operation that
moves a link away from a node at line 269 or 279. Before the first successful
execution of the CAS in these lines, all the previous CAS operations must have
succeeded to move away all the links connected to a node.

Lemma 2.13. At any step s in an execution E, in a valid BST state Υt at a
t≥0, the shifting of the order-node of a category 3 node in the function HELP-
MARKLEFT does not violate the symmetric order of the BST. Further, order-
node remains reachable from the Root during its shifting.

Proof. When the order node is shifted in the function HELPMARKLEFT, the
update of traversal links in the BST ensure that the (a) incoming parent-link
of the order-node is connected to the left-child node of the order-node if it is
in the BST, (b) left-link of the order-node is connected to the left-child node
of the category 3 node and (c) left-link of the category 3 node is connected to
its order-node, in this order. Clearly, with the validity of the BST before (a),
it is ensured that the nodes maintain the symmetric order. After (a), the right-
child of the parent of order-node is a node in its right-subtree before (a). So,
with the validity before (a), the validity after (a) is guaranteed. Similarly before
(b) the order-node is a node in the right-subtree of the left-child node of the
node under REMOVE and hence after (b) the left-child of the order-node has
a key less than that of itself. Same holds for the change (c). Clearly none of
these changes violate the symmetric order of the BST. Other than these three
changes, no traversal link is changed due to the shifting of the order-node of a
category 3 node. It implies that if the order-link of the order-node was incoming
to it, emanating from another node in its left-subtree, then it remains so and if
the order-link was emanating from itself then after the shifting, a threaded-link
from its previous parent now connects to it. In both these cases, unless the
tagged parent-link incoming to the order-node is updated to a clean threaded or
unthreaded link, the parent of the order-node can not be removed following the
lemma 2.12. That ensures that following the right-link of the previous parent of
the order-node it is reachable by any traversal.
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Lemma 2.14. The backLink of a node x(k)∈Υt at a t≥0, always points to a
node that is present in Υt and is at most two links away.

Proof. It follows from lemma 2.12 that before the flagged parent-link of a node
is moved away from it, the backLink of its children pointing to it at the time
the parent-link is flagged, are pointed away to either connect to its parent or to
its order-node. Also from 2.13, when the order-node of a category 3 node is
shifted, the back-link pointer from a possible left-child of it is connected to the
parent of the order-node before the tagged parent-link is connected to the left-
child of the same. Similarly, the backlink of the left-child node of a category
3 node is connected to its order-node before the left-link of the order-node is
connected to it. And then the backLink of the order-node is connected to the
node whose parent-link is still to be flagged. This shows that the backLink of
a node always points to a node present in the BST.

Moreover, it can easily be observed that the parent-link of the parent of a
node emanates from a node from where, it would take at most two links to
reach the node. And in case of a order-node shifting, from the order-node it
takes one flagged order-link and one marked left-link to reach the left-child
node of a category 3 node. It is trivial to observe that when the backLinks are
not under update during a REMOVE they always point to the parent of the node
from where a single travel is needed to reach the node. Hence it can be seen
that from a node which is pointed by a backLink field, a node can be reached
by traversing at most two links.

Corollary 2.3. If the FLAGPARENT function applied on a node x(k) returns
null, then x(k)/∈Υt.

Proof. Observing thorough the function FLAGPARENT, it returns null only if
(a) the rChild link of x(k) is found finalized or x(k) is connected to neither
of the child-links of the node pointed by the backLink nor to the child-links
of the nodes pointed by those child-links. Using the lemma above it directly
follows.

Lemma 2.15. At any step s in an execution E, a call of REMOVE(key) over
a valid BST state Υt at a t≥0, satisfies the sequential specifications (2.5) and
(2.6) in Definition 2.1.

Proof. In keeping with the proof of lemma 2.4 the sequential specification (2.6)
is satisfied by REMOVE(key). By lemma 2.13, the shifting of the order-node of
a category 3 node maintains the symmetric order of the BST. By Lemma 2.6,
if x(key)∈Υt then REMOVE(key) starts by flagging its order link. By lemma
2.11, before x(key) is REMOVEd, all the incoming links to it are moved away
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maintaining the symmetric order of the BST. By the Lemma 2.8, any new ADD
or REMOVE operation can not be injected to a link unless it is clean. So, if
Υt is valid then Υt\x(key) is also valid. Moreover, after the order link and
parent-links are pointed away x(key) can not be reached from pRoot. Hence
REMOVE(key) satisfies the sequential specification (2.5).

Using Lemmas 2.4, 2.5 and 2.15, we arrive at proposition 2.1.

Proposition 2.1. The the algorithm Efficient Lock Free BST in an execution E
starting with initial configuration C0⊇Υ0 maintains a valid binary search tree
state Υt, ∀t≥0.

2.4.2 Linearizability
Having proved the above invariants of the lock-free BST algorithm we prove
the linearizability.

Lemma 2.16. In a step s in an execution E, there exist linearization points of
ADD, REMOVE and CONTAINS between their respective invocation and return,
satisfying the sequential specifications of a valid BST state Υt for t≥0 given in
Definition 2.1.

Proof. CONTAINS - A thread performing a CONTAINS(key) essentially per-
forms a LOCATE with key starting from the node pRoot. Now if LOCATE ter-
minates returning x(key) so that CONTAINS(key)(Υt) = true then the point at
which the link pointing to x(key) was read in LOCATE, is taken as the lineariza-
tion point. There is no other way that CONTAINS(key)(Υt) could return true
as proved before. However, if CONTAINS(key)(Υt) = false then there could
be two possibilities - (a) when CONTAINS(key) was invoked, x(key)∈Υt and
(b) when CONTAINS(key) was invoked, x(key)/∈Υt. In the first case because
LOCATE could not reach the node x(key) although it was in Υt at the invoca-
tion point shows that a concurrent REMOVE operation REMOVEd the node and
in that case the linearization point of CONTAINS(key)(Υt) = false is just after
the linearization point of the successful concurrent REMOVE operation. In the
second case the linearization point can well be taken as the invocation point of
CONTAINS(key) returning false.

ADD - A thread performing an ADD(key) returns false if x(key)∈Υt and
therefore as in case of CONTAINS, the linearization point of ADD(key)(Υt) =
false is at the point where the link pointing to x(key) was read, which is be-
tween the invocation and return of the LOCATE called from ADD. For a suc-
cessful ADD operation, LOCATE return the address of a node which does not
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have the key key. And with that, the execution of the CAS at line 347 is where it
takes effect and therefore it is the linearization point of ADD(key)(Υt) = true.

