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ABSTRACT

Wavelets are a new and powerful mathematical tool, whose most celebrated applications are
data compression and de-noising. In a previous paper, we have shown that wavelets can be
used for removing noise efficiently from cosmological, galaxy and plasma N-body simulations.
The expected two-orders-of-magnitude higher performance means, in terms of the well-known
Moore’s law, an advance of more than one decade in the future. In this paper, we describe a
wavelet add-on code designed for such an application. Our code can be included in common
grid-based N-body codes, is written in FORTRAN, is portable and is available on request from
the first author. The code can also be applied for removing noise from standard data, such as
signals and images.

Key words: plasmas – methods: N-body simulations – methods: numerical – galaxies: general –
galaxies: kinematics and dynamics – cosmology: miscellaneous.

1 I N T RO D U C T I O N

In N-body simulations the number of particles, N, cannot generally
be set equal to the number of bodies of the real system, but is dictated
by the available computer power. A simulation with, say, 10 times
more particles demands at least one order of magnitude more com-
putational time, memory and storage. Because of this limitation, N

is generally several orders of magnitude smaller than required. A
small N means that the statistical fluctuations of particle positions
and velocities are artificially enhanced, and so are collisional effects.
This is dangerous because collisions affect the ability of resonances
to damp or amplify perturbations, which in turn affects the forma-
tion of structures and the dynamical evolution of the model. Thus
an effective method of noise reduction is required.

The standard way to reduce noise in N-body simulations is to
soften the interparticle force at short distances, either directly or us-
ing finite-sized particles (e.g. Romeo 1994, 1997, 1998a,b; Dehnen
2001; see also Byrd 1995). On the other hand, softening reduces
noise only in part. The initial conditions imposed on particle posi-
tions and velocities are also relevant. Basically, noise can be sup-
pressed at the beginning of the simulation by sampling phase space
regularly (quiet starts), rather than randomly (noisy starts), consis-
tent with the distribution function of the model (e.g. Dawson 1983;
Birdsall & Langdon 1991; Knebe, Green & Binney 2001). Even so,
noise will develop during the simulation. In fact, quiet starts impose
an initial order on the model. But the model will react to such a state
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of low entropy and follow the natural tendency of physical systems
towards thermalization. The development of noise is mediated by
instabilities, which amplify and randomize the initial correlations
arising from the discrete regular sampling of phase space.

The effects of noise are subtle and not yet fully understood. Today,
half a century after the first N-body simulations, there is still intense
debate. Noise is a crucial issue for simulations of structure formation
in the early Universe (e.g. Splinter et al. 1998; Hamana, Yoshida &
Suto 2002; Power et al. 2003; Binney 2004; Diemand et al. 2004;
Sylos Labini, Baertschiger & Joyce 2004), and for galaxy simula-
tions (e.g. Pfenniger 1993; Pfenniger & Friedli 1993; Weinberg &
Katz 2002; O’Neill & Dubinski 2003; Valenzuela & Klypin 2003).
Noise is an important issue not only for cosmology and astrophysics
but also for plasma and accelerator physics, where simulations are
used for technological applications such as fusion and charged par-
ticle beams (e.g. Dawson 1983; Birdsall & Langdon 1991; Arter
1995; Kandrup 2003). The noise problem is acute and awaits

solution.

Wavelets are a state-of-the-art technique used for noise reduction
in digital signal/image processing (see, e.g. Mallat 1998; Bergh,
Ekstedt & Lindberg 1999; for traditional techniques such as data
averaging or Wiener filtering see, e.g. Gonzalez & Woods 2002).
Wavelets have an intrinsic ability to compress the signal into a few
large coefficients, so that noise can be removed with proper thresh-
olding. Being intrinsic, their ability is independent of general prop-
erties of the data such as the number of dimensions or the presence
of symmetries. Wavelet de-noising is very effective: it outperforms
traditional techniques of noise reduction and the algorithm is even
faster than the fast Fourier transform. The second aspect is especially
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important for our application since speed is a primary factor in
N-body simulations. We recommend the following literature: for
continuous and fast wavelet transforms see Addison (2002) and
Goedecker (1998), respectively; for physical applications see again
Goedecker (1998) and the beautiful book by van den Berg (2004).

In Romeo, Horellou & Bergh (2003), hereafter Paper I, we have
pioneered the first application of wavelet de-noising to N-body sim-
ulations. Our method has been subjected to several hard tests. The
conclusion is that it can make the simulation equivalent to a simula-
tion with two orders of magnitude more particles. The implications
are clear.

In the present paper, we show that our method even allows con-
trolling the effectiveness of de-noising: the simulation can be made
equivalent to a simulation with � times more particles, where � is
assigned by the simulator beforehand. Such a degree of freedom
can be exploited for understanding the effects of noise more thor-
oughly. Besides, we describe the code that implements our method.
It is an add-on code, and as such is meant to be included in the
N-body code of the simulator. This is simple if the N-body code
is of particle-mesh type. Our code can also be used by itself for
de-noising standard data, such as signals and images. It is written in
FORTRAN, is portable and is available on request from the first author.
Last but not least, we have the ambition to provide a reader-friendly
and self-contained discussion of wavelet de-noising, from the basics
to the most advanced aspects of our problem. For further reading
see Paper I and the literature already recommended.

The rest of our paper is organized as follows. Wavelets and
wavelet applications are overviewed in Sections 2 and 3, respec-
tively. Section 3.2 not only discusses the basics of de-noising, but
also explains the steps of the de-noising algorithm in our code.
These are then discussed in detail in Section 4. After this tour of the
code, we explore advanced de-noising in Section 5. There we learn
how to control the effectiveness of de-noising, and how this part of
the method is implemented in the code; besides, we discuss further
aspects of the problem. Practical points concerning the use of the
code are discussed in Section 6. Finally, the conclusions are drawn
in Section 7.

2 BA S I C S O F WAV E L E T S

2.1 The fundamental property of wavelets

Data such as signals, images and those arising from the numer-
ical solution to physical problems generally enclose information
on various scales. In order to extract such information, we should
be able to separate small-scale features from large-scale features
and to understand their contributions to the overall structure of the
data. The classical technique used for this purpose is the Fourier
transform, which encodes the original time/space information into
the frequency content of the data, the frequency being roughly the
inverse of the relevant scale. But the Fourier transform runs into
a serious difficulty: it loses all information about the time/space
localization of a given frequency component. This is just a conse-
quence of the Heisenberg uncertainty principle in the context of data
processing.

The traditional way to overcome this difficulty is to localize the
complex sinusoid of the transform multiplying it by a window func-
tion, a Gaussian for example, which is then translated across the
data. For a window of given shape, its width determines not only
the time/space resolution but also the frequency resolution, again
as a consequence of the Heisenberg uncertainty principle. A nar-
row window gives a good time/space resolution but a bad frequency

resolution, and vice versa for a wide window. So how should we
choose the width of the window? If we choose it comparable to
the smallest scale of interest, the time/space resolution of course
matches the data, but the frequency localization is too poor to re-
solve the low frequencies characterizing large-scale features. And
if we choose a wider window so as to have a finer frequency res-
olution, the time/space resolution gets too coarse to analyse small-
scale features. Thus even the windowed Fourier transform runs into
a difficulty: it has a fixed time/space-frequency resolution [constant
bandwidth, in the language of data processing; cf. Paper I, fig. 1
(left-hand panel)].

