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Abstract: We investigate a time-domain implementation of generalized
phase-conjugated twin waves which we call conjugate data repetition. A
theory based on time-domain perturbation analysis explaining the mitiga-
tion of nonlinear effects is provided, and the concept is evaluated using
numerical simulations. Compared to PM-QPSK at the same channel bit
rate, the single-channel transmission reach in a conventional system with
standard single-mode fiber of conjugate data repetition-QPSK is increased
by approximately a factor of 2.
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11. S. L. I. Olsson, B. Corcoran, C. Lundström, M. Sjödin, M. Karlsson, and P. A. Andrekson, “Phase-sensitive
amplified optical link operating in the nonlinear transmission regime,” in Proc. European Conference on Optical
Communications (ECOC) (2012), p. Th.2.F.1.

#228574 - $15.00 USD Received 25 Nov 2014; revised 21 Jan 2015; accepted 22 Jan 2015; published 28 Jan 2015 
© 2015 OSA 9 Feb 2015 | Vol. 23, No. 3 | DOI:10.1364/OE.23.002392 | OPTICS EXPRESS 2392 



12. B. Corcoran, S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Mitigation of nonlinear impair-
ments on QPSK data in phase-sensitive amplified links,” in Proc. European Conference on Optical Communica-
tions (ECOC) (2013), p. We.3.A.1.

13. H. Eliasson, S. L. I. Olsson, M. Karlsson, and P. A. Andrekson, “Comparison between coherent superposition in
DSP and PSA for mitigation of nonlinearities in a single-span link,” in Proc. European Conference on Optical
Communications (ECOC) (2014), p. Mo.3.5.2.

14. S. L. I. Olsson, C. Lundström, M. Karlsson, and P. A. Andrekson, “Long-haul (3465 km) transmission of a 10
GBd QPSK signal with low noise phase-sensitive in-line amplification,” in Proc. European Conference on Optical
Communications (ECOC) (2014), p. PD.2.2.

15. X. Liu, H. Hu, S. Chandrasekhar, R. M. Jopson, A. H. Gnauck, M. Dinu, C. Xie, and P. J. Winzer, “Generation of
1.024-Tb/s Nyquist-WDM phase-conjugated twin vector waves by a polarization-insensitive optical parametric
amplifier for fiber-nonlinearity-tolerant transmission.” Opt. Express 22, 6478–85 (2014).

16. T. Yoshida, T. Sugihara, K. Ishida, and T. Mizuochi, “Spectrally-efficient dual phase-conjugate twin waves with
orthogonally multiplexed quadrature pulse-shaped signals,” in Proc. Optical Fiber Communications Conference
and Exhibition (OFC) (2014), p. M3C.6.

17. W.-R. Peng, T. Tsuritani, and I. Morita, “Digital nonlinear noise cancellation approach for long-haul optical
transmission systems,” in Proc. European Conference on Optical Communications (ECOC) (2013), p. Mo.3.D.2.

18. X. Liu, S. Chandrasekhar, P. Winzer, R. W. Tkach, and A. R. Chraplyvy, “406.6-Gb/s PDM-BPSK superchannel
transmission over 12,800-km TWRS fiber via nonlinear noise squeezing,” in Proc. Optical Fiber Communications
Conference and Exhibition (OFC) (2013), p. PDP5B.10.
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1. Introduction