REMOVE - A thread performing a REMOVE(key) can return false in two
ways (a) x(key)/∈Υt at the invocation of REMOVE and therefore is not located
(b) x(key)∈Υt at the invocation of REMOVE but got REMOVEd by a concur-
rent successful REMOVE. These are the cases similar to those in the CON-
TAINS operation and so the linearization points are same as in that case. For a
REMOVE(key) returning true, we should choose a point between its invocation
and return such that it is consistent with the return of the concurrent CONTAINS
operations. A REMOVE returns true only if it could successfully perform the
CAS at line 69. However, key can still be located until the incoming parent-link
is pointed away. So we must have the linearization point of the REMOVE(key)
returning true at the execution of the successful CAS that swaps the incoming
parent-link of x(key)∈Υt so that a concurrent CONTAINS returning false lin-
earizes just after that. However, it could be done by a helping operation and
that will still be between the invocation and return point of the REMOVE that
successfully flags the order-link.

Using the Proposition 2.1 and the Lemma 2.16, the proposition 2.2 follows.

Proposition 2.2. The algorithm Efficient Lock Free BST implements a valid and
linearizable concurrent binary search tree.

2.4.3 Lock-Freedom
Lemma 2.17. If REMOVE(x) and REMOVE(y) work concurrently on nodes x
and y then without loss of generality

(a) If x is a child of y and the link [y, x] is flagged then REMOVE(x) finishes
before REMOVE(y); otherwise if this link is marked, REMOVE(y) finishes
before REMOVE(x).

(b) If x is the order-node of y, where y is a category 3 node, and the order-links
of both x and y have been successfully flagged then REMOVE(x) finishes
before REMOVE(y).

(c) If x is the order-node of y, where y is a category 2 node, and the order-links
of both x and y have been successfully flagged then REMOVE(y) finishes
before REMOVE(x).

(d) If x is the left-child of the order-node of y, where y is a category 3 node, and
the link [pre(y), x] is tagged then REMOVE(x) finishes before REMOVE(y);
otherwise if this link is flagged, REMOVE(y) finishes before REMOVE(x).
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(e) If x is the left-child of the order-node of y, where y is a category 2 node,
and the link [y, x] is marked then REMOVE(y) finishes before REMOVE(x).

(f) If x is the parent of the order-node of y, where y is a category 3 node, and
the link [x, pre(y)] is marked then REMOVE(x) finishes before REMOVE(y);
otherwise if this link is tagged, REMOVE(y) finishes before REMOVE(x).

(g) In all other cases REMOVE(x) and REMOVE(y) do not obstruct each other.

Proof. Follows from the lemmas 2.8, 2.9 and 2.10.

Lemma 2.18. Lock-freedom is guaranteed in the algorithm Efficient Lock Free
BST.

Proof. By the description of the algorithm, a non-faulty thread performing
CONTAINS will always return unless its search path keeps on getting longer
forever. If that happens, an infinite number of ADD operations would have suc-
cessfully completed adding new nodes making the implementation lock-free.
So, it will suffice to prove that the modify operations are lock-free. Suppose
that a thread λ∈Λ performs a modify operation op on a valid BST state Υt and
takes infinite steps and no other modify operation completes after that. Now, if
no modify operation completes then Υt remains unchanged forcing λ to retract
every time it wants to execute its own modification step on Υt. This is possible
only if every time λ finds the injection point of op flagged, marked or tagged.
This implies that a REMOVE operation is pending. It can be observed in our al-
gorithm that in the function ADD if it gets obstructed by a concurrent REMOVE
then before retrying after recovery from failure it helps the pending REMOVE
by executing all the remaining steps of that. Also from lemma 2.17, whenever
two REMOVE operations obstruct each other, one finishes before the other. It
implies that whenever two modify operations obstruct each other one finishes
before the other and so Υt changes. It is contrary to our assumption. Hence,
by contradiction we show that no non-faulty thread shall remain taking infinite
steps if no other non-faulty thread is making progress.

The lemma 2.18 leads to the proposition 2.3.

Proposition 2.3. The algorithm Efficient Lock Free BST implements a valid and
linearizable lock-free concurrent binary search tree.

2.4.4 Complexity
Having proved that our algorithm guarantees lock-freedom, though we can not
compute worst-case time complexity of an operation, we can definitely derive
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their amortized complexity. We derive the amortized step complexity of set
operations in our implementation by the accounting method along the similar
lines as in [12, 21]. For an execution E, let O be the set of operations. First we
show that a traversal visits a node only a constant number of times and hence
we bound the length of the traversal path. Then in the execution E we amortize
the step complexity of the operations op∈O.

Lemma 2.19. A thread λ∈Λ executing an operation op visits a node x∈Υt only
an O(1) times during the traversal in the shared memory system U , if it does no
modification.

Proof. As we have observed that the key of a node x∈Υt is immutable. If
the nodes {xi∈Υt}i∈I , that a thread λ∈Λ performing a set operation op∈O
traverses through, do not change their respective positions in Υt then a node xi
appears only once in the traversal path and λ terminates according to the Lemma
2.3. However, because of concurrent REMOVE operations shifting nodes to
replace their successor, the respective position of nodes can change during the
traversal. Also, in U it is allowed that a thread λ can get delayed infinitely.
Therefore, when λ updates the values of curr and preNode at lines 35 and
36 in LOCATE, it could be that curr is shifted up to replace its successor by a
concurrent REMOVE operation and the key which λ was querying for, was in
the left-subtree of curr before it got shifted. In that case λ may visit the nodes
which it already would have visited. So, for turns as right to left when going
from preNode to curr to next must be observed for such a change. The lines
37 to 44 take care of that and if after curr has been updated to next, it is found
that the right child of preNode has changed we update curr to the new right-
child of preNode and in case it is found that the thread status of the right-link of
preNode changed then we take back curr to preNode. This ensures that if the
order-node of a removed category 3 node shifted up and the delayed operation
by λ reads the left-link of the order-node after its shifting then it must go back
in order to terminate at the threaded order-link of the shifted node. After that
the same scenario can occur if the new order-node of the shifted node shifts up
when λwas reading it. However, again the same steps will follow and the newly
shifted node will not be read again. Clearly, a node is visited only O(1) times
(maximum twice).

Note that, all the set operations have to perform a predecessor query by
a key k to LOCATE an interval [ki, kj ] associated with a link s.t. x(ki) and
x(kj) are two nodes in the BST. Let us define the access-node of an interval as
the node from which the link associated with the interval, emanates from. We
define distance of an interval from an operation op as the number of links that
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op traverses from its current location (pRoot ∀ t≤ti(op)) to read the access-
node of the interval. Suppose that at ti(op) there are n nodes in the valid BST
state Υti(op). Clearly, distance of any interval from op at ti(op) is O(H(n)).
Next we prove the following lemma.