Wavelets are a multiscale method that overcomes this difficulty.
Their fundamental property is to provide an adaptive time/space-
frequency resolution, in the sense that the uncertainty in frequency
is proportional to the frequency itself [constant relative bandwidth,
in the language of data processing; cf. Paper I, fig. 1 (right-hand
panel)]. In other words, this means that small-scale features of the
data are analysed with fine resolution in time/space and coarse res-
olution in frequency, as is natural, and vice versa for large-scale
features.

2.2 Wavelet transform

In order to provide an adaptive time/space-frequency resolution, the
wavelet analysis involves localized wave-like functions, which are
contracted or dilated over the relevant range of scales and translated
across the data. On the other hand, there are several ways to carry
out the analysis, depending on whether the data are continuous or
discrete; and, in the discrete case, depending on technical factors.
Here we present the wavelet transform that is most appropriate for
our application, which is also the one most commonly used for
compressing and de-noising discrete data.

The contributions of small-scale and large-scale features are sin-
gled out with an iterative procedure. The first step consists of separat-
ing the smallest-scale features from the others. It is done by passing
the data through a high-pass filter and a complementary low-pass
filter. These filters are the discrete counterparts of the analysing
functions of the transform, the wavelet ψ(x) and the scaling func-
tion φ(x), respectively, and are constructed with a mathematical
technique known as multiresolution analysis. Filtering produces re-
dundant information, since each set of filtered data has the same
size as the original data. Redundancy is avoided by rejecting every
other point of the filtered data. It is well known that down-sampling
produces aliasing in the context of the Fourier transform, but the
filters of the wavelet transform are constructed in such a way as
to eliminate it. The second step consists of separating the features
that appear on a scale twice as large as in the first step. It is done
by regarding the low-pass filtered and down-sampled data as new
input data, and by analysing them as in the first step. The proce-
dure continues until the largest-scale features are also separated. In
summary, the wavelet transform decomposes the original data into
a coarse approximation and a sequence of finer and finer details,
keeping the total size of the data constant (cf. Paper I, fig. 2). We
can draw an analogy with art and say that the approximation gives
an ‘Impressionist’ view of the data!

The original data can be reconstructed with the inverse wavelet
transform. The coarsest approximation and detail are up-sampled,
filtered and added. Here up-sampling means inserting zeros between
the data points, and the filters are closely related to the decompo-
sition filters so as to eliminate aliasing. The output is a finer ap-
proximation, which is then combined with the corresponding finer
detail as above, and the procedure is iterated. In practice, the wavelet
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synthesis is carried out for reconstructing data that have been pro-
cessed in the wavelet domain, such as in data compression and
de-noising.

The great success of the wavelet transform arises not only from its
adaptive time/space-frequency resolution, but also from its speed:
it is even faster than the fast Fourier transform. Given data of size
N d = 2J (J is a positive integer) and filters of effective size 2M, the
fast wavelet transform is computed with 4MN d arithmetic opera-
tions, where M is a positive integer independent of N d and typically
smaller than 10. In contrast, the fast Fourier transform has complex-
ity 2N d log2N d. Note that this efficiency follows directly from the
non-redundancy of the transform. Similar considerations apply to
the inverse fast wavelet transform.

2.3 Wavelet properties

In contrast to classical transforms, where the analysing functions be-
long to a single class and are defined analytically, there are dozens
of wavelet families and their members are generally defined nu-
merically through the associated filters. Why do we have so many
choices? Because, even though the fast wavelet transform has an
adaptive time/space-frequency resolution, there are various ways
to optimize the trade-off between time/space and frequency local-
izations, and different conditions can be imposed. In other words,
wavelets are not all equivalent in applications and, if we want to
choose the optimal wavelet for a given problem, we must under-
stand their properties well. The properties of the scaling functions
are determined by those of the wavelets, but are themselves less rele-
vant. The wavelet properties are: size of support, symmetry, number
of vanishing moments, regularity and (bi-)orthogonality.

Size of support. The support of a wavelet is the interval where
the wavelet is non-zero. Its size determines not only the time/space
localization of the wavelet, but also the speed of the transform.

Symmetry. Symmetry also influences the quality of time/space
localization. For example, an asymmetric wavelet can be regarded
as giving a location with asymmetric error bars.

Number of vanishing moments. A wavelet ψ(x) has n vanishing
moments when
∫ +∞

−∞
xνψ(x) dx = 0 for ν = 0, 1, . . . , n − 1 (1)

where x denotes time or space. In particular, all ‘normal’ wavelets
have zero mean (n = 1) since, under rather general assumptions,
this is related to the admissibility condition for the existence of the
inverse transform. The number of vanishing moments affects the
frequency localization. In fact, the Fourier transform of a wavelet
with n vanishing moments peaks at a characteristic frequency and
decays as kn towards the origin, where k denotes frequency.

Regularity. Regularity also affects the frequency localization. In
fact, the Fourier transform of a wavelet that is continuous together
with its first n − 1 derivatives decays as k−(n+1) towards infinity.

(Bi-)Orthogonality. The orthogonality property concerns the set
of wavelets defining the transform, that is the set of scaled and trans-
lated versions of the basic wavelet. This means that such wavelets
form an orthogonal basis. The alternative bi-orthogonality prop-
erty means that the decomposition and reconstruction wavelets
form two distinct bases, which are mutually orthogonal. Note that
(bi-)orthogonality is intimately related to the non-redundancy of the
transform.

It follows that good time/space localization requires small sup-
port and high symmetry, and good frequency localization requires

many vanishing moments and high regularity. Small support is also
needed for a faster transform. On the other hand, the wavelet prop-
erties are interrelated. Small support implies relatively few vanish-
ing moments and low regularity. In addition, orthogonality implies
asymmetry, except for the simplest wavelet. Bi-orthogonality weak-
ens the coupling between the properties of the decomposition and
reconstruction wavelets, and allows perfect symmetry. This means
that the requirements above cannot be satisfied equally well. In or-
der to choose a good wavelet, we should then know their relative
importance, which depends on the application.

2.4 What do wavelets look like?

Let us now illustrate what wavelets and scaling functions look like.
(Recall that the scaling functions are the continuous counterparts
of the low-pass filters of the fast wavelet transform and its inverse;
see Section 2.2, and also Section 2.3.) Fig. 1 shows various repre-
sentatives. The wavelets ‘haar’ and ‘daub 4’ belong to the family of
Daubechies wavelets, and are simple (see Daubechies 1992; here we
use the same names as in the code). These wavelets are orthogonal;
and they have few vanishing moments, small support, low regu-
larity and no symmetry (‘haar’ is an exception). The wavelet pairs
‘bior 4.4’ and ‘rbio 6.8’ belong to the family of bi-orthogonal spline
wavelets and to its reverse, respectively, and are more advanced (see
Daubechies 1992; here we use the same names as in the code). Such
wavelet pairs are not only bi-orthogonal but also quasi-orthogonal:
for each pair the decomposition and reconstruction wavelets are dis-
tinct but similar. In addition, they have more vanishing moments,
larger support, higher regularity and perfect symmetry.