Advanced modern fiber optical communication systems utilize coherent receivers and modu-
lation formats that encode information on both the phase and amplitude of the optical field.
In long-haul coherent systems, the main limiting factors to transmission reach are amplified
spontaneous emission noise from the optical amplifiers and nonlinear distortion due to the Kerr
nonlinearity that is accumulated during propagation in the optical fiber. Since the nonlinear
distortion increases with higher optical launch power, the improvement of the signal-to-noise
ratio that can be achieved by increasing the optical power of the signal is limited. There are
several techniques that address the issue of nonlinear distortions. Digital back-propagation is
a method which offers high performance at the cost of high computational requirements [1].
Another method is mid-span spectral inversion, sometimes referred to as optical phase conju-
gation, where both dispersion and nonlinear effects are compensated for by phase conjugating
the signal in the middle of the link [2]. There has also been research into the design of multi-
dimensional modulation formats that minimize the inter-channel nonlinear distortion that is
generated during propagation in the fiber [3]. Another method of mitigating nonlinear distor-
tion is phase-conjugated twin waves (PCTW) [4–6]. The principle behind PCTW is to transmit
a signal and a phase-conjugated copy of the signal on the orthogonal polarization using a sym-
metric dispersion map [7], which leads to correlated nonlinear distortions on the two waves.
The correlated distortions can then be cancelled by linear superposition. In [5] this was shown
to increase the transmission reach of PCTW-QPSK compared to PM-QPSK approximately by
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a factor of 3 while sacrificing 50 % spectral efficiency (SE). One can also transmit the con-
jugated copy in other signaling dimensions than polarization, for example different cores of a
multi-core fiber [8, 9] or different wavelengths [10]. Systems that transmit the conjugated copy
on a separate wavelength and mitigate nonlinear effects by all-optical coherent superposition
in phase-sensitive amplifiers have been investigated both in single-span [11–13] and multi-
span [14] transmission. The concept has also been demonstrated with phase conjugation of an
entire WDM spectrum [15] and with diplexed twin waves in an effort to increase SE [16]. A
time-domain approach called nonlinear noise cancellation has also been investigated in an or-
thogonal frequency division multiplexing system [17] and in [4] the connection between PCTW
and nonlinear noise squeezing [18] was investigated. The increased complexity of the digital
signal processing (DSP) due to the use of PCTW is minimal assuming that dispersion can be
pre-compensated at the transmitter. The major drawback of PCTW is that the SE is decreased
by a factor of two, i.e. requiring double symbol rate at the same bit rate.

In this paper we investigate an implementation of a generalized PCTW concept [5], which
we call conjugate data repetition (CDR). When using CDR, the conjugated copy of the sig-
nal is transmitted in different time slots than the signal which brings several advantages. For
example it is possible to use the conventional constant modulus algorithm (CMA) for adap-
tive channel equalization. For a PCTW quadrature phase shift keying (QPSK) signal this is
not possible since it occupies two points on the Poincare sphere compared to four points with
polarization-multiplexed (PM)-QPSK or CDR-QPSK which is required by the conventional
CMA [19]. When discussing the possibility to use the conventional CMA it should be noted
that the vector PCTW approach demonstrated in [15] also is compatible with the conventional
CMA since the signals on the X- and Y-polarization at any given channel wavelength are un-
correlated. Another advantage is that the two polarizations of a PM-CDR-QPSK signal can
be treated independently of each other in the DSP after polarization demultiplexing. A conse-
quence of this is that implementation of CDR in existing PM-QPSK hardware could be easier
than implementation of PCTW.

We provide a theoretical explanation for the mitigation of nonlinear distortions and inves-
tigate CDR by numerical simulations. Previously a theoretical explanation has been provided
for the case of transmitting a signal and its conjugated copy on orthogonal polarizations [4].
However, the previously given theory is not valid for CDR, which is why we use a time-domain
perturbation analysis to describe this case. We also compare in simulations the maximum trans-
mission distance of CDR-QPSK to PM-QPSK and PCTW-QPSK at the same channel bit rate,
112 Gbit/s, for both single channel and wavelength division multiplexing (WDM) systems. The
single channel transmission reach of CDR-QPSK compared to PM-QPSK at the same channel
bit rate is increased by approximately a factor of two. This can be compared to using PM-BPSK
which has the same SE as CDR-QPSK but increases the transmission reach by approximately a
factor of two at the same symbol rate [20]. 16-ary quadrature amplitude modulation (16QAM)
is also investigated in the single-channel case in an effort to use CDR at the same SE as PM-
QPSK. An interesting result from the simulations is that the optimal dispersion map found by
system simulations with inline ASE noise added differs slightly from the antisymmetric one
predicted by the first order perturbation analysis.

