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ABSTRACT 

During dynamic tensile extrusion (DTE) the material is subjected to a complex deformation 

history, including high strain rates, large strains and elevated temperatures. This technique 

provides unique means to explore material performance under extreme conditions. In this work, 

the microstructural evolution of 99.98% commercially pure copper during DTE test was 

investigated by means of electron backscatter diffraction (EBSD). The investigation was focused 

on the segment of the extruded jet that remained in the die, since numerical simulation showed 

that material points along the longitudinal axis of such segment correspond to different stages of 

a common temperature compensated deformation history. Therefore, post mortem 

microstructure information extracted at different locations along the centre line is equivalent to 

in situ real-time measurement during the deformation process. EBSD investigations along the 

centre line showed a progressive elongation of the grains, and an accompanying development of 

a strong <001>+<111> dual fibre texture. Meta-dynamic discontinuous dynamic recrystallization 

(DRX) occurred at larger strains, and it was demonstrated that nucleation occurred during 

straining, while subsequent grain growth took place during post-deformation cooling in the die. 

According to strain energy minimization arguments, the recrystallization resulted in an 

increased <001> texture component. The critical strain for recrystallization was well predicted 

from a power-law dependence on the Zener-Hollomon parameter, including grain size 

dependence and a temperature dependent activation energy. In addition, it was shown that 

<001> and <111> oriented grains develop different dislocation substructures during straining, 

exhibiting elongated cells/micro-bands and typical cell structures, respectively.  The present 

results also confirm that dynamic tensile ductility increases with decreasing initial grain size as a 

result of grain refinement and lowering of dislocation and twin densities during DRX. 
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1. INTRODUCTION 

In many engineering applications and technological processes, materials are subjected to 

severe operating conditions, such as large plastic deformation, elevated temperature, high strain 

rates and high pressure. In hot metal working – such as forging, rolling, extrusion, wire drawing 

and sheet metal forming – metals and alloys undergo significant plastic deformation (strain of 

0.1–1.0) at temperatures higher than the recrystallization temperature, at strain rates ranging 

from 1.0 up to 100 s-1 and static pressure varying from a few MPa up to several hundreds of MPa.  

In defense and aerospace applications, materials that undergo high-velocity impact can be 

exposed to even more extreme conditions. In shaped charge jet formation the plastic strain can 

reach 1000 %, the strain rate is up to 106 s-1, the temperature generated by the shock 

compression is in excess of 0.7Tm and the pressure approaching 100 GPa [1].  

Knowing the material response under such conditions is fundamental for advanced 

modelling development to support better and more accurate design. Current laboratory testing 

techniques – such as dynamic traction/compression with Hopkinson pressure bar and gas gun 

experiments – allow investigation of material behavior only under limited combinations of 

strain, pressure, strain rate and temperature [2]. In the last decade, the use of numerical 

simulation to probe material properties and validate constitutive modelling has been proposed 

[3] and successfully used in a number of cases [4-6]. This approach consists in performing 

“validation” tests – in which the governing variables (strain, strain rate, pressure, temperature, 

etc.) are in the range of interest although they vary during the test following complex paths – and 

comparing the predicted and the post mortem measured response obtained for several 

“validation” metrics. Such type of validation tests includes Taylor anvil impact [7] , symmetrical 

Taylor or rod-on-rod impact test [8], scaled energy impact tests, expanding ring test, etc.  

Recently, a new test, called dynamic tensile extrusion (DTE), was proposed by Gray III et al. 

[9]. In this test a projectile is launched into a conical die with an exit hole smaller than the 

projectile diameter. During impact with the die, the projectile is subjected to both pressure and 

shear stress waves, and the material is adiabatically deformed and dynamically extruded at 

higher velocity than the initial flight speed. Tests performed on metals showed that strains in 

excess of 500 %, strain rates of the order of 106 s-1, temperatures up to 1200 K and pressures 

approaching 5 GPa can be achieved. This test has been used to investigate the dynamic response 
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of both metals (oxygen-free high conductivity (OFHC) copper [10], tantalum [11] and zirconium 

[12]) and polymers [13]. 

For OFHC copper, Gray III et al. [9] investigated the role of the initial grain size in the 

dynamic extrusion finding that the ductility, measured as the overall length of the extruded 

fragments, increases with decreasing initial grain size. Recently, Park et al. [14] investigated the 

response to DTE in coarse and ultrafine grained OFHC copper. In contrast, they found that the 

overall ductility was larger in the coarse grained than in the ultrafine grained copper. In addition, 

they found no evidence of recrystallization in coarse grained copper while it was indeed 

observed in the ultrafine grained material.  

Several authors have attempted to simulate OFHC copper deformation during DTE testing. 

Gray III et al. [9] simulated DTE test using MESA 2D explicit Eulerian code. In that case, the 

mechanical threshold stress (MTS) model was used to simulate copper at high strain rate and 

large strain. However, their results were only indicative of the fragmentation occurring during 

the dynamic extrusion. Simulation with CTH multi-material Eulerian code and EPIC Lagrangian 

finite element code were performed at Eglin AFB [15]. Again, these results were similar to those 

obtained with MESA indicating an inherent difficulty of the Eulerian formulation in following jet 

formation and fragmentation. Carlucci et al. [16] investigated the possibility to reproduce DTE 

test with ABAQUS explicit Lagrangian code. In this study, the Johnson and Cook model for copper 

was used and the die was simulated as a rigid body. They results were in a general good 

agreement with the experimental results obtained in [9] although a quantitative comparison was 

not provided. Iannitti et al. [17], using direct integration algorithm in MSC MARC implicit finite 

element code, simulated the DTE test to validate material constitutive modelling. In particular, 

they used Johnson and Cook model, modified for high strain rates, coupled with a microstructure 

model to account for grain size evolution. They showed the possibility to accurately predict the 

shape and numbers of ejected fragments as a function of the initial grain size, in accordance with 

Gray III et al. [9] results, emphasizing the necessity to account for microstructure evolution 

under such extreme loading conditions. Furthermore, these computational results indicated that, 

in the DTE test, microstructure evolution could also be used as an additional validation metric 

for models that incorporate microstructural variables.  

The purpose of this study was to investigate microstructure evolution of OFHC copper 

during DTE to provide measures that could be used to support constitutive model verification 

and validation. In particular, the post extrusion texture evolution in the fragment remaining in 

the die, as well as the development of the deformed microstructure, was quantified to 
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understand the deformation path of OFHC copper during dynamic tensile extrusion. To correlate 

Electron Backscatter Diffraction (EBSD) measurements with continuum state variable evolution, 

a finite element model (FEM) was calibrated reproducing the number and shape of extruded 

fragments.  