3 BA S I C S O F WAV E L E T A P P L I C AT I O N S

3.1 Data compression

The adaptive time/space-frequency resolution and the non-
redundancy of the fast wavelet transform have an important im-
plication: given regular data, most information present in them gets
concentrated into a few large wavelet coefficients. In practice, this
means that we can set all the other coefficients to zero and get back
data almost identical to the original ones. This is the idea behind
data compression.

The compression ability can be quantified by the compression
factor CF and the loss of information LI, defined as:

CF =
NW

nw

, (2)

LI [per cent] = 100



1 −

∑

w2
i

∑

W 2
i



 , (3)

where NW is the number of wavelet coefficients Wi (and is equal
to the number of data points N d), and nw is the number of wavelet
coefficients w i that are not set to zero. Clearly, there are also visual
criteria for judging the quality of the compressed data.

The most important requirement for good compression ability
(large CF and small LI) is that the decomposition wavelet should
have many vanishing moments, and the basic reason is the following.
A wavelet with n vanishing moments is insensitive to polynomials
of degree n − 1. Regular data behave approximately as such polyno-
mials in a neighbourhood of a given point. Hence the wavelet only
feels the deviation from such behaviour, which decreases with n.
Thus a large n means that the detail coefficients tend to be small and
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Figure 1. Various wavelets ψ(x) and scaling functions φ(x). The wavelets ‘haar’ and ‘daub 4’ are orthogonal. The wavelet pairs ‘bior 4.4’ and ‘rbio 6.8’
are bi-orthogonal and also quasi-orthogonal, hence for each of them the decomposition (‘dec’) and reconstruction (‘rec’) wavelets are distinct but similar.
Analogous considerations apply to the scaling functions.

Figure 2. The original image of the spiral galaxy pair NGC 3314 (left) is compressed by a factor of 200 with only 0.29 per cent loss of information (middle)
and by a factor of 500 with only 0.52 per cent loss of information (right). The original image is from Hubble Heritage, courtesy of NASA and STScI.

this implies a potentially good compression ability.1 On the other
hand, a good compression ability is guaranteed only if the decompo-
sition wavelet has sufficiently small support. Basically, the analysis
should be local enough otherwise the deviation from polynomial
behaviour of the data becomes significant. (For a more explicit con-
dition see Section 4.2.) Lastly, high regularity and symmetry are
mainly needed by the reconstruction wavelet for good quality of
the compressed data. The conclusion is that bi-orthogonal wavelets
represent the best alternative for satisfying the requirements
above.

Let us then consider a beautiful image of disc galaxies and choose
an appropriate wavelet pair, ‘rbio 2.8’, which belongs to the family
of reverse bi-orthogonal spline wavelets (see Daubechies 1992; here

1 In addition, it turns out that the first n ‘multipole’ moments of the data are
conserved, starting from the zeroth-order one, if no approximation coefficient
is set to zero. This is particularly meaningful when the data represent a mass
or a charge distribution.

we use the same name as in the code). Fig. 2 illustrates the example
eloquently.

3.2 De-noising: data and simulations

The compression ability of the fast wavelet transform has a fur-
ther important implication: given noisy data, the underlying regular
part gets mostly concentrated into a few large wavelet coefficients,
whereas noise is mostly mapped into many small wavelet coeffi-
cients. In practice, this means that, if we identify a correct threshold,
then we can set all the small coefficients to zero and get back data
almost decontaminated from noise. This is the idea behind data de-
noising: a rigorous way to compress noisy data. In this section, we
go on discussing the basics of de-noising. A more detailed discus-
sion is given in Section 4. The identification of a correct threshold,
which is crucial to the whole process of de-noising, is discussed in
Section 4.4.

Let us now illustrate the basics of de-noising in a concrete case
(cf. Fig. 3). Fig. 3(a) shows data with Poissonian noise and the
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Figure 3. De-noising in action: (a) data with Poissonian noise and the per-
fectly non-noisy model data; (b) pre-processed data; (c) wavelet coefficients
computed by fast wavelet transforming, after the choice of the wavelet; note
that there are few large wavelet coefficients and many small wavelet coeffi-
cients; (d) original and thresholded wavelet coefficients; the threshold is also
shown; (e) data computed by inverse fast wavelet transforming; (f) de-noised
data computed by post-processing versus the model data. The signal-to-noise
ratio is SNR � 8.8 in the noisy data and SNR � 73.9 in the de-noised data,
hence the de-noising factor is DF � 8.4. (For more information see the text.)

perfectly non-noisy model data.2 This type of noise is characterized
by a multivariate Poissonian probability distribution, and hence the

2 Poissonian data can be generated using the numerical recipes by Press et al.
(1992).

local standard deviation of the data is equal to the square root of
their local mean: σloc = √

µloc (see, e.g. Bevington & Robinson
1992). Poissonian noise occurs in all experiments and observations
where the data represent ‘counts’ in a set of bins. Fig. 3(b) shows
that the noisy data are pre-processed so as to transform Poisso-
nian noise into Gaussian white noise, where ‘white’ means that
it is equally significant on all scales (constant power spectrum).
This type of noise is well known for its mathematical tractability
(see, e.g. Gonzalez & Woods 2002). In fact, the reason for pre-
processing the data is that Gaussian white noise is convenient for
identifying a correct threshold. Figs 3(c)–(f) show the remaining
route after the choice of the wavelet: fast wavelet transforming
(Fig. 3c); thresholding the wavelet coefficients, which is the heart of
de-noising (Fig. 3d); inverse fast wavelet transforming (Fig. 3e); and,
finally, post-processing the data, which is needed after the initial pre-
processing (Fig. 3f). The de-noised data are shown versus the model
data.

As in Fig. 3 the model data are known, the de-noising ability can
be quantified by the signal-to-noise ratio, SNR, and the de-noising
factor, DF, defined as:

SNR =





∑

X 2
i

∑

(Yi − X i )2





1/2

, (4)

DF =
(SNR)de

(SNR)no
, (5)

where Xi are the model data and Yi are either the noisy data (‘no’)
or the de-noised data (‘de’). In addition, (SNR)de means the inverse
of an appropriately defined estimation error. Clearly, there are also
visual criteria for judging the quality of the de-noised data. Fig. 3
illustrates the improvement produced by de-noising clearly. In gen-
eral, the model data are not known so the de-noising ability and the
quality of the de-noised data are difficult to estimate.

2D or 3D data de-noising is similar to the 1D case. The differ-
ences are discussed together with other details of de-noising (see
Section 4).