2. Conjugate data repetition

The concept of CDR is visualized in Fig. 1. A conjugated pulse copy, a∗N , of each signal pulse,
aN , is transmitted in the consecutive pulse slot and a linear superposition CN of the two pulses
making up a supersymbol is done in the receiver DSP according to

CN = aN +(a∗N)
∗, (1)
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Fig. 1. The transmitted signal for CDR and PCTW. For CDR, a conjugated copy S∗N of each
signal symbol SN is transmitted in the consecutive pulse slot. Also shown in the figure is
the numbering of pulses used to specify pulse triplets in the perturbation analysis of Section
2.1.

where N is the super-symbol index. As for PCTW, the concept can be viewed as applying a
rate 1/2, length 2 symbols inner code that repeats all symbols conjugated. Over an additive
white Gaussian noise channel, the choice of conjugating the repeated symbol instead of repeat-
ing the same symbol twice will not change performance. However, as will be shown, using a
antisymmetric dispersion map and a symmetric powermap over a link without dispersion com-
pensation and coherently superposing the received symbols in the receiver DSP will lead to
mitigation of nonlinear distortion in a similar way as for PCTW.

2.1. Theory using time-domain perturbation analysis

It is possible to show that part of the nonlinear distortion is cancelled in the linear superposition
shown in Eq. (1) when using CDR. In the following, a theoretical explanation for the mitigation
of nonlinear distortion will be presented. The analysis is based on time-domain perturbation
analysis [21]. The aim of the analysis is to find the nonlinear perturbation on the signal and
conjugate pulses of super-symbol number 0 generated by different pulse triplets (k, l,m). When
the perturbations have been calculated, it is possible to find corresponding pulse triplets which
generate nonlinearities on the signal and conjugate pulses that cancel out in the superposition
operation of Eq. (1). The governing model equation for scalar propagation in the fiber is the
nonlinear Schrödinger equation

i
∂ψ
∂ z

=
β2

2
∂ 2ψ
∂ t2 − i

α
2

ψ − γ|ψ|2ψ, (2)

where ψ = ψS+ψP, ψS is the signal field and ψP is the field of the perturbation. The amplitude
of the perturbation is assumed to be small compared to the amplitude of the signal and ψS is the
solution to the linear propagation equation with γ = 0. The initial signal ψS(0, t) is modeled as
a train of Gaussian pulses according to

ψS(0, t) = ∑
k

[akψ0(t −2ktp)+a∗kψ0(t − (2k+1)tp)] , (3)

where ψ0(t) = exp(−t2/(2t2
0 )) is the Gaussian pulse shape, tp is the pulse slot duration and

ak are the complex-valued symbols. It can be shown that the perturbation generated by three
pulses (k, l,m) to first order, i.e. assuming that the nonlinear perturbation ψP is generated by ψS

alone, is [21, 22]
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Fig. 2. The antisymmetric dispersion map used for CDR and PCTW. Bpre is the dispersion
which is pre-compensated for, B0 is an arbitrarily chosen accumulated dispersion where
the perturbations are evaluated and 2ΔB is a small interval around B0 that sets the limits of
the integrals of Eqs. (5) and (6). The red line shows how the optical power varies along the
link.