Lemma 2.20. If at tref (op) ∈ [ti(op), tr(op)], x(kj) is a category 1 node and
the distance of the interval [ki, kj ] associated with the order-link of x(kj) from
op at tref (op) is d then to access an interval [k, k′] ⊆ [ki, kj ] op traverses no
more than d+ ht(x(kj)) + |{op′∈O : op′ is a concurrent ADD}| links.

Proof. Given that at tref (op) ∈ [ti(op), tr(op)], x(kj) is a category 1 node
and the distance of the interval [ki, kj ] associated with the order-link of x(kj)
from op at tref (op) is d. We can observe that if at a t ∈ [tref (op), tr(op)],
x(kj) is still a category 1 node and it is REMOVEd then the interval associated
with its order-link gets subsumed by the interval associated with the order-link
of the leftmost child in its right subtree or with the order-link emanating from
its parent if the right subtree is null. In the former case the distance of [ki, kj ]
from op becomes d + ht(x(kj)) and in the latter it decreases by 1. Also if a
node x(kl) is ADDed by an operation op′ then the extra distance apart from d
traversed by op to access [ki, kl] or [kl, kj ] is no more than 1. The observations
made above imply that op does not traverse more than d+ht(x(kj))+|{op′∈O :
op′ is a concurrent ADD}| links to access a subinterval of [ki, kj ].

Lemma 2.21. Length of the traversal path of a thread λ∈Λ is bounded by
2H(n) + |{op′∈O : op′ is a concurrent ADD}|.

Proof. When op traverses in the left subtree of a category 3 node x and if x
gets REMOVEd, the interval associated with its order-link gets subsumed by the
interval associated with the order-link of the leftmost node in the right subtree
of x which is a category 1 node. On removal of a category 2 node, the interval
associated with its order-link is subsumed by the interval associated with the
order-link of its parent which can be a category 2 or category 3 node. Lemma
2.19 shows that a node is visited at maximum twice by a thread during a traver-
sal. And, (d + ht(x)) ≤ 2H(n) ∀ x∈Υ and for any d that is distance of an
interval from op its present position. Therefore, lemma 2.21 along with these
observations show that the path length of a traversal in our lock-free BST is
bounded by 2H(n) + |{op′∈O : op′ is a concurrent ADD}|.

Having shown that the traversal path of a thread for any operation is bounded
by O(H(n) + |{op′∈O : op′ is a concurrent ADD}|) we prove that an ob-
structed operation incurs only a constant number of extra steps in helping an
obstructing operation.
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Lemma 2.22. An obstructing operation op makes an obstructed operation op′

take only a constant number of extra steps for recovery from failure in order to
finish its execution.

Proof. An ADD operation does not have to hold any link and so does not ob-
struct an operation for itself so only a REMOVE operation can obstruct another
operation. Let op be a REMOVE operation. We observe that after flagging the
order-link of a node, op takes only a constant number of atomic steps to flag,
mark, tag and swap links connected to the node and to its order-node in addition
to setting the preLink pointer of the node under REMOVE, if not obstructed by
a concurrent operation. To start helping op after an unsuccessful CAS in order
to complete an operation op′, a thread λ reads either the preLink pointer or the
backLink pointer of a node. It is trivial to observe that from a node pointed
by preLink the distance of node is no more than a single directed link. Also
using lemma 2.14 a node pointed by backLink is no more than two links away.
That shows that a thread needs to take only a constant number of extra steps in
order to perform helping. Hence the recovery from failure due to a concurrent
obstructing operation needs only a constant number of links to traverse. That
proves the lemma.

Now we amortize the step complexities of the operations during an execu-
tion E. In the shared memory system U , let ti(op) be the invocation point of op
which is the time it reads the pRoot, and tr(op) be the return point of op which
is the time it reads or writes at the last link before it leaves the BST. The point
contention cp(op) during the execution interval of op is defined as the maximum
number of threads running concurrently at any point t∈[ti(op), tr(op)] [1] to
execute any operation. Some authors also call it concurrent contention [14]. In
order to perform an operation op∈O, a number of atomic steps a are taken. The
amortized complexity of op∈O is computed as following

Amortized step complexity ĉ(op) of op∈O
= Actual step complexity c(op)

+ number of extra steps charged to op on behalf of op′

− number of extra steps charged on behalf of op to op′′

where op, op′, op′′∈O and op′ 6=op6=op′′

Let A be the set of atomic steps taken by all λ∈Λ. We define a function
f : A 7→ O such that if f(a) = op then a is charged to the account of op and

(a) In case of no contention, all the atomic steps a representing atomic read,
write and CAS taken by op is mapped to op by f .
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(b) In case of contention, any failed CAS by op is mapped by f to the operation
op′ whose successful CAS causes the failure.

(c) If an extra read is performed during the traversal in op due to an ADDed
node at t∈[ti(op), tr(op)] to the set of existing nodes by a concurrent ADD
operation op′ then it is mapped by f to op′.

(d) Any read, write or CAS step a taken by an operation op after the first failed
CAS and before retrying at the same link i.e. during helping and recovery
from failure is mapped by f to the operation op′ that performed the success-
ful CAS in order to make op help it, provided op′ further does not help some
op′′ so that op helps op′′ recursively. This includes resetting of prelink, if
needed.

(e) In case of recursive helping, the extra atomic steps by all the operations
helping op is mapped by f to op.

With the definition of the function for accounting the steps, we prove that
the upper bound of amortized complexity of operations in the following Propo-
sition.

Proposition 2.4. In a BST with n nodes at the start of a finite execution E,
the amortized step complexity of each operation op in E is O(H(n) + cp(op)),
where cp(op) is the point contention during the execution of op.

Proof. Clearly for two operations op, op′∈O and op 6=op′, if they are not con-
current, f can not charge any extra step to op or op′ on behalf of either. Now
we take the three set operations separately.

(a) A CONTAINS operation op, as it does no modification in the BST no ex-
tra step can be charged to it other than the essential steps that it would
take on account of the traversal. If a node is ADDed by op′ to the BST at
t∈[ti(op), tr(op)] and it comes in the traversal path of op then the read of
this node is charged to op′ by f . In Lemma 2.19 we proved that a traversal
visits a node only O(1) times. From the discussion in the proof of Lemma
2.19 it can be seen that during the traversal an operation may possibly visit
the node preNode more than once if the node curr is shifted by a concur-
rent REMOVE operation during its LOCATE. The extra read of preNode
is charged to the concurrent REMOVE operation that shifts curr and that
is at most once as in a REMOVE the shift of an order-node happens only
once. Because the traversal path length is at most 2H(n) + |{op′∈O :
op′ is a concurrent ADD}| and the number of extra reads, if any, counted
in |{op′∈O : op′ is a concurrent ADD}| is charged to concurrent ADD
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operations, the amortized step complexity of a CONTAINS operation during
a finite executionE isO(H(n)) where n is the number of nodes in the BST
in the initial configuration in E.