 

2. EXPERIMENTAL 

 

2.1 Material and analytical techniques 

Oxygen-free high conductivity (OFHC) copper was obtained in the form of half-hardened 

(H02) bars. The material commercial purity was 99.98%, although quantitative chemical 

analysis revealed a purity of at least 99.99%. Projectiles for DTE testing, in the form 

hemispherical head bullets, were machined and annealed for 30 minutes at 400°C in an inert 

Argon atmosphere. 

EBSD examinations were performed for microstructural and micro-textural analyses of the 

DTE sample using a LEO Ultra 55 Field Emission Gun  Scanning Electron Microscope (FEG-SEM) 

equipped with an HKL Channel 5 EBSD system with a Nordlys II detector. Samples were 

electrochemically polished in a solution of 170 g chromic acid (CrO3) and 830 mL water 

following the standard metallographic preparation techniques prior to the EBSD measurements. 

The instrument was operated at a voltage of 20 kV with 120 µm aperture size and a working 

distance of 13 mm. An area of approximately 300 × 300 µm2 was scanned with a step size of 0.6 

µm. For identification of twin boundaries (Σ3, ideal misorientation of 60°) a misorientation 

range of 58–62° was used. 

Transmission Electron Microscopy (TEM) was employed to shed light on the dislocation 

structures in the deformed grains using an FEI TITAN 80-300 TEM∕STEM instrument equipped 

with a FEG. The TEM thin foils were prepared by the site-specific in-situ lift-out procedure using 

an FEI Versa dual-beam workstation, consisting of a Focused-Ion-Beam (FIB) column and an 

SEM column on the same platform, where a thin lamella was mounted on a support Cu-grid.  

2.2 DTE testing 

DTE testing was performed in the light gas gun facility at the University of Cassino and 

Southern Lazio. The apparatus is a single stage gas gun 3.50 m long with a 7.62 mm bore. The 

maximum pressure of the reservoir was 300 bar. The gun is fired bursting a Mylar® disk by 

means of a thermo-resistance. This solution allows full control on the firing pressure, and 
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consequently on the achievable velocity, at which the test is performed. Projectile dimensions 

are given in Figure 1. Before each test, the gun and the die were cleaned in order to minimize 

friction. All tests were performed in vacuum and ejected fragments were soft recovered using a 

ballistic gel block. The projectile used in this study was designed to have the same mass as the 

spherical bullet used in [9]. Compared with the spherical shape, the proposed geometry is easier 

to machine and allows checking of the projectile alignment at impact. In fact, the rear section of 

the fragment in the die remains perpendicular to the symmetry axis if the projectile is aligned at 

the time of the impact with the die. A cork sabot was used to minimize pressure losses. 

The die has the same geometric characteristics of that used by Gray III et al. [9]. Size and 

dimensions are given in Figure 2. In order to avoid propelling gas overpressure after the impact 

in the die, recoil compensator located at the end of the gun before the die, was used. The velocity 

of the projectile was measured just before entering the die using two laser beam photodiodes. 

The dynamic extrusion process was recorded using high speed video camera at 70.000 frames 

per second. This provides a mean to estimate the muzzle velocity and to obtain time resolved 

shape of the jet.  

Two series of tests were performed at 350 and 400 m s-1, respectively. At higher velocity, 

the extruded jet produced three fragments (overall elongation ~35 mm) while at lower velocity 

only one fragment (overall elongation ~23.5 mm) was extruded. The fragment that remains in 

the die is subjected to strain ranging from almost no deformation in the rear section to very high 

strain in the front necked section. This fragment is a good candidate to correlate microstructure 

evolution with strain and to use this information to support constitutive model verification. 

Therefore, this segment is the focus throughout the present investigation.  

 

3. NUMERICAL SIMULATION 

To probe material response at large strain finite element simulation was used. The DTE 

impact test at 400 m s-1 was simulated with the implicit FEM code MSC MARC v2013. Since the 

problem is axisymmetric and symmetries are preserved during the deformation and 

fragmentation process, a 2D model was developed. The projectile and the die were simulated as 

deformable bodies in contact using fully integrated (four Gauss points) four node isoparametric 

elements with bilinear displacement functions. The analysis was carried out using large 

displacement, Lagrangian updating and finite strain formulation. The dynamic transient was 

simulated using single-step Humbolt operator, which is second order accurate, asymptotically 
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annihilating and it has the same unconditional stability as the Newmark-beta operator. Coupled 

thermo-mechanical analysis, taking into account the conversion of the plastic work to heat, was 

performed. The role and the effect of heat exchange between the projectile and the die was also 

analyzed. Since the projectile undergoes very large deformation, global re-meshing was used to 

avoid excessive element distortion and consequent loss of accuracy in the results. Re-meshing 

parameters were selected to preserve both element average size and aspect ratio during the 

entire analysis avoiding artificial stress wave reflections caused by the difference in the 

mechanical impedance between adjacent elements of different sizes.  

Friction between the projectile and the die unfortunately represents an unknown that can 

significantly affect the computational results. Since it cannot be measured experimentally, this 

presents an unresolved disconnection between the numerical simulation and experiment. In 

addition, friction models available in FEM codes were not developed to reproduce the conditions 

occurring in dynamic impacts. Therefore, the contact between the projectile and the die was 

assumed frictionless at this stage.  

Two strength models were considered to simulate OFHC copper response under dynamic 

deformation: Johnson-Cook and Zerilli-Armstrong. The first is a pure phenomenological model 

while the latter is based on dislocation mechanics and accounts for the material crystal structure.  

In their original formulations, for both models, stress does not saturate at large strain. Since in 

the DTE large strain are expected, a modified version of each model as used. In the Johnson-

Cook, hereafter mJ-C, the first term was replaced by a two-terms Voce type law, 

  (0) 

where,  

  (0) 

While for the Zerilli-Armstrong, hereafter mZ-A, the modified version proposed in [18] was 

used,  

   (0) 

For the mZ-A model material parameters were taken from the literature, while for the mJ-C 

parameters were identified based on quasi-static and Hopkinson pressure bar traction and 

compression tests [19].  
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At strain rates larger than 103–104 s-1 copper shows a transition from thermal activation 

controlled deformation to dislocation drag controlled deformation [20]. In this regime, materials 

show an increased strain-rate sensitivity usually attributed to the electron and phonon-drag 

effects on the mobile dislocations [21, 22]. Both J-C and Z-A models, in their original 

formulations, do not consider this transition. Therefore, for DTE test simulation purpose, the 

strain rate sensitivity parameter in both models was adjusted to reproduce the shape and size of 

the fragments for the 400 m s-1 DTE test. The set of calibrated parameters is summarized in 

Table 1. 