ψP,(k,l,m)(L, t) = (4)

iakala
∗
m

∫ L

0

γ p(z)√
1+2iB+3B2

exp

(
− 1

2
3+ iB
1+3iB

[(
t
t0

)2

−2
t
t0

(1+ iB)(τk + τl)+(1− iB)τm

3+ iB

])

exp

(
− 1

2
1

1+B2

[
(τ2

k + τ2
l )(1+ iB)+ τ2

m(1− iB)−

{(τk + τl)(1+ iB)+ τm(1− iB)}2 iB
1+3iB

])
dz

where B = B(z) = Bpre +(1/t2
0 )

∫ z
0 β2(z′)dz′ = Bpre + zβ2/t2

0 is the accumulated dispersion and
Bpre is due to dispersion pre-compensation. The center of pulse k is denoted by τk = ktp/t0, and
p(z) = P(z)/P0 where P(z) and P0 are the local and initial values of the power, respectively. The
expression in Eq. (4) is derived under the assumption that the accumulated dispersion is post-
compensated to zero. We will, without loss of generality, consider the perturbation in the center
of pulse slot 0, i.e. choose t = 0. By doing this, the first exponential function in Eq. (4) equals
one. The next step is to approximate the integral. We assume that B � 1, which is fulfilled for
most of the propagation, and in this limit some of the terms in the second exponential function
can be neglected. Also, it can be shown that in the limit B � 1, the perturbation from three
pulses (k, l,m) ends up in pulse slot k+ l −m [23], this will be used to find all pulse triplets
that generate perturbations in pulse slots 0 and 1. In order to write the resulting equation on
a compact form we make a change of variables from z to accumulated dispersion B = Bpre +
zβ2/t2

0 . We will study the perturbation that is generated during propagation over a small interval
2ΔB around an arbitrarily chosen B0. By choosing m= k+ l we study the perturbation generated
in pulse slot 0, i.e., on the signal pulse of super-symbol C0, during propagation from B0 −ΔB
to B0 +ΔB which is found as

ψP,(k,l,k+l)(B0,0) = iakala
∗
k+l

∫ B0+ΔB

B0−ΔB

γ p(B)√
3|B|e

i 3ν2kl−1
3B

t2
0

β2
dB, (5)

where ν = tp/t0. The dispersion map together with the variables Bpre, B0 and ΔB is illustrated in
Fig. 2. By translating the pulse indices (k, l,m) by one step we find the perturbation generated
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Table 1. Pulse triplets that generate perturbations on the signal and conjugate pulse of
C0 which cancel out after coherent superposition. Also shown is the form of the triplets
fulfilling k+ l −m = 0 for which it is not possible to find a corresponding triplet so that
the nonlinear perturbations cancel. For suitable choices of the integers M and N, the first
column includes all possible choices of triplets fulfilling k+ l−m = 0.

Perturbation in Pulse slot 0, signal pulse of C0 Pulse slot 1, conjugate pulse of C0

(k,l,m) for (2N,2M,2N +2M) (2N +1,2M+1,2N +2M+1)
cancelling (2N,2M+1,2N +2M+1) (2N +1,2M,2N +2M)
pulse triplets (2N +1,2M,2N +2M+1) (2N,2M+1,2N +2M)
(k,l,m) for
non-cancelling (2N +1,2M+1,2N +2M+2) none
pulse triplets

in pulse slot 1, the conjugate pulse of super-symbol C0, during propagation from B0 −ΔB to
B0 +ΔB by the pulse triplet (k, l,k+ l−1) to be

ψP,(k,l,k+l−1)(B0, tp) = iakala
∗
k+l−1

∫ B0+ΔB

B0−ΔB

γ p(B)√
3|B|e

i 3ν2(k−1)(l−1)−1
3B

t2
0

β2
dB. (6)

