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Abstract

Nowadays, active safety has become a hot research topic in vehicle industry. Active
safety systems play an increasingly important role in warning drivers about and avoiding
a collision or mitigating the consequences of the accident. The increased computational
complexity requirement imposes a great challenge for the development of advanced active
safety applications using the traditional Electronic Control Units (ECUs). One way to
tackle this challenge is to use hardware offloading, which has the capability of exploiting
massive parallelism and accelerating such applications. A hardware accelerator combined
with software running on a general purpose processor can compose a hardware/software
hybrid system.

Model Based Development (MBD) is a common development scheme that reduces
development time and time-to-market. In this project, we evaluate different MBD work-
flows for the hardware/software co-design and propose a general workflow for MAT-
LAB/Simulink models. We investigate key techniques for hybrid system design and
identify three factors to assist hardware/software partitioning. Moreover, several essen-
tial techniques for hardware logic implementation, such as pipelining, loop unrolling, and
stream transmission, are analyzed based on system throughput and hardware resources.

This project describes the workflow for hardware/software co-design based on MBD
and finds methods to improve the system throughput combining hardware accelerators
and software. Using the proposed profiling methods and partitioning roles, a matrix
multiplication function is selected to be implemented by a hardware accelerator. Having
optimized the hardware implementation scheme of the accelerator, a 5.4x speedup is
achieved on a Zynq evaluation board.
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1
Introduction

1.1 Introduction

Over the past few decades, vehicles, such as cars, buses and trucks, have dramatically
improved people’s lives. Now, vehicles have become an essential part of everyday life.
They have made it easier and faster for users to get from place to place. They bring
convenience to people but at the same time can endanger people’s lives. Surveys show
that about 50000 Europeans were killed in car accidents in 2001 [1]. Nowadays, customers
select vehicles based on two major factors: (a) safety and (b) fuel consumption; they
reference (a) and (b) with 54% and 53% respectively.

The automotive industry is continuously working to improve vehicle safety. The
safety systems developed in vehicles can be divided into two categories: passive safety
systems and active safety systems. Passive safety is a technology to decrease the damage
to the driver and passengers in an accident. For example, seat-belts can hold passengers
in place so that they will not be thrown forward or ejected from the car; airbags can
provide a cushion to protect the drive and passengers during a crash. These passive
safety systems have saved thousands of lives and are milestones in the automotive in-
dustry. Active safety refers to systems that help keep a car under control and use an
understanding of the state of the vehicle to predict and avoid accidents. For example,
anti-lock brakes can prevent the wheels from locking up when the driver brakes, enabling
the driver to steer while braking. Advanced Driving Assistance System (ADAS) can alert
the driver to potential problems, or to avoid collisions by implementing safeguards and
taking over the control of the vehicle.

In current vehicles, increasingly more mechanical components are replaced by Engine
Control Units (ECUs), sensors, and actuators. More sophisticated active safety systems,
such as Anti-lock Brake Systems (ABS) and Electronic Stability Control (ESC), are
deployed in the vehicles. According to the eSafety effects database, ABS has prevented
10-33% of single-vehicle accidents and ESC has reduced all kinds of crashes by 19.3% [2].
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CHAPTER 1. INTRODUCTION

It is expected that active safety systems will play an increasing role in collision avoidance
and mitigation in the future. However, as more sophisticated systems are deployed, the
deployment of active safety systems becomes more challenging.

As mentioned before, ADAS is an example of active safety applications. Figure 1.1
shows three typical applications of ADAS. Figure 1.1(a) presents an example of predictive
pedestrian protection. Based on video streams from cameras installed on vehicles, a
pedestrian detection algorithm marks out the location of pedestrians and their distance
from the vehicle. If the distance is shorter than a threshold, then ADAS stops the vehicle
automatically. Figure 1.1(b) depicts a diagram of lane assist systems. By analyzing
the lane marks, algorithms of ADAS detect whether vehicles are crossing lane marks in
reasonable situations; this function detects whether the driver is concentrated on driving.
Figure 1.1(c) shows an example of radar system which measures the distance between
its front vehicle and itself. When the distance becomes shorter than a safe distance
threshold, ADAS triggers an emergency braking system to stop the vehicle. Besides the
above three applications, more new applications of ADAS have been developed recently,
such as surrounding view, automatic parking system, etc.

(a) Predictive Pedestrian
Protection

(b) Lane Assist Systems (c) Emergency Braking Sys-
tem

Figure 1.1: Applications of Advanced Driving Assistance System (a), (b) and (c) [3]

Data fusion is an essential module for ADAS. If each application supported by ADAS
requires its private sensor(s), then adding new applications will require more sensors,
which is inefficient. Figure 1.2 illustrates an example of a vehicle with several ADAS
applications, where multiple sensors are needed for supporting different services. There
may be significant overlapping between different sensors. Moreover, different sensors
may have different observation capabilities and various detection properties. The goal
of a data fusion application is to reduce duplicated sensors and organize different sen-
sors so as to get higher observation accuracy and efficiency. This thesis focuses on the
implementation problems of the data fusion application.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Sensors and Applications on Vehicles [4]

1.2 Problem Statement

The ever increasing number of new applications in ADAS imposes a great challenge for
supporting high computational complexity. In the past, as shown in Figure 1.3, only some
simple and independent applications ran on ECUs, such as ABS and anti-lock braking
system. These applications have a limited number of sensor inputs and use very simple
algorithms, which ECUs could support. However, once ADAS has been introduced, a
substantial amount of video and image streams is feed to such systems. Moreover, the
algorithms used in such applications are significantly more complex than in the past.
In particular, for the data fusion application considered in this thesis, execution has to
be completed within a tight deadline so that the actors can handle the risk as early as
possible.

Instead of using a single processor, Systems-on-Chip (SoCs), which contains both a
fixed General Purpose Processor (GPP) and a Programmable Logic (PL) section, can be
used to handle the high computational complexity problem. As in shown Figure 1.4, an
SoC consists of both hardware (i.e., PL) and software (i.e., GPP) parts. Hardware accel-
erators can also be implemented in Field-Programmable Gate Array (FPGA) with PL.
Systems which execute some parts of an application in software and some other parts in
hardware accelerators are called hybrid hardware/software systems. Integrating software
and hardware, the performance of the entire system can be improved significantly.

The design of hardware/software hybrid system that uses SoCs technology also faces
some challenges: partitioning and development workflow. The system needs to be par-
titioned into software and hardware parts properly. Software and hardware systems
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CHAPTER 1. INTRODUCTION

Figure 1.3: Demands of Applications

Figure 1.4: Overview of System-on-Chip

have their own advantages and disadvantages. For instance, some algorithms are more
suitable for pure software environments while other algorithms are more efficient when
executed by specialized hardware logic. An improper implementation of an algorithm
can result in low throughput and unnecessarily high resource utilization. The communi-
cation between processors and hardware accelerators is also a key factor that limits the
performance of hybrid systems. The total execution time of a hybrid system consists
of two parts: the overhead caused by the communication between the processor and
the accelerator, and hardware execution latency. Therefore, in order to reduce the total
execution time, both the communication scheme and the hardware implementation need
to be optimized. Note that for hardware implementations, a parallel design can achieve
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CHAPTER 1. INTRODUCTION

high system throughput, while a serial structure might use resources more efficiently.
For developers it is time-consuming to find the proper tradeoff between the performance
and the resource consumption for hardware design.

Round-Trip Engineering (RTE) is a traditional development flow for the design of
hybrid systems [5]. As shown in Figure 1.5, three development roles are involved in
the cycles. First, system designers define system models in specialized tools, such as
MATLAB/Simulink and LabVIEW. Then, software and hardware designers implement
their components in other design tools, for example, Eclipse SDK, Quartus, and Vivado.
The separate software and hardware designs are then combined to form hybrid systems.
Finally, the HW/SW co-design is verified based on the results of the models. In conclu-
sion, RTE takes a significant amount of time and is not flexible if any change occurs in
any of the development phases.

Model Based Development (MBD) is a method where models are used in all phases
of development. Model designers define systems in modeling tools based on requirement
analyses. Based on the models, prototyping, visualization and testing are conducted. In
the end, executable code is generated from these models automatically. The advantage
of MBD is that the whole development cycle is centrally modeled so that it reduces
the development time. Ideally, only one development role, model designer, is necessary
and all the other tasks are done by modeling tools. There are several options of the
modeling tools and code generators and this thesis tries to answer the following two
questions: (a) Which workflow works best for general models? (b) Does the MBD fulfill
the expectations for automatic flows?

Figure 1.5: Three Development Roles for Traditional Development [6]

1.3 Thesis Objectives

In this thesis, a driving assistance system will be implemented based on SoC technology.
Moreover, different MBD workflows will be investigated.
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CHAPTER 1. INTRODUCTION

The first objective is to find a suitable workflow for MBD. A good workflow should
shorten the develop cycle as much as possible. It should also support the most common
source models including different language syntax and function blocks. The work of the
project starts from the second phase of MBD; thus, the inputs of the project are MAT-
LAB code and Simulink models. We use two MathWorks’ tools, namely the Embedded
Coder and the HDL Coder, as candidates for generating software and hardware code
respectively. Xilinx’s High-Level Synthesis is another alternative, which can generate
hardware code based on C code. Therefore, the first goal is to evaluate different tools
and suggest the best workflow for hardware/software co-design of the given application.

