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For my girls





Measure what is measurable and make measurable what is not so.
- Galileo Galilei ∗

∗Most often attributed to Galileo, although evidence suggests that he may not in fact be the
source of the quote [1].
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Preface

If someone would have asked me if I wanted to pursue doctoral studies when I
was still studying for my M.Sc. I would most likely have replied something like:

” Getting a Ph.D. is just for the ones who fail to get a real job.”

It was a longstanding joke among me and my friends whenever wewere taught
by an eccentric doctor or doctoral student, that pursuing anacademic career was
for those who did not quite cut it in ”the real world”. In retrospect it is more of
a joke on us that the great majority of me and my friends from Linköping now
either have, or are about to earn, our Ph.D. degrees.

Also, if someone would have asked me whether I would have considered
automation as a subject, I would most likely have been skeptical to say the least.
My master’s degree is in Engineering Biology and before I gotto University
West I had never been acquainted to anything similar to production technology or
automation. Then, one might wonder, how did I end up replacing biosensors and
macromolecular chemistry with robot programming and welding? I have asked
myself the same question many times for the past years. I guess the answer is
related to my curiosity and ambition to learn a bit about everything. Anna-Karin
challenged me, but also believed that it was possible for me to change horses in
midstream, and I guess that this book serves as proof that shewas correct, as
usual.

I am convinced that I am not the first to develop a love-hate relation to my
thesis subject. Many days when I was going to the lab, I have felt a pressing
feeling of anxiety as to ”what is going to break or go wrong today?”. But also
when things have actually worked, more or less the way they should, I have been
literally dancing around and cheering outside the cell. During the most stressful
and hard periods, Anna-Karin’s encouragement and never-ending positive atti-
tude has helped a lot. Although I have at times almost felt provoked by your way
of always seeing the best in situations and people, Anna-Karin, I have learnt a
lot from it.

I have really enjoyed the past years and I will always cherishthe great work-
ing environment at PTW created by my dear colleagues. There will surely be
times when I will miss being a Ph.D. student, with many possibilities and still
quite few responsibilities, but today I long for the next step.
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PREFACE

Since this thesis is the most concrete result of my work, I would like to give
some encouraging words to whoever you are attempting to readit. If it seems
hard to grasp, difficult to understand or just quite boring, you are more or less
sharing the feelings I had when I wrote it. In that case, I recommend making
yourself a cup of good tea and putting on some music that you like. Then when
you return to reading again, the text will be no easier to understand, and it will
not miraculously have turned into great literature. But while you keep struggling,
you will at least have something good to drink and to listen to. Happy reading!

PETTER HAGQVIST
Trollhättan, January 2015
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denoting a regression vector, which is standard in control science.
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Abstract

For integration of additive manufacturing into industrialproduction, there is a
need for capable yet robust automation solutions. Such solutions are to ensure
consistent process outputs, both with regard to deposit geometry and material
properties. In this thesis, instrumentation and control solutions have been in-
vestigated for the laser metal wire deposition additive manufacturing process.
This particular process is promising with regard to e.g. high deposition rates
and negligible material waste. However, due to its inherentdynamics, it requires
automatic control in order to prove competitive.

A large number of process parameters affect the resulting quality of the de-
posit. Successful control of these parameters is crucial for turning laser metal
wire deposition into an industrially tractable process. This requires relevant and
reliable process information such as the temperature of thedeposit and the posi-
tioning of the tool relative to the workpiece. Due to the particular requirements of
instrumenting the process, only non-intrusive measurement methods are viable.
In this thesis, such measurement solutions are presented that advance automatic
control of the laser metal wire deposition.

In response to the need for accurate temperature measurements for the pro-
cess, a new temperature measurement method has been developed. By adopt-
ing the novel concept of temporal, rather than spectral, constraints for solving
the multispectral pyrometry problem, it opens up for temperature measurements
which compensates for e.g. an oxidising deposit.

