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ABSTRACT

In this paper we present a fine-mesh solver aimed at resolving in a coupled manner and at the pin cell
level the neutronic and thermal-hydraulic fields. Presently, the tool considers Pressurized Water Reactor
(PWR) conditions. The methods and implementation strategy are such that the coupled neutronic and
thermal-hydraulic problem is formulated in a fully three-dimensional (3D) and fine mesh manner, and
for steady-state situations. The solver is built on finite volume discretization schemes, matrix solvers
and capabilities for parallel computing that are available in the open source C++ library foam-extend-
3.0. The angular neutron flux is determined with a multigroup discrete ordinates method (Sy), solved
by a sweeping algorithm. The thermal-hydraulics is based on Computational Fluid Dynamics (CFD) mod-
els for the moderator/coolant mass, momentum, and energy equations, together with the fuel pin energy
equation. The multiphysics coupling is solved by making use of an iterative algorithm, and convergence is
ensured for both the separate equations and the coupled scheme. Since all the equations are implement-
ed in the same software, all fields can be directly accessed in such a manner that external transfer and
external mapping are avoided. The parallelization relies on a domain decomposition which is shared
between the neutronics and the thermal-hydraulics. The latter allows to exchange the coupled data local-
ly on each CPU, thus minimizing the data transfer. The code is tested on a quarter of a 15 x 15 PWR fuel
lattice. The results show that convergence is successfully reached, and correct physical behaviors of all

fields can be achieved with a reasonable computational effort.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

To simulate the behavior of a nuclear reactor core, multiple
fields of physics need to be considered. The distribution of the neu-
trons determine the amount of energy released by fission in the
fuel. In a Light Water Reactor (LWR), the released energy is con-
ducted through the solid fuel pins to the conjugate liquid (or
vapor) water, and it is removed by the forced water flow. The water
is not only acting as coolant, but also as moderator for the neu-
trons. In turn, the density of the water couples to the neutron dis-
tribution. Besides, the fuel temperature, which depends on the
power and the coolant conditions, gives another feedback to the
macroscopic neutron cross-sections via the Doppler effect. Other
phenomena such as thermal expansion of the solid fuel and other
core structures, fluid-structure interaction and material properties
also impact the behavior of the core.
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Furthermore, the reactor core is a multiscale system, with the
scales ranging from the core width and height to the atomic ones
governing nuclear reactions. For the neutronic solvers, the multi-
scale problem has typically been solved using a multistage proce-
dure: the macroscopic cross-sections are generated in advance
with a high order lattice solver and are employed for full core cal-
culations performed with a low order coarse mesh solver. For ther-
mal-hydraulics an equivalent multistage scheme can be seen in the
use of subchannel codes and lower dimensional system codes,
although such codes are not sequentially applied.

The multiphysics and multiscale can be tackled using a wide
variety of schemes and methodologies. A splitting approach is
often utilized, which consists of separate methodologies and codes
for each field of physics and scale. The dependencies could then be
regained using an a posteriori coupling, applying iterative schemes
(for an overview see e.g. Ivanov and Avramova, 2007). Due to the
split schemes, the couplings are usually only retrieved at the coars-
est level, whereas the multiphysics coupling will take place at mul-
tiple scales. Therefore, these schemes might be inconsistent. This
issue has recently gained a renewed interest, where the use of
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more computational power has allowed for direct coupling at finer
scales, and thus leading to more integrated approaches to the mul-
tiphysics problem (see e.g Gaston et al., 2009). Such methodologies
typically rely on tightly coupled solvers, using implicit, non-linear
techniques to handle the couplings. In other works, fine-mesh mul-
tiphysics couplings have been achieved using multiple codes, with
a varying level of sophistication for the couplings (see e.g.
Kochunas et al., 2012; Hamilton et al., 2013).

The large increase in computer resources has also allowed new
applications of numerical simulations in the reactor core. Examples
include integrated approaches for direct simulation of fuel material
properties (Newman et al., 2009) and numerical simulations of
resolved grid-to-rod fretting in a fuel assembly (Bakosi et al.,
2013). High-fidelity simulations of a nuclear reactor that include
all the mentioned aspects are challenging from a modeling per-
spective and are beyond the computational capacity available
today. Instead, different approaches are still required for the differ-
ent parts of the multiscale problem.

However, such insight does not imply that smaller scales (as
compared to the core global scale) could be discarded. On the con-
trary, from a higher resolution coupled simulation, the models and
correlations used for the coarse scale couplings can be evaluated
and improved. In the view of the earlier statement, there are incen-
tives to work with the coupled neutronic and thermal-hydraulic
problem already on the fine-mesh level. In fact, a more detailed
prediction of the interplay between the two fields can provide a
better understanding of, e.g., the local temperature and power dis-
tributions in the fuel pins, as well as the conjugate heat transfer
between the fuel and the coolant. Such and other fuel assembly
parameters and aspects are important both from economical and
resource utilization perspectives, and also from safety
considerations.

The goal of this article is to describe a fine-mesh simulation
framework that has been developed at Chalmers University of
Technology, and that aims at reproducing the coupling between
neutronics and thermal-hydraulics within PWR fuel assemblies.
In particular, the solver can handle steady-state problems with
respect to fine meshes, and it includes models for single-phase flu-
id dynamics, heat transfer in the solid and fluid regions, and neu-
tron transport. We aim to give both specific example and also a
more general overview of the key points for such a framework.
The full coupled problem is solved using a single code approach,
allowing fine-mesh direct multiphysics coupling.

The paper is structured as follows. The implications of the fine-
mesh approach are described in Section 2, highlighting some of the
key concepts and main issues to be tackled. The specific models
used for the neutronics, the fluid dynamics and heat transfer are
given in Sections 3 and 4, respectively. In Section 5, we describe
the treatment in our methodology of the coupling and data transfer
between the different fields. In Section 6, strategies for the paral-
lelization of the coupled system are outlined and discussed. The
described models and implementations are then tested on a sim-
plified 15 x 15 PWR system and reported in Section 7. Finally, a
summary and a number of important conclusions are given in
Section 8.