The second objective is to investigate methods for efficient hardware/software co-
design, by which the hybrid systems can achieve higher performance with low cost.
Specifically, high performance translates to high processing throughput, so the design
will meet the timing constraints. The cost represents the silicon area on the FPGA
and the utilization of processors. In order to achieve this goal, three steps are taken,
profiling, partitioning, and optimization of hardware design. Criteria for partitioning will
be summarized to assist developers to select the blocks that should be implemented in
hardware. During the hardware code generation, different optimization settings, which
will affect the performance of the generated hardware blocks, should also be considered.

1.4 Overview of the Report

The rest of this thesis is organized as follows. Chapter 2 introduces the background of
the project and related work. Chapter 3 describes different methodologies for MBD and
analyzes their advantages and limitations. Chapter 4 proposes methods to analyze and
implement applications, such as profiling, partitioning, and RTL optimization. Finally,
Chapter 5 presents the evaluation results for the test cases and a real ADAS application.
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2
Background

This chapter provides the background for this thesis and discusses related work. First,
we present the background for ADAS applications and describe the basic processes and
algorithms. Next, we introduce the concept of Hardware/Software co-design and MBD.
The state-of-the-art of both areas are introduced. Finally, we present the evaluation
platform used in this work.

2.1 Application

The main goal of this project is to implement a data fusion application on SoC using
MBD. Although the application model has been designed in other previous works, it is
still necessary to understand the basic processes so that we can explain the results of
application profiling and the complexity of the application.

Fusion is widely used in nature, where human beings combine the senses of vision,
touch and auditory to help themselves to recognize the world [7]. With the development
of sensor technology, signal processing and advanced hardware, data fusion is becoming
increasingly popular in industry [8, 9]. In generally, multisensor data fusion is to associate
information from different sensors and provides more accurate observation of objects than
what a single sensor does. Consequently, the better representation is provided, the more
precise decisions are made [10, 11].

Specifically, in vehicle industry, sensor data fusion (sDF) provides a way to use dif-
ferent sensors in active safety applications of ADAS as shown in Figure 2.1. Various
sensors are used because different sensors have distinct properties, for instance, radars
are sensitive to longitudinal distance but they have lower accuracy in lateral measure-
ments [12]. Information from cameras is useful to detect the direction of objects, while it
is difficult to measure how far the objects are. In addition, the rate of traffic accidents is
17 times higher in bad weather conditions than in good conditions. Moreover, laser and
supersonic-wave radar are not robust in foggy weather compared to mm-W radar [13].
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CHAPTER 2. BACKGROUND

However, the combined information from mm-W radars and cameras can improve the
object recognition rate by 84% as compared to human judgments.

Figure 2.1: Overview of Data Fusion

Sandblom and Sorstedt present the general process of sDF [12], which can be sum-
marized in Figure 2.2. Observational data from different sensors is represented in various
models, such as the constant acceleration (CA) model and the coordinate turn constant
acceleration (CT) model [14]. The first step is to parameterize them into a unique model
and then alignment follows to shift time delay from different sensors. The main part
of the procedure is state fusion that consists of four steps. First, data from different
sensors is associated by using Global Nearest Neighbor method, where data represent-
ing the same objects is clustered [15]. Second, based on previous results a local trace
management algorithm is executed, e.g. Multiple Hypothesis Tracking [16]. The next
two steps are priority selection and state updating. Finally, according to the updated
state vector the objects’ movement is estimated and the final results are delivered to the
ADAS applications.

Figure 2.2: Process of Data Fusion Algorithm
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CHAPTER 2. BACKGROUND

2.2 Hardware/Software Co-design

Hardware/software co-design refers to the simultaneous design of both software and
hardware in a system. Software is usually executed in processing elements, such as,
Central Processing Units (CPU) and Digital Signal Processors (DSP). Hardware logic
is commonly implemented in Application-Specific Integration Circuit (ASIC) or FPGA.
Since software and hardware systems have different characteristics, a combined system
has the potential to take the best of both worlds. Teich analyzes the major proper-
ties of the hardware/software co-design: co-ordination, concurrency, correctness, and
complexity [17].

Hardware/software co-design has largely evolved since the first time it was used in
electric systems. The earliest use case of the co-design emerged in the 1980s [18]. In
the first generation of co-design, partitioning was the main issue to be solved. Two
approaches were proposed: (a) start from pure software and then migrate software func-
tions to hardware [19], and (b) start with a hardware-only system and end up with a co-
designed system [20]. In the second generation, multicore and multiprocessor have been
utilized and thus, instead of a single thread, multi-threads were used. Thread scheduling
become one of the main challenges for the area. Moreover, hardware/software interface
and communication are critical since they dramatically affect system performance and
design space [21]. According to [17], the co-design is now in its third generation, where
the time-to-market cycles are shortened by optimizing the hardware/software develop-
ment flow. Moreover, languages for hardware/software co-design are necessary. The
ideal language would be suitable for both hardware and software development. It seems
that neither Hardware Description Languages (HDLs) nor C/C++ can replace the other.
On the other hand, MBD (Section 2.3) is a promising solution.

Compared with pure-software design, the major difference of hardware/software co-
design are listed in [18]. 1) Allocation: a lot of options are available for the architecture
design of SoC and designers need to select suitable resources for their systems among
different processors, ASICs, FPGAs, DSPs and so on. 2) Binding: Having different
resources in SoC(s), developers have to bind applications, tasks or variables to spe-
cific resources; partitioning, mentioned in the first generation, was one kind of binding.
In [22], it has been proved that the process of binding is a NP-complete problem, thus
it’s time consuming to find an optimal solution. 3) Scheduling: several resources are
shared – e.g. processors, memory and communication bus – thus, real-time analysis is
necessary when complex co-design is being implemented.

Nowadays, additional factors are affecting the hardware/software co-design technol-
ogy [17]. Heterogeneous SoCs is a new trend, where much more resources could be
integrated in a single chip, e.g. one multi-billion transistor chip contains multiproces-
sors, DSPs, FPGA, analog intellectual property (IP), memory and peripherals. Next,
the complexity of SoC(s) systems is increasing dramatically since multiple SoCs need to
cooperate together. Last but not least, once systems become more and more complex,
it’s very common that different subsystems are implemented by different suppliers, thus,
public standards shared by all companies are absolutely essential.
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CHAPTER 2. BACKGROUND

2.3 Model Based Development

Beyond the hardware/software co-design implementation for embedded systems, some
other challenges come from aspects of the development flow [23]. First of all, it’s time
consuming to code manually. After system models are done by system designers, hard-
ware developers and software developers implement HDL code and C code respectively,
according to model descriptions. Note that hardware code, HDL, is a low-level lan-
guage and it takes significant amount of time to implement. Moveover, some models are
difficult to be represented by HDL codes.

Next, the co-design integration is a manual step. In the verification phase, test
benches need to be implemented for the co-design platform. In addition, bit-accurate
and cycle-accurate simulations are executed to verify whether the results from co-design
are consistent with the simulation results. System designers and software/hardware
developers need to cooperate closely and most of work is done manually. Therefore, this
thesis explores Model-based development as a potential approach to solve the problems
and challenges discussed above.

MBD is a design workflow, where all the phases of development are based on models.
MBD is widely used in industry, for example, the automotive industry [24]. The typical
steps of MBD for co-design are: modeling, synthesis, integration, and verification. Using
MBD, behavior models are first designed according to requirement analyses. The advan-
tage of behavioral models is that designers can concentrate on the high-level features of
systems instead of the low-level implementation details of the system [25]. Consequently,
system designers can analyze whether their systems satisfy the requirements even before
they are really implemented, thus, shorten development cycles significantly. Next, MBD
code generation for both hardware and software is an automatic process handled by the
tools. Developers need only to set some parameter for the code generation tool so as
to tune the implementation. During the integration and verification phases, important
issues are interconnection between hardware and software sections of hybrid systems,
and communication between boards and simulators. Ideally, MBD can automate these
interfaces based on models.

MBD has been a hot research field for several decades and there are a lot of widely
used solutions. MathWorks contains several tools for MBD [26]. HDL Coder is a tool
that generates RTL code (VHDL and Verilog) from MATLAB functions and Simulink
blocks. On the other hand, Embedded Coder is another tool from MathWorks that
synthesizes C/C++ code, however only a subset of functions and blocks can be con-
verted to C code and hardware logic [27]. System Generator (XSG) is another solution
supplied by Xilinx [28] as a blockset for Simulink. Using predesigned blocks, develop-
ers can build their models in Simulink and synthesize them into RTL code. Another
alternative is LabVIEW [29], a graphical programming tool that includes LabVIEW
Real-time and LabVIEW FPGA, where developers can implement their design by pre-
defined blocks. LabVIEW synthesizes C/C++ code and VHDL code [30] and today
supports advanced features such as cloud synthesis [31]. The typical compilation process
of hardware projects takes from minutes to days, but with the cloud service, remote ex-
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CHAPTER 2. BACKGROUND

ecution on NI’s cluster servers yields very fast results. Other examples include OpenCL:
a programming language supporting parallelism models for CPUs, GPUs, FPGAs and
so on. OpenCL compilers can use C programs to generate RTL code for FPGAs [32].
Recently, OpenCL has been integrated into Altera’s SDK, by which embedded CPUs
can communicate with accelerators implemented in FPGAs [33].

2.4 Hardware Platform

In this thesis we use a Xilinx device (Zynq XC7Z020), which contains both a Processing
System section (PS) and a PL [34]. Configurable Logic Blocks, Block RAM (BRAM)
and DSP Blocks are the main parts of PL. Configurable Logic Blocks consist of Loop-Up
Tables (LUT) and Flip-flops (FF), which are the basic logic units of FPGAs that are
connected according to user design. BRAMs are memory elements used to store data and
support several configurable organizations such as: single/dual port(s) RAMs/ROMs
or FIFOs. DSP Blocks are specialized hardware components handling mathematical
calculations. Configurable Logic can also be assigned to the same computations, however
they achieve lower performance than specific DSPs. LUTs, FFs, BRAMs and DSPs are
the most important hardware resources of an FPGA design and our resource utilization
analysis focuses on these.