(b) An ADD operation does not perform any flag or mark of a link which can
block a concurrent operation so an extra step can not be charged to an ADD
by f on account of getting helped by any concurrent operation. When a
node is ADDed to the BST by an operation op which was not at the invo-
cation point of a concurrent operation op′ and the new node comes in the
path of the traversal of op′, the read of the new node by op′ is charged to
op and it can be at most 1. This infers that at most cp(op) can be charged
to an ADD operation op by f on account of the added node. An ADD op-
eration’s successful CAS can cause failure to the CAS of a concurrent ADD
or the flagging or marking of a concurrent REMOVE and for that at most
1 CAS step can be charged by any concurrent modify operation. After the
failure any concurrent modify will have to travel only one extra link which
has been counted before. So on the account of failed CAS of concurrent
operations f can charge at most cp(op) to an ADD operation op. Finally, an
ADD operation helps a concurrent REMOVE operation if the threaded link
that the new node is required to be added to is found marked or flagged. The
failed CAS step and the extra steps in helping the concurrent REMOVE is
charged to that. By Lemma 2.22 only a constant number of extra steps are
taken in the helping. On summarizing these observations and by the upper
bound of the traversal path by Lemma 2.19, the amortized complexity of an
ADD operation op during a finite execution E is O(H(n) + cp(op)) where
n is the number of nodes in the BST in the initial configuration in E.

(c) For a REMOVE operation other than the essential steps that it takes in the
traversal to track the order-link of the node to be deleted, it obstructs a con-
current modify operation and can make a concurrent traversal read extra
node because of shifting of the order-node. The steps charged on account
of traversal is similar to as discussed in case of CONTAINS. By Lemma
2.22 only a constant number of extra steps are needed by an obstructed
concurrent modify operation. Therefore after locating the order-link of the
node and its successful flagging a REMOVE operation op can be charged
only O(cp(op)) extra steps if it itself is not obstructed by another concur-
rent REMOVE forcing a recursive helping. In case of recursive helping the
charges of the extra steps on behalf of obstructed operations that is taken
to help another obstructing operation is passed to that by f . Summarizing
these observations the amortized complexity of a REMOVE operation op
during a finite execution E is O(H(n) + cp(op)) where n is the number of
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nodes in the BST in the initial configuration in E.

Summing up, in any finite execution E with the set of operationsO, threads
perform at most O

(∑
op∈O(H(n) + cp(op))

)
steps in total where n is the

number of nodes in the BST in the initial configuration in E.

It is straightforward to observe that the number of memory-words used by
a BST with n nodes in our design is 5n. That concludes the amortized analysis
of our algorithm.

2.5 Implementation

2.5.1 Implementation
The algorithm for lock-free binary search tree is presented in the pseudo-code
from line 1 to 363. The pseudo-code borrows its style from object-oriented
programming approach of Java. We have heavily used the mechanisms of
multilevel inheritance and polymorphism of classes as practised in Java. In-
deed, it is straightforward to use the method of Run Time Type Identification
(RTTI) available in Java to implement the presented algorithm. However, tradi-
tionally the implementation of lock-free pointer based data-structures is con-
sidered to be the best suitable for a language that allows pointer manipula-
tion and bit-stealing from pointers, such as C/C++. It provides good perfor-
mance, but that comes at the cost of increased programming effort of imple-
menting an additional safe memory reclamation method [5]. An equivalent
approach in Java can be found in way of implementation using objects like
AtomicMarkedReference and AtomicStampedReference available
in object library Java.util.concurrent.atomic. These are very convenient to use
for the purpose of bit-stealing from pointers. Needless to mention that avail-
ability of safe garbage collector in Java reduces the programming complexity
significantly.

To implement the algorithm using pointers for links, we can use bit-stealing
to maintain the states of links. To maintain 10 states, we need to steal four bits
from a pointer. If we represent a pointer as a packet of a reference and four
boolean variables overlapping four bits that is not used to represent address of
a variable as {&ref, b1, b2, t, f}, where b1, b2, t and f are bits, then state of a
link can be expressed as following:

• Setting the bit f indicates a finalized link.

• Setting the bit t indicates a threaded link.
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• Setting the bits b1 and b2 in combination can indicate three states of
flagged, marked and tagged and to retrieve the state they must be retrieved
together.

The modern C/C++ compilers by default allocate memory aligned at 64 bit
boundary that leaves three least significant bits unused. We will need to steal
one more bit when using a 64-bit machine and default alignment of memory al-
located by popular compilers like GCC(G++). When using the Java library ob-
ject AtomicStampedReference, the state identifiers can be realized with
decimal conversion of the four bits combination as a binary number and using
stamp for that. Doing logical operations on the stamp simulates the bit stealing
operations.

We assume that in the implementation setup a lock-free safe mechanism
to reclaim the removed nodes is used. In Java, the garbage collector exists for
this purpose. However for C/C++ implementation, where no language provided
garbage collectors are available some widely used methods are Hazard-pointer
based safe memory reclamation [19] and Reference counting [8]. The basic idea
in all these methods is that they keep track of all the objects local to each thread
in the system and the shared object is reclaimed only after having ensured that
no object local to any thread holds a reference to it. Other than that it is also
assumed that for all practical cases a memory allocated for a new node always
has a new address. In most of the lock-free data-structures these assumptions
are sufficient for a correct implementation. However, this algorithm can face a
classical ABA problem as described next.

2.5.2 ABA problem
Consider the case of a delayed thread in the presented algorithm as shown in
the Fig. 2.5. The thread T that executes REMOVE(5), performs the steps of (a)
flagging order-link, (b) tagging parent-link of the order-node, (c) tagging left-
link of the order-node (d) setting preLink, (e) marking right-link and (f) marking
left-link successfully, Fig. 2.5 (I). Then it modifies the backLink of the left-
child of the order-node, swaps the incoming parent-link of the order-node and
also changed the backLink of the left-child of the node x(5) i.e. it executes up
to line 232 in the function HELPMARKLEFT in the execution of REMOVE(5),
Fig. 2.5 (II). Just after that it gets delayed and some helping thread comes and
helps to complete REMOVE(5), Fig. 2.5 (III). Because there is a safe memory
reclamation scheme being used, the node x(5) is not reclaimed as its reference
is held in the thread T , but for the sake of clarity we have not shown the removed
node in Fig. 2.5 (III). After that x(6) is removed by another thread and T keeps
on sleeping, Fig. 2.5 (IV). After that x(2) is removed by another thread and
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Figure 2.5: The ABA problem in the algorithm

T still keeps on sleeping, Fig. 2.5 (V). Note that references to both x(6) and
x(2) is held by T so they are not freed, we have not showed these nodes for
the same reason as mentioned before. After that x(7) starts being removed by
another thread and that completes all the steps up to the line 232 in the function
HELPMARKLEFT successfully, that T had done in the course of REMOVE(5).
At this very moment T wakes up, Fig. 2.5 (VI). Because x(2) is still not freed
and the left child-link of x(4), being the order-node of x(7) now is tagged and
pointing to x(3), i.e. in exactly the same state when T went to sleep, T will
swap this child-link to connect to x(2) and that formes a malformed structure,
Fig. 2.5 (VII). Now at this point a CONTAINS(2) can return true and that is
wrong. This is a classical case of the well known ABA problem.