How does de-noising work for N-body simulations? The de-
noising method discussed here applies to discrete data so it is natural
to consider grid-based N-body simulations. Such simulations use a
grid for tabulating the particle density, and for computing the poten-
tial and the field (see, e.g. Hockney & Eastwood 1988). The number
of particles n in each cell shows fluctuations |δn|/〈n〉 ∼ 〈n〉−1/2 with
respect to an average 〈n〉. This means that the particle distribution
is polluted by noise that is basically Poissonian, whereas the noise
induced in the potential and in the field is of a more complex nature.
Using such a method we can thus de-noise the particle distribution
at each time-step and make the simulation equivalent to a simulation
with many more particles. This is the idea behind our application
(cf. Paper I).

4 TO U R O F T H E C O D E

As we have explained in Section 3.2, de-noising standard data
and N-body simulations consists of the following processes: pre-
processing of the data, choice of the wavelet, fast wavelet transform,
thresholding of the wavelet coefficients, inverse fast wavelet trans-
form and post-processing of the data. These are also the steps of the
de-noising algorithm in our code. In this section, we discuss them in
detail. Advanced aspects of de-noising are discussed in Section 5.
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4.1 Pre-processing of the data

The data should be pre-processed if they are contaminated by Pois-
sonian noise. The Poissonian data Y P are transformed into data Y G

with (additive) Gaussian white noise of standard deviation σ G = 1:

YG = 2
√

YP + 3
8 (6)

(Anscombe 1948), which can then be de-noised as discussed in
Sections 4.2–4.5. The Anscombe transformation has the remarkable
property of helping to achieve normalization, variance stabilization
and additivity (see Stuart & Ord 1991). On the other hand, it has a
tendency to fail locally where the data have small values or large
variations (e.g. Kolaczyk 1997; see also Starck, Murtagh & Bijaoui
1998). On the whole, such an ingenious method produces very good
results if the data are post-processed appropriately (see Section 4.6).

4.2 Choice of the wavelet

The wavelets included in the code belong to three families: the
Daubechies wavelets, the bi-orthogonal spline wavelets and the re-
verse bi-orthogonal spline wavelets. The last two families are inti-
mately related: the decomposition wavelets of the ‘reverse’ family
are the reconstruction wavelets of the other, and vice versa. Such
wavelet families were introduced by Daubechies (1992). Various
representatives of the wavelets included in the code have already
been shown in Fig. 1 and discussed in Section 2.4. The others have
intermediate properties, or are the reverse of those illustrated. The
most useful wavelets of the code are specified at the end of this
section.

How does the choice of the wavelet affect de-noising? Let us con-
sider the representative wavelets mentioned above, since the others
have intermediate or similar effects. The reference case illustrated
in Fig. 3 corresponds to ‘bior 4.4’, which we have chosen to discuss
the basics of de-noising (see Section 3.2). Fig. 4 shows the effects of
the other choices. The wavelets ‘haar’ and ‘daub 4’ give rise to large
irregular coefficients in the two coarsest details, which exceed the
threshold, and to small but significant irregularities in the de-noised
data. The resulting signal-to-noise ratio and de-noising factor are
worse than in the reference case. In contrast, ‘rbio 6.8’ de-noises
almost as well as ‘bior 4.4’.

Figure 4. Original and thresholded wavelet coefficients (top), and de-noised data versus the model data (bottom) for various choices of the wavelet. Also
specified are the signal-to-noise ratio SNR in the de-noised data and the de-noising factor DF. The reference case illustrated in Fig. 3 corresponds to ‘bior 4.4’.

Let us then explain the key points for a successful choice of the
wavelet. The conditions that should be fulfilled for good de-noising
are three:

(i) The wavelet should satisfy the requirements for good com-
pression, which are discussed in Section 3.1.

(ii) The wavelet should be orthogonal. Orthogonality implies that
Gaussian white noise in the data is transformed into Gaussian white
noise in the wavelet coefficients. This is convenient for a correct
threshold identification, which is discussed in Section 4.4.

(iii) The size of the interval where the wavelet differs significantly
from zero should be comparable to the resolution needed by the data,
or to the effective spatial resolution of the simulations. This interval
must not be confused with the support of the wavelet.

Conditions (i)–(iii) cannot be fulfilled equally well. The best al-
ternative is represented by bi-orthogonal wavelet pairs that are also
quasi-orthogonal, which are consistent with a resolution of about
three to four bin/mesh sizes. The selected wavelets are: ‘bior 4.4’
and ‘bior 6.8’, together with their reverse ‘rbio 4.4’ and ‘rbio 6.8’
(cf. Fig. 1 and Section 2.4, and recall what ‘reverse’ means). In
‘bior n1.n2’ the decomposition and reconstruction wavelets have n1

and n2 vanishing moments, respectively; in ‘rbio n1.n2’ vice versa.
We cannot provide further reliable guidelines on the most appro-
priate choice of the wavelet. It depends on the problem and can be
found through the optimization trial discussed in Section 6.

4.3 Fast wavelet transform

From the computational point of view, the choice of the wavelet
corresponds to the choice of a set of filters for the fast wavelet
transform and its inverse. For a bi-orthogonal wavelet, they are: the
high-pass and low-pass decomposition filters g̃i and h̃i , and the high-
pass and low-pass reconstruction filters gi and hi, respectively. In the
orthogonal case, g̃i = gi and h̃i = hi . The coefficients of h̃i and hi

are tabulated and centred as closely as possible to i = 0, while those
of g̃i and gi are computed from the relations g̃i+1 = (−1)i+1h−i

and gi+1 = (−1)i+1h̃−i . The filters are padded with zeros so as
to be defined for i = −M , . . . , M (M even), and to be consistent
with the formulae for the transforms. In particular, ‘bior 4.4’ and
‘rbio 4.4’ have M = 6, while ‘bior 6.8’ and ‘rbio 6.8’ have M = 10.
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Figure 5. Original and thresholded wavelet coefficients (top), and de-noised data versus the model data (bottom) for various values of the parameter N t min

defined in the text. Also specified are the signal-to-noise ratio SNR in the de-noised data and the de-noising factor DF. The reference case illustrated in Fig. 3
corresponds to N t min = 64.

(The detailed relations of such filters to the wavelets and scaling
functions are very complicated and irrelevant to our context; see
Goedecker 1998.)

One step of the (forward) fast wavelet transform replaces the cur-
rent approximation Ai(N t), of size N t, with a coarser approximation
Ai(N t/2) and detail Di(N t/2), of size N t/2:

Ai (Nt/2) =
M

∑

j=−M+1

h̃ j A j+2i (Nt), (7)

Di (Nt/2) =
M

∑

j=−M+1

g̃ j A j+2i (Nt), (8)

where the index j + 2i is wrapped around when it gets out of the
range (periodic boundary conditions; see Goedecker 1998). Initially,
N t = N d and Ai = X i, X i(N d) being the original data. The transform
ends when N t = N t min, so that the transformed data Yi(N d) consist
of the coarse approximation Ai(N t min/2) and the sequence of finer
and finer details Di(N t min/2), Di(N t min), . . . , Di(N d/2). Note that
N t min is a free parameter of the code. If we assume that N d is a power
of 2, then N t min is also a power of 2 and such that 2 � N t min � N d.
A complete transform corresponds to N t min = 2, but this value does
not necessarily mean good de-noising. A more general assumption

i

j

Figure 6. Action of the 2D fast wavelet transform and structure of the transformed data. The original data and the approximations are represented without
patterns. The details corresponding to vertical/horizontal/diagonal variations are represented by patterns of horizontal/vertical/diagonal lines (features along a
certain direction have maximum gradient along the perpendicular direction).

is that N d contains a power of 2, which has obvious implications for
N t min. Data of different size can be padded (see Section 6).