2. Fine-mesh considerations

As mentioned above, the target of this work is to couple the
neutronic and thermal-hydraulic fields on a sub-pin level. Follow-
ing the choice of resolution, limitations and approximations will be
imposed for other scales. With the chosen level of detail, full core
calculations are extremely computationally expensive. Instead,
the fine-mesh approach is applied to the fuel assembly calcula-
tions, where the computational burden is still relatively large,
but can be handled with the available computer resources.

The application of a fine-mesh approach gives a possibility of a
full three-dimensional representation of the fuel assembly. This
fact is beneficial for two main reasons. First, the geometrical
complexity of the fuel assembly can be taken in account with a bet-
ter resolution. Second, physical phenomena can be better captured,
avoiding one dimensional (1D) or two dimensional (2D)
approximations that may be questionable.

To preserve the geometry on the sub-pin cell scales in an effi-
cient manner, an unstructured computational mesh is required.
This allows for a correct representation of the fuel pins and other
structural parts and avoids homogenization of the simulated sys-
tem. The choice of resolution of the mesh influences the discretiza-
tion method applied to models and equations. In this work the
discretization is based on the Finite Volume Method (FVM). FVM
allows unstructured meshes to be used, and ensures local conser-
vation on each cell (Ferziger and Peric, 2002). It is also a well pro-
ven method for neutronics and fluid problems, and is a standard
practice for Computational Fluid Dynamics (CFD) codes.

To handle the fine-mesh requirements, the use of unstructured
meshes, and the coupling of multiple fields of physics, a versatile
computational code is necessary. Such a tool could consist of mul-
tiple specialized softwares, combined using an external coupling
(see e.g. Cardoni and Rizwan-uddin, 2011; Kochunas et al., 2012).
An advantage of this scheme is the possibility to use a set of
validated tools, limiting the amount of new code to be implement-
ed and tested. However, the external transfer approach introduces
not only an expensive overhead, but it also limits the resolution of
the coupling and imposes constrains on the coupling algorithms.
An alternative to the split software scheme is to include all fields
of physics and the coupling in the same code (see e.g. Gaston
et al., 2009), which is the approach followed in this work. This
allows for a coupling directly on the finest scale, avoiding the com-
putational and methodological penalties associated with external
or a posteriori coupling schemes. Further benefits will be discussed
in Section 6, where the integrated approach is described, and also
used to handle the parallelization in an efficient manner.

To benefit from an existing code, we use the open source C++
library foam-extend-3.0 as a base for the coupled code. foam-
extend-3.0 is a fork of OpenFOAM®, earlier named OpenFOAM®-
dev and OpenFOAM®-ext (Wikki, 2014). The software gives access
to a high performance library with a flexible code with many dif-
ferent applications. In particular, full availability of the source code
allows for extending the code at any level, including implemented
equations, physical models as well as for the linear solvers and the
discretization schemes.

As a consequence of the chosen resolution and using a 3D rep-
resentation of the system, the computational requirements for this
kind of effort can not be overlooked. The fine-mesh approach must
be solved using high performance computations (HPC), including
fast programming languages, efficient algorithms and use of paral-
lelization to efficiently tackle the problem. Furthermore, the prob-
lem is parallelized using the Message Passing Interface (MPI) (MPI
Forum, 2009) as implemented in foam-extend-3.0 (further
described in Section 6).

3. Neutronics for the sub-pin cell calculations

For the type of system and resolution under study, the selected
neutronics solver methodology needs to handle the strong material
heterogeneities and the angular dependence. In the case of the sub-
pin neutronic calculations, the diffusion approximation is not an
accurate choice. Instead a full transport methodology is required.
Here, we use the discrete ordinates method, formulated for a gen-
eral unstructured mesh and using the finite volume method to dis-
cretize the equations. We solve the steady state neutronic
eigenvalue problem using the power iteration method.



246 K. Jareteg et al./Annals of Nuclear Energy 84 (2015) 244-257

3.1. Sy method

The discrete ordinates method is based on solving the neutron
transport equation on a set of directions (or ordinates). The equa-
tion to be solved for each separate direction is given by (Larsen and
Morel, 2010):

1
Qn - VWng+Zrg¥Ymg = Smg + EFmg (1)
where the anisotropic scattering source term is given by:
L M G
Smg =3 1+ 1) Pi(Qn - Q)WY Zstg—g g )
1=0 m'=1 g'=1

which is formulated in terms of the Legendre polynomials (P;) and
the ordinate weights (w,,). The fission source term in terms of the
angular flux reads:

M G
Fmg = Xg Zwm’zvg/zf,g’\ljm’.g’ (3)

m'=1 g'=1

The scalar flux can then be retrieved by performing the weighted
sum over all the different directions such that:

M
Dy = 4TY WP 4)
m
The fission source with respect to the scalar flux will read:
X G
Fug = ﬁg;vg,zf‘g, - (5)

Standard notations are employed for all quantities.

We assume the most general case with a fully anisotropic scat-
tering. Thus, in each inner iteration while solving Eq. (1) (i.e. for
each energy group (g) and each ordinate m), the full dependence
of all other groups and directions will enter through the scattering
term Sy, ¢. To reduce the computational cost of evaluating the scat-
tering source, an expansion of the angular flux on real spherical
harmonics is used, such that:

L

G I
Smg = ZZ(ZZ + 1)Zer¢g,1,rSs,l,g’ag (6)

g'=11=0 r=—I

where ¢,,, are the expansion coefficients and R, are the real sphe-
rical harmonics as given in Hébert (2010).

The choice of directions (Q,,) and weights (w,,) for Sy can poten-
tially have a large influence on the accuracy of the solution, as dis-
cussed by e.g. Abu-Shumays (2001). The directions and weights in
this work are based on the level symmetric quadrature set as given
in Hébert (2010).