The PS section of Zynq contains a dual-core A9 processor together with a rich set
of peripheral connectivity interfaces and interconnection between PL and PS sections.
Figure 2.3 shows how PL, PS and peripherals are organized inside the Zynq FPGAs.
Table 2.1 presents the architectural parameters of the specific Zynq device. Figure 2.4
illustrates the Zynq chip and the evaluation board used for this thesis.

Table 2.1: Zynq 7020 All Programmable SoC [34]

PS

Processor Core Dual ARM R© CortexTM-A9 MPCoreTM with CoreSightTM

Processor Extensions NEONTM &amp; Single / Double Precision Floating Point for each processor

Maximum Frequency 667 MHz (-1)

L1 Cache 32 KB Instruction, 32 KB Data per processor

L2 Cache 512 KB

On-Chip Memory 256 KB

External Memory Support DDR3, DDR3L, DDR2, LPDDR2

External Static Memory Support 2x Quad-SPI, NAND, NOR

DMA Channels 8 (4 dedicated to Programmable Logic

Peripherals 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x 32b GPIO

Peripherals w/ built-in DMA 2x USB 2.0 (OTG), 2x Tri-mode Gigabit Ethernet, 2x SD/SDIO

Security RSA Authentication, and AES and SHA 256b Decryption and Authentication for Secure Boot

PL

Look-Up Tables (LUTs) 53,200

Flip-Flops 106,400

Extensible Block RAM 560 KB (140)

Programmable DSP Slices 220
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Figure 2.3: Zynq-7000 All Programmable SoC Overview [34]
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Figure 2.4: Overview Zynq Evaluation Board [34]

13



CHAPTER 2. BACKGROUND

2.5 Conclusion

This chapter introduced the background for this thesis and the main concept of multi-
sensor data fusion. We discussed the two main areas of the thesis: (i) hardware/software
co-design and (ii) MBD. We presented the motivation, gave definitions, and discussed
the key issues and the most common solutions. In the end, we presented details about
the evaluation platform and the FPGA development board.

Although many MBD methods for hardware/software co-design exist, in this thesis
we use predesigned models in MATLAB/Simulink and focus on the associated workflows.
For the hardware/software co-design we focus and optimize the system throughput,
hardware architecture and interconnection schemes. Other remaining key factors such
as design space exploration and energy consumption will be studied in the future.

14



3
Methodologies for MBD

Nowadays, MATLAB/Simulink is one of the most popular modeling tools, which has
been widely used in industry. In this chapter, we present the findings of our study con-
sidering different workflows. In Section 3.1, we analyze a workflow for hardware/software
co-design based on Simulink models. In Section 3.2, based on MATLAB models, a simi-
lar workflow is described. Moreover, a different workflow for hardware code generation,
namely High-Level Synthesis (HLS) is presented. The advantages and limitations of
different workflows are also discussed in this chapter.

3.1 Simulink Models

Figure 3.1: Overview of Automatic Code Generation [6]
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Simulink is a block-based modeling environment. As illustrated in Figure 3.1, the
main goal for MBD based on Simulink models is to automatically generate C code
and Register Transfer Level (RTL) code using the Embedded Coder and HDL Coder,
respectively. The generated C code will run on General Purpose Processors (GPPs)
and the RTL code will run on programmable hardware. Figure 3.2 shows the Simulink
workflow, which consists of two parts: the process of generating RTL code and the chain
to synthesize C code.

Figure 3.2: Overview of Simulink Workflow

HDL code can be generated by using ’HDL Workflow Advisor’ of HDL Coder. First,
the block which will be implemented by hardware logic is selected from the original
Simulink model. This block is used to start the HDL Workflow Advisor. Then, in the
advisor, an IP Core for the selected block is generated. In the next step, the generated IP
Core together with a processor are inserted into an FPGA project. At the same time, the
connection between the IP Core and the processor is established automatically. Based on
the FPGA project, the advisor generates a bit file, which can be used for programming
a target board. Finally, a new Simulink model is produced by replacing the selected
block with an interface between the Simulink model and the generated IP Core. This
new model will be used to synthesize C code in the second part. Figure 3.3 indicates the
overview of the advisor.

The second part of the Simulink workflow is to synthesize C code by using Embed-
ded Coder. In the first step, the interface between Simulink and a target processor is
configured. The second step is to build the Simulink model and generate the C code.
Then, the C code can be downloaded to the target processor. Finally, via Simulink, the
C code can be run on the processor. We can control input valuables easily in Simulink
and check simulation result in Simulink. This step is called a System-In-the-Loop (SIL)
co-simulation. By this feature, developers can verify the generated RTL and C code to
confirm that the behavior of the hybrid system matches the behavior of the model.

3.1.1 Discussion

Advantages:

• Convenient HDL Workflow Advisor: The advisor covers the whole process of RTL
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Figure 3.3: Overview of HDL Workflow Advisor

code generation. It produces IP Core, FPGA project, and replaces selected block
in the original Simulink model with some specific interface. Following the advisor,
the users can performs all the essential steps for hardware/software co-design.

• Broad blocks support: HDL Coder and Embedded Coder have sufficient support
for Simulink blocks. Different from the MATLAB workflow, almost all the Simulink
pre-defined blocks can be synthesized to RTL and C code.

• Co-simulation: Another advantage is that the SIL co-simulation can coordinate
target boards and Simulink. Therefore, it becomes possible for a system model
developer, without extensive C coding and RTL coding experience, to implement
hardware/software hybrid systems.

Limitations:

• Single top-level block: The advisor can only support one block for hardware im-
plementation. We tried to execute the advisor in second round, where we select
the second block to be implemented in hardware, but the advisor cannot work
correctly in second round. Since it is very common that several hardware blocks
(hardware accelerators) exist in one design, thus, users cannot use the Simulink
workflow to complete the whole hybrid system design.

• Limited compatibility: Only a limited number of Simulink blocks are supported
by Embedded Coder and HDL Coder, Thus, before starting a new hybrid system
design, it is better to check the compatibility and supported block libraries for
these tools [35, 36].
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Conclusion:
In summary, Embedded Coder and HDL Coder are good code generators for Simulink

models. The generated code can be easily verified. However, if a system contains more
than one acceleration blocks then the developers need to integrate the hardware/software
co-design manually.

3.2 MATLAB Models

MATLAB is another modeling environment from MathWorks. Compared to the Simulink
platform, MATLAB is more script-based instead of block-based. The difference between
these two environments is that a MATLAB script is more sequential, while Simulink
blocks can executed in parallel. Before synthesizing RTL and C code, some preparation
needs to be done as illustrated in Figure 3.4. Developers need to select a top-level func-
tion that is the model to be synthesized into RTL or C code. The top-level function can
contain sub-functions. Moveover, a testbench is necessary, where the top-level function
is called.

The workflows to generate RTL and C code in MATLAB are shown in Figure 3.5. In
general, the inputs for boths workflow are the same: a testbench and a top-level function.
If we want to generate RTL code for the top-level function, we use HDL Coder. If the C
code is needed, we insert the testbench and the top-level function to Embedded Coder.

The HDL workflow advisor is still available for HDL Coder. This process can be
divided into five main steps: (a) data format setting, (b) target interface setting, (c)
IP Core generation, (d) FPGA project integration, and (e) FPGA programming. Note
that step (a) is a new step compared to previous Simulink workflow. In this step, a
fixed-point conversion tool will help us to set data representation for each variable. It
has been shown in [37] that a fixed-point algorithm can be transformed into a more area
efficient RTL implementation. The conversion feature included by HDL workflow advisor
shortens development cycles dramatically. Based on the testbenches, all the variables
are analyzed so that statistical results are produced and developers can easily decide
the suitable fixed-point format for them. After setting the fixed-point configuration, the
tool helps designers to analyze the precision loss and overflow of the fixed-point version;
this is a very useful feature for HDL Coder.

For the C code generation, the workflow is quite simple. After setting a top-level
function and a testbench, Embedded Coder generates C code directly for the top-level
function. However, the workflows for the hardware and software generation do not
interact with each other. Thus, the software and hardware design cannot be integrated
automatically.

3.2.1 Discussion

Advantages:

• Easy mapping between the m-script and the C code: The way of C programming
is very similar to writing a m-script and therefore it is very easy to find one to
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Figure 3.4: Preparation of MATLAB Workflow

Figure 3.5: Overview of MATLAB Workflow

one mapping between them. This is a good feature that helps developers to better
understand the generated code.

• Good support from m-script to C code: Embedded Coder has a good support for
MATLAB functions. Almost all functions included in m-script can be synthesized
to C code.

• Fixed-point conversion: The biggest advantage of HDL Coder is the feature of
fixed-point conversion. It evaluates the fixed-point format for each variable based
on real testbenches. The floating-point C code is transformed into a compatible
fixed-point version, which is in turn used to derive the hardware implementation.

Limitations:

• No integration features: There is no software/hardware integration features for
MATLAB models. Embedded Coder does not create any interaction functions
that communicate with hardware parts. The HDL Coder does not modify the
original models to indicate that some functions will be implemented by hardware
accelerators.
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• Limited supported functions: Only a small set of the pre-defined functions is sup-
ported by HDL Coder [38] and some language syntax is not supported by Embed-
ded Coder [39]. For example, in our real model, data with structural format is
used as input and output parameters, but structural format is not allowed by HDL
Coder. Therefore, we suggest that designers should check which MATLAB lan-
guage features, functions, classes, and System objects are supported by Embedded
Coder and HDL Coder before the model design [38, 39].