How does the value of the parameter N t min affect de-noising? The
reference case illustrated in Fig. 3 corresponds to N t min = 64 (N d =
2048). Fig. 5 shows the effects of other values. For N t min = 2048,
only the smallest-scale noise is removed so the processed data are
nearly as noisy as the original data. For N t min = 128, there is residual
noise on large scales, and the resulting signal-to-noise ratio and de-
noising factor are worse than in the reference case. For N t min =
2, the de-noising is complete and nearly as good as for N t min =
64. Nevertheless, there are large anomalous coefficients in the five
coarsest details, which exceed the threshold, and small anomalies
in the de-noised data.

Let us then explain which values of N t min imply good de-noising.
We must have N t min � N d, otherwise de-noising is incomplete; and
besides N t min � 4M , otherwise the wavelet becomes too dilated in
comparison with the size of the data and wrap-around effects become
significant. (Cosmological simulations are peculiar in this context;
see Section 5.3.) The best value of N t min depends on the problem and
can be found through the optimization trial discussed in Section 6.

Finally, we point out the (non-obvious) differences between the
2D or 3D fast wavelet transform and the 1D case. Fig. 6 shows how
the transform acts on 2D data. In general, given nD data of size Nn

d,
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the first step of the transform decomposes them into 2n parts of size
(N d/2)n: 1 approximation and 2n − 1 details, one for each axis and
each diagonal. This is done by 1D transforming the data along each
index, for all values of the other indices, consecutively. Then the
discussion basically follows the 1D case, except that the complexity
of the transform increases by a factor of n 2n−1/(2n − 1) with respect
to 4MNn

d. The generalization to data of size N d1· · · N dn is plain.

4.4 Thresholding of the wavelet coefficients

The heart of de-noising consists of identifying a correct threshold,
and deciding which type of wavelet coefficients are to be thresholded
and how. Note the difference between thresholding and smoothing,
where the detail coefficients below a given scale are set to zero
independent of their value. In the following, we discuss thresholding
and introduce the options of the code.

As pointed out in Section 4.2, a correct threshold can be identified
if the wavelet is orthogonal, or quasi-orthogonal. The threshold T

is proportional to the standard deviation of noise σ , and the propor-
tionality factor K depends on the size of the data:

T = K (Nd) σ. (9)

If the standard deviation is not given (Csd = ‘ng’), as in the case
of Gaussian white noise, then it is robustly estimated through the
median absolute deviation of the finest detail:

σ �
1

0.6745
MAD[Di (Nd/2)]. (10)

A robust estimator and the finest detail are used for minimizing the
contribution of outlying wavelet coefficients, which are not caused
by noise. If the standard deviation is given (Csd = ‘g’), as in the case
of Poissonian noise, then

σ � 1. (11)

Concerning K(N d), it is rigorously determined so that the thresh-
old matches both the noise level and the significance level of the
wavelet coefficients, according to probability criteria. We can de-
cide between two functional forms for K(N d). One corresponds to

Figure 7. Original and thresholded wavelet coefficients (top), and de-noised data versus the model data (bottom) for various thresholding options and the
‘haar’ wavelet. Also specified are the signal-to-noise ratio SNR in the de-noised data and the de-noising factor DF. The reference case illustrated in Fig. 3
corresponds to Ct = ‘h’, Cct = ‘d’, Ctn = ‘h’ and the ‘bior 4.4’ wavelet [for the corresponding ‘haar’ case cf. Fig. 4 (left)].

a higher threshold (Ct = ‘h’), which is more effective but less safe:

K (Nd) =
√

2 ln Nd. (12)

The other corresponds to a lower threshold (Ct = ‘l’), and is ap-
proximated analytically as:

K (Nd) �
{

0 if Nd � 32 ,

0.3936 + 0.1829 log2 Nd else.
(13)

Next, the wavelet coefficients to threshold can be either the details
(Cct = ‘d’):

Wi = Di (Nt min/2), . . . , Di (Nd/2); (14)

or the approximation & the details (Cct = ‘a&d’):

Wi = Ai (Nt min/2), Di (Nt min/2), . . . , Di (Nd/2). (15)

The last option concerns the thresholding (method), named as in the
literature. It can be either hard (Ctn = ‘h’):

W i =
{

0 if |Wi | � T ,

Wi else;
(16)

or soft (Ctn = ‘s’):

W i =
{

0 if |Wi | � T ,

sign(Wi )(|Wi | − T ) else.
(17)

So Ctn = ‘s’ means that even the wavelet coefficients above T are
thresholded, and this is done shrinking them by T .

How do the thresholding options affect de-noising? The refer-
ence case illustrated in Fig. 3 corresponds to Ct = ‘h’, Cct = ‘d’ and
Ctn = ‘h’(Csd = ‘ng’). Fig. 7 shows the effects of other options. As
the situation is degenerate, we consider the ‘haar’ wavelet instead
of ‘bior 4.4’, since it reduces the degeneracy and its effects have
already been shown [cf. Fig. 4 (left)]. For Ct = ‘l’, the threshold
is exceeded by several noisy detail coefficients, which give rise to
spikes in the de-noised data. For Ctn = ‘s’, the soft thresholding
of the detail coefficients overregularizes the de-noised data, soften-
ing the maxima and minima. If in addition Cct = ‘a&d’, then the
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thresholding of the approximation coefficients biases the de-noised
data.

Let us then explain which thresholding options imply good de-
noising. We suggest the more effective option Ct = ‘h’ for standard
data, unless they are expected to have meaningful irregularities be-
low the maximum noise level; while we recommend the safer option
Ct = ‘l’ for simulations. In addition, we must have Cct = ‘d’ and
Ctn = ‘h’, otherwise the de-noised data get biased and overregular-
ized, respectively. (In advanced de-noising, Cct and Ctn are replaced
by a more useful parameter; see Section 5.1.) Finally, it is natural
to opt for Csd = ‘ng’ in the case of Gaussian white noise, and for
Csd = ‘g’ in the case of Poissonian noise. If the Poissonian data have
a sufficiently high signal-to-noise ratio, such that the estimated σ �
1, then Csd = ‘ng’ fine-tunes the accuracy of de-noising. The al-
gorithm gets slightly slower since the computation of the median
has complexity O(N d). Therefore Csd = ‘ng’ may be a better option
than Csd = ‘g’ for standard data, not for simulations (where the
signal-to-noise ratio is low and speed is a primary factor).

Finally, thresholding in 2D or 3D is similar to the 1D case and
the generalization to data of size N d1· · · N dn is plain, except for the
more complicated structure of the wavelet coefficients.