3.2. Solution and parallelization of Sy

Due to the nature of Eq. (1), the discretized equation can be
solved with a sweeping algorithm that corresponds to the solution
of a lower diagonal matrix using a Gauss-Seidel method, and based
on the ordinate direction Q,,. For an unstructured (as well as a
structured) mesh such sweeping order can be found starting from
an inlet boundary and iteratively transversing the cells of the mesh
(Plimpton et al., 2005). Cyclic dependencies are avoided if only
convex cells are used, which is the case in this work. A brief outline
of the applied sweep order methodology is given in Fig. 1.

When the problem is parallelized by splitting the space in dif-
ferent domains (as further discussed in Section 6.3), the sweeping
order also needs to be parallelized. In order to conserve the single
sweep over the mesh, each separate domain must wait for neigh-
boring upstream domains to finish their sweeps. To still utilize

the time waiting, the different domains should optimally start with
different directions. Such algorithm is not implemented in the cur-
rent work. Instead all domains are concurrently sweeping for the
same direction. This will introduce a penalty for the parallelized
version of the discrete ordinates solver. However, the used algo-
rithm is easier both to implement and to maintain in terms of gen-
eralization and implementation.

Much effort has been spent on the development of acceleration
techniques for the discrete ordinates method (see e.g. Larsen and
Morel, 2010). Nevertheless, no acceleration is used in this work,
and the problem is instead solved by iteratively updating the direc-
tions, group by group.

An outline of the applied solution methodology is given in
Fig. 1. During the initialization, the decomposed mesh is read by
each CPU, whereafter the sweeping order is determined. Finally,
the cross-section sets are determined (see Section 3.3). Each neu-
tronic iteration starts with an update of the cross-sections based
on the current temperature distribution in the system. Thereafter
an outer iteration is used to update the eigenvalue problem, using
an inner iteration to update the angular flux. After convergence of
the outer iteration, the power profile is updated. Optionally, we use
a diffusion solver during the first iteration. This allows an approx-
imate fission source and criticality value to be calculated with a
smaller computational cost, which can be used to increase the
acceleration and convergence of the Sy solver.

3.3. Cross-sections and macroscopic data

To close Eq. (1), cross-sections and macroscopic data are need-
ed. Such data are here generated using a Monte Carlo approach. We
use the software Serpent (Leppdnen, 2012), to create a set of two-
dimensional condensed and homogenized cross-sections. The
details of this approach can be found in Jareteg et al. (2014b).

To match the resolution of the system, sub-pin cell dependent
cross-sections are needed. The data are thus generated for regions
split azimuthally as well as radially and tabulated according to
position. Furthermore each specific radial and azimuthal region is
run for a set of temperatures, as to give a temperature-dependent
macroscopic data in all regions of the fuel.

The radial and azimuthal discretization used in this work can be
seen for a quarter of a 15 x 15 fuel pin array in Fig. 2. The regions
displayed in Fig. 2 are automatically mapped to an unstructured
mesh of the deterministic calculations (as exemplified in Fig. 3).
In this manner the code is kept very general, and more physics
and different geometrical structures can be easily added later.

The scheme followed is given in Fig. 3. The first part, covering
the generation of the cross-sections, takes place before the coupled
deterministic calculations, and it provides geometrical sets and
cross-section tables for each region as displayed in Fig. 2. The pro-
duced sets are then used to calculate a mapping based on the
geometrical information generated by the Python script and the
cell centers in the unstructured mesh. Once a mapping is deter-
mined for each cell in each CPU, the correct table can be read. Each
time the cross-sections are updated (as seen in Fig. 1), the mapping
information is re-used, and the cross-sections updated locally for
each cell.

4. Thermal-hydraulic model for the fine-mesh calculations

In this work the thermal-hydraulic problem is solved using
mass, momentum and energy equations, all formulated from first
principles. The equations and the models applied are aimed at
the sub-pin cell resolution, and are consistent with the neutronic
calculations. This means that the moderator gradients of velocity,
density and temperature between the fuel pins and the tem-
perature gradient within the fuel pins must all be resolved. The
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approach followed here is thus more representative for CFD than
for typical lower dimensional codes, which are to a larger extent
based on empirical correlations.

Using a CFD methodology introduces new type of equations and
solvers, both with the aim to reduce the reliance on measured or
approximated quantities and to reach a higher resolution. As an
example, in this work a two equation turbulence model is solved
on the same mesh resolution as the momentum equation. This,
in combination with the wall boundary conditions, allows for the
pressure drop over the channel to be directly calculated, avoiding
the use of pressure drop correlations.

The work is limited to pure single phase liquid systems, i.e. at
this stage the existence of multiple phases encountered in Boiling
Water Reactors (BWRs) and in the subcooled boiling region in
PWRs are not taken into account. Such gas-liquid heated problem
is however the focus of the next developmental stage.

Even though a single phase methodology is applied, the heat
transfer from the fuel pins will still lead to a change in density in
the moderator and thus also influence the momentum and mass
conservation equations. This is accounted for by solving the full
conjugate heat transfer problem, including the moderator, the
cladding encapsulation, the gaps and the fuel pins, in one fully cou-
pled system.