Thus, if we implement this algorithm using pointers as links, we would need
to use a version counter in each child pointer in order to prevent the described
ABA problem. Whenever a pointer is swapped in order to finally clean a node
undergoing REMOVE, the version counter needs to be incremented. To do that
we would need to steal few more bits from a pointer used as a link. With the
counter in a child pointer the pointer swapping steps will include incrementing
the counter as well. Now with that, if a thread after waking up tries to swap the
pointer the CAS step will fail.

In case of implementing this algorithm with RTTI, when we shift the order-
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Figure 2.6: The performance graph in read-heavy case (ADD-REM-CON : 2%-2%-
96%).

node of a category 3 node to replace it, a new instance of the UtLink class is
allocated for the left-child link of the shifted node. Also other links are appro-
priately given a new instance of a subclass of Link. Clearly, the CAS will not
succeed more than once in such an implementation. So, the algorithm is not
affected by any ABA problem as long as the implementation environment guar-
antees to allocate a new variable with address different from that of any variable
whose reference is held by a thread that is active or idle and has not completed
its operation.

2.5.3 Experiments

The experimental evaluations in [26] show that the real-time-type-information
(RTTI) based implementation in Java outperforms the implementation of lock-
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free single linked-list based on AtomicMarkedReference. We also imple-
mented our algorithm using method of RTTI in Java.

The following algorithms are compared in our experiments:

(a) Our LFBST: The presented algorithm.

(b) NM LFBST: The lock-free external BST of [20].

(c) EFRB LFBST: The lock-free external BST of [11]1.

(d) LF SLSet: ConcurrentSkipListSet available in java concurrency li-
brary.

The ConcurrentSkipListSet available in java class library is a highly
optimized non-linear lock-free set implementation based on skip-lists and is
widely used in real life programs. We implemented the algorithm of [20] using
the same method of RTTI in Java.

Our experiments were performed on a machine with 2 Intel Xeon E5-2650
processors with 16 hardware threads (8 physical cores with hyper-threading
enabled) per processor i.e. 32 hardware threads in total running at 2.0 GHz. The
machine has 64 GB of RAM and runs over x86 64 Ubuntu Linux 13.04 (Linux
Kernel version: 3.8.0-30-generic) with OpenJDK 64-bit JVM version 1.7.0 51
(with 1 GB initial heap size and 16 GB MaxHeapSize). All the implementations
were compiled using javac version 1.7.0 51 without any flag.

To assimilate the variation in the contention due to various factors such as
range of keys, size of BST and proportion of modify operations we compared
the performance of all the implementations varying the following parameters:

• |{key∈K}| ∈ {1000, 10000, 100000, 1000000}.

• The distribution of (ADD, REMOVE, CONTAINS)∈ {(02, 02, 96) , (10, 10, 80),
(25, 25, 50), (50, 50, 00)}.

• The number of threads ∈ {1, 2, 4, 8, 16, 32}.

All the keys are of type int in our experiments. We performed 10 repetitions
of 5 seconds runs for each combination of the above parameters and recorded
the throughput as total number of operations per milliseconds. We discarded the
first 3 observations on account of VM warm-up. When computing the average
over the remaining 7 trials, we discarded the maximum and minimum to remove
the outliers. The counting of operations start after pre-populating the BST with
1000 nodes.

1We obtained the code from the page http://www.cs.utoronto.ca/˜tabrown/ and
modified it to remove the value field from the node class for a fair comparison.

http://www.cs.utoronto.ca/~tabrown/
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Figure 2.7: The performance graph in moderate write dominated case (ADD-REM-
CON : 10%-10%-80%).

Performance of the implementations in terms of throughput ( 1000×#Ops
ms )

vs. #threads with varying the range of the keys and the distribution of opera-
tions in terms of ADD%-REMOVE%-CONTAINS% are plotted in figures 2.6(a)
to 2.9(d). The variations is key range vary the contention level in the imple-
mentation. The empirical observations show that the presented lock-free BST
algorithm shows good scalability with increasing number of threads. Both the
internal as well as the external lock-free BST algorithm significantly outperform
the java ConcurrentSkipListSet as soon as there is concurrency in the
system. The external lock-free BSTs perform better than our algorithm experi-
mentally because of the reason that in our algorithm a REMOVE operation takes
up to 16 atomic CAS executions (17 if ·finalize() is used to save some helping
steps) even without contention, whereas the NM LFBST and EFRB LFBST take
respectively three and four such executions.
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Figure 2.8: The performance graph in mixed case (ADD-REM-CON : 25%-25%-50%).

2.6 Conclusion and Future Work

In this paper we proposed a novel algorithm for the implementation of a lock-
free internal BST. Using amortized analysis we proved that all the operations in
our implementation run in time O(H(n) + c), where H(n) is the height of the
BST with n nodes and c is the measure of point contention. We solved the exist-
ing problem of “retry from scratch” for modify operations after failure caused
by a concurrent modify operation, which resulted into an amortized step com-
plexity of O(cH(n)). This improvement takes care of an algorithmic design
issue for which the time complexity of modify operations increases dramati-
cally with the increase in the contention and the size of the data-structure. This
is an important improvement over the existing algorithms. Our algorithm also
comes with improved disjoint-access-parallelism compared to similar lock-free
BST algorithms. We proved the linearizability and lock-freedom of the pro-
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Figure 2.9: The performance graph in write-heavy case (ADD-REM-CON : 50%-50%-
0%).

posed algorithm. The experiments show that our algorithm is scalable with the
number of threads.
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3
PAPER II

Abstract

In this paper we revisit the design of concurrent data structures – specif-
ically queues – and examine their performance portability with regard to the
move from conventional CPUs to graphics processors. We have looked at both
lock-based and lock-free algorithms and have, for comparison, implemented
and optimized the same algorithms on both graphics processors and multi-core
CPUs. Particular interest has been paid to study the difference between the old
Tesla and the new Fermi and Kepler architectures in this context. We provide
a comprehensive evaluation and analysis of our implementations on all exam-
ined platforms. Our results indicate that the queues are in general performance
portable, but that platform specific optimizations are possible to increase per-
formance. The Fermi and Kepler GPUs, with optimized atomic operations,
are observed to provide excellent scalability for both lock-based and lock-free
queues.