4.5 Inverse fast wavelet transform

One step of the inverse (backward) fast wavelet transform replaces
the current approximation Ai(N t/2) and coarsest detail Di(N t/2) with
a finer approximation Ai(N t):

A2i (Nt) =
M/2−1
∑

j=−M/2

h2 j Ai− j (Nt/2) + g2 j Di− j (Nt/2), (18)

A2i+1(Nt) =
M/2−1
∑

j=−M/2

h2 j+1 Ai− j (Nt/2) + g2 j+1 Di− j (Nt/2), (19)

where the index i − j is wrapped around when it gets out of the
range (see Goedecker 1998), N t goes from N t min to N d, and so on
(see Section 4.3).

The inverse fast wavelet transform can be used for plotting
wavelets, as in Fig. 1. Consider the data X i = δ in and the inverse
transformed data Yi. A discrete approximation of ψ rec(x) or φ rec(x)
can be computed from Yi through the following operations: scaling,
translation, normalization and possibly wrap-around. The accuracy
of the approximation, the type of function and the parameters of
the operations depend on N d, N t min and n. Including the reverse
set of filters produces ψ dec(x) or φdec(x). In Fig. 1, we have set:
N d = 214, N t min = 27, n = 3N t min/4 for the wavelet plots and n =
N t min/4 for the scaling-function plots. In both plots, the discrete
argument is xi = (i − b)/a and the function is f (xi ) =

√
a Yi , with

a = 2N d/N t min and b = N d/2. Such a set-up provides an accurate
approximation and avoids wrap-around, and thus it can be used for
plotting wavelets in general.

4.6 Post-processing of the data

The data should be post-processed in the case of Poissonian noise.
Post-processing consists of inverse Anscombe transforming plus
two corrections. The first correction is needed if the Anscombe
transformation fails locally (see Section 4.1), giving rise to small
negative values in the de-noised data. We can correct such values by
setting them to zero. The second correction is required because the
Anscombe transformation introduces a local bias in the data. That is,
if µP is the local mean of Y P and µG is the local mean of Y G, the mean

µ′
P estimated by inverse transforming µG is not equal to µP, and their

difference is the local bias of the transformation. Starck et al. (1998)
have implied that the bias is multiplicative and unbounded, while
Kolaczyk (1997) has implied that the bias is additive and bounded
but has not estimated it. Indeed, the comprehensive book by Stuart
& Ord (1991) shows that the bias of the Anscombe transformation
is additive and bounded, and can be estimated analytically:

BIAS � −
1

4

(

1 −
1

Nd

)

σ 2
G. (20)

This means that, with very little effort, we can subtract the bias
almost completely from the de-noised data. And, if even a slight
global bias is unacceptable, then we can compute it numerically
and subtract it completely from the de-noised data.

5 E X P L O R I N G A DVA N C E D D E - N O I S I N G

Consider a simulation where the particle distribution is de-noised
at each time-step. If initially the de-noising factor is DF0, then the
de-noised model has the same signal-to-noise ratio as a noisy model
with DF2

0 times more particles. This follows from the fact that the
noise is basically Poissonian, and hence the signal-to-noise ratio is
proportional to the square root of the average number of particles
per cell. Besides, as DF depends more on the de-noising ability
of the wavelet method than on the characteristics of the particle
distribution, we can draw a more general conclusion: the de-noised
simulation itself is roughly equivalent to a noisy simulation with
DF2

0 times more particles (cf. Paper I). Until now we have learned
how to de-noise so as to get the largest DF (see Sections 3.2 and 4).
On the other hand, in simulations we do not always want to suppress
noise totally. We may instead want to reduce it partially in order to
understand and control its effects. In this section, we learn how to
carry out such advanced de-noising.

5.1 Partial de-noising at a pre-assigned level

5.1.1 Method and implementation

Can we de-noise a simulation so as to make it equivalent to a sim-
ulation with � times more particles, for a pre-assigned level � ?
Yes! And the idea is the following. Recall what hard thresholding
of the details means (see Section 4.4), and consider the wavelet co-
efficients below the threshold. If we contract them by C, instead of
setting them to zero, then the noise level decreases by the same factor
whereas the ‘signal’ does not change. Hence the signal-to-noise ratio
increases by a factor of 1/C, and the simulation becomes equivalent
to a simulation with 1/C2 times more particles. Thus the problem is
solved if we set C = 1/

√
� . (For an analogous thresholding in the

context of speech signals see Storm 1998.)
We now illustrate this idea in the simple, but instructive, context of

standard data. Fig. 8 shows that partial de-noising at a pre-assigned
level works as expected. Note that this type of de-noising is meant
to turn data with Poissonian noise into ‘sub-Poissonian’ data. In
such data the original Poissonian deviations from the local mean
are contracted by C, while obviously the de-noised data are subject
to an estimation error. Fig. 9 shows that, as expected, the accuracy
of partial de-noising at a pre-assigned level is very good except for
C � 2/(DF)tot, where (DF)tot refers to the case of total de-noising
(C = 0).
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Figure 8. Partial de-noising at a pre-assigned level. Original and thresholded wavelet coefficients (top), and de-noised data (middle) for various values of the
contraction parameter C; also shown for comparison are realizations of Poissonian data with 1/C2 times more ‘counts’ than in the original noisy data (bottom).
The signal-to-noise ratio SNR and the de-noising factor DF are specified. The reference case illustrated in Fig. 3 corresponds to C = 0 (total de-noising). The
implication for simulations is explained in the text.

Figure 9. Accuracy of partial de-noising at a pre-assigned level. The signal-
to-noise ratio SNR is shown as a function of the contraction parameter C

for the de-noised data and for sub-Poissonian data. The sub-Poissonian data
have local standard deviation σsub = C

√
µsub and local mean µsub = µP,

where µP refers to the original data with Poissonian noise; hence (SNR)sub =
(SNR)P/C . The accuracy is better than 10 per cent for C � 1/

√
20, and it

gets worse than 20 per cent for C � 1/
√

40. The implication for simulations
is explained in the text.

5.1.2 Bench-marks

Let us then explore this idea in simulations of disc galaxies. The
examination is based on four bench-marks, originally introduced in
Paper I.

(i) The first natural bench-mark is the comparison between the
initial models.

(ii) The second bench-mark concerns the fragmentation of a cool
galactic disc, which is the onset of a gravitational instability (see,
e.g. Binney & Tremaine 1987). A rotating disc with low velocity
dispersion is gravitationally unstable and therefore sensitive to per-
turbations, which are amplified and break the initial axial symmetry
of the system (e.g. Semelin & Combes 2000; Huber & Pfenniger
2001). The time that characterizes symmetry breaking clearly de-
pends on the initial amplitude of the perturbations, for small pertur-
bations need a long time to grow into an observable level. In par-
ticular, this is true for the fluctuations imposed by granular initial
conditions. Thus the symmetry-breaking time is a clear diagnostic
for quantifying the effect of noise on the simulation.