Using Eqs. (5) and (6) we can find triplets which generate perturbations that cancel out in the
linear superposition operation of Eq. (1). The calculations for a specific pair of pulse triplets
are shown in the Appendix. In these calculations we assume an antisymmetric dispersion map,
B(z) =−B(Llink − z), and a symmetric power map, p(z) = p(Llink − z), where Llink is the total
link length. These are the same assumptions regarding the power and dispersion map that was
assumed in the derivation for PCTW [4]. We note that even though we simulate a system with
EDFAs (Erbium-doped fibre amplifier), it is possible that the performance of CDR could be
improved further by employing Raman amplification, since it is possible to achieve a power
map which is closer to symmetric. There are also other choices of pulse triplets than the one
shown in the Appendix for which it is possible to find cancelling triplets. Further, it is possible
to find pulse triplets that generate distortion on the signal pulse of C0 for which there is no
corresponding triplet that generate distortion on the conjugate pulse of C0 that cancel out in the
superposition operation. The indices of both cancelling and non-cancelling triplets are summa-
rized in Table 1. Even though there are nonlinear perturbations that are not cancelled according
to the theory, we will see in Section 3.1 that CDR-QPSK performs similar to PCTW-QPSK.
This is a surprising and, in our view, interesting observation since the perturbation analysis
does not tell us how much better PCTW performs compared to CDR.

It is important to note that the above derivation is valid only in a highly dispersive regime
where |B| � 1. As the analysis is not valid in an intermediate dispersion regime where |B| is
very small, it is possible that the mitigation of nonlinearities is less efficient in this regime.

The effects of matched filtering are excluded from this derivation in the same way as in [4].
Both the signal and the generated perturbation take the form of Gaussian pulses. However,
since the perturbation pulses are products of three signal pulses, their spectrum will be slightly
broader. A consequence of this is that part of the energy in the perturbation pulses will be lost
in matched filtering.

3. Numerical simulations

Numerical simulations have been carried out to compare the transmission reach of CDR-QPSK
and CDR-16QAM to that of PCTW-QPSK and PM-QPSK at the same channel bit rates. In
order to have the same channel bit rate, the symbol rate of CDR-QPSK and PCTW-QPSK is
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56 GBaud while the symbol rate of CDR-16QAM and PM-QPSK is 28 GBaud. For the CDR
formats, two independent CDR symbol streams are transmitted on the X- and Y- polarization
states. Simulations were performed to evaluate the performance of both single channel systems
and WDM systems. In the case of WDM, the channel spacing was 50 GHz at 28 GBaud and
100 GHz at 56 GBaud. Assuming a channel data rate of 100 Gbit/s due to FEC overhead, the
SE using PM-QPSK or CDR-16QAM is 2 bit/s/Hz and the SE using PCTW-QPSK or CDR-
QPSK is 1 bit/s/Hz. Seven WDM channels were transmitted giving an aggregate data rate of
700 Gbit/s. The transmitter and LO lasers have a linewidth of 100 kHz. The transmitted opti-
cal signal is non-return-to-zero (NRZ) with a 5th order Bessel filter characteristic with FWHM
bandwidth 75 % of the symbol rate. Note that the NRZ signal used in the simulations is different
from the Gaussian pulses used in the perturbation analysis of Section 2.1. The resolution of the
propagating waveforms are 32 samples per symbol and the number of symbols is 217. Before
transmitting the signal, dispersion is digitally pre-compensated in the transmitter in order to ob-
tain an antisymmetric dispersion map at the targeted number of spans, the span length is 80 km.
For single channel CDR-QPSK and PCTW-QPSK the dispersion map is antisymmetric after
200 spans, 16,000 km and for WDM simulations the dispersion map is antisymmetric after 150
spans, 12,000 km. For PM-QPSK no dispersion pre-compensation is applied. We have two rea-
sons for not optimizing the dispersion map for PM-QPSK. First, PM-QPSK without dispersion
precompensation is a well studied and common implementation in commercial coherent PM-
QPSK systems, making it a suitable choice as a baseline reference. Second, the optimization
of dispersion maps for QPSK systems without inline dispersion compensation has been studied
before [7, 24] and was shown to provide little benefit. For single-channel CDR-16QAM, the
dispersion map is symmetric at 7,200 km, corresponding to the reach of PM-QPSK at BER
= 10−3. The waveform is propagated using the split-step Fourier method solution of the Man-
akov model [25, Eq. (1)]. The effects of polarization mode dispersion (PMD) are neglected but
could be an interesting topic for further investigation. In previous investigations of PMD in a
PCTW system, the worst case scenario due to PMD was improved by using PCTW [15]. The
signal is propagated over dispersion-uncompensated 80 km spans of single-mode fiber (SMF)
with dispersion parameter D = 17 ps/(nm km), loss α = 0.2 dB/km and nonlinear coefficient
γ = 1.27 W−1km−1. Fiber loss is compensated by inline erbium-doped fiber amplifiers with a
noise figure (NF) of 5.5 dB. This does not provide a symmetric power map in contrast to the
assumption of the perturbation analysis of Section 2.1.