3.1 Introduction
While multi-core CPUs have been available for years, the use of GPUs as effi-
cient programmable processing units is more recent. The advent of CUDA [11]
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and OpenCL [16] made general purpose programming on graphics processors
more accessible to the non-graphics programmers. But still the problem of ef-
ficient algorithmic design and implementation of generic concurrent data struc-
tures for GPUs remains as challenging as ever.

Much research has been done in the area of concurrent data structures.
There are efficient concurrent implementations of a variety of common data
structures, such as stacks [17], queues [3, 4, 7, 9, 13, 18] and skip-lists [15].
For a good overview of several concurrent data structures we refer to the chap-
ter by Cederman et al. [1].

But while the aforementioned algorithms have all been implemented and
evaluated on many different multi-core architectures, very little work has been
done to evaluate them on graphics processors. Data structures targeting graph-
ics applications have been implemented on GPUs, such as the kd-tree [20] and
octree [19]. A C++ and Cg based template library [8] has been provided for
random access data structures for GPUs. Load balancing schemes on GPUs [2]
using different data structures have been designed. A set of blocking synchro-
nization primitives for GPUs [14] has been presented that could aid in the de-
velopment or porting of data structures.

With the introduction of atomic primitives on graphics processors, we hy-
pothesize that many of the existing concurrent data structures for multi-core
CPUs could be transferred to graphics processors, perhaps without much change
in the design. To evaluate how performance portable the designs of already
existing common data structure algorithms are, we have, for this paper, imple-
mented a set of concurrent FIFO queues with different synchronization mecha-
nisms on both graphics processors and on multi-core CPUs. We have performed
experiments comparing and analyzing the performance and cache behavior of
the algorithms. We have specifically looked at how the performance changes by
the move from NVIDIA’s Tesla architecture to the newer Fermi [10] and Kepler
(GK104) [12] architectures.

The paper is organized as follows. In section 3.2, we introduce the concur-
rent data structures and describe the distinguishing features of the algorithms
considered. Section 3.3 presents a brief description of the CUDA program-
ming model and different GPU architectures. In section 3.4, we present the
experimental setup. A detailed performance analysis is presented in section
3.5. Section 3.6 concludes the paper.
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3.2 Concurrent Data Structures
Depending on the synchronization mechanism, we broadly classify concur-
rent data structures into two categories, namely blocking and non-blocking. In
blocking synchronization, no progress guarantees are made. For non-blocking
synchronization, there are a number of different types of progress guarantees
that can be assured. The two most important ones are known as wait-free and
lock-free. Wait-free synchronization ensures that all the non-faulty processes
eventually succeed in finite number of processing steps. Lock-free synchro-
nization guarantees that at least one of the non-faulty processes out of the con-
tending set will succeed in a finite number of processing steps. In practice, wait-
free synchronization is usually more expensive and is mostly used in real-time
settings with high demands on predictability, while lock-free synchronization
targets high-performance computing.

Lock-free algorithms for multiple threads require the use of atomic primi-
tives, such as Compare-And-Swap (CAS). CAS can conditionally set the value
of a memory word, in one atomic step, if at the time, it holds a value specified
as a parameter to the operation. It is a powerful synchronization primitive, but
is unfortunately also expensive compared to normal read and write operations.

In this paper we have looked at different types of queues to evaluate their
performance portability when moved from the CPU domain to the GPU domain.
The queue data structures that we have chosen to implement are representative
of several different design choices, such as being array-based or linked-list-
based, cache-aware or not, lock-free or blocking. We have divided them up into
two main categories, Single-Producer Single-Consumer (SPSC) and Multiple-
Producer Multiple-Consumer (MPMC).

3.2.1 SPSC Queues

In ’83, Lamport presented a lock-free array-based concurrent queue for the
SPSC case [6]. For this case, synchronization can be achieved using only atomic
read and write operations on shared head and tail pointers. No CAS operations
are necessary. Having shared pointers cause a lot of cache thrashing however,
as both the producer and consumer need to access the same variables in every
operation.

The FastForward algorithm lowered the amount of cache thrashing by
keeping the head and tail variables private to the consumer and producer, respec-
tively [3]. The synchronization was instead performed using a special empty
element that was inserted into the queue when an element was dequeued. The
producer would then only insert elements when the next slot in the array con-
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tained such an element. Cache thrashing does however still occur when the
producer catches up with the consumer. To lower this problem it was suggested
to use a small delay to keep the threads apart. The settings used for the delay
function are however so application dependant that we decided not to use it in
our experiments.

The BatchQueue algorithm divides the array into two batches [13]. When
the producer is writing to one batch, the consumer can read from the other. This
removes much of the cache thrashing and also lowers the frequency at which
the producer and consumer need to synchronize. The major disadvantage of this
design is that a batch must be full before it can be read, leading to large latencies
if elements are not enqueued fast enough. A suggested solution to this problem
was to at regular intervals insert null elements into the queue. We deemed this as
a poor solution and it is not used in the experiments. To take better advantage of
the graphics hardware, we have also implemented a version of the BatchQueue
where we copy the entire batch to the local shared memory, before reading
individual elements from it. We call this version Buffered BatchQueue.

The MCRingBuffer algorithm is similar to the BatchQueue, but instead of
having just two batches, it can handle an arbitrary number of batches. This can
be used to find a balance between the latency caused by waiting for the other
threads and the latency caused by synchronization. As for the BatchQueue we
provide a version that copies the batches to the local shared memory. We call
this version Buffered MCRingBuffer.

3.2.2 MPMC Queues

For the MPMC case we used the lock-free queue by Michael and Scott, hence-
forth called the MS-Queue [9]. It is based on a linked-list and adds items to the
queue by using CAS to swap in a pointer at the tail node. The tail pointer is then
moved to point to the new element, with the use of a CAS operation. This sec-
ond step can be performed by the thread invoking the operation, or by another
thread that needs to help the original thread to finish before it can continue. This
helping behavior is an important part of what makes the queue lock-free, as a
thread never has to wait for another thread to finish.