In DTE test of OFHC copper, extruded jet fragmentation occurred by strain localization 

sustained by thermal softening, which reduces the neck section to a point. This behavior could be 

accurately reproduced using global re-meshing. Consequently, no damage model was used and a 

simple prescribed maximum strain criterion for fragment separation was used.  

Once calibrated, numerical simulation was used to extract plastic strain, strain rate and 

temperature histories at selected locations to correlate with EBSD examination results.  

 

3. Results 

 

3.1 Mechanical response 

Numerical simulation of DTE test at 400 m s-1 has been repeated with the two selected 

strength models. These formulations have different derivation and have been used to verify that 

calculated strain, strain rate and temperature histories were not specific of the constitutive 

model used. Model parameters have been calibrated in order to reproduce the same plastic flow 

curve for the reference strain rate of 1.0 s-1 and the strain rate sensitivity parameters were 

adjusted in order to match fragment shape and size observed in the experiment. In Figure 3 the 

comparison of the predicted fragments size and shape for 400 m s-1 fired test is shown. Both 

models predicted fairly well the overall number of fragments, and the size of all fragment except 

for the second one. For this, both models predicted an excessive thinning. Another difference is 

that, for the first fragment, both models predicted a more pronounced necking than that 

observed in the experiment. The third and fourth fragments are fairly well predicted by both 

models. The mJ-H seems to provide better agreement with experimental finding than the mZ-A.  

The attention of present investigation was focused on the analysis of the fragment that 

remains in the die. Five locations along the symmetry axis, hereafter indicated as sample point 1 

to 5, were selected as shown in Figure 4. In Figure 5 the comparison of stress and strain rate vs 
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plastic strain histories, for sample point 1 and 5, calculated with mJ-C and mZ-A is shown. Both 

strength models gave similar results. The mZ-A resulted always in larger plastic strain than mJ-C. 

Similar agreement was found for all other investigated sample points (regions).  

In Figure 6 the evolution of von Mises equivalent stress, strain rate and temperature as a 

function plastic strain for all five sample points is shown. For each sample point, the strain rate is 

almost constant during the entire deformation process, increasing from 3·104 s-1 to 3·105 s-1 for 

sample point 1 to 5, respectively.  

The Zener-Hollomon parameter is a common way to characterize non-isothermal, non-

constant strain rate deformation. Therefore, the parameter Z, which is defined as, 

  (0) 

was selected to compare deformation paths at selected sample points. In Eqn. (4), R is the ideal 

gas constant, T is the temperature in [K], and Q is the apparent activation energy of the 

deformation process. Simulation results showed that temperature at different sample points 

varies approximately from 300 K up to 1000 K during the dynamic extrusion. Over such large 

temperature range, the apparent activation energy is not constant and its variation with 

temperature should be considered. For high purity copper, the following phenomenological 

expression is proposed:  

   (0) 

For copper, activation energy data [23-25] – collected by Freed et al. [26] – as a function of 

temperature are shown in Figure 7 together with Eqn. (5) fitted curve. Therefore, combining eqn. 

(4) with eqn. (5), the following expression for the parameter Z, accounting for temperature 

dependence of apparent activation energy, can be obtained: 

  (0) 

where 𝑄𝑄𝑙𝑙 is the saturation value equal in value to the activation energy for self-diffusion (Ql=210 

kJ/mol), A’ and 𝛽𝛽 are material constants and Tm is the melting temperature. 

The evolution of log(Z), as given in eqn. (6), as a function of plastic strain for the selected 

sample points is shown in Figure 8. To be noted that log(Z) vs plastic strain paths fall on the 
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same curve indicating that the deformation history is the same for all sample points. The 

parameter log(Z) decreases, with increasing plastic strain, from 30 asymptotically down to 15.  

The parameter Z can also be used to predict the condition for dynamic recrystallization 

(DRX) to occur. In plastically deformed material, the critical strain 𝜀𝜀𝑐𝑐𝑐𝑐 at which DRX initiates 

depends on the temperature, strain rate, initial grain size and alloying. The phenomenological 

relationship that provides the critical strain as a function of Z has the following form,  

  (0) 

where 𝐾𝐾𝜀𝜀 is a function of the initial grain size, d0, and alloy content. In the literature, 𝐾𝐾𝜀𝜀 is 

assumed to be a power law of the initial grain size. However, in copper, the critical strain for DRX 

increases with the initial grain size showing a rapid increase for smaller initial grain size and 

eventually reaching a saturation for large initial grain size [27, 28]. The authors found that a 

Voce type law provides a much better description of the evolution of the constant 𝐾𝐾𝜀𝜀 as a 

function of the initial grain size, limiting the critical strain for DRX at very large values of the 

initial grain size,  

   (0) 

where 𝑑𝑑0∗  is a material constant, equal to 22.4 µm for OFHC copper, and 𝐾𝐾�𝜀𝜀 is a function of the 

purity of the metal, equal to 1.89E-03 for 99.98 commercially pure copper [29]. 

In Figure 8, the Eqn. (7) is plotted for 99.99% OFHC copper with an initial grain size of 

340 µm and compared with experimental data of Gao et al. [30] obtained at low strain rate. In 

the same plot, the solution for 15 µm, which is the average grain size for the material using in the 

present investigation, is also drawn. Here, the condition for DRX is predicted to occur in the DTE 

test at 230% of plastic strain, which is reached and exceeded at sample point 3 to 5.  

 

3.2 Deformation structure 

To follow the evolution of the structure of the deforming material, five regions 

corresponding to the previously discussed sample points, as well as the annealed material, were 

investigated using EBSD. The microstructure of the as-annealed material is shown in Figure 9. 

The inverse pole figure (IPF) map in Figure 9(a) indicates a random texture of the 

microstructure, which contains numerous annealing twins. The grain size was measured to be 14 

µm by the linear intercept method using the EBSD data. This measure includes the twin 

boundaries, as they are the dominant grain boundary type. Excluding the twin boundaries 
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results in a measured grain size of 47 µm. The pole figures (PF) in Figure 9(b) confirms the 

random starting texture. 