(iii) The third bench-mark concerns the heating following the
fragmentation. This is a fundamental process in the dynamical evo-
lution of disc galaxies, which is induced by gravitational instabilities
via the outward transport of angular momentum and energy (see, e.g.
Binney & Tremaine 1987). Therefore this bench-mark has a clear
physical motivation. When spiral gravitational instabilities reach a
sufficiently large amplitude, the velocity dispersion of the disc starts
to increase by collective relaxation (e.g. Zhang 1998; Griv, Gedalin
& Yuan 2002). The heat produced in a dynamical time is low if the
initial amplitude of the instabilities is small. Thus the increase of
velocity dispersion is another diagnostic for quantifying the effect
of noise on the simulation.

(iv) The fourth bench-mark concerns the accretion following the
fragmentation. This is also a fundamental process in the dynami-
cal evolution of disc galaxies (see, e.g. Binney & Tremaine 1987).
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Therefore this bench-mark also has a clear physical motivation. The
amplification of spiral gravitational instabilities produces not only
heating but also redistribution of matter in the disc, which appears
more evidently as accretion near the centre (e.g. Zhang 1998; Griv
et al. 2002). The mass accreted in a dynamical time is low if the
initial amplitude of the instabilities is small. Thus the peak of the
mass density is still another diagnostic for quantifying the effect of
noise on the simulation.

We consider the same basic simulation as in Paper I, which has
N = 105 particles. We de-noise it choosing the ‘rbio 6.8’ wavelet,
and setting N t min = 16 and C = 1/

√
10, so as to make it equiva-

Figure 10. Partial de-noising at a pre-assigned level in action: comparison between the initial models. The set of simulation models has a physical grid of
N c = N 2

d = 2562 cells and cell size �c = 0.25 kpc. The particle distribution is shown for the noisy model with N = 105 particles (left), the noisy model with

N = 106 (middle), and the de-noised model with N = 105 and contraction parameter C = 1/
√

10 (right). In each model the signal-to-noise ratio is SNR �
5.7, 17.8, 17.1, respectively. As expected, the accuracy of partial de-noising at a pre-assigned level is very good for such initial models.

Figure 11. Partial de-noising at a pre-assigned level in action: fragmentation of a cool galactic disc: (a) de-noised simulation with N = 105 and C = 1/
√

10;
(b) noisy simulation with N = 105; (c) noisy simulation with N = 106. The initial models are the same as in Fig. 10. For each simulation, the particle distribution
is shown from 0 to 150 Myr at intervals of 50 Myr (from left to right). The time τ at which the initial axial symmetry breaks is a measure of the effect of noise
on the simulation: a long τ means a weak effect. As expected, τ increases from (b) to (c); we also notice that τ is a little longer in (a) than in (c).

lent to a simulation with 10 times more particles (the thresholding
options are the usual ones for simulations; see Section 4.4). The
conservation of angular momentum and energy is not significantly
affected. In fact, the deviations are less than 0.02 per cent and 0.04
per cent per dynamical time, respectively, and compare well with
those typical of the code (Combes et al. 1990). We also run the
noisy simulation with N = 106. This suite of simulations is suffi-
cient for the present purpose. For further comparison see the ex-
tensive survey presented in Paper I (the de-noised simulation has
C = 0).

Figs 10–13 illustrate that partial de-noising at a pre-assigned level
works as expected, and the agreement is very good, except that the
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Figure 12. Partial de-noising at a pre-assigned level in action: heating following the fragmentation of a cool galactic disc. The simulations are the same as
in Fig. 11. The velocity dispersion σ is shown as a function of radius R at the initial and final times, and as a function of time t at an intermediate radius. The
increase of velocity dispersion �σ (R) from the initial to the final value is a measure of the effect of noise on the simulation: a small �σ means a weak effect.
In the simulations, except b, heating is significant only for R � 12 kpc. As expected, �σ b > �σ c and �σ a ≈ �σ c.

Figure 13. Partial de-noising at a pre-assigned level in action: accretion
following the fragmentation of a cool galactic disc. The simulations are the
same as in Fig. 11. The mass density 
 is shown as a function of radius R at
the initial and final times. The peak of final mass density 
̂ near the centre
is a measure of the effect of noise on the simulation: a low 
̂ means a weak
effect. As expected, 
̂b > 
̂c and 
̂a ≈ 
̂c.

de-noised simulation takes a little longer to form the initial transient
structures (cf. Fig. 11). The reason for this imperfection is twofold:
it concerns the de-noising itself (threshold) and the initial conditions
(noisy starts).

Threshold. At the beginning of the simulation, there is no way to
differentiate instabilities from amplified noisy fluctuations. Thresh-
olding weakens the initial instabilities until the relevant wavelet
coefficients exceed the threshold. The usual threshold tends to be
slightly too high, and therefore the onset of the initial instabilities
is delayed.

Noisy starts. We know that the initial particle positions and ve-
locities are noisy. We also know that the particle density is partially
de-noised, and the computed field has a consistent noise level. This
means that the excess of noise remains confined in phase space and
does not propagate dynamically. In fact, in the de-noised simulation
the amplitude of the statistical fluctuations is similar to the noisier
case, whereas the evolution of the relevant quantities is similar to the
less noisy case (cf. Figs 12 and 13). On the other hand, the excess of
noise makes instabilities less coherent, and therefore it delays their
onset.

Thus it is hard to evaluate the accuracy of partial de-noising at
a pre-assigned level for simulations, even if the accuracy is better
than a few per cent for the initial models (cf. Fig. 10). But the
conclusion is strong anyway: our method, and code, can be used for
understanding and controlling the effects of noise on simulations.

5.1.3 Controlling the effectiveness of de-noising

Before exploring more advanced aspects of de-noising, let us re-
flect on the main differences between partial de-noising at a pre-
assigned level and total de-noising, and explain what we mean by
noise control (or analogous terms). Consider a simulation with, say,
N = 105 particles, and suppose that we decide beforehand to make
it equivalent to a simulation with, say, N pre = 1.8 × 106 parti-
cles (pre-assigned number). Then we set the contraction parame-
ter C = 1/

√
18, and run the simulation. The partially de-noised

model will accurately mimic a noisy model with � = 18 times more
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particles. This is noise control. On the other hand, the accuracy of
partial de-noising at a pre-assigned level deteriorates for small C

(cf. Fig. 9 and its discussion). In the limit C → 0 the effectiveness
of de-noising becomes a maximum, but we cannot predict it with
sufficient accuracy unless we compare the initial models quantita-
tively (see Paper I). If the method were perfect we would have an
improvement in the equivalent number of particles by a factor of
1/C2 → ∞ , whereas in practice the improvement is by a factor of
about 100 (cf. Paper I). In such a case we do not have control over
noise, but we exploit total (maximum) de-noising.

5.2 Partially noisy starts and adaptive de-noising

Can we achieve even better noise control? Yes, in principle, and
the idea is the following. We should first impose appropriate ini-
tial conditions so as to make the model equivalent to a model with
� times more particles, without de-noising it. Such partially noisy
starts can be generated by setting up a fraction 1/� of the parti-
cles with noisy starts, and the rest with quiet starts (quiet starts are
common in plasma simulations; see, e.g. Dawson 1983; Birdsall
& Langdon 1991). Doing so, the initial particle distribution is ba-
sically sub-Poissonian and its signal-to-noise ratio is higher than
in the Poissonian case by a factor of

√
� . On the other hand, the

noise has a natural tendency to become fully Poissonian in a few
dynamical times, as a reaction of the system to the imposed order
and hence reduced entropy. We should then de-noise the simulation
consistently. At the initial time, the threshold T is lower than the
usual one by a factor of 1/

√
� and the contraction parameter C is

unity (no de-noising). When the noise level increases, T should be
increased accordingly and C should be decreased in inverse propor-
tion (in the case of quiet starts, C = 0; see also Paper I). Such an
adaptive de-noising is not yet implemented in the code.