• Hard to find reference designs: Most of the documents are only available to users
with product licenses. For some features, even with a license, it is still difficult to
find their corresponding reference designs. For instance, HDL Coder can support
the following three communication schemes: the basic non-blocking AXI interface,
blocking AXI interface, and AXI streaming interface, but we can only find the
reference design using the basic setting.

• Blocked fixed-point conversion: As mentioned before, fixed-point conversion is a
useful feature of HDL Coder. However, a limitation has been found in a real
user case. HDL Coder projects have to be located in the same folder as all the
other m-script files. In our application, m-files are located in different folders, so
when fixed-point conversion is used, an error will occur and the process will be
terminated.

Since the MATLAB workflow does not include any interactive design, which estab-
lishes the communication between modeling tools and boards, it is not possible to run a
co-simulation like what we can do in the Simulink workflow.

Figure 3.6 presents one way we proposed to verify the generated code. In this case,
’Function1’ is the initial top-level function.A ’main function’ is created including ’Func-
tion1’, input data, and output data. The input and output data are pre-generated from
MATLAB and the output data will be used as a reference for verification. The input
data is fed to ’Function1’ and the result of ’Function1’ is compared with the output data.
Both the target function (’Function1’) and the verification data are synthesized when
’MainFunction’ is sent to the code generators. By doing so, we can verify the generated
code automatically.

Conclusion: For MATLAB models, Embedded Coder and HDL Coder can generate
C functions and RTL Code. The C code and IP Cores are modules useful for the further
hybrid system development. However, developers need to do the further integration work
manually.

3.2.2 C to HDL

Due to the limitations of the MATLAB workflow discussed in Section 3.2, the HDL
Coder cannot satisfy our requirements. Another potential solution is to use High-Level
Synthesis (HLS). HLS is a tool designed by Xilinx and it can synthesize RTL code based
on C code. The C code can be generated by Embedded Coder mentioned in the beginning
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Figure 3.6: Verification Methodology Based on MATLAB Models

of this section. We can get an improved MATLAB workflow by combining Embedded
Coder and HLS as shown in Figure 3.7.

Figure 3.7: Overview of MATLAB Workflow Based on HLS

The way of using HLS is very similar to that of using HDL Coder. A top-level function
and a testbench are given to HLS, and then it builds C code, synthesizes RTL code, and
exports IP cores. Similar to HDL Coder, HLS has some interface and optimization
settings, which can be configured by TCL scripts.

Advantages:

• Good support for SoC chips: HLS is part of the Xilinx design flow, so it has
a good support for hardware logic implementation, namely it offers very flexible
optimization options and interfaces. The Xilinx website has a comprehensive set
of tutorials and documents describing how to use these features. In Chapter 4
we will show how to use three types of implementation settings to improve the
performance of the RTL Code.

Limitations:
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• Manual fixed-point design: Fixed-point code is supported by HLS, but developers
need to manually set the particular data representation for each variable. In addi-
tion, HLS does not offer any accuracy analysis feature, so developers need to run
simulations in HLS and verify the precision loss and overflows manually.

3.3 Testing Experience Comparison

In this chapter, we introduced and compared different workflows for hybrid system design
based on MBD. In the following two tables, the testing experience for these workflows is
given. Here, we use ’!’, ’©’ and ’#’ to represent good, medium and bad experience,
respectively.

The first part of the hybrid system design is the C coding. Embedded Coder is
used to synthesize C code. The Simulink workflow and the MATLAB workflow are
evaluated based on Simulink models and MATLAB models respectively. According to
the description in this chapter, five aspects are compared between these two workflows
and the testing experience is shown in Table 3.1.

Table 3.1: Performance of C/C++ Coder

C/C++ Coder: Embedded Coder

Simulink MATLAB

Mapping # !

Platform © !

Model limitation ! !

Verification ! #

Automation ! ©

The second part of the hardware/software co-design is the RTL coding. In this
chapter, we described how to use HDL Coder based on Simulink models and MATLAB
models. Furthermore, we also introduced HLS as another candidate to generate RTL
code. Table 3.2 summarizes our testing experience of these three methods.
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Table 3.2: Performance of RTL Coder

RTL Coder: HDL Coder
HLS

Simulink MATLAB

Mapping ! # #

Fixed point © ! #

Interface flexibility © © !

Model limitation ! # ©
Integration ! # ©
Verification ! # #

Platform mobility ! ! ©
Automation © # #

3.4 Conclusion

This chapter analyzed several potential methodologies for MBD. Both Simulink models
and MATLAB models can be synthesized to software and hardware code. The biggest
advantage of Simulink workflow is that it supports co-simulation between Simulink and
target boards. This means that the software and hardware code can be downloaded to
the boards and the generated codes can be verified through Simulink. Having MATLAB
models, developers can use MathWorks tools to generate code, but MATLAB workflow
does not support co-simulation, so developers need to verify the code manually. Given
the limitations we found in the MATLAB workflow, we investigated another potential
solution with MATLAB models called HLS. MATLAB models are first synthesized to
C code and then developers select specific parts of C code to be transformed into HDL
code by using HLS.

In Figure 3.8, we summarize all three alternative workflows for hybrid systems design.
First, C code is generated with the Embedded Coder and then the applications run on
the processors for profiling. Based on the profiling results, HDL Coder or HLS can be
used to synthesize RTL code and IP cores. In the end, the IP cores are integrated to
become a hybrid hardware/software system.
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Figure 3.8: Overview of the Workflow for Co-design
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4
Application Analysis and

Implementation

In this chapter, the methodologies of system optimization will be introduced. First, the
profiling methods are introduced in Section 4.1, where three different profiling methods
are compared. Next, according to the results obtained from the profiling methods, we
propose three criteria for selecting the function(s) to be implemented in PL. Finally,
the optimization of the hardware implementation is discussed in Section 4.3, where we
evaluate loop pipelining, loop unrolling, and stream based interface schemes.

4.1 Profiling

Profiling is an important step that needs to be done before applications are separated
into hardware and software parts. The performance in terms of execution time, memory
usage and function call graphs are usually analyzed during the profiling process. In this
project, the system throughput is our main criterion. In the following parts, we discuss
and compare three different profiling methods, i.e., target profiling, host profiling, and
MATLAB profiling, for analyzing the execution time of applications.

4.1.1 Introduction of A Test Case

Note that the model of our ADAS application is developed in MATLAB, we create a
test model in the same environment for comparing different profiling methods. The
MATLAB model can be profiled in MATLAB, or it can be transformed into C code by
Embedded Coder, an then be profiled either on a target board of in a host environment.

Figure 4.1 depicts the structure of the proposed test model. In the following sections,
the results of three profiling methods will be introduced and compared.
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Figure 4.1: Test Code

4.1.2 Target Profiling

For the target profiling method, the test MATLAB model is first transferred into C code
and then profiled on target boards. The execution time of each function is measured
based on a hardware platform.

The steps of target profiling are described in [40]. The output results of the target
profiling includes two files: a text file, which shows the statistic result of each function
and the subfunctions in it (see Figure 4.2) and a graph generated by an open source
application (gprof2dot [41]).

In Figure 4.2, there are six columns. The first column shows the indexes of different
functions. The second column lists the percentage of the time taken by running each
function. The next two columns indicate the time the self-code takes and how much time
is taken by sub-function calls in second. The number of calls is shown in the fifth column.
In the last column, a program structure is shown for each function. For example, for the
’main’ function shown in the top of Figure 4.2, its parent(s) is a ’start’ function. Note
that the parent functions can be more than one, if several functions invoke the same
function. The children of the ’main’ function are ’topLevelFunction’ and ’init platform’.

Figure 4.3 shows two call graphs for our test model. For each block, four elements
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Figure 4.2: Result of Target Profiling 1

are shown in the graph: the name of functions, percentage of time taken to run the
functions (including sub-functions), percentage of time that self-code takes (excluding
sub-functions), and number of calls. From the graphs, it is very convenient to find the
relationships between different function blocks and the proportion of the execution time
for each function. Moreover, from the color of the diagram, developers can realize which
parts require more computational resources.

4.1.3 Host Profiling

When we use the target profiling, applications are run on target boards. The target
boards are the actual platform where the applications will be implemented, so target
profiling can provide the most accurate results. However, the disadvantage of target
profiling is that developers have to work with boards. Another alternative is using host
profiling, which means software developers can profile their designs on computers. The
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Figure 4.3: Result of Target Profiling 2b

steps for host profiling are summarized in Appendix B. In general, host profiling uses
the same profiling feature as target profiling and produces similar outputs, namely one
text file and one calling graph. The comparison results between host and target profiling
will be discussed in Section 4.1.5

4.1.4 MATLAB Profiling

The third method of profiling is MATLAB profiling, by which model developers can
optimize their design during the model development phase. In the next section, we will
compare MATLAB profiling with the other two methods.

Figure 4.4 shows the percentage for execution time of each sub-function and the
actual execution time. The figure provides similar information as Figure 4.2. Additional
information offered by MATLAB profiling is line-based analysis shown in Figure 4.5
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Figure 4.4: Result of MATLAB Profiling 1

and Figure 4.6, where the execution time and memory usage per line are illustrated
respectively.

Figure 4.5: Result of MATLAB Profiling 2

4.1.5 Comparison

In this section, we compare the three profiling methods. We assume that the results from
target profiling will be the final performance on the real system. Then, by comparing
with the results of target profiling, we can verify the accuracy of the results provided by
host profiling and MATLAB profiling.