The evolution of the microstructure during dynamic tensile extrusion is shown in Figure 

10, where the grains are outlined by high-angle boundaries (HAB, θ>10°) in black, with the 

special case of twins (Σ3, θ=60°) shown in red. Also included are low-angle boundaries (LAB, 

2<θ<10°). Figure 11 shows the distribution of misorientation angles while the relative 

frequencies of different types of boundaries (HAB, LAB, Σ3 and Σ9+ Σ27(a,b)) are shown in 

Figure 12. The annealed microstructure is clearly dominated by twin boundaries, and there is 

also a noticeable fraction of other CSL boundaries. The presence of Σ9 and Σ27 boundaries is 

indicated in Figure 11(b).  

In region 1, corresponding to a plastic strain of 1.2, the amount of twin boundaries is 

drastically reduced, and the other CSL boundaries have disappeared. A large increase in the LABs 

can be seen as a result of the plastic deformation. The density of LABs in different grains is 

indicative of stored (geometrically necessary) dislocations. It can be clearly seen from Figure 10 

(in particular in (b) and (c)) that the distribution is not homogeneous. Whereas most of the 

grains have a high homogeneous intra-grain LAB distribution, others exhibit very low density of 

LABs or local regions with high LAB density in otherwise almost LAB free grains.  In the latter 

grains, the majority of the LABs are generally found closer to the grain boundaries, especially at 

deformations up to a plastic strain of 1.9 (sample point 2). With increasing deformation, up to 

region 4 (plastic strain of 3.1), the fraction of LABs decreases in favor of general HABs. This is 

indicative of a progressive grain subdivision and fragmentation during deformation. The fraction 

of twin boundaries remains roughly constant and other CSL boundaries are still absent. 

During the course of deformation the grains become progressively elongated in the 

extrusion direction with increasing strain. The conversion of LABs to HABs can also be clearly 

seen. In region 4, recrystallized grains can be seen as equiaxed, or close to equiaxed, crystals 

without any deformation induced LABs. A small number of such recrystallized grains also exist in 

region 3. The degree of recrystallization increases significantly with deformation beyond region 

4, as can be seen in region 5 (plastic strain of 5.4). Here the majority of the microstructure 

consists of recrystallized grains free of internal deformation induced LABs. The fraction of twin 

boundaries has increased to around 20 %, and the other CSL boundaries have also reappeared. 

The ratio of (Σ9+ Σ27):Σ3 is around 0.2 in both the annealed microstructure (0.19) and sample 

point 5 (0.23). 
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3.3 Grain size 

The grain size (here taken as the diameter of a circle of the same area as the grain) for the 

different investigated regions, including twin boundaries, were extracted from the data sets by 

letting the software perform corrections for edge intersection. During this procedure, the grain 

size is calculated based on a minimum misorientation angle of 10°. Then the size of each grain is 

multiplied by two if it intersects one edge of the EBSD map, and by four if it intersects two edges. 

Figure 13 shows the grain size histograms for the different regions. A general shift of the 

distribution towards smaller sizes can be seen with increasing strain. Additionally, a few 

extreme points can be seen, which do not fit the remaining distribution. These outliers are a 

result of single very large grains intersecting two edges, the already large size thus being 

quadrupled. Another way of representing the grain size distribution, instead of by number 

fraction as in Figure 13, is by area fraction. The area fraction distribution is shown in Figure 14, 

where much more even distributions can be seen. The average grain size based on the two types 

of representations (excluding the outliers) is shown in Figure 15. Both measures follow the same 

trend of decreasing and saturating size with increasing strain, but the decrease is more rapid for 

the average based on number fraction. Also included (for the number fraction data) is the effect 

of choosing different grain size thresholds for inclusion in the data. The lower limit corresponds 

to inclusion of all identified grains, even if they are only one pixel in size. The upper limit is based 

on a minimum of ten pixels in a grain, and the average corresponds to a minimum of 5 pixels.  

For the average based on area fractions, the effect of selected threshold is insignificant. While the 

effect is limited also for the number fraction based average in terms of absolute values 

(deviations from the 5 pixel average of between 0.9 and 5 µm), it is large in relative terms 

(deviations between 13 and 41 %). Nevertheless, the trend is the same independent of selected 

threshold. 

 

3.4 Texture 

The elongation in the extrusion direction is accompanied by a strong texture development, 

as shown in Figure 16. The corresponding IPF maps are shown in Figure 17, indicating the 

development of a dual <001>+<111> fibre texture. The strengths of the different texture 

components are shown in Figure 18, based on integration over 15° from the ideal orientations. 

The choice of 15° was made based on the observed distribution of deviations from the ideal 

<001> and <111> orientations. Whereas the components were initially roughly equal in 

strength, the fraction of the <111> component increases more rapidly. Both components appear 
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to saturate with strain, the <001> component earlier (at a strain of 2) than the <111> component 

(at a strain of 2.5). There is a clear difference at the largest strain, where the <111> component 

fraction is reduced from 65 to around 20 %, while the <001> component increases from 30 to 37 

%. The reduction in the <111> fraction is a result of the extensive recrystallization, where <111> 

oriented regions are preferentially replaced by grains with <001> orientation. The remaining un-

recrystallized regions primarily consist of <001> grains, although some few remaining <111> 

oriented grains also exist. Also included in Figure 18 is the development of the fraction of 

recrystallized grains. 

 

 

4. Discussion 

4.1 Deformation substructure 

In the present investigation, an inhomogeneous distribution of LABs during deformation, 

both on inter and intra-granular levels, was observed. While the <001> orientation is softer 

compared to the <111> orientation (ideal Schmid factor of 0.408 compared to 0.272) and should 

deform more readily, signs of the opposite situation can be seen in Figure 10. It has been shown 

both experimentally [31] and by crystal plasticity simulations [32] that the surrounding grains 

can have a large influence on the deformation response. Soft grains surrounded by harder grains 

have been demonstrated to exhibit a lower number of geometrically necessary dislocations than 

their harder neighbors [31]. The proposed explanation is the much lower degree of hardening 

expected in grains oriented for easy slip, which result in storage of dislocations primarily at the 

grain boundaries [31]. In comparison, the deformation of harder grains will produce a higher 

density of dislocations, which are stored more homogenously in the grain interior. Figure 19 

shows a TEM micrograph from region 4, obtained at the boundary between two grains close to 

the <111> and <001> orientations. While the <111> grain exhibits a cell structure, the <001> 

oriented grain contains very elongated cells, or microbands. The difference in dislocation 

structure between the two texture components was confirmed through observation at several 

locations. Gray III et al. [9] observed both microbands and dislocation cells in DTE deformed 

copper, but here we can also conclude that the structures observed depend on the orientation of 

the investigated grain(s). Clearly, this orientation-dependent substructure development is of 

outmost interest for the understanding of the operative deformation mechanisms and grain 

interactions during straining. 
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The twins observed in region 5 are believed to be annealing twins formed during growth of 