The receiver DSP begins with downsampling to two samples per symbol. After that, the
dispersion is post-compensated using electronic dispersion compensation. The equalization
and polarization demultiplexing algorithms are different for the different modulation formats.
For PM-QPSK and CDR-QPSK, the conventional CMA is used. For PCTW-QPSK, the con-
ventional CMA cannot be used since the optical field of PCTW-QPSK occupies two points
on the Poincare sphere compared to the four points of PM-QPSK and CDR-QPSK. Instead
the polarization-switched CMA (PS-CMA) [19] is used for equalization of PCTW-QPSK. A
decision-directed least mean square equalizer was used for CDR-16QAM. Phase synchroniza-
tion is performed on the equalized symbols before coherently superposing the signal and conju-
gate pulses of a supersymbol in the case of CDR-QPSK, CDR-16QAM and PCTW-QPSK. The
superposed symbols CN are then used for BER counting. For PM-QPSK the BER counting is
done directly after the phase tracking. In WDM simulations, only the BER of the center channel
is counted. In all cases Gray-coded modulation is used.

3.1. Results

Single-channel simulation results with BER as a function of transmission distance are shown in
Fig. 3a and WDM results in Fig. 3b, the BER as a function of launch power for single-channel
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Fig. 3. Simulated BER as a function of transmission distance for (a) single channel and
(b) 7-channel WDM for 28 GBaud PM-QPSK, 56 GBaud PCTW-QPSK, 56 GBaud CDR-
QPSK and 28 GBaud CDR-16QAM. Optimum launch powers are specified in the figures.
The distance where the dispersion map is perfectly symmetric is marked with a vertical red
line.

PM-QPSK and CDR-QPSK is shown in Fig. 4. In the single-channel case the optimum launch
power for PM-QPSK and CDR-16QAM was −1 dBm, for CDR- and PCTW-QPSK the opti-
mum launch power was 3 dBm. In the WDM case, the optimum launch power for PM-QPSK
was −1 dBm. For PCTW-QPSK and CDR-QPSK the optimum launch power was 2 dBm in-
dicating that the mitigation of nonlinearities is less efficient in the WDM case, as expected.
The transmission reaches are compared at the BER of CDR-QPSK at the distance where the
dispersion map is symmetric, 16,000 km for single channel and 12,000 km for WDM. In the sin-
gle channel case, the transmission reach of PM-QPSK is 8,000 km. The reach of CDR-QPSK
is 16,000 km, i.e. an increase by approximately a factor of 2. The reach of PCTW-QPSK is
16,480 km, an increase by approximately a factor of 2.1. For WDM, the transmission reach of
PM-QPSK is 6,800 km while the reach of CDR-QPSK and PCTW-QPSK is 12,000 km corre-
sponding to an increase by a factor of 1.8. It is important to point out that we are propagating the
signal in SMF. In previous demonstrations of PCTW, fibers with other parameters have been
used that can give larger relative gains in transmission reach [5]. It is clear from the relative
reach increase that the concept of CDR in the same way as channel-wise PCTW becomes less
efficient in a WDM scenario because of inter-channel nonlinear effects. These results indicate
very similar performance when comparing PCTW-QPSK to CDR-QPSK. In an effort to use
the concept of CDR without sacrificing SE compared to PM-QPSK, a single-channel CDR-
16QAM system was also simulated, the results from these simulations are shown in Fig. 3a.
However it is clear that in the same way as for PCTW-16QAM [5], it is not possible to increase
the transmission reach while maintaining SE.