Table 4.1 shows the profiling results of target, MATLAB and host profiling. Con-
sidering the test case designed in Section 4.1.1, the rank of each function is listed for
each considered profiling method. The left table gives the result obtained from target
profiling. We see that ’f6’, ’f5’ and ’f3’ are the most heavy functions, which take more
than 70% of execution time in total, while ’f2’, ’f4’ and ’f1’ are three light weight func-
tions. The table in the middle shows the result from MATLAB profiling. It can be seen
that the ranks of functions are almost the same as the ones shown for target profiling.
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Figure 4.6: Result of MATLAB Profiling 3

However, we observe that ’f5’ and ’f3’ take much smaller proportion of execution time
than that of target profiling. Note that both ’f5’ and ’f3’ are matrix multiplication. So
one possible explanation is that MATLAB has better optimized algorithms for matrix
computations. Finally, the right table presents the results obtained from host profiling.
The execution time for all functions except ’f6’ are similar to the results from target
profiling. However, the most heavy time consuming function ’f6’ (a matrix division)
takes almost zero execution time in the host profiling. The reason for this result is not
clear. Note that the total execution proportion is not 100%. This might imply that some
operations are done in operating system level and these operations cannot be sampled
by Eclipse.
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Table 4.1: Comparison of Profiling Results

Rank in Target % Rank in MATLAB % Rank in Host %

f6 37.06 f6 29.5 f3 17.8

f5 17.54 f5 6.7 f5 17.7

f3 17.46 f3 5.7 f2 1.7

f4 2.24 f2 4.4 f1 1.4

f2 2.16 f4 3.4 f4 1.4

f1 1.1 f1 2.7 f6 0

self 0.1 self 24.7 self 0

total 96.4 total 100 total 40

4.2 Application Analysis and Partitioning

After profiling, the next step is to partition the application into hardware and software
parts. Different criteria can be used to decide how to partition hybrid systems. In this
project, the system throughput is our main criterion. Thus, one goal of partitioning is
to find the optimal way to get the highest speedup of execution time. Designers can
always test blocks one by one to evaluate whether it is faster to implement the block in
software, or it should be implemented in hardware logic. However, this process takes long
development time, since each trail contains several steps, including RTL code generation,
RTL optimization, IP Core integration, and verification. Therefore, it is not efficient to
partition the options one by one.

In this section, we introduce three criteria: execution time, communication overhead,
and potential for speedup, which can be used to assist designers to decide whether a block
is a good candidate for going through the process.

4.2.1 Execution Time

The execution time for a block i can be calculated by T exe
i = T ∗ Pi, where T is the

execution time for the whole system, and Pi is the percentage of the time taken by block
i. Let Si denote the speedup factor for block i, the new execution time for the whole
system will be T ′.

Equation 4.1 is the expression of Amdahl’s Law and is a method to estimate the
system execution time when one part of the system is accelerated. According to Equa-
tion 4.1, the lower bound of the new system execution time T ′ is T ∗ (1− Pi), which is
achieved as Si goes to infinite. Therefore, potential candidates should have higher values
of Pi, which can be found from the profiling results mentioned in the last section.
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T ′ =
T ∗ Pi

Si
+ T ∗ (1− Pi) (4.1)

Equation 4.2 is another expression of Equation 4.1 using T ′ as the function of T exe
i .

Assumed that Si is the constant for all candidates and it is larger than 1, the longer
T exe
i , the faster execution time T ′ is on the new system. Consequently, the 1st criterion

is longer execution time T exe
i .

T ′ = f(T exe
i ) =

T exe
i

Si
+ T − T exe

i = T exe
i (

1

Si
− 1) + T (4.2)

4.2.2 Communication Overhead

Once software blocks are replaced by hardware accelerators, the new execution time
will consist of two parts: the computation time (T exe

i /Si) and the communication time
(T tran

i ), that is,

T ′ = f(T exe
i , T tran

i ) =
T exe
i

Si
+ T tran

i + T − T exe
i (4.3)

According to the experience from this project, the communication overhead can be
easily estimated based on the number of data, clock frequency and selected communica-
tion protocol. Let ni

i and no
i denote the number of input and output data respectively.

Then, the communication overhead is (ni
i + no

i ) ∗ ttran. Using the basic AXI protocol,
ttran is 16 clock cycles, so it takes 160 ns to send or receive one data if the clock frequency
is set to 100MHz.

4.2.3 Computation Characteristics / Potential for Speedup

From Equation 4.3, we see that, the execution time of the new system depends on three
factors, i.e., T exe

i , T tran
i , and Si. The first two factors, i.e., the execution time (T exe

i ) and
the communication overhead (T tran

i ) has been discussed in the previous two subsections.
Now, we turn our attention to the third factor, i.e., the speedup factor (Si). The goal of
this step is to find which blocks are time consuming in processors but run efficiently in
hardware, resulting in a larger value of Si. The comprehensive expression of T’ is given
in Equation 4.4.

T ′ = f(T exe
i , T tran

i , Si) =
T exe
i

Si
+ T tran

i + T − T exe
i (4.4)

One property of hardware (FPGA) is that it can support massive parallel compu-
tations. For example, one Zynq chip contains 220 DSP units, but a processor contains
much less Arithmetic Logic Units (ALU). 220 arithmetic calculations can be executed
at the same time in Zynq, while few calculations can run in parallel on the processor.
As a result, algorithms that contain a lot of parallelism can get high speedup when they
are implemented in hardware. Furthermore, loops with independent iterations can also
be executed in parallel on hardware to achieve high speedup.
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In order to explain what kinds of computation characteristics are suitable for hard-
ware implementation, six examples are examined:

Function 1: ~A = ~B′;
Function 2: ~A = ~B � ~B′;
Function 3: ~A = ~B ~B′;
Function 4: ~A = ~B � ~C;
Function 5: ~A = ~B ~C;
Function 6: ~A = ~B−1;
where � denotes for elementwise multiplication.
In Appendix A, generated C code for cases 1-4 is illustrated. The code generator

produces C code as expected. Table 4.2 shows the computation demands and the exe-
cution time obtained based on different profiling methods, considering test cases 1 to 5.
Assuming that addition, subtraction, multiplication, and division are all floating point
calculations taking the same cycles for ALU, the value for computation demands is the
sum of four values. All the values for different test cases are normalized based on the
computation demands of case 2.

Table 4.2: Computation Demands and Results of Profiling

+/- */÷ Inputs
Computation

demands

Time in

Target

Time in

MATLAB

Time in

Host

f1 0 0 225 0 0.51 0.61 0.82

f2 0 225 225 1 1.00 1.00 1.00

f3 15*225 15*225 225 30 8.08 1.30 10.47

f4 0 225 2*225 1 1.04 0.77 0.82

f5 15*225 15*225 2*225 30 8.12 1.52 10.41

Case 1 does not require any computation as matrix transpose is implemented by
memory operations (here address calculation is not taken into consideration). Note that
vector B is a 15*15 matrix, so Case 2 requires 225 multiplications, and Case 3 requires
15*225 additions and 15*225 multiplications. Consequently, the ratio of computation
demands between Case1, Case2, and Case3 is 0:1:30. From Table 4.2, we see that the
ratios of the execution time for these three cases are 0.51:1:8.08 and 0.82:1:10.47 accord-
ing to target profiling and host profiling respectively, which are close to the computation
ratio. The result from MATLAB profiling has the same rank but the ratio is not linear
at all. This is probably because algorithms are optimized in MATLAB. Case 1,2 and 3
have the same number of input data, so they have the same value of T tran

i . Since Case 3
has the biggest computation demands, it can get the biggest potential speedup Si if all
its computations are implemented in parallel. Cases 4 and 5 have the same demands as
Cases 2 and 3 respectively, can be seen from profiling results. Although Cases 3 and 5
have the same potential speedup based on computation demands, Case 5 is not a good
candidate for compared to Case 3, since requires a larger amount of input data.
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In conclusion, blocks that have higher computation demands, less data exchange,
and better speedup factors are good candidates for hardware implementation.

4.3 HDL implementation techniques

Table 4.3: Options of Implementation

Implementation Options Example(s)

Interface Management specifying bus interfaces

Design Optimization arbitrary precision data types

Function Optimization function inlining

Loop Optimization unroll, pipeline

Array Optimization memory resource selection

Logic Structure Optimizations struct packing

According to the previous evaluation of different workflows, HLS is the tool selected
to synthesize RTL code. The steps of HLS has been introduced in Section 3.2.2. There
are a lot of options by which designers can set and customize the implementation of
IP Cores. A list of options and example settings can be found in Table 4.3. Detailed
description of all settings could be found in a Xilinx user guide document [42].

In this section, two useful settings for loop optimization and an interface scheme,
Direct Memory Access (DMA), will be introduced.

4.3.1 Pipelining

Loops are commonly used in algorithms. In hardware implementations, the input data
is fed into a pipeline and results are delivered to the output port iteration by iteration.
Figure 4.7 shows a simple example that contains loop iterations. Ideally, each operation
in the loop takes 1 clock cycle in default setting. Therefore, one iteration takes 3 cycles
to finish. The next iteration will not start until the previous one is finished, thus, the
second iteration starts in cycle 4 and it takes 6 cycles in total to finish 2 iterations.