the recrystallized grains. This is indicated both by the similarities with the annealed structure in 

terms of grain boundary types etc., but also by the absence of plastic deformation in the 

recrystallized structure. In regions 3 and 4, on the other hand, the twins could be suspected to be 

a result of deformation induced twining. Twinning has been shown to be a potential contributor 

to the deformation of copper during dynamic conditions, and can occur at much less extreme 

conditions than predicted by models [33]. It should also be noted that twinning under dynamic 

conditions have been shown to be an orientation dependent phenomenon, where copper 

specimens deformed in compression by dynamic plastic deformation primarily showed twinning 

in grains with orientations near <001>, but not closer to the <101> corner [34]. The fact that 

twins at intermediate strains in the present investigation appeared to be primarily associated 

with <001> textured regions could be interpreted as support of this. However, as the 

microstructure is so dominated by the <001> and <111> fibres, the number of grain boundaries 

with a misorientation close to the ideal 54.7° will be high. Given that the grains are not ideally 

oriented, there will likely be a quite large fraction in the angular range of 58–62°, which was 

here used to identify the Σ3 boundaries in Figure 10. A considerable portion of the observed Σ3 

boundaries is therefore probably not formed through mechanical twinning, but through 

dislocation slip-mediated grain rotation. This was also verified by detailed analysis of a number 

of individual boundaries. No signs of deformation twins similar to those observed in coarse 

grained OFHC copper in [14] could be found in the present case. All in all, the observations 

indicate that deformation twinning does not contribute significantly to the deformation of 

copper under DTE conditions. 

 

4.2 Texture development 

Qualitative investigations of the texture in copper during DTE have been reported by Grey 

III et al. [9] and Park et al. [14], but no quantifications of the texture component strengths were 

provided. More quantitative results have been reported during quasi-static tensile testing up to 

strains of 1.0 [35]. A number of studies are available on the texture resulting from wire drawing, 

e.g. [36-39], but usually with limited quantitative information. All studies show the development 

of a strong dual <001>+<111> fibre texture, although the texture is not homogeneous 

throughout the wire in the case of drawing as a result of the friction induced shearing at the 

surface. Figure 20 shows compilations of the available quantitative data found in the literature in 

comparison to the present results. As the absolute values of the measured area/volume fractions 
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depend on the chosen range of angles for integration, the comparison is not always 

straightforward. In most cases, no information on how the texture component strengths were 

calculated was provided. In [35] it was mentioned that it is normally calculated by integration 

over 15 or 20°. In this study, 15° was found to be the best choice, but in Figure 20 results using 

both 15° (open data points) and 20° (solid data points) are included for comparison. The 

difference between the two is largest at lower strains, where the texture is less pronounced and 

the uniform background makes a larger contribution. Clearly, the fraction of the <001> fibre 

agrees rather well with the literature, if the recrystallization at large strains is disregarded. The 

fraction of the <111> fibre (and thereby also the sum <001>+<111>) is higher in the present 

case. Also the development of the relative strengths (ratio <001>/<111>) is qualitatively similar 

in development. 

The primary comparison that can be made is with the quasi-static results from [35]. The 

qualitative development of the texture components is similar, but, as mentioned, the <111> (and 

<001>+<111>) fraction is higher in the present case. Many factors can be expected to influence 

the development of the texture. It was suggested [40] and experimentally verified [41] that the 

texture development during rolling of Cu-5%Zn is characterized by an activation energy, which 

was suggested to be the activation energy for cross-slip, resulting in a strain rate dependence of 

the texture. In OFHC copper, the effect of strain rate on the texture has been demonstrated using 

both shear compression specimens [42] and split Hopkinson pressure bar [43]. The texture 

index and the <101> component increased at strain rates above 100 s-1 [43]. Also in [42] a 

change in the relative strengths of different components with increasing strain rate could be 

observed, primarily leading to a partial replacement of the <001> orientation with a <101> shear 

component, whereas the <111> component remained unaffected. The proposed reason was the 

increase in strain hardening rate at higher strain rates. While the modes of deformation 

employed are not representative of the present study, the results indicate that the effects of 

strain rate cannot be neglected when making comparisons.  

Other potentially important factors are the initial grain size and starting texture of the 

tested material. Naaman et al. [35] observed an increased <111> component, and a decreased 

<001> component with increasing grain size (from 23 to 125 µm) in copper at strains up to 0.3. 

However, the two materials also differed in starting texture (both rather weak dual 

<001>+<111> texture, but with different relative strengths), and it was concluded that the 

extent of the contributions from texture and grain size were difficult to assess due to 

complicated interactions. It was, however, clear that the effect of starting texture is much larger 
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in tension than in compression. Simulations presented in [35] based on a random starting 

texture, which was evolved based on a gradual change-over from the full constraints to the 

relaxed constraint Taylor model, reached <001>+<111> fractions similar to those observed in 

the present case at a strain of 1.0 (see Figure 18(a)).  

To investigate the relative effect of starting texture on the subsequent fractions of texture 

components, the crystal plasticity package CPFEM [44], developed for use as a UMAT routine to 

the ABAQUS® finite element software, was used. A single element represents an arbitrary 

number of discrete orientations, which are all assumed to undergo the same strain as prescribed 

macroscopically (Taylor assumption). The starting textures were created using the MTEX 

software [45]. By defining different synthetic orientation distribution functions (ODFs), data sets 

with 1000 discrete orientations (grains) were generated as input. Three test cases were used: (i) 

completely random texture; (ii) “weak” <001>+<111> fibre texture (which was tuned to have a 

IPF as similar as possible to the similar to the starting material in [35]); and (iii) a “strong” 

texture, which was similar to the “weak” case but more pronounced (texture index 1.47 

compared to 1.03). Parameters for the crystal plasticity model for pure copper were taken from 

[46]. All simulations were performed in uni-axial tension to a total strain of 5.0, with 

intermediate textures being exported at regular intervals. The resulting textures were analyzed 

using MTEX, where the volume fractions of <001> and <111> fibres were calculated by 

integration over 15°1.  