Simulations were also performed to evaluate the performance of CDR-QPSK in a single-
channel system with low-noise optical amplifiers with a 3-dB noise figure. For these simu-
lations the dispersion map was symmetric at a distance of 23,200 km. The results from these
simulations are shown in Fig. 5a. In this case, the transmission reach of PM-QPSK is 11,440 km
while CDR-QPSK has a transmission reach of 23,200 km leading to approximately the same in-
crease in transmission reach by a factor of 2. The impact of the dispersion map design was also
studied by evaluating the system performance with dispersion maps that are not perfectly sym-
metric. The BER as a function of dispersion pre-compensation for single-channel 56 GBaud
CDR-QPSK over a 16,000 km link is shown in Fig. 5b. Interestingly we see that the minimum
BER is not at 50 % dispersion precompensation as the first-order theory of Section 2.1 predicts
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line) and 56 Gbaud CDR-QPSK at 16,000 km (green line).

0     10,000 20,000 30,000
10 −4

10 −3

10 −2

Transmission Reach [km]

B
ER

 

 

PM−QPSK
CDR−QPSK

−2 dBm 2 dBm

(a)

0  25 50 75 100
0

1

2

3

4

5 x 10 −3

Dispersion precompensation [% of link]

B
ER

 

 

with inline ASE noise
without inline ASE noise

(b)

Fig. 5. (a) The BER as a function of transmission distance for single channel 28 GBaud PM-
QPSK and 56 GBaud CDR-QPSK in a system with 3 dB noise figure optical amplifiers. The
optimum launch powers are specified in the figure and the distance where the dispersion
map is symmetric is marked with a vertical red line. (b) The BER of single channel 56
GBaud CDR-QPSK as a function of dispersion pre-compensation with a link length of
16,000 km, with and without ASE noise added by inline amplifiers.

but at approximately 40 % dispersion precompensation. A possible explanation for this is that
the signal-noise and higher-order nonlinear interactions become stronger the further the signal
has propagated, leading to less efficient mitigation of nonlinear effects generated closer to the
end of the link. In order to investigate this further we turned off the addition of ASE noise in
the inline EDFAs. When running these simulations, the optimum point moved very close to
50 %. This indicates that the main reason behind 40 % being the optimum amount of disper-
sion pre-compensation in the CDR system is signal-noise interactions. However, the difference
in performance is very small so that a perfectly symmetric dispersion map can be used with a
negligible penalty.

4. Conclusion

We have demonstrated theoretically why it is possible to mitigate nonlinear effects using CDR.
The analysis is based on a first order time-domain perturbation analysis and shows how the
nonlinear perturbations from different pulse triplets cancel out after linear superposition when
using a symmetric dispersion map. Simulations were performed to quantify the transmission
reach of CDR-QPSK in comparison to PM-QPSK and PCTW-QPSK. At the same channel bit
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rate, the transmission reach of CDR-QPSK is increased by a factor of 2 in a single channel sys-
tem and by a factor of 1.8 in a WDM system when compared to PM-QPSK. With an effective
length Leff = 21 km, the total nonlinear phase shift ΦNL = NspanLeffPlaunchγ = 2.1 radians for
the PM-QPSK system at 8,000 km and 10.7 radians for CDR-QPSK at 16,000 km showing an
increased tolerance against nonlinear effects by more than a factor of five. The transmission
reaches of PCTW-QPSK and CDR-QPSK are similar so it is hard to favor the use of CDR over
PCTW from a performance perspective. However there are differences in the implementation
of the two different formats which could make CDR attractive in some scenarios. One impor-
tant difference is that the conventional CMA algorithm works for a CDR-QPSK signal while it
will not work for a PCTW-QPSK signal. If CDR is used as a fallback solution in a PM-QPSK
system using the conventional CMA algorithm for polarization demultiplexing and equaliza-
tion, the equalizer could be run without modifications. We have also shown that in the same
way as for PCTW, it is not possible to use CDR together with 16QAM to improve transmission
reach at the same time as maintaining SE. It is also worth noting that we have demonstrated
mitigation of nonlinearities even though the CDR signal is complex-valued, in contrast to the
signal of PCTW which is real-valued under certain polarization rotations [4]. Finally we have
shown in our simulations of a CDR-QPSK system that the optimal amount of dispersion pre-
compensation differs from the 50 % predicted by the first-order theory. The simulations show
that the optimal amount of dispersion pre-compensation is approximately 40 %, mainly due to
signal noise interaction. However it is also important to note that the penalty caused by using
50 % dispersion pre-compensation instead of 40 % is very small.