4.1. Pressure-velocity solver

The momentum equation is formulated for the steady state
problem and by time-averaging the Reynolds decomposed velo-
city. This results in a filtered momentum equation such that:

V- (pUeU)=V -T-V.pueu - VP+ pg (7)

with the mean velocity given by U, the fluctuating contributions
given by v and with the density p, the pressure P and the gravity

g. To close the momentum equation, the stress tensor (t;) is mod-
eled as (Panton, 2005):

2
Tij = [ (Uu tUi—3 Uk.k5v‘> (8)

where u is the viscosity. The velocity fluctuation term is related to
the stress tensor and a kinetic viscosity according to:

N 2 2
—puL; = (Uu +Uji—3 Ukk%‘) = 3 Pkdy 9)

where k is the turbulent kinetic energy which is computed based on
a two-equation turbulence model, here formulated as (see e.g.
Ferziger and Peric, 2002):

V. (pkU) = V. (;urg—;Vk) 4 (Veu)

H(VeU+(VeU)) - pe (10)
where g, is a model constant and with the turbulent dissipation €
calculated by the second equation:

€
V- (pet) = V- (n+ 5eve) (v ou)
€
2

(VeU+(VaU)) - Cp' (11)

where o, Ci and C,. are model constants. After solving the turbu-
lent kinetic energy and the turbulent dissipation, Eqs. (10) and (11),
the turbulent kinetic viscosity in Eq. (9) is computed as:

I
He = pCug (12)

Finally, the time-averaged, steady state mass equation reads:

V. (pU)=0 (13)
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The momentum and mass equations are used to solve for the cou-
pled pressure and velocity distribution in the moderator. Such a for-
mulation is typical for incompressible flow CFD calculations (see
e.g. Ferziger and Peric, 2002). To resolve the steady state coupling,
the SIMPLE algorithm is applied (Patankar and Spalding, 1972). This
algorithm relies on first solving a momentum predictor step based
on Eq. (7), resulting in an estimated velocity field. The momentum
equation is then reformulated and inserted in the mass conserva-
tion equation, now solved for the pressure field, based on the pre-
dicted velocity field. Finally, the momentum equation is updated
from the newly calculated pressure field.

4.2. Conjugate heat transfer

Since the moderator acts also as the coolant, the thermal cou-
pling to the fuel pins must be taken into account. The flow pattern
has an impact on the coolant ability to extract the heat at the wall
of the cladding and the heating of the moderator causes a change
in the density leading to a change in the flow.

The regional dependence of the conjugate heat transfer can be
solved either based on an iterative approach or a monolithic,
implicit approach. Using the iterative approach, each region or a
group of regions are computed separately. The dependence is then
handled by imposing alternating Dirichlet and Neumann boundary
conditions. For the system here simulated, consisting of a quarter
of a 15 x 15 fuel assembly, with the gap and cladding explicitly
modeled, in total 184 different material regions are encountered.
The high number of regions makes the system unattractive to solve
in an iterative manner. If, instead, formulating and computing the
full system in an implicit manner, the couplings between the
regions are treated implicitly in the equation system. Such an
approach, applied in this work, avoids the iterations between the
regions.

We express energy conservation in terms of temperature. This
allows to directly couple the equations on the faces of the cells
at the region boundaries. The moderator temperature conservation
equation is derived from the energy conservation equation consid-
ering steady state conditions only and applying a Reynolds decom-

position to filter the rapid fluctuations. The procedure followed is
further described in (Jareteg et al., 2014a), and the final equation
will read:

(pC(T)U - VT = B(T)U - VP + V - (Kegt(T)VT) (14)

where ¢, is the specific heat capacity, f is the thermal expansion
coefficient and K is the effective thermal conductivity that
includes the heat transfer enhancement from turbulence.

The temperature equation for the solid regions is derived by
applying Fourier’s law to the heat transfer equation, such that:

~V - (K(T)VT) = q" (15)

where K is the thermal conductivity of the material and q” is the
power density, that is only non-zero in the fuel and is given by
the energy released per fission and the computed neutron flux.
The heat transfer in the gap is solved using Eq. (15), neglecting
the radiation heat transfer.

4.3. Solver methodology

An outline of the combined pressure-velocity and conjugate
heat transfer algorithm is given in Fig. 4. In the first stage the
momentum predictor and the turbulence equations are solved
for the moderator. This is followed by the implicit solution of the
conjugate heat transfer problem between all solid material regions
and the moderator. Given the new temperature field, all thermo-
physical properties are updated. Finally, the effect of buoyancy is
accounted for using the Boussinesq approximation (Ferziger and
Peric, 2002), the pressure equation is solved and the momentum
is calculated according to the new pressure. The scheme presented
in Fig. 4 corresponds to one sub-iteration in the thermal-
hydraulics.

In the applied methodology no explicit thermal expansion in
the fuel is treated. The influence of such an approximation will
be considered in later work.

[ Solve momentum predictor equation

T

[ Solve turbulence equations

Moderator

from current temperature

Update thermophysical properties

‘ Update enthalpy, K, 3, p and ¢, ‘

Add turbulent contribution to
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Update power density
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suorsaa [y

I

T

Based on power density
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|
|
[ Solve temperature equations
|

Update thermophysical properties

from neutronics
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I

Account for buoyancy flux

T

Moderator

T

|
|
[ Solve pressure equation
|

Correct velocity

Fig. 4. Thermal-hydraulics solver methodology.
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5. Multiphysics treatment and coupled aspects

Based on the separate models for the neutronics and thermal-
hydraulics presented in the previous Sections 3 and 4, the aspects
related to coupling of those phenomena will be discussed here-
after. Focus will be given on the discretization of the separate
fields, on the scheme used for a consistent and conservative spatial
mapping and on the iterative algorithm for resolving the multi-
physics dependencies.

5.1. Mesh resolutions

In order to calculate accurate solutions for all separate fields of
the problem, we should apply different computational meshes.
Considering, for example, the different characteristic length scales
present in the neutron angular flux and the near wall turbulent
flow in the moderator, using the same mesh for all fields is not
an efficient solution procedure. Instead of a common resolution,
the mesh for each separate field should be optimized for the type
of physics encountered. In the example mentioned, the near wall
flow will (based on our models) require a finer mesh close to the
fuel pins than for the neutron flux, so that a comparable precision
can be obtained for the simulated system.

The application of different meshes also allows the computa-
tional effort to be optimized. Again, it would be a waste of
resources to perform the neutronic calculations directly on the flu-
id flow mesh. Each part of the problem will thus be discretized
with a mesh in such a way that a consistent level of detail is
reached for the coupled problem. In this work the mesh for the
moderator is chosen to have twice the number of cells in the azi-
muthal direction as compared to that for the solid heat transfer
and the neutronics, as displayed in Fig. 5. In general, the validity
of mesh resolution should be judged both from the grid depen-
dence of the separate fields as well as from the grid dependence
for the coupled problem.