We also used the lock-free queue by Tsigas and Zhang, henceforth called
the TZ-Queue, which is an array-based queue [18]. Elements are here inserted
into the array using CAS. The head and tail pointers are also moved using CAS,
but it is done lazily, after every x:th element instead of after every element. In
the experiments we got the best performance doing it every second operation.

To compare lock-free synchronization with blocking, we used the lock-
based queue by Michael and Scott, which stores elements in a linked-list [9].
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We used both the standard version, with separate locks for the enqueue and
dequeue operation, and a simpler version with a common lock for both opera-
tions. For locks we used a basic spinlock, which spins on a variable protecting
a critical section, until it can acquire it using CAS. As CAS operations are ex-
pensive, we also implemented a lock that does not use CAS, the bakery-lock by
Lamport [5].

3.3 GPU Architectures

Graphics processors are massively parallel shared memory architectures excel-
lently suitable for data parallel programs. A GPU has a number of stream multi-
processors (SMs), each having many cores. The SMs have registers and a local
fast shared memory available for access to threads and thread blocks (group of
threads) respectively, executing on them. The global memory, the main graph-
ics memory, is shared by all the thread blocks and the access is relatively slow
compared to that of the local shared memory.

In this work we have used CUDA for all GPU implementations. CUDA
is a mature programming environment for programming on GPUs. In CUDA
threads are grouped into blocks where all threads in a specific block execute on
the same SM. Threads in a block are in turn grouped into so called warps of 32
consecutive threads. These warps are then scheduled by the hardware scheduler.
Exactly how the scheduler schedules warps is unspecified. This is problematic
when using locks, as there is a potential for deadlocks if the scheduler is unfair.
For lock-free algorithms this is not an issue, as they are guaranteed to make
progress regardless of the scheduler.

The different generations of CUDA programmable GPUs are categorized
in compute capabilities (CC) and are identified more popularly by their archi-
tecture’s codename. CC 1.x are Tesla, 2.x are Fermi and 3.x are Kepler. The
architectural features depend on the compute capability of the GPU. In par-
ticular the availability of atomic functions has been varying with the compute
capabilities. In CC 1.0 there were no atomic operations available, from CC 1.1
onwards there are atomic operations available on the global memory and from
CC 1.2 also for the shared memory. An important addition to the GPUs in the
Fermi and Kepler architectures is the availability of a unified L2 cache and a
configurable L1 cache. The performance of the atomic operations significantly
increased in Fermi, with the atomic unit working on the L2 cache, instead of on
the global memory [14]. The bandwidth of L2 cache increased in Kepler so that
it is now 73% faster than that in Fermi [12]. The speed of atomic operations has
also been significantly increased in Kepler as compared to Fermi.
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3.4 Experimental Setup
The experiments were performed on four different types of graphics processors,
with different memory clock rates, multiprocessor counts and compute capabil-
ities. To explore the difference in performance between CPUs and GPUs, the
same experiments were also performed on a conventional multi-core system,
a 12-core Intel system (24 cores with HyperThreading). See Table 3.1 for an
overview of the platforms used.

Name Clock
speed

Memory
clock rate

Cores Cache Architecture
(CC)

GeForce 8800 GT 1.6 GHz 1.0 GHz 14 0 1.1 (Tesla)
GeForce GTX 280 1.3 GHz 1.1 GHz 30 0 1.3 (Tesla)
Tesla C2050 1.2 GHz 1.5 GHz 14 786 kB 2.0 (Fermi)
GeForce GTX 680 1.1 GHz 3.0 GHz 8 512 kB 3.0 (Kepler)
Intel E5645 (2x) 2.4 GHz 0.7 GHz 24 12 MB

Table 3.1: Platforms used in experiments. Counting multiprocessors as cores in GPU.

In the experiments we only consider communication between thread blocks,
not between individual threads in a thread block.

For the SPSC experiments, a thread from one thread block was assigned the
role of the producer and another thread from a second block the role of the con-
sumer. The performance was measured by counting the number of successful
enqueue/dequeue operations per ms that could be achieved when communicat-
ing a set of integers from the producer to the consumer. Enqueue operations on
full queues or dequeue operations on empty queues were not counted. Local
variables, variables that are only accessed by either the consumer or the pro-
ducer, are placed in the shared memory to remove unnecessary communication
with the global memory. For buffered queues, 32 threads were used for memory
transfer between global and shared memory to take advantage of the hardware’s
coalescing of memory accesses. All array-based queues had a maximum length
of 4096 elements. The MCRingBuffer used a batch size of 128 whereas the
BatchQueue by design has batches of size as of half the queue size, in this
case 2048. For the CPU experiments care was taken to place the consumer
and producer on different sockets, to emphasize the penalty taken by using an
inefficient memory access strategy.

For the MPMC experiments a varying number of thread blocks were used,
from 2 up to 60. Each thread block performed 25% enqueue operations and
75% dequeue operations randomly, using a uniform distribution. Two scenarios
were used, one with high contention, where operations were performed one
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after another, and one with low contention, in which a small amount of work
was performed between the operations. The performance was measured in the
number of successful operations per ms in total.

3.5 Performance Analysis

3.5.1 SPSC Queues
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(b) Cache profile.

Figure 3.1: Comparison of SPSC queues on the CPU based system.

Figure 3.1(a) depicts the result from the experiments on the CPU system.
It is clear from the figure that even the small difference in access pattern be-
tween the Lamport and the FastForward algorithms has a significant impact on
the performance. The number of operations per ms differ by a factor of four
between the two algorithms. The cache access profile in Figure 3.1(b) shows
that the number of cache misses goes down dramatically when the head and tail
variables are no longer shared between processes. It goes down even further
when the producer and the consumer are forced to work on different memory
locations. The figure also shows that the number of stalled cycles per instruc-
tions matches the cache misses relatively well. The reason for the performance
difference between the BatchQueue and the MCRingBuffer, which both have
a similar number of cache misses, lies in the difference between the size of
the batches. This causes more frequent reads and writes of shared variables
compared to the BatchQueue. It was observed that increasing the batch size
lowers the synchronization overhead and the number of stalled cycles and im-
proves the performance of the MCRingBuffer and brings it close to that of the
BatchQueue.
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Figure 3.2: Comparison of SPSC queues on four different GPUs.