Appendix: Perturbation analysis of a specific pair of pulse triplets

The following analysis shows that the perturbations generated by the triplets
(k, l,m) = (2N,2M,2N +2M) and (k, l,m) = (2N +1,2M+1,2N +2M+1), where M
and N are arbitrary integers, cancel out in the linear superposition of Eq. (1). The perturbations
are evaluated at two points along the link with accumulated dispersion ±B0. According to
Eq. (5), the perturbation generated in pulse slot 0, the signal pulse of super-symbol C0, during
propagation from B0 −ΔB to B0 +ΔB, by the pulse triplet (k, l,m) = (2N,2M,2N +2M) is

ψP,(2N,2M ,2N+2M)(B0,0) =

iaNaMa∗N+M

∫ B0+ΔB

B0−ΔB

γ p(B)√
3|B|e

i 12ν2NM−1
3B

t2
0

β2
dB = iaNaMa∗N+MR2N,2M, (7)

where Rk,l is the value of the integral. In the same way we can find the perturbation generated
during propagation from −B0 −ΔB to −B0 +ΔB to be

ψP,(2N,2M,2N+2M)(−B0,0) = iaNaMa∗N+MR∗
2N,2M, (8)

since a change in the sign of B leads to conjugation of the value of the integral. Also in order for
the integrals to be equal, we assume a symmetric power map, i.e. p(B) = p(−B). Next, Eq. (6)
is used to calculate the perturbation generated in pulse slot 1, i.e. the conjugate pulse of super-
symbol C0, by the pulse triplet (k, l,m) = (2N + 1,2M + 1,2N + 2M + 1) during propagation
between B0 −ΔB and B0 +ΔB to be

ψP,(2N+1,2M+1,2N+2M+1)(B0,0) =

ia∗Na∗MaN+M

∫ B0+ΔB

B0−ΔB

γ p(B)√
3|B|e

i 12ν2NM−1
3B

t2
0

β2
dB = ia∗Na∗MaN+MR2N,2M, (9)

and at negative B0

ψP,(2N+1,2M+1,2N+2M+1)(−B0,0) = ia∗Na∗MaN+MR∗
2N,2M. (10)
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If we do coherent superposition of the nonlinear perturbation terms according to Eq. (1) we get

ψP,(2N,2M,2N+2M)(B0,0)+ψP,(2N,2M,2N+2M)(−B0,0)+(
ψP,(2N+1,2M+1,2N+2M+1)(B0,0)+ψP,(2N+1,2M+1,2N+2M+1)(−B0,0)

)∗
=

iaNaMa∗N+MR2N,2M + iaNaMa∗N+MR∗
2N,2M+(

ia∗Na∗MaN+MR2N,2M + ia∗Na∗MaN+MR∗
2N,2M

)∗
= 0, (11)

i.e., the perturbations cancel out in the superposition operation of Eq. (1).
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