The foam-extend-3.0 internal mesh format applied in this work
primarily relies on mesh faces with two connecting cells. However,
when solving the conjugate heat transfer problem, a single tem-
perature equation is desired even in the case that two moderator
faces meet a single cladding face (see Fig. 5). Since the discretiza-
tion of the solid regions is more coarse than the moderator dis-
cretization, a matrix level mapping of the faces is required. This
is handled with the general grid interface routines available in
foam-extend-3.0 (Jasak, 2009).

Whereas the specific implementation and choice of resolution
and mesh will depend on the chosen framework, the importance
of such elements should be stressed. Again, a larger flexibility as
well as a better consistency, are reached using a single framework
for all calculations, as exemplified here by the seamless use of dif-
ferent mesh discretizations in the solid regions and the moderator
region.

Moderator mesh

Fuel mesh
Gap mesh

Cladding
mesh

Intersection /;; be-
tween cell j in mesh A
and cell 7 in mesh B

Cell j in mesh A Cell 7 in mesh B

MESH A

MESH B

Fig. 6. Example of mapping of two overlapping meshes.

5.2. Consistent spatial mapping

As a consequence of using multiple meshes, a consistent and
conservative mapping scheme is needed for overlapping meshes.
As regards the mapping of the power density from the neutronic
to the thermal-hydraulic fuel pin mesh, the correct energy released
by fission is needed in the heat transfer problem given by Eq. (15).
In the same manner, a correct thermophysical state must be
mapped from the thermal-hydraulic to the neutronic mesh, in
order to accurately update the cross-sections.

The mapping scheme here implemented is based on finding
volumetric overlaps between cells in the different meshes. We
apply a collocated finite volume method, where the cell values
are calculated for all quantities. Since these cell values are consid-
ered constant over the cell, an exact and conservative mapping can
be achieved if the volumetric overlaps between the cells are
known. An example is seen in Fig. 6. Given a cell j in mesh A and
a cell i in mesh B, the overlap is calculated using a polygon inter-
section algorithm in the horizontal plane and a direct overlap in
the axial direction. The polygonal intersection algorithm relies on
the Sutherland-Hodgman algorithm (Sutherland and Hodgman,
1974), as earlier implemented in foam-extend-3.0 (Page et al.,
2010). The calculation of the overlap in the axial direction relies
on all cells having parallel faces in the axial direction. This is
assured by using only hexahedron and prism elements.

Given the calculated volumetric intersections I for all cells j
intersecting with cell i, an extensive property c can be transferred
from mesh A to mesh B as follows:

_~aliVy

C =
—V;
J

(16)

where V; and V; are the cell volumes of cell i and cell j, respectively.

The implemented scheme is fully automatic and the calcula-
tions are performed at the initialization of the code, completely
removing any hard coding or manual calculation of the mappings
between the neutronic and the thermal-hydraulic meshes. This
also means that the meshes can be changed without any further
intervention in the code or in any input files. In order for the map-

Neutronics mesh

Fig. 5. Horizontal mesh discretization exploded for the thermal-hydraulics (left) and the neutronics (right).
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ping to occur correctly, the material boundaries should, however,
be preserved between all the meshes. If this is not the case, the
transferred quantity will not be interpreted correctly in the receiv-
ing cells.

In the chosen mapping scheme based on intersection calcula-
tions and not on point interpolation, only extensive quantities
should be transferred. Since temperature is not an extensive quan-
tity, the enthalpy is used in the transfer from the thermal-
hydraulic cells to the neutronic cells.

The mapping utility also opens for other fields of physics to be
coupled to the problem, all potentially using separate meshes. This
can further be exploited to introduce different scales of the same
physics. A coarse neutron solver can be applied on its own mesh,
then automatically coupled to the fine-mesh solver.

5.3. Coupling scheme

The multiphysics coupling can be resolved using either a fully
implicit technique, an explicit approach or a combination of both.
Whereas the fully implicit techniques are based on combining the
fields in a non-linear problem, the fully explicit techniques will
rely on iteration between the different fields. Potentially a non-lin-
ear scheme will increase the convergence rate and possibly also
reach convergence for systems not possible to solve in a segregated
manner (Gaston et al., 2009). However, the implicit approach will
also increase the memory usage, and will require implementation
of good preconditioners for each separate field of physics (see e.g.
Zou et al., 2013).

We apply an explicit approach in this work, where we solve
each field in a separate manner. However, the coupled dependen-
cies are fully resolved, iterating between the different physics. In
the steady state problem solved in this paper, it will be shown that
reaching a global convergence is not a major problem. Further, the
number of iterations between the thermal-hydraulics and the neu-
tronics are few, and thus the incentive for the non-linear approach-
es are limited. In the presented case, acceleration of the neutronics
and thermal-hydraulics problems separately would be of higher
priority as future developments.

As we address each part separately, the independence between
the modules is increased, which also simplifies the development of
each separate module and gives a larger freedom to the solution
procedure of each field. Nevertheless, in future development,
approaching transient simulations and adding more physical phe-
nomena, an outermost non-linear solver might be beneficial or
even necessary.

The iterative procedure followed in this work can be seen in
Fig. 7. After initialization of all fields the neutronics is solved first.

[ Initialize ]

251

Given the new power profile the thermal-hydraulics is then solved,
resulting in a new temperature and enthalpy field.

During the first full iteration, only the diffusion equation neu-
tronics is solved (as described in Section 3.2). In the second
iteration, the thermal-hydraulics is processed, without the tem-
perature equation, but only pressure and velocity. Finally, in the
third iteration all fields are calculated. Consequently, the fourth
iteration is the first iteration with the cross-sections updated
according to a new temperature profile. Such a procedure allows
the problem to converge in a more stable manner, not starting
the full coupled problem only with the initial guesses.