Results presented in Figure 21 clearly show that an increasing strength of the initial dual 

fibre texture results in a weaker <111> component, and a stronger <001> component. These 

results correlate well with the observations above, where the volume fractions of <111> 

obtained from the present random starting texture (as well as the simulations with random 

starting texture presented in [35] were higher than observed in the weakly texture material in 

[35], whereas the <001> fractions were similar. The trends point to a significant influence of 

starting texture on the subsequent development, even if the dominating initial texture 

components are similar to the deformation texture. While the calculated volume fractions are 

much higher than the experimentally observed levels, in particular the <111> fraction, and the 

rate of development with strain is more rapid, more realistic simulation results could be 

obtained by using e.g. visco-plastic self-consistent models [47, 48], especially considering co-

1 If 20° was used instead, the resulting initial fractions for the weak starting texture corresponded well to 
those seen in [31], which was the intention. Also, for integration over 20° the texture evolution of the random 
starting texture was identical to the model result presented in [31]. 
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rotation effects, which have been proven to give very good predictions for pure Cu under large 

strain deformation  [49], or relaxed constraints models. The present simulations also neglect any 

strain rate effects on the texture development. However, at this stage the purpose of the 

simulations was only to study qualitative trends resulting from changes in the starting texture, 

and hence the CPFEM results were considered sufficient. 

During DTE, it has been observed that a smaller grain size (65 µm, “weak initial texture”) 

produced equally strong <001> and <111> fibres, whereas larger grain sizes (118 and 185 µm) 

resulted in a dominating <111> fibre texture [9]. However, in [9] the details on the microstructural 

observations were not included. Park et al. [14] also observed the dual <001>+<111> texture during 

DTE of coarse-grained OFHC copper with a grain size of 120 µm (random starting texture). No 

investigation of the segment left in the die was presented, but the extruded segments showed “strong” 

<111> and “moderate” <001> components.   

Based on these observations, the random starting texture and smaller grain size in the present 

investigation could be expected to result in a dominating <111> texture, and a stronger total texture 

due to both starting texture and the high strain rate. This is in general agreement with observations, 

although a parametric study of the effects of grain size, strain rate and initial texture would be 

necessary to draw any firm conclusions. 

The appearance of a <001> recrystallization texture from the deformed <111> fibre can be 

understood in terms of the strain-energy-release maximization (SERM) model [50, 51]. The absolute 

maximum principle stress in <111> oriented crystals will be in the <111> direction. During formation 

of new grains, the released strain energy will be maximized if the crystal direction with minimum 

elastic modulus (<001> in copper) is aligned with the axis of principle stress. Therefore, the deformed 

<111> grains will tend to be replaced by recrystallized <001> grains. For the same reason, <001> 

regions will be replaced by <001> oriented grains during recrystallization. 

 

4.3 Conditions for recrystallization 

In previous investigations of DTE of coarse-grained OFCH Cu [9, 14], no evidence of 

recrystallization was reported. Park et al. [14] used the same spherical bullet as in [9] but a 

different die geometry with larger outlet opening and higher impact velocity. Performing a 

simulation with the same set-up as in [14] and current material model, it was found that the 

strain history, given in terms of log(Z) parameter versus plastic strain, for the points along the 

axis of the fragment in the die are very similar to those reported in Figure 8 for current DTE test 

configuration. The near tip region investigated in [14] is approximately 3.3 mm from the end of 
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the fragment, which corresponds to a point in between region 3 and 4 in our case. The exact 

location where observations are performed and compared is important since it significantly 

influence the results. The deformed structure, close to the tip of the segment left in the die, was 

illustrated by optical micrographs in [14]. No texture measurements were reported for this 

segment after deformation. It is possible that the early stages of DRX had indeed occurred, but 

the very small recrystallized grains (as in regions 3 and 4 in Figure 4) was not resolvable. In [14], 

texture measurements were performed in the extruded fragments with no indications of 

recrystallization. The early stages of recrystallization are not clearly distinguishable in the IPF 

and misorientation distributions, without more detailed analysis. In the present study, extruded 

fragments were not examined and therefore it is not possible to establish and compare the state 

of recrystallization. Failure by localized shear band, at the tip of the fragment in the die, was not 

reported neither in other investigations [9] nor observed in this work. It may be a consequence 

of the experimental set-up (i.e. projectile misalignment at the impact and subsequent contact in 

the die channel). The initial grain size of the annealed copper tested in [14] (120µm) differs from 

that measured in the present study (15 µm), and this also has an influence on the 

recrystallization conditions as predicted by Eqn. (7) and (8) and shown in Figure 8. In summary, 

it is not clear if DRX did not occurred in the DTE tests in [14] due to experimental reasons, or if it 

did so only to the minor extent (in the investigated regions) that it was not resolved in the 

analysis. In Gray III et al. [9], much less information on the microstructure investigations were 

provided, and no high-resolution SEM or EBSD images are shown, which makes difficult to 

perform direct comparisons. No signs of recrystallization are mentioned in the paper, and TEM 

images from the extruded segments showed deformed microstructures with subgrains and 

microbands, similar to the present case. 

Numerical simulations, presented in this work, have shown that the use of the Zener-

Hollomon parameter is an efficient way to characterize the deformation history at selected 

locations. The parameter Z allows one to compare complex deformation path involving changes 

in the strain rate and temperature. In addition, considering the temperature dependence of the 

apparent activation energy allows compensation for different mechanisms governing the 

deformation process. The major finding, shown in Figure 8, is that post-mortem investigation of 

material microstructure at different locations along the axis of the segment in the die is 

equivalent to look at the microstructure evolution in situ, at different time instants, during the 

dynamic deformation process. Equation (7) provides a mean to estimate the condition for 

initiating DRX and, as shown in Figure 8, the location at which it can occur. As predicted by Eqn. 
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(8), for the same deformation process (i.e. same log(Z) vs plastic strain path), the larger the 

initial grain size the larger is the critical plastic strain for DRX to occur. In [9] the initial grain size 

ranged from 65 to 185 µm. Although the bullet geometry differs from that used in this work (but 

same projectile mass, velocity and die geometry), it was verified that the log(Z) vs plastic strain 

path is the same as that shown in Figure 8. According to present analysis results, DRX is 

predicted to occur for all three initial grain sizes, but with lower extent for larger grain size, at 

region 4 (<1.75 mm from the tip of the segment) for plastic strain exceeding ~2.5 and log(Z) 

~17. In general, failure strain decreases with reductions of the initial grain size. However, the 

two effects of grain refinement and lowering of dislocation and twin densities during DRX, both 

benefit the ductility during deformation and this may explain the results observed by Gray III et 

al. [9].  