Assuming that there is no dependence between these two iterations, then in pipelining
mode the second iteration does not need to wait for previous iteration to complete all
operations. It can start as long as no resource conflict exists. In Figure 4.8, the iteration
latency is still 3 cycles, but the initiation interval between two iterations is reduced from
3 cycles to 1 cycles. The blocks with the same color are executed at the different times,
so no resource conflict exists. As shown in Figure 4.8, it takes 4 cycles in total to finish
2 iterations, which is 2 cycles faster than the normal setting.
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Figure 4.7: An Example Loop And Time Schedule of The Loop in Normal Mode

Figure 4.8: Time Schedule of The Loop in Pipelining Mode

4.3.2 Loop Unrolling

Another way for the loop optimization is loop unrolling. If there is no dependency
between iterations and the operations within one iteration are independent, then in the
unrolled mode, ideally all operations can run at the same time, as shown in Figure 4.9(a).
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(a) Independent opera-
tions

(b) Dependt operations

Figure 4.9: Time Schedule of The Loop in Loop Unrolling Mode (a) and (b)

No matter how many operations are contained in one loop, the latency of the loop is 1
cycle. HLS duplicates hardware logic so that all operations execute in parallel. However,
if there is dependency between operations within the iteration, those operations have to
execute sequentially. In this example, the three operations within one iteration (read,
calculate and write) need to execute one by one. Therefore, the latency of one iteration
is 3 cycles as shown in Figure 4.9(b). Since the hardware implementation is parallelized,
the loop duration is always 3 cycles no matter how many iterations are contained in this
loop. HLS also allows the designers to set a partially unrolled loop. In that case, the
scale of parallel execution is decided by the unrolling factor.

4.3.3 AXI DMA Data Transfers

In Section 4.2.2, it has been discussed that the rate of data communication is 0.16 us/data
for sending and receiving data between the processor and the hardware accelerator. The
maximum width of each data is 32 bits using AXI Master interfaces (MGP) [43]. The
interconnection between PL and PS of Zynq is shown in Figure 4.10. An IP Core
with AXI Slave is located in PL and connected to PS via MGP0. In general, every
data communication process consists of address configuration, data write, data read and
protocol overhead, so the efficiency of MGP connection is low. In our application, one
block has an input array with 225 elements. Hence, it takes 225 ∗ 0.16us = 36us for
input data transmission.

High Performance ports (HP) and Accelerator Coherency Port (ACP) are the other
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two options for data transfer. Both of them belong to the category of DMA schemes. By
using HP, IP Cores can communicate with DDR memory directly. Hardware accelerator
can also exchange data with the L2 cache of the processor via ACP. The first advantage
of DMA schemes is that exchanging data does not need to go through L1 Cache and
the core of processors. Thus, the time for memory flush could be saved, especially for
the case with large set of data streams. The second advantage is that one address is
enough for transmitting one array. Since DMA schemes are stream-based, the protocol
can access a sequence memory area according to its base address and the size of the
space. A detailed tutorial of DMA connection for Zynq-7000 can be found in [44].

After we implemented HP connection for our IP Core, the transmission time is re-
duced from 36us to 16us. It has been shown that the speedup can be even higher if a
larger stream is exchanged [45].

Figure 4.10: Interconnection between PL and PS of Zynq [45]

4.4 Conclusion

In this chapter, using the workflow suggested in Chapter 3, we discussed how to analyze
applications and implement hardware IP Cores. Hardware/software partitioning and
hardware logic optimization are the two main parts of this chapter.

Profiling is the step before partitioning. We introduced and compared three ways
of profiling, i.e., target, host and MATLAB profiling. According to our evaluation, the
results of these three profiling methods are similar to each other. Because systems will
finally run on target boards, target profiling is suggested, but the other two ways are
also acceptable for developers.
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Next, three criteria: execution time, communication overhead, and potential speedup,
were proposed for assisting designers to decide which blocks are better to be implemented
in hardware when partitioning hybrid systems.

Finally, the hardware implementation was optimized in order to get better perfor-
mance and three common settings for HLS projects were investigated.
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5
Evaluation

In this chapter, we use two test cases to evaluate the performance of the proposed MBD
workflow, profiling methods, and optimization schemes. Using the first case, we show
how the performance, in terms of throughput of the blocks, is affected by the imple-
mentation settings. The second case is selected from our data fusion application, where
an AXI DMA scheme is used to reduce the communication overhead. The throughput
performance and hardware resource utilization are compared and analyzed for different
optimization schemes.

5.1 Implementation Results

The first case is a simple loop, which contains 15 iterations. Each iteration consists of
one multiplication operation. The C source code of this case is shown as follows:

Case 1:

void te s tCase ( const f loat v [ 1 5 ] , f loat d [ 1 5 ] ) {
char i ;

for ( i = 0 ; i < 15 ; i++) {
d [ i ]=v [ i ]∗ v [ i ] ;

}
}

The second case is a function selected from the data fusion application. The C
source code of this case is generated from the MATLAB Code covariance = srCovari-
ance*srCovariance’ and variances = diag(covariance). Here, the input (srCovariance)
of the former MATLAB function (multiplication) is one matrix with size of 15*15. The
output of the former MATLAB function is then used as the input for the latter one
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(diag), which produces a new output, the vector ”variance” with size of 15*1. By com-
bining these two MATLAB functions together, the number of elements for the output of
the function block shown in Case 2 reduces to 15, which is much smaller than the case
where only the first MATLAB function is contained in the C function block.

Case 2:

void matrixProduct ( const f loat v [ 2 2 5 ] , f loat d [ 1 5 ] ) {

char i , j ;
f loat b StateVectors [ 2 2 5 ] ;

// covar iance = srCovariance ∗ srCovariance ’ ;
loop1 : for ( i = 0 ; i < 15 ; i++) {

loop2 : for ( i111 = 0 ; i111 < 15 ; i111++) {
b StateVectors [ i + 15 ∗ i 111 ] = 0 .0F ;
loop3 : for ( i112 = 0 ; i112 < 15 ; i112++) {

b StateVectors [ i + 15 ∗ i 111 ]
+= v [ i + 15 ∗ i 112 ] ∗ v [ i111 + 15 ∗ i 112 ] ;

}
}

}

// v a r i a n c e s = diag ( covar iance ) ;
for ( j = 0 ; j < 15 ; j++) {

d [ j ] = b StateVectors [ j << 4 ] ;
}

}

5.1.1 Performance Analysis

Case 1: We consider three different configurations for loop implementation, i.e., de-
fault loop, pipelined loop, and unrolled loop. The latency of the block is analyzed and
compared between these configurations.

If we set the default configuration for the loop, we will observe the control step
diagram in Figure 5.1. The bar in Line 1 indicates the time interval for each iteration
of the loop. As Lines 2-6 show the information for different operations within each
iteration, for instance, reading vector ’v’, multiplication, and writing back to vector ’d’.
Each iteration starts from ’C1’ and ends with ’C7’, so the iteration latency is 7 clock
cycles. Since the function contains 15 iterations, the total latency is 15*7+1=107 cycles,
where one additional cycle is used for loop status initialization.

When the loop is configured in a pipeline mode, according to the concepts mentioned
in Section 4.3.1, the computation in the loop is pipelined. The diagram of control steps
is the same as Figure 5.1. However, the initiation interval decreases from 7 clock cycles
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Figure 5.1: Control Steps of Case 1 in Default Setting and in the Pipeline Mode

to 1 clock cycles as can be seen in Figure 5.2, since each iteration starts 1 clock cycle
after the its prior iteration. The latency for each individual iteration is still 7 clock
cycles. Therefore, the total latency of the block is 1*15+7+1=23 clock cycles.

Figure 5.2: Latency Calculation for Case 1 in the Pipeline Mode

When the loop is configured in unrolled mode, HLS generates a total parallel hard-
ware logic, so we can see 15 parallel control steps in Figure 5.3. Table 5.1 summarizes
the latency and speedup factors for three different settings. We see that compared to
the default mode, the pipelining scheme speeds up the block by a factor of 4.65 and the
unrolling scheme speeds up it by a factor of 26.75. The reason why it gets more than
15 times speedup in the unrolled mode is that it not only parallelizes the hardware logic
but also saves a lot time for data multiplexing.

Table 5.1: Total Latency and Speedup for Case 1

Case 1: Latency (cycles) Speedup

Default 107 1

Pipeline 23 4.65

Unrolled 4 26.75

Case 2:
Initially, the function takes around 10% (314 us) of the total execution time for the

whole ADAS application. We try to use hardware accelerator to implement the selected
function block as given in Case 2. Table 5.2 shows the execution time and speedup
factors when considering different loop configurations. Note that there are three nested
loops in Case 2, and the iterations of different loops have dependencies between each
other. Thus, the effects of different loop configurations on the latency performance is
not straight forward to analyze as in Case 1. For example, if we unroll a loop, the
execution time does reduce, but the speedup factor does is not equal to the unroll factor.
As it shown in Table 5.2, although the block needs only 366 clock cycles to execute the
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Figure 5.3: Control Steps of Case 1 in Loop Unrolled Mode

computation (4 us @ 100MHz), the total execution time for the block is 44 us. This is
because the communication takes 40 us.