Sub-iterations are used both in the neutronics and thermal-hy-
draulics. In earlier work such sub-iterations were avoided (Jareteg
et al.,, 2013). It was, however, found that an overall faster conver-
gence was reached if all fields were allowed to converge within
each outermost coupled iteration (Jareteg et al., 2013). Yet, a max-
imum number of sub-iterations are deployed for both neutronics
and thermal-hydraulics, since full convergence is still not neces-
sary until the full coupled problem has converged.

6. Efficiency and scalability; implementation and parallelization

Due to a large number of degrees of freedom in the fine-mesh
calculations, a severe computational cost needs to be tackled
already for a single fuel assembly. Consequently, the code imple-
mentation and the use of high performing computer languages
are both of significant importance. This is true for the separate
models as well as for the coupling scheme. Furthermore, we must
make it possible for the full problem to be parallelized in a scalable
manner.

6.1. Model and equation implementation

The separate parts of the multiphysics problem are all imple-
mented using foam-extend-3.0. The library foam-extend-3.0 is
based entirely on C++ programming language and contains a large
set of solvers for different type of problems in fluid mechanics as
well as heat transfer. For the implementation of the neutronics,
the existing internal structure is used for the equation discretiza-
tion, for the equation solvers, and for all general structures such
as matrices and meshes.

When selecting a framework, or writing a completely new, the
performance of the code is not the only point of concern. In fact,
the code should be easy to extend and it should be written in such
a way that it is simple to maintain. Also from this aspect foam-
extend-3.0 is a seemingly viable choice. The code uses modern

o

Global conver-
gence check

Convergence check

—

Update temperature

| |

|

——————— > Update thermo-physical state

=

=

0]

¢ Updat ti ' 1 3
2 ate cross-sections <h to mesh transfer :

= ’ b ] Mesh 1(') mesh transfer Update pressure, velocity 3

2 L of enthalpy and temperature =

*S Update neutron flux and power d(‘ng]ly oo Fi 4 G

Q ( Fi 1 (see Figure 6) (see Figure 4) o

7z see Figure 1) =

I | T £

e - > Update power profile =

Update power profile (— — —[—— s p p p 2

|
1

|

Convergence check ]

Fig. 7. Iterative scheme applied for the coupling of the thermal-hydraulics and the neutronics.
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C++ functionalities such as templates and polymorphism to allow
for easy and convenient extensions and modifications to the code.

The code foam-extend-3.0 contains a high level equation for-
mat, which makes possible a fast implementation of additional
equations. This is used for the heat transfer equations, (14) and
(15), whereas the pressure and velocity solver is based directly
on the existing solvers. For the cross-section formalism, the map-
ping algorithm, and the sweeps for the discrete ordinates method,
more extensive coding work was needed.

6.2. Coupling implementation

For the multiphysics couplings, different potential approaches
were described in Section 5.3. The implementation of the coupling
method could be based on different schemes. Irrespective of
whether an implicit, non-linear coupling or an iterative segregated
approach is used, two setups could be followed. Either all equa-
tions are solved in the same code entity (a single code approach)
or multiple different softwares (multiple codes approach) address
different subsets of the equations.

Using the multiple codes implementation, an external transfer
of information is necessary to exchange the coupled states. In the
present case, the power density would be passed from the neutron-
ics to the thermal-hydraulics, while the thermophysical state
would go in the reverse direction. In many cases such data transfer
can severely reduce the efficiency of the code and take a major part
of the program execution time (see e.g. Yan et al., 2011).

Further, the possibilities to obtain efficient parallel couplings
between the neutronics and thermal-hydraulics are limited. In
many approaches two different softwares are used, each perform-
ing its own parallelization. The communication is in such a case
often handled by a central application, running on a single CPU,
and therefore all the information must be gathered to and shared
via this CPU. An example of the multiple codes scheme can be seen
in Fig. 8. Typically, a coupling application is placed between the
different codes, handling the transfer of data (see e.g. Kochunas
et al., 2012). This type of coupling is especially limiting for tran-
sient calculations where a high number of transfers between the
codes is necessary.

In the single code approach, that is chosen in the present work,
all parts of the problem are solved in the same code. This spares
not only the external transfer but raises possibilities for a more
efficient parallelization. Avoiding any external transfer of data via
10 also permits a higher resolution of the coupling since the over-
head is basically removed. An example of such a scheme is given in
Fig. 9. The transfer of information can now be done by direct mem-
ory access. The iterative algorithm can also be switched between

Code A

Coupling script

Map coupled
Read data from B fields Read data from A
Solve field Invoke Solve field
Write data for B the codes | yrite data for A
sequentially

Parallelization handled

Solve all fields
Coupled data read
directly from memory

~
()
|
1
1

Coupled data shared
on each CPU

I
Problem decomposed
using same decomposition

Fig. 9. Example of single code coupling scheme avoiding external transfer.

the different fields without the overhead cost of the multiple codes
approach, which is also typically needed for the time stepping in a
transient calculation.

6.3. Parallelization by shared domain decomposition

To parallelize the problem, different strategies could be fol-
lowed. The domain could be split in different spatial regions, corre-
sponding to a domain decomposition, or the problem could be split
in its different fields of physics each solved on a separate set of
CPUs, corresponding to a functional decomposition (Calvin and
Nowak, 2010). Equivalent to multiple codes parallelized on sepa-
rate CPUs (as in Fig. 8 and discussed in Section 6.2), the coupled
data information transfer in a functional decomposition becomes
an obstacle. If the parallelization is instead based on a common
domain decomposition for all fields, as displayed in Fig. 9, the
exchange of information will take place locally for each CPU,
minimizing the amount of data that needs to be updated between
CPUs. Such an argument is of particular importance since the fine-
mesh direct coupling results in a large quantity of data to be
shared.