In DTE test, the length of the extruded jet can be used to have an estimate of material 

ductility. Park et al. [14] defined the ductility of the jet as the sum of the axial ductility of each 

fragment with respect to the initial sample diameter. However, it is known that for given 

projectile mass and die geometry, the initial velocity has an influence on the resulting overall 

length of the jet [11]. Therefore, it was decided to define the velocity compensated average 

engineering strain of the jet as the ratio of the sum of all fragments lengths normalized by the 

initial projectile length (because engineering strain is not additive) normalized by the impact 

velocity:  

  (0) 

where li is the longitudinal length of the ith fragment, l0 is the initial bullet length and v is the 

impact velocity. In Figure 22, the velocity compensated ductility as a function of the initial grain 

is shown. Present result is in very good agreement with the trend shown by data provided by 

Gray III et al. [9]. Also the datum relative to coarse grain copper, taken from by Park et al. [14], is 

now in agreement with the observed trend with the exception of data of ultra-fine grain copper, 

for which a different behavior is expected.  

 

4.4 Recrystallization mechanism 

Two types of DRX are generally considered: continuous (cDRX) and discontinuous (dDRX) 

recrystallization [52]. The former is based on progressive rotation of sub-grains to create HABs, 

or in some cases to the changes in grain geometry during straining (usually termed geometric 

 18 



 

dynamic recrystallization). The mechanism of dDRX is different, in that it occurs through 

nucleation of new grains at old HABs, followed by growth of the recrystallized grain into the 

deformed matrix. During cDRX, both due to geometric reasons and sub-grain rotation, the 

development of a texture markedly different from the deformed state is not expected. In 

contrast, Figure 17 clearly shows a <001> texture component replacing the <111> due to 

recrystallization, indicating that dDRX is the dominating mechanism. This is expected in metals 

with low-to-medium stacking fault energy, such as copper. 

In the present case, relatively large recrystallized grains in region 5, at least large compared to 

the nuclei seen in regions 3 and 4, were observed. The average grain size in region 5 was in the order 

of 5 µm, but some of the recrystallized grains were as large as 50 µm. To assess the feasibility of 

dDRX as the operative mechanism, the model for grain growth during dDRX used by Cram et al. [53, 

54] is employed. In this model, the velocity of a grain boundary, vgb, at temperature T is described by  

   (0) 

where β is the effective fraction of the Turnbull estimate of grain boundary mobility [55], δ is the 

grain boundary width, Ωm is the molar volume, µ is the shear modulus, R is the gas constant, D0,GB 

and QGB are the pre-exponential and activation energy, respectively, for grain boundary diffusion, 

and ∆ρ is the difference in dislocation density between deformed and recrystallized grains. For a 

non-isothermal process, the size of an assumed spherical grain is found by integrating Eqn. (10) 

over the thermal history 

  (0) 

As in [53, 54] the initial grain size, di, is based on an estimated critical size for the Bailey-

Hirsch grain boundary bulging mechanism [56], 

  (0) 

The final equation for the grain size evolution, assuming a constant dislocation density, 

then becomes 

  (0) 
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Here the temperature dependence of the molar volume as well as the effects of high 

dynamic pressure on molar volume and shear modulus are neglected. The values of the 

parameters for pure copper are summarized in Table 2. The dislocation density in copper during 

quasi-static severe plastic deformation have been measured in the range 1.5⋅1014–3⋅1016 m-2at 

large strains [57, 58]. Assuming that the recrystallized grains are dislocation free, and that the 

dislocation density in the deformed grains is higher end of the above range during dynamic 

conditions, we used ∆ρ=1015 and 1016 m-2 in our simulations. The critical nucleus size is 

estimated to around 2 and 0.2 µm for dislocation densities of 1015 and 1016 m-2, respectively, 

using Eqn. (12). Integrating Eqn. (13) over the part of the thermal history exceeding 0.4Tm, 

which is usually taken as an approximate lower temperature limit for DRX, results in grain 

growth of only fractions of a µm. It is therefore not likely that the observed grain growth 

occurred during deformation. The most probable course of events in the present case is that the 

dDRX occurred during deformation, but grain growth took place after the deformation stopped, 

while the temperature was still high enough during cooling of the specimen inside the die. This 

phenomenon is usually termed meta-dynamic recrystallization [59], mDRX, and typically results 

in a microstructure consisting of a mix of small and large recrystallized grains and deformed un-

recrystallized regions [52], similar to the present case. To verify this hypothesis, a second 

simulation was performed, including the part of the test after the deformation stopped. The 

temperature redistribution and cooling were simulated by considering heat transfer through 

conduction in both specimen and die, radiation and natural convection. The thermal 

conductivity, emissivity and specific heat of pure copper and tool steel were used for the 

specimen and die, respectively. The natural heat convection coefficient was taken to be 10 W m-2 

K-1, and the environment was modeled as a heat sink with temperature 298 K. The resulting 

temperature and grain growth simulations for ∆ρ=1015 and 1016 m-2 can be seen in Figure 23. 

Depending on the assumed dislocation density, the final grain size ends up in the range of 5 to 32 

µm, which is consistent with the experimental observations. It should also be noted that since in 

principle all grain growth occurs after the deformation has stopped, there is no subsequent 

deformation of the recrystallized grains, which would slow down the grain growth. This 

supports the use of a constant value of ∆ρ in the calculations. The growth rate can therefore be 

expected to be higher during this type of mDRX compared to typical dDRX during testing under 

e.g. hot working conditions where the continued deformation of the recrystallized 

microstructure continuously reduces the driving force for grain growth. 
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It should be noted that the grain growth simulations are of course extremely sensitive to 

the input temperature and activation energy due to the exponential expression. The simulation 

of the cooling is also inherently approximate, since the perfect thermal contact between the 

specimen and die was assumed. Furthermore, simulations indicate that at the end of the 

deformation the reflected shock wave will eject the conical piece from the die. This is in 

agreement with observations when removing the pieces from the die after the experiment, 

where the conical specimen was found lying free inside the die, close to the nozzle. This will of 

course result in boundary conditions far from the idealized case used in the simulations. 

However, both the addition an interface heat transfer coefficient and boundary conditions 

corresponding to a “free” specimen would result in slower cooling rates. Thus, the conclusions 

regarding the feasibility of the occurring grain growth during cooling still hold, provided that the 

activation energy is not significantly lower than the value used in the present case. 

Recrystallization in OFHC copper during dynamic tensile deformation clearly requires 

further investigations, utilizing high-resolution characterization methods capable of resolving 

the very early stages of nucleation. Based on the present tests such a dedicated investigation of 

the mechanisms of recrystallization will be undertaken, and presented in as a separate study.  

 

4. CONCLUSIONS 

In this work, the evolution of microstructure during dynamic tensile extrusion, at 400 m s-1, 

of fully annealed OFHC copper with 15 µm initial grain size, was investigated. The attention was 

focused on the analysis of the fragment that remained in the die, since its material points 

experience different deformation and temperature levels. Numerical simulation revealed that 

points along the axis of this fragment, represent different points along a common temperature 

compensated deformation history when plotted as log(Z) as a function of plastic strain. 