Table 5.2: Execution time for Case 2 without DMA Interface

Case 2: Latency Execution time Speedup Loop1 Loop2 Loop3

noDMA1 41012 450 us (410+40) 0.69 default default default

noDMA2 8012 120 us (80+40) 2.61 default unrolled unrolled

noDMA3 366 44 us (4+40) 7.13 default pipelined default

By utilizing DMA communication as discussed in Section 4.2.2, we can further reduce
the communication overhead. The DMA scheme is evaluated for case 2. Using DMA
communication, the execution time of the block is 58.1 us. Note that the way of data
storage for DMA block is different from the non-DMA scheme. Input/output arrays are
stored in a Block RAM instead of the registers organized with Look Up Table (LUT).
Therefore, ’Case 2/DMA1’ does not work in parallel, since one block RAM can only
support one pipeline. In order to parallelize the hardware pipeline, the input array is
partitioned into several RAMs, see ’DMA2’ and ’DMA3’ in Table 5.3. By doing so, the
execution time can be further reduced. As can be seen from Table 5.4, the execution
time does not linearly decrease with the number of partitioned blocked, since only the
computation time decreases while the time for data communication does not change.
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Table 5.3: Execution time for Case 2 with DMA Interface

Case 2: Latency
Execution

time
Speedup

Loop

(DMA Stream Pop)
Loop2

Partition

Array ’v’

DMA1 3729 58.1 us 5.41 pipelined pipelined 1 block

DMA2 1498 35.0 us 9.74 pipelined pipelined 3 block

DMA3 602 27.0 us 12.62 pipelined pipelined 15 block

Table 5.4: Latency Breakdown of Hardware Blocks with DMA Interface

Case 2: DMA1 DMA2 DMA3

latency (cycles) 3729 1498 579

total execution time for the block (us) 58.1 35 27

read input data (us) 7 7 7

format input data (us) 9 9 9

computation (us) 38 15 6

write back and format output data (us) 5 5 5

5.1.2 Hardware Utilization Analysis

Case 1: The resource utilization of Case 1 is shown in Table 5.5 for different implemen-
tation settings. When the loop is pipelined, the generated RTL code consumes almost
the same amount of hardware resources, which could be explained by the concept of
pipelining. When the loop is unrolled by a factor of 15, all hardware logic are duplicated
so that the numbers of DSP units and LUT are increased by almost 15 times. We define
a new criterion Speedup/Utilization, for selecting the best optimization scheme. The
value of this criterion can be calculated as:

Speedup/Utilization =
Speedup

NumBRAM
TotalNumBRAM

+ NumDSP48E
TotalNumDSP48E

+ NumFF
TotalNumFF

+ NumLUT
TotalNumLUT

(5.1)
Note that we prefer higher speedup and lower hardware resource utilization. There-

fore, larger Speedup/Utilization is better. The last column of Table 5.5 shows the value of
Speedup/Utilization for the three solutions. The results indicate that the pipelined loop
is the best solution for Case 1, since it achieves the highest value of Speedup/Utilization.

Case 2: The resource utilization and speedup of Case 2 are listed in Tables 5.6, 5.7 for
non-DMA solutions and DMA based solutions. In non-DMA mode, solution ’noDMA2’
and ’noDMA3’ have the same value of Speedup/Utilization. With DMA configuration,
when parallel hardware structure is set, only computation time decreases linearly, so
speedup does not increase relatively. The best Speedup/Utilization value appears when
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Table 5.5: Area and Speedup of Case 1

Case 1: BRAM DSP48E FF LUT Speedup Speedup/Utilization

Default 0 3 225 338 1 45.23

Pipeline 0 3 222 333 4.65 211.53

Unrolled 0 45 2147 4815 26.75 84.85

Total Resource 280 220 106400 53200

the array is stored in a single block RAM, which means ’DMA1’ is the most efficient
solution for case 2. If FPGA resource are available, the second optimized solution,
’DMA2’, is also a good candidate due to its high speedup. In the end, the tradeoff
between the throughput, performance and resource utilization needs to be considered in
real system design.

Table 5.6: Area and Speedup of Case 2 without DMA Interface

Case 2: BRAM DSP48E FF LUT Speedup Speedup/Utilization

noDMA1 1 (0.4%) 5 (2.3%) 1114 (1.0%) 6022 (11.3%) 0.69 4.65

noDMA2 1 (0.4%) 15 (6.8%) 3840 (3.6%) 9124 (17.2%) 2.61 9.37

noDMA3 1 (0.4%) 75 (34.1%) 9285 (8.7%) 17581 (33.0%) 7.13 9.36

Total 280 220 106400 53200

Table 5.7: Area and Speedup of Case 2 with DMA Interface

Case 2: BRAM DSP48E FF LUT Speedup Speedup/Utilization

DMA1 2 (0.7%) 5 (2.3%) 2216 (2.1%) 2412 (4.5%) 5.41 56.37

DMA2 4 (1.4%) 15 (6.8%) 6023 (5.7%) 5728 (10.8%) 9.74 39.48

DMA3 16 (5.7%) 75 (34.1%) 9481 (8.9%) 12071 (22.7%) 12.62 17.68

Total 280 220 106400 53200

5.2 Conclusion

In this chapter, we analyzed the performance and resource utilization of hardware imple-
mentation. We found that different hardware implementation configurations in HLS can
dramatically affect the system throughput. Using pipeline loop configuration together
with the AXI DMA scheme, a speedup of 10 can be achieved for one block selected from
our data fusion application. This implies that hardware/software co-design can improve
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the performance of embedded systems.
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6
Conclusion

6.1 Contributions

This thesis explores a software/hardware hybrid system for ADAS using MBD. An
FPGA-based SoC was selected as the platform of the system because standalone proces-
sors are not powerful enough to satisfy the high demands of ADAS applications. Using
hardware accelerators on SoC is one potential solution to improve the performance of
applications. Moreover, MBD is a methodology widely used in vehicle industry, by which
can improve the development workflow and shorten the time-to-market cycle.

The thesis project has two objectives. First, MBD methodologies are evaluated for
MATLAB and Simulink models. The aim is to identify a suitable workflow, which syn-
thesizes C and RTL code automatically, minimizes development time and supports most
source models. Second, the key technique for hardware/software co-design is investigated
based on MBD workflow. We found methods for profiling the hybrid system, criteria
for partitioning the system into hardware and software, and ways for optimizing SoC
designs to get better system performance.

The workflow for MBD was presented in Chapter 3. Embedded Coder and HDL
Coder are two tools from MathWorks. Embedded Coder and HDL Coder can generate
C and RTL code from Simulink models. The SoC design was created using the HDL
workflow advisor. System-In-the-Loop simulation is integrated in the Simulink environ-
ment, which is a helpful feature to reduce the coding and verification time. From MAT-
LAB models, C code can be synthesized by Embedded Coder, but some limitations were
found when RTL code was generated using the HDL Coder. Due to these limitations,
we selected HLS as an alternative to generate RTL Code from C code. Subsequently, we
proposed a workflow that combines Embedded Coder and HLS.

In order to develop hardware/software hybrid systems, we proposed three steps:
(1) Profiling, (2) Partitioning, and (3) Implementation optimization. For profiling, we
evaluated and compared different profiling methods in Section 4.1. Developers can profile
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applications on hosts, target boards or modeling tools. For partitioning, some key factors
were listed and explained in Section 4.2. For instance, execution time, communication
overhead, and the potential for speedup. Using these factors, developers can decide which
blocks are candidates to be implemented hardware accelerators. For implementation
optimization, a lot of detailed hardware implementation schemes can be used that affect
the performance of hardware accelerators. We investigated loop pipelining, loop unrolling
and DMA interfaces in Section 4.3.

After evaluating the workflow of MBD and methods of hardware/software co-design,
a real active safety application was implemented. The application was developed in
MATLAB. C code was generated by the Embedded Coder. Next, it was executed and
profiled on a target board. According to the proposed partitioning criteria, we selected
a specific function, which takes around 10% of the total execution time, and migrated
it from software to hardware implementation. After the block was optimized in HLS
using pipelining and DMA, we achieve up to 12 times speedup. Section 5.1 analyzed
different settings, speedups and resource utilization. The ADAS application cannot be
further improved because most of the algorithms in the source models are not suitable
for hardware implementation. However, the main goals of this thesis have been achieved:
we found a suitable workflow for hardware/software co-design based on MDB and we
proved that hardware accelerators can significantly improve system throughput.

6.2 Discussion and Suggestions

Based on our investigations, we have some suggestions for MBD.
First, for model selection. Simulink models are more suitable for RTL design while

MATLAB models can be mapped to software design easily. Therefore, the model selec-
tion mainly depends on whether the project has more software functions or hardware
blocks. Additionally, code generation tools have better support for Simulink models than
for MATLAB models, especially for integration and verification steps. This support can
be very helpful for the developers who do not have long experience in hardware/software
co-design, since the tools can automate the whole development flow.

Second, for hardware coder selection: both HDL Coder and HLS can synthesize RTL
code. The advantage of HDL Coder is that it works for both Xilinx and Altera products,
note that HLS can only work for Xilinx products. Moreover, the HDL Coder synthesizes
MATLAB/Simulink models directly; on the other hand, C code needs to be generated
before HLS workflow can start. In addition, the fixed-point conversion of the HDL Coder
is a very useful feature for MBD. Based on the above discussion, we believe that it is
better to select the HDL Coder. However, HLS is still a good option as it has wide and
flexible interconnection schemes for Xilinx products, based on which we can select the
most suitable interface for the hardware/software communication.

Third, for function interface design: communication overhead occupies a large pro-
portion of execution time of hardware accelerators. Therefore, it is important to simplify
data communications between function blocks so that the data exchanging between pro-
cessors and hardware accelerators is not slow. Furthermore, struct data is not supported
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by HDL Coder. Although HLS supports it, elements in the struct are splitted into in-
dividual data ports by HLS, therefore, the struct data should be avoided for the blocks
that might be implemented in hardware accelerators.

6.3 Future Works and Directions

For the Simulink workflow, hardware implementation options can be further investigated.
Like HLS, HDL Coder also offers some options to customize the hardware implementa-
tion. Designers can set different structures for the hardware logic (e.g., serial or parallel),
select the way for data storage, etc. Those settings have not been investigated in this
project.