Applying the domain decomposition method, only the data at
the domain interfaces need to be exchanged during the solution
of the equations. While the foam-extend-3.0 structure for paral-
lelization is employed, the information transfer is handled accord-
ing to a zero-halo layer approach, i.e. there is no overlapping
between the decomposed domains. In practice, the boundary data
exchange occurs only at the point of the sparse matrix solution, or
prior to a sweep in the neutronics (corresponding to prior to
“sweep to update Wpng” in Fig. 1).

To get the same decomposition for the neutronic and thermal-
hydraulic meshes, the geometry is in this case decomposed along
planes parallel to x, y and z-axis of the system. In general, the
decomposition should be done such that the amount of work to

Code B

separately by the codes

Fig. 8. Example of data transfer in the multiple codes approach.
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Fig. 10. Example of decomposition for a quarter of a 7 x 7 pins lattice.

Table 1
Geometry specification for the simulated assembly, with control rod guide tube
values in brackets.

Fuel pin radius 0.41 cm
Cladding inner radius 0.43 cm (0.48 cm)
Cladding outer radius 0.49 cm (0.58 cm)
Pitch 1.25cm
Fuel height 100 cm
Bottom reflector 20 cm
Top reflector 20 cm

Table 2

Mesh specification for the simulated assembly.
Region Number of cells
Moderator 6,088,000
Fuel (per pin) 8000
Cladding (per pin) 4800
Gap (per pin) 1600
Neutronics 798,000

Table 3

Selected boundary conditions and inlet conditions.
Quantity Initial condition Inlet Outlet
Temperature 540K 540K Zero gradient
Pressure 15 MPa Zero gradient 15 MPa
Velocity 2m/sz 2m/sz Zero gradient
Neutron 1.0 Outgoing direction: zero gradient

angular flux Incoming direction: fixed value zero

be done by each CPU is equivalent. Since the loading will potential-
ly be different for different equations, there must be a compromise.
The shared decomposition restricts all used meshes to have faces
along the chosen lines for splitting, so that every cell in all meshes
exists entirely on a single CPU. In the case of the regular pattern of
a fuel bundle this condition is not a major restriction. An example

Table 4
Neutronic parameters.
N (Eq. (1)) 8
G (Eq. (1)) 8
L (Eq. (6)) 2
Total power 400 kW

Moderator temperature (K)
542.0 5440  546.0 5480  550.0 552.0

540.0 553.0

Fig. 11. Moderator temperature at three horizontal planes, with the axial depen-
dence at a diagonal cut in the background.

of the decomposition can be seen in Fig. 10 for a 7 x 7 fuel pins sys-
tem. The example system is split between the fuel pins and at mid-
elevation.
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7. Application and results

To illustrate the capabilities of the methods and implementa-
tions described above, we apply the developed code to a quarter
of a 15 x 15 fuel lattice, with reduced height with respect to a fuel
assembly. The steady-state problem is solved for conditions typical
of a PWR.

7.1. Geometry and mesh

The geometry of the simulated system is specified in Table 1,
and the material composition in the horizontal plane corresponds
to the presented case in Fig. 2. No spacers are included in the
simulated system. Reflectors are modeled at the bottom and the
top of the assembly, here consisting of moderator only without
any other structural parts, as the inlet orifice and the top nozzle.

The applied mesh is summarized in Table 2. All meshes consists
of prism and hexahedron elements only. The mesh is generated
using an in-house developed software, which utilizes the repeating
lattice structure of the assembly to generate a discretization with
the same mesh characteristics for all pin cells. The generated mesh

0.1
0.1
0.0
0.0

0.040 0.080 0.12 0.16
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0.0

Scalar neutron flux, g=7 (a.u.

is written in a foam-extend-3.0 mesh format. The developed
application also generates and prepares all boundary and initial
conditions for all fields calculated.

7.2. Boundary and initial conditions

The axial boundary conditions are given as inlet and outlet
boundary conditions, specified for all fields at the lower faces of
the bottom reflector mesh and at the upper faces of the top reflec-
tor mesh. The conditions are specified as fixed value (Dirichlet) or
zero gradient (homogeneous Neumann) conditions, with a special
treatment for the case of the angular neutron flux. In the horizontal
direction, reflective boundary conditions are used for all fields.

For the angular neutron flux (W), a special implementation of
the reflective boundary conditions is needed. Using the symmetry
of the level symmetric weights and directions for Sy, a reflected
direction can always be found for planes with normals parallel to
the Cartesian coordinate axes. Thus for an incoming direction,
the corresponding (i.e. reflected) outgoing direction is determined
and the outgoing value of the flux is directly applied as an inlet
condition for the incoming direction.
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Fig. 12. Scalar flux at mid-elevation for the fast group (g = 0, bottom) and the thermal group (g = 7, top).
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Constant initial conditions are used in all fields, but, as
described in Section 5.3, during the first iterations not all fields
are solved. Selected boundary and initial conditions are given in
Table 3.

7.3. Domain decomposition

The system is decomposed into 64 parts, using 3 cutting planes
in each of the Cartesian directions and in such a way that each cut-
ting plane is along faces in all of the meshes, as described in Sec-
tion 6.3. No automatic load balancing is applied. However, due to
the computational burden of the discrete ordinates method, the
neutronics mesh is the most important to balance, with the aim
of an even computational effort on all CPUs.

The choice of decomposition is not unique and to optimize the
performance not only an even distribution of cells should be the
target. In our case with an axially coarser and horizontally finer
mesh, also the cutting plane direction will have a major sig-
nificance on the performance. Since only face values will need to
be transferred, as few faces as possible should be transferred. Con-
sequently, from a data transfer point of view, in our case it is better
to cut in planes with normals X and y.

7.4. Neutronic parameters

The settings for the neutron transport solver are given in
Table 4. Eight discrete energy groups are used, based on the group
structure from CASMO-4 (Studsvik Scandpower, 2009). We apply
Ss, which corresponds to 80 discrete directions for each energy
group, for a total of 640 neutron flux fields. A larger set of tests
for the discrete ordinates, applying the same code was performed
and reported elsewhere (Jareteg et al., 2014b). The total power is

the power integrated over all the fuel pins, and is employed to nor-
malize the scalar and angular neutron fluxes.