Therefore, post mortem microstructure information extracted at different locations is equivalent 

to in situ real-time measurement during the deformation process.  

Microstructure evolution along the axis was investigated by means of extensive EBSD 

analysis, which showed a progressive elongation of the grains, and an accompanying 

development of a strong <001>+<111> dual fibre texture. Meta-dynamic discontinuous dynamic 

recrystallization (mDRX) occurred at larger strains, and it was demonstrated that nucleation 

occurred during straining, while subsequent grain growth took place during post-deformation 

cooling in the die. According to strain energy minimization arguments, the recrystallization 
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resulted in an increased <001> texture component. The on-set of recrystallization was well 

predicted by a phenomenological relationship, which relates the critical strain for DRX to the 

initial grain size and Zener-Hollomon parameter.  

A texture dependence of the deformation substructure was observed from the EBSD data, 

and TEM investigations confirmed that <001> and <111> oriented grains develop different 

dislocation substructures. In the <001> oriented regions elongated cells or microbands were 

observed, while the typical cell structure occurred in the <111> oriented grains.   
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FIGURE 

   
Figure 1 –DTE bullet: dimensions in mm and 3D sketch.  

 

 

 

 
Figure 2 –DTE die dimensions in mm. 
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a) mJ-A model 

 
mZ-A model 

Figure 3 –Comparison of the predicted fragments shape using mJ-C and mZ-A strength models.  

 
Figure 4 –Location of selected sample points for FEM results and EBDS. Contour plot represent 

plastic strain contours with mJ-C model.  
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Figure 5 –Comparison of calculated von Mises stress and strain rate vs plastic strain for mJ-

C and mZ-A strength models for sample point 1 and 5. 
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Figure 8  
a)  

 
b) 

 
c) 

Figure 6 –Summary of a) stress, b) strain rate and c) temperature vs plastic strain for all selected 

locations along the fragment symmetry axis (mJ-C model). 
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Figure 7 – Variation of apparent activation energy with temperature. Here Ql=210 kJ mol-1. 

Experimental data are taken from [23-25]. 

 
Figure 8 – Calculated log(Z) paths for sample points 1 to 5 as a function of plastic strain. DRX 

critical strain for 15 µm initial grain size is determined as the intersection of Eqn. (7) with log(Z) 

path. 
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Figure 9 – Inverse pole figure map and pole figures for the annealed material. The inverse 

pole figure map shows orientations aligned with the extrusion direction, which is horizontal in 
the figure. The pole figures show a random initial texture. 

 
Figure 10 - Grain structure from the EBSD investigations of the annealed sample and 

different regions in the DTE specimen.  
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Figure 11 - (a) Misorientation angle distribution for the different regions. (b) Close-up 

showing the presence of other CSL boundaries in the annealed state, and in the final region 
(plastic strain of 5.4). 

 
Figure 12 - Fraction of grain boundary types in the different regions. 
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Figure 13 - Histograms of the grain size from the different sample points (here indicated as 

“regions”) (including twin boundaries, and corrections for edge intersection). The insets show 
magnifications of the distribution tail, and the arrows indicate the maximum measured grain 

size. 

 
Figure 14 - Same as in Figure 13, but based on area fractions instead of number fractions. 
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Figure 15 - Evolution of the average grain size, based on both number fraction and area 

fraction, with strain. Also included are the limits corresponding to a threshold for inclusion of 1 
pixel and 10 pixels. The average curves are based on a minimum of 5 pixels in a grain. 

 

 
Figure 16 - IPF maps of the annealed sample and different regions in the DTE specimen. All 

scale bars are 100 µm.  
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Figure 17 - IPFs from the EBSD maps of the different regions showing (a) the initially 

random texture; (b-e) the development of a strong dual <001>+<111> fibre texture, dominated 
by the <111> fibre; and (f) changes in the relative fibre strengths due to recrystallization of 

predominantly <111> oriented regions into <001> orientations. 

 

 
Figure 18 - Evolution of the fraction of different texture components and recrystallized 

grains   (RX) with strain. 
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Figure 19 - TEM micrographs of the dislocation structure in adjacent <111> and <001> 

grains. The grain boundary is indicated by the dashed line.  

 

Figure 20 - Evolution of texture strength with strain. (a) Fractions of <001>, <111> and 
<001>+<111> fibres. (b) Ratio <001>/<111>. Open and closed symbols denote integration over 

15° and 20°, respectively. 

 

 
Figure 21 - Synthetic IPF figures for (a) the weak, and (b) the strong texture. (c), (d) and (e) 

shows the generated sets of orientations generated for the random, weak and strong starting 
textures, respectively. (f-h) shows the resulting orientations after a strain of 1. (i) shows the 

development of the volume fractions of the <001>, <111> and <001>+<111> fibres with strain, 
compared to the experimental data.  
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Figure 22 – Velocity compensated engineering strain as a function of initial grain size. 

 

 
Figure 23 - Temperature from numerical simulation region 5 throughout of the entire test, 

including cooling inside the die, and evolution of the recrystallized grain size.  
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Table 1.Parameters in the modified Johnsson-Cook (mJ-C) and modified Zerilli-Armstrong (mZ-

A) models. 

mJ-C model Value Units 

𝜎𝜎𝑦𝑦0 21.8 MPa 

𝐵𝐵1 36.5 MPa 

𝐵𝐵2 357.5 MPa 

𝑡𝑡1 0.0205 - 

𝑡𝑡2 0.175 - 

C 0.046 - 

𝜀𝜀0̇ 1.0 s-1 

𝑇𝑇𝑚𝑚 1356 K 

m 1.09 - 

 

mZ-A model Value Units 

𝐶𝐶0 21.8 MPa 

𝐶𝐶2 1750 MPa 

𝐶𝐶3 0.0028 K-1 

𝐶𝐶4 1.15E-04 K-1 

𝜀𝜀𝑟𝑟 0.35 - 

 

Table 2. Parameters in Eq. (RX4). 

Parameter Value Units Reference 

𝛽𝛽 0.2 - [53] 

𝛿𝛿  1⋅10-9 m [53] 

D0,gb 2.35⋅10-5 m2 s-1 [53] 

Qgb 107.2⋅103 J mol-1 [53] 

Ω𝑚𝑚 7.11⋅10-6 m3/mol [53] 

𝜇𝜇 50.7⋅109⋅(1–0.45⋅T/Tm) Pa [60] 

𝛾𝛾 0.625 J m-2 [54] 
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