As mentioned in Section 3.1, one limitation of the Simulink workflow is that only one
hardware accelerator is supported by the workflow advisor. We have tried to import two
hardware accelerators into an FPGA project manually. The test was successful, but a
lot of manual work needs to be done. Therefore, it would be better if some automation
workflow can be found to support more than one hardware accelerators.

The fixed point conversion is a useful feature of HDL Coder in the MATLAB work-
flow. However, it requires all the source code to be on the same folder. This restriction
blocks the workflow, thus the fixed point conversion wasn’t evaluated in this project.

Last but not least, other applications could be evaluated using the proposed workflow.
In this project, we mainly focused on a data fusion application, but we found that some
algorithms are not suitable for hardware implementation. Therefore, only one function
was implemented in the hardware accelerator. It necessary to try other applications,
where more suitable functions can be found and higher speedup can be achieved.
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A
Generated C Code

Below is the C Code generated by the Embedded Coder from Matlab script. Four
functions from Section 4.1.1 are shown below, which are useful for explaining the profiling
results in Section 4.2.3.

//A1=VB ’ ;
void f 1 ( const emxArray real T ∗VB, emxArray real T ∗A1)
{

int i 1 ;
int loop ub ;
int b loop ub ;
int i 2 ;
i 1 = A1−>s i z e [ 0 ] ∗ A1−>s i z e [ 1 ] ;
A1−>s i z e [ 0 ] = VB−>s i z e [ 1 ] ;
A1−>s i z e [ 1 ] = VB−>s i z e [ 0 ] ;
emxEnsureCapacity ( ( emxArray common ∗)A1 , i1 ,
( int ) s izeof (double ) ) ;
loop ub = VB−>s i z e [ 0 ] ;
for ( i 1 = 0 ; i 1 < loop ub ; i 1++) {

b loop ub = VB−>s i z e [ 1 ] ;
for ( i 2 = 0 ; i 2 < b loop ub ; i 2++) {

A1−>data [ i 2 + A1−>s i z e [ 0 ] ∗ i 1 ]
= VB−>data [ i 1 + VB−>s i z e [ 0 ] ∗ i 2 ] ;

}
}

}

//A2 = VB .∗ VB ’ ;
void f 2 ( const emxArray real T ∗VB, emxArray real T ∗A2)
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{
int i 3 ;
int loop ub ;
int b loop ub ;
int i 4 ;
i 3 = A2−>s i z e [ 0 ] ∗ A2−>s i z e [ 1 ] ;
A2−>s i z e [ 0 ] = VB−>s i z e [ 0 ] ;
A2−>s i z e [ 1 ] = VB−>s i z e [ 1 ] ;
emxEnsureCapacity ( ( emxArray common ∗)A2 , i3 ,
( int ) s izeof (double ) ) ;
loop ub = VB−>s i z e [ 1 ] ;
for ( i 3 = 0 ; i 3 < loop ub ; i 3++) {

b loop ub = VB−>s i z e [ 0 ] ;
for ( i 4 = 0 ; i 4 < b loop ub ; i 4++) {

A2−>data [ i 4 + A2−>s i z e [ 0 ] ∗ i 3 ]
= VB−>data [ i 4 + VB−>s i z e [ 0 ] ∗ i 3 ] ∗

VB−>data [ i 3 + VB−>s i z e [ 0 ] ∗ i 4 ] ;
}

}
}

//A3 = VB ∗ VB ’ ;
void f 3 ( const emxArray real T ∗VB, emxArray real T ∗A3)
{

emxArray real T ∗b ;
int i 5 ;
int loop ub ;
int b loop ub ;
int i 6 ;
int c loop ub ;
int i 7 ;
unsigned int unnamed idx 0 ;
unsigned int unnamed idx 1 ;
emxIn i t rea l T(&b , 2 ) ;
i 5 = b−>s i z e [ 0 ] ∗ b−>s i z e [ 1 ] ;
b−>s i z e [ 0 ] = VB−>s i z e [ 1 ] ;
b−>s i z e [ 1 ] = VB−>s i z e [ 0 ] ;
emxEnsureCapacity ( ( emxArray common ∗)b , i5 ,
( int ) s izeof (double ) ) ;
loop ub = VB−>s i z e [ 0 ] ;
for ( i 5 = 0 ; i 5 < loop ub ; i 5++) {

b loop ub = VB−>s i z e [ 1 ] ;
for ( i 6 = 0 ; i 6 < b loop ub ; i 6++) {

b−>data [ i 6 + b−>s i z e [ 0 ] ∗ i 5 ]
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= VB−>data [ i 5 + VB−>s i z e [ 0 ] ∗ i 6 ] ;
}

}

i f ( (VB−>s i z e [ 1 ] == 1) | | (b−>s i z e [ 0 ] == 1)) {
i 5 = A3−>s i z e [ 0 ] ∗ A3−>s i z e [ 1 ] ;
A3−>s i z e [ 0 ] = VB−>s i z e [ 0 ] ;
A3−>s i z e [ 1 ] = b−>s i z e [ 1 ] ;
emxEnsureCapacity ( ( emxArray common ∗)A3 , i5 ,
( int ) s izeof (double ) ) ;
loop ub = VB−>s i z e [ 0 ] ;
for ( i 5 = 0 ; i 5 < loop ub ; i 5++) {

b loop ub = b−>s i z e [ 1 ] ;
for ( i 6 = 0 ; i 6 < b loop ub ; i 6++) {

A3−>data [ i 5 + A3−>s i z e [ 0 ] ∗ i 6 ] = 0 . 0 ;
c loop ub = VB−>s i z e [ 1 ] ;
for ( i 7 = 0 ; i 7 < c loop ub ; i 7++) {

A3−>data [ i 5 + A3−>s i z e [ 0 ] ∗ i 6 ]
+= VB−>data [ i 5 + VB−>s i z e [ 0 ] ∗ i 7 ] ∗

b−>data [ i 7 + b−>s i z e [ 0 ] ∗ i 6 ] ;
}

}
}

} else {
unnamed idx 0 = (unsigned int )VB−>s i z e [ 0 ] ;
unnamed idx 1 = (unsigned int )b−>s i z e [ 1 ] ;
i 5 = A3−>s i z e [ 0 ] ∗ A3−>s i z e [ 1 ] ;
A3−>s i z e [ 0 ] = ( int ) unnamed idx 0 ;
emxEnsureCapacity ( ( emxArray common ∗)A3 , i5 ,
( int ) s izeof (double ) ) ;
i 5 = A3−>s i z e [ 0 ] ∗ A3−>s i z e [ 1 ] ;
A3−>s i z e [ 1 ] = ( int ) unnamed idx 1 ;
emxEnsureCapacity ( ( emxArray common ∗)A3 , i5 ,
( int ) s izeof (double ) ) ;
loop ub = ( int ) unnamed idx 0 ∗ ( int ) unnamed idx 1 ;
for ( i 5 = 0 ; i 5 < loop ub ; i 5++) {

A3−>data [ i 5 ] = 0 . 0 ;
}

eml xgemm(VB−>s i z e [ 0 ] , b−>s i z e [ 1 ] , VB−>s i z e [ 1 ] ,
VB, VB−>s i z e [ 0 ] , b , VB−>

s i z e [ 1 ] , A3 , VB−>s i z e [ 0 ] ) ;
}
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emxFree real T(&b ) ;
}

//A4 = VB .∗ VC ’ ;
void f 4 ( const emxArray real T ∗VB,
const emxArray real T ∗VC, emxArray real T ∗A4)
{

int i 8 ;
int loop ub ;
int b loop ub ;
int i 9 ;
i 8 = A4−>s i z e [ 0 ] ∗ A4−>s i z e [ 1 ] ;
A4−>s i z e [ 0 ] = VB−>s i z e [ 0 ] ;
A4−>s i z e [ 1 ] = VB−>s i z e [ 1 ] ;
emxEnsureCapacity ( ( emxArray common ∗)A4 , i8 ,
( int ) s izeof (double ) ) ;
loop ub = VB−>s i z e [ 1 ] ;
for ( i 8 = 0 ; i 8 < loop ub ; i 8++) {

b loop ub = VB−>s i z e [ 0 ] ;
for ( i 9 = 0 ; i 9 < b loop ub ; i 9++) {

A4−>data [ i 9 + A4−>s i z e [ 0 ] ∗ i 8 ]
= VB−>data [ i 9 + VB−>s i z e [ 0 ] ∗ i 8 ] ∗

VC−>data [ i 8 + VC−>s i z e [ 0 ] ∗ i 9 ] ;
}

}
}
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User Guide for Host Profiling

In this thesis, three methods of profiling are proposed. MATLAB profiling and target
profiling are two ways that developers can easily find tutorials on the internet. In this
section, we present the way to perform host profiling that is a method we summarized
in this project. The steps to setup the profiling are the following:

Step 1: Download Eclipse.
Eclipse Standard 4.3.2
Step 2: Unzip and Start Eclipse.

Step 3: Install new software (CDT C Develop Tool).
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Wait for the installation to be finished.
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Step 4: Install Gprof plugin

Step 5: Create a C/C++ project, and set debug flags:
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Step 6: Build and Run the application, get .exe and .out files.
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Step 7: Copy .exe and .out into a folder together with gprof2dot.py.
Step 8: Execute the following commands.
:: Process Profile daa recalled from target
gprof ddd.exe gmon.out > gmon.txt
:: Transform into a Dot format
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python gprof2dot.py -e 0.1 -n 0.1 –skew 0.0001 -o gmon.gv gmon.txt
:: Visualise
dot -q -T png -o gmon.png gmon.gv
Step 9: Open results.
Open gmon.png, to see the result of profiling.

The detailed results are in gmon.txt.
More information about how to understand the txt file can be found in [46].
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