7.5. Results

The presented case was run on 64 Nehalem CPUs (Intel® Xeon®
E5520, 2.27 GHz), divided on 8 computational nodes, with a total
wall-clock running time of 48,000 s (=14 h).

The moderator temperature distribution is shown in Fig. 11. As
can be seen, both horizontal and axial heterogeneous distributions
are achieved. The maximum axial temperature occurs at the top of
the lattice, just below the top reflector, and the maximal horizontal
temperature at the points where the distance between the pins is
smallest.

Fig. 12 gives the scalar flux at mid-elevation for the fast and the
thermal group. The flux profile along the symmetry line at mid-
elevation is also given. The lowest energy group flux has strong
minima in the pins which partially consist of burnable absorber,
and maxima in the empty fuel rod channels. In contrast, the high-
est energy flux has minima in the water channels.

Considering both the slices and the line plots, some ray effect
can be found. Such artifacts are typical for the discrete ordinates
methods, and arise from the inability to reconstruct the angular
flux with a set of few ordinates (Lewis and Miller, 1984). The easi-
est remedy against this is to increase the order of the method,
which will however also increase the computational time.

The convergence of the coupled system, with residuals for each
separate equation, is given in Fig. 13. The diagram displays the first
eight outer iterations (each corresponding to a full loop in Fig. 7),
with the convergence for the subiterations.

As explained in Section 5.3, during the first iteration only the
diffusion neutronics is solved, whereas in the second iteration
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Fig. 13. Convergence results for the coupled system, with outer iteration convergence as opaque broader lines and the corresponding inner iterations as thinner lines.
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the pressure and velocity are calculated. In the third iteration the
Sy solver, as well as the temperature equation, are added and dur-
ing the fourth iteration the first update of the cross-sections
occurs. As seen from the figure, the interdependence is close to
convergence after the seventh iteration. From iteration nine a sin-
gle Sy sweep occurs for each outer iteration, and the total change in
ke is only 10 pcm from iteration 8 to iteration 50. The thermal-hy-
draulics solver takes in total 50 iterations to converge. However,
much less than 100 subiterations for most of the iterations are
required. The slower convergence of the thermal-hydraulics solver
is a property of the applied CFD-algorithm, and is not connected to
the coupled solver.

From Fig. 13, it is shown that the largest effort is spent for the
first neutronic iteration including Sy (Iteration 3). After this itera-
tion the thermal-hydraulics requires the majority of the time. Sum-
ming over all iterations, the thermal-hydraulic and neutronic
calculations take 45.1% and 54.1% of the total time, respectively.
For such comparison it should also be noted that the thermal-
hydraulic mesh is in the presented case finer than the neutronic
mesh (see Table 2) and also that the computational time for the
neutronics depends on the chosen number of energy groups and
directions.

For the thermal-hydraulics the subiteration convergence is not
monotonic. Instead, a periodic behavior was observed, where the
axial velocity and the pressure residuals decrease and increase
out of phase. Again, such a behavior is a property of the algorithms
and matrix solvers applied and not any artifact of the coupling.

8. Summary and conclusion

We present a fine-mesh solver for the coupled neutronic and
thermal-hydraulic problem that can be applied to PWR sub-pin
level calculations. The work focuses on the methods and the imple-
mentation strategy of such a framework.

The use of HPC and fully parallelized solvers are both pointed
out as key issues. The fine-mesh approach results in a large num-
ber of computational cells, relying on the use of computational
clusters to solve the problem in a feasible time. The implementa-
tion of the decomposition necessary for the parallelization is
described, along with a scheme minimizing the amount of data
transfer by keeping all fields of physics in the same spatial region
on the same CPU.

The methodology is implemented as a standalone application
based on the open source C++ library foam-extend-3.0. It includes
a neutronic solver based on the discrete ordinates method, and a
thermal-hydraulic solver based on the mass, momentum and ener-
gy equations, complemented by a turbulence model. Both fields of
physics are solved using the same simulation framework. This fea-
ture is essential to directly formulate the coupling on the fine-
mesh level. In addition, a fully conservative mesh mapping scheme
is included, and it aims at exchanging coupled data between differ-
ent meshes using the finite volume methodology.

The fine-mesh solver is tested for the case of a quarter of a
15 x 15 fuel pin lattice, and a converged coupled solution is
reached. Physically correct dependencies are obtained for the
simulated variables and the results confirm that the present cou-
pled scheme works. It also shows that the algorithms and imple-
mentations are efficient enough to produce converged results on
a fine-mesh within 14 h using 64 CPUs. The convergence behavior
of the coupled solver points out that there is much room for
improvement of the separated models for neutronics and ther-
mal-hydraulics. However, the convergence of the multiphysics
problem demonstrates that the presented iterative scheme is
working well to resolve the coupled dependencies.

Many interesting and challenging areas need to be investigated,
including a future extension to two-phase flow simulations, so that

BWR cases and departure from nucleate boiling in PWRs can also
be considered. Such an extension requires not only to formulate
and implement accurate two-fluid models, but it also poses a
new type of coupled problem, including new conjugate heat trans-
fer regimes, and an anticipated stronger feedback to the neutron-
ics. Furthermore, other fields of physics could be fit in the same
framework, including explicit thermal expansion, fluid-structure
interaction and others.

In the presented simulation, reflective boundary conditions are
used for all fields in the horizontal direction, disregarding the glob-
al dependence of all fields. Future work could tackle this
approximation by either running a larger case using the presented
framework (thus realized by investing more computational effort)
or by coupling multiple scales of resolution, only adding a coarse
layer to the simulation. Whereas the first approach is easier but
more computationally expensive, the second method is more chal-
lenging but a it has the potential for a better use of the resources at
hand.
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