Figure 3.2 shows the results for the same experiment performed on the
graphics processors. On the Tesla processors there are no cache memories avail-
able, which removes the problem of cache thrashing and causes the Lamport
and FastForward algorithms to give similar results. In contrast to the CPU im-
plementations, here the MCRingBuffer is actually faster than the BatchQueue.
This is due to the fact that the BatchQueue enqueuer is faster than the dequeuer
and has to wait for a longer time for the larger batches to be processed. The
smaller batch size in MCRingBuffer thus has an advantage here. The two
buffered versions lower the overhead, as for most operations the data will be
available locally from the shared memory. It is only at the end of a batch that
the shared variables and the elements stored in the queue need to be accessed.
This access is done using coalesced reads and writes, which speeds up the oper-
ation. When the queues are buffered, the BatchQueue becomes faster than the
MCRingBuffer. Thus the overhead of the more frequent batch copies became
more dominant. The performance on the Fermi and Kepler graphics processor is
significantly better compared to the other processors, benefiting from the faster
memory clock rate and the cache memory. The speed of the L2 cache is how-
ever not enough to make the unbuffered queues comparable with the buffered
ones on the Fermi processor. On the Kepler processor, on the other hand, with
its faster cache and higher memory clock rate, the unbuffered MCRingbuffer
performs similarly to the buffered queues. The SPSC queues that we have ex-
amined thus need to be rewritten to achieve maximum performance on most
GPUs. This might however change with the proliferation of the Kepler archi-
tecture.
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Figure 3.3: Visualization of the CAS behavior on the GPUs and the CPU.

3.5.2 MPMC Queues

All MPMC queue algorithms, except the ones that used the bakery-lock, make
use of the CAS primitive. To visualize the behavior of the CAS primitive we
measured the number of CAS operations that could be performed per thread
block per ms for a varying number of thread blocks. The result is available in
Figure 3.3. We see in Figure 3.3(a) that when the contention increases for the
Tesla processors the number of CAS operations per ms drops quickly. How-
ever, it is observed that the CAS operations scale well on the Fermi, for up to
40 thread blocks, at high speed. The increased performance of the atomic prim-
itives was one of the major improvements done when creating the Fermi archi-
tecture. The atomic operations are now handled at the L2 cache level and no
longer need to access the global memory [14]. The Kepler processor has twice
the memory clock rate of the Fermi processor and we can see that the CAS op-
erations scales perfect despite increased contention. Figure 3.3(b) shows that
on the conventional system the performance is quite high when few threads
perform CAS operations, but the performance drops rapidly as the contention
increases.

Figure 3.4 shows the performance of the MPMC queues on the CPU-based
system. Looking first at the topmost graphs, which shows the result using just
lock-based queues, we see that for a low number of threads the dual spinlock
based queue clearly outperforms the bakery lock based queues. The bakery lock
does not use any expensive CAS operation, but the overhead of the algorithm is
still too high, until the number of threads goes above the number of cores and
starts to use hyperthreading. The difference between dual and single spinlock
is insignificant, however between the dual and the single bakery lock there is a
noticeable difference.
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(a) Lock-based queues (High contention).
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(b) Lock-based queues (Low contention).
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(c) Best lock-based and lock-free queues (High
contention).
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Figure 3.4: Comparison of MPMC queues on the Intel 24-core system under high and
low contention scenarios.

The lower two graphs show the comparison results for the two lock-free
queues together with the best lock-based one, the dual spinlock queue. The
lock-free queues clearly outperform the lock-based one for all number of threads
and for both contention levels. The array-based TZ-queue exhibits better results
for the lower range of threads, but it is quickly overtaken by the linked-list based
MS-queue. When hyperthreading kicks in, the performance does not drop any
more for any of the queues.

The measurements taken for the lock-based queues on the Fermi and one of
the Tesla graphics processors are shown in Figure 3.5. Just as in the CPU ex-
periments the dual spinlock queue excels among the lock-based queues. There
is however a much clearer performance difference between the dual and single
spinlock queues in all graphs, although not for the low contention cases when
using few thread blocks. The peak in the result in Figure 3.5(a) is due to the
overhead of the benchmark and the non-atomic parts of the queue. When con-
tention is lowered, as in Figure 3.5(b), the peak moves to the right. After the
peak the cost of the atomic operations become dominant, and the performance
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(c) Tesla C2050 (High Contention)
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Figure 3.5: Comparison of lock-based MPMC queues on two GPUs under high and low
contention scenarios.

drops. For the Fermi-processor, in Figure 3.5(c), the performance for the spin-
lock based queues is significantly higher, while at the same time scaling much
better. As we could see in Figure 3.3(a), this is due to the much improved
atomic operations of the Fermi-architecture.

Comparing the dual spinlock queue with the lock-free queues, in Figure 3.6
we see that the lock-free queues scale much better than the lock-based one and
provides the best performance when the thread block count is high. The spin-
lock queue does however achieve a better result on all graphics processors for
a low number of thread blocks. As the contention is lowered, it remains use-
ful for a higher number of threads. The array-based TZ-queue outperforms the
linked-list based MS-queue on both the Tesla processors, but falls short on the
Fermi and Kepler processors, Figure 3.6(e). When contention is lowered on the
Fermi-processor, Figure 3.6(f), there is no longer any difference between the
lock-based and the lock-free queues.
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(a) GeForce 8800 GT (High Contention)
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(b) GeForce 8800 GT (Low Contention)

0 

50 

100 

150 

200 

250 

300 

350 

400 

0 10 20 30 40 50 60 

O
p

e
ra

ti
o

n
s 

p
e

r 
m

s 

Thread blocks 

Dual SpinLock MS-Queue TZ-Queue 

(c) GeForce GTX 280 (High Contention)
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(d) GeForce GTX 280 (Low Contention)
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(e) Tesla C2050 (High Contention)
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(f) Tesla C2050 (Low Contention)
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(g) GeForce GTX 680 (High Contention)
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Figure 3.6: Comparison of the best lock-based and lock-free MPMC queues on four
GPUs under high and low contention scenarios.
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3.6 Conclusion and Future work

In this paper we have examined the performance portability of common SPSC
and MPMC queues. From our experiments on the SPSC queues we found that
the best performing queues on the CPU were also the ones that performed well
on the GPUs. It was however clear that the cache on the Fermi-architecture was
not enough to remove the benefit of redesigning the algorithms to take advan-
tage of the local shared memory. For the MPMC queue experiments we saw
similar results in scalability for the GPU-versions on the Tesla processors as
we did for the CPU-version. On the Fermi processor the result was surprising
however. The scalability was close to perfect and for low contention there was
no difference between the lock-based and the lock-free queues. The Fermi ar-
chitecture has significantly improved the performance of atomic operations and
this is an indication that new algorithmic designs should be considered to more
properly take advantage of this new behavior. The Kepler architecture has con-
tinued in this direction and now provides atomic operations with performance
competitive to that of conventional CPUs.

We will continue this work by studying the behavior of other concurrent data
structures with higher potential to scale than queues, such as dictionaries and
trees. Most queue data structures suffer from the fact that only two operations
can succeed concurrently in the best case, whereas for a dictionary there are no
such limitations.
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