5.3 Partial de-noising up to a given scale

Cosmological simulations are peculiar with respect to galaxy and
plasma simulations. The initial conditions consist of setting up a
quiet uniform particle distribution, and of imposing small random
fluctuations with Gaussian statistics and a given power spectrum
(e.g. Efstathiou et al. 1985; Sylos Labini et al. 2003). Such fluctua-
tions are amplified by gravitational instability and form structures.
On the other hand, Poissonian noise develops on the same time-scale
and therefore affects structure formation. The onset of Poissonian
noise is especially quick in cold dark matter simulations, where
structures form bottom-up and the first virialized systems contain
a small number of particles (e.g. Binney & Knebe 2002; Diemand
et al. 2004).

Thus de-noising cosmological simulations is a very complex and
demanding problem: the method should remove noise without af-
fecting the physical random fluctuations. An ad hoc solution for
cold dark matter simulations may be to de-noise them only over a
range of scales that is adapted to the phase of clustering: from the
cell size to the size of the structures that have formed latest (see
Paper I). Partial de-noising up to a given scale is implemented in
the code, but it is not tested in this context; the scale parameter is
N t min (see Section 4.3). An upper scale of 2n cell sizes corresponds
to N t min = N d/2n . At the beginning of the simulation, before the
first virialized systems have formed, the upper scale should match
the smallest physical scale unaffected by the N-body method, so
N t min should be set to N d/2 or N d/4. Analogous solutions may be
found in the context of other cosmological models.

6 H OW TO U S E T H E C O D E

A flowchart of the code is illustrated in Fig. 14 (the symbols are
standard; see, e.g. Nyhoff & Leestma 1997). It summarizes the most
useful information given in Sections 4 and 5, without repeating the
relevant definitions. In this section, we discuss such practical points
in detail. Supplementary information is given in the readme file of
the code distribution.

The code can be used for de-noising N-body simulations, and
1D–3D standard data with Poissonian noise or additive white Gaus-
sian noise. It contains include files for many orthogonal and bi-
orthogonal wavelet filters, and also routines for the fast wavelet
transform and its inverse. The number of data points should con-
tain powers of 2. Data of different size can be padded: add zeros,
or extend the data so that their boundary values match smoothly.
Smooth padding is better because it reduces wrap-around effects.
Data with multiplicative and/or coloured Gaussian noise can also
be de-noised. In the first case, pre-process the data by taking their
logarithm, de-noise them in the usual way and post-process. In the
second case, compute the standard deviation of noise on each scale
from the corresponding detail, and threshold the wavelet coefficients
accordingly.

We now explain how to include our add-on code in particle-mesh
N-body codes (e.g. Combes et al. 1990; Pfenniger & Friedli 1993;
Klypin & Holtzman 1997). The proper de-noising subroutine should
be called just after the mass/charge assignment. Note that the right
argument is the number of particles per cell in the active grid, not the
mass/charge distribution in the whole mesh. Therefore the subrou-
tine needs a simple interface for the conversion of such arrays. The
specific form of interface depends on the details of the FORTRAN. If
there are various particle species, which represent components with
different collision properties, then each species can have its own
type of de-noising. The case of polar grids is similar to the Carte-
sian case. In fact, for our purpose we can regard the space spanned
by the cell indices as Cartesian and the particle distribution defined
there as evenly sampled. In addition, the boundary values of the
particle distribution match smoothly, except near the intersections
between the radial boundaries and the equatorial plane. So smooth
padding may be justified even if the number of radial cells already
contains a power of 2. In order to reduce wrap-around effects sig-
nificantly, the thickness of the padding layer should be comparable
to the size of the wavelet filters. Note that such extra cells are only
used for de-noising purposes and do not enter into the N-body com-
putation itself. The case of other grid geometries is analogous. It
is not yet clear how to include our add-on code in other types of
N-body codes.

Let us finally remark that the physical performance of the code
depends on how it is used. In order to get very good performance,
follow the guidelines of Sections 4 and 5 and the practical advice of
this section. The performance can be optimized in the case of galaxy
simulations, since the initial model is noisy and the theoretical par-
ticle distribution is known. The degrees of freedom are the choice of
the wavelet and the value of the scale parameter (cf. Sections 4.2 and
4.3). The optimization consists of a simple trial: vary such degrees
of freedom so as to get the largest de-noising factor, and check the
visual quality of the de-noised model. In the case of cosmological
simulations of structure formation in the early Universe, the value
of the scale parameter is a critical issue (cf. Section 5.3), while an
appropriate choice of the wavelet may be guessed considering the
characteristics of such structures. For example, in cold dark matter
simulations we would choose the ‘bior 4.4’ wavelet (cf. Fig. 1) since
the haloes that form are cuspy. In the cases of plasma simulations
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Figure 14. Flowchart of the code.

and standard data, we cannot give more specific instructions than
those of Sections 4 and 5.

7 C O N C L U S I O N S

N-body simulations of structure formation in the early Universe, of
galaxies and plasmas are limited crucially by noise, whose effects are
subtle and not yet fully understood. In Paper I, we have introduced an
innovative multiscale method of noise reduction based on wavelets,

which promises marked advances in those contexts. In this paper,
we have discussed such a method and its code implementation. We
have also explained how to include our code in the N-body code
of the simulator, and how to use it for de-noising standard data.
The code is available on request from the first author. The major
conclusions of this paper are pointed out below.

(i) This is the first wavelet add-on code designed for de-noising
N-body simulations, and as such is meant to be a building block
for more elaborate de-noising codes. We hope to have stimulated
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curiosity about the uses of our code, and we challenge simulators
to apply it to physical problems where noise must be suppressed or
controlled.

(ii) The strength of the code is twofold. It improves the perfor-
mance of simulations up to two orders of magnitude (cf. Paper I).
Besides, it allows controlling the effects of noise: the N-body sim-
ulation can be made equivalent to a simulation with a pre-assigned
number of particles N pre, for N pre/N larger than unity and spanning
one order of magnitude.

(iii) The weakness or rather small imperfection of the code is
that noise-generated instabilities are not reproduced very well, in
contrast to the induced dynamical evolution. Obviously, errors may
follow from an incorrect use of the code.

(iv) Finally, we believe that the performance of simulations can
be further improved with more appropriate pre-processing of the
data. Fryźlewicz & Nason (2004) have shown that the Haar–Fisz
transformation is better than the Anscombe transformation for pre-
processing data with Poissonian noise, and that the computational
time is comparable (see also Fryzlewicz 2003). Work is in progress
to investigate other relevant properties and uses of this transforma-
tion, before including it in our code.
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