For maintaining a good deposition process in laser metal wire deposition,
control of tool position and wire feed rate is required. Based on measurements
of resistance through the weld pool, a simple yet well performing control system
is presented in this thesis. The control system obtains geometrical input infor-
mation from resistance measurements madein-situ, and feeds this information
to an iterative learning controller. This results in a robust, cheap and practical
control solution for laser metal wire deposition, which is suitable for industrial
use and that can easily be retrofitted to existing equipment.

Keywords: Additive Manufacturing, Automation, Emissivity, Emissivity Com-
pensated Spectral Pyrometry, Laser Metal Wire Deposition,Metal Deposition,
Pyrometry, Resistance Feedback Control, Thermometry
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Introductory chapters





Chapter 1

Introduction

1.1 Background

Metal additive manufacturing (AM) comprises of technologies which produce
net-shaped or near net-shaped components in metal. These components may be
solid or hollow and of various geometrical complexities, but they are all pro-
duced as a means of manufacturing a final product and not only for prototyping.
The components are typically built up layer by layer throughmelting or fusing
material in a certain two dimensional pattern as indicated in Figure 1.1. Sev-
eral layers with suitable patterns are deposited on top of each other resulting
in the component’s final shape. The metal additive manufacturing technologies,

Figure 1.1: Illustration of the AM principle. A computer drawing of a component is
sliced into several two dimensional layer patterns. These patterns are deposited on top
of each other, forming the component’s geometry.

throughout this thesis simply referred to as AM-technologies, excluding polymer
and ceramic AM technologies, are based on a number of different energy sources
and material feedstocks. They provide extended means for the manufacturing in-

1



CHAPTER 1. INTRODUCTION

dustry to cut lead times and production costs substantially, especially for small
series [2]. AM technologies even allow for completely new concepts of manufac-
turing components, which combine several different manufacturing technologies
and maximises the strengths of each of them. Additive manufacturing provides
enabling technologies that can provide the last building block required for replac-
ing conventional manufacturing technologies, such as machining and casting, for
certain applications [3]. Some of the AM technologies are also very well suited
for repairwork and modifications of preexisting component geometries [2,3].

Metal additive manufacturing has existed for several decades and been im-
plemented in many forms during that time [2, 4]. The advent ofthe industrial
lasers and developments in welding technology caused an increase in research,
publications and patents in the 1980’s. During the last decennia, the technologies
have been further developed and commercialised and are evensold as turn-key
systems [5–8].

Motivations for additive manufacturing

AM technologies offer a lot of advantages when compared to the alternatives.
AM provides the possibility to quickly produce finished components which only
require moderate post-processing, if any at all. For applications where flexibility
is vital, the ability of AM technologies to adapt productionto today’s or tomor-
row’s requirements is most desirable. Typically, an operator should only have
to upload a CAD/CAM file to the AM system and the component is produced
without intermediate steps. The ability to perform AM in-house might also re-
duce dependence on subcontractors and reduce transports needed both inside and
outside the production facility [2].

Compared to machining, material waste and production timescan be reduced
considerably. Casting is another competing technology which has significant
weaknesses compared to AM, especially for small series. In some cases compo-
nents produced by AM exhibit better material characteristics than castings and
AM-parts do not have to be produced at a foundry [3]. Also, AM offers possi-
bilities of producing more complex geometries than what would be advisable for
casting. The improved material characteristics and increased design freedom al-
low for more optimal component design with reduced weight and material usage,
which in turn lead to more sustainable product.

For repair applications, the benefits are quite obvious. Instead of scrapping
an entire component, the damaged portion is removed, usually by machining
away material. The removed material is then replaced with new, added material,
restoring the component geometry. AM also allows for gradedcomposition of
materials where costly high performance materials are onlyused where needed,
and cheaper materials are used for bulk and low stress areas of the component [2,
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3].
The drawbacks of AM mainly comes down to a few points:

• Depending on the process, the resulting material quality may vary through-
out the component due to process disturbances, such as temperature buildup.

• Mitigating such disturbances by employing a control systemhas proven
challenging [2,3], a situation which is illuminated also inthis thesis.

• AM systems have typically been aimed at smaller components and these
systems do not scale up easily.

• Investment costs for investing in a physical system and for training might
deter the industry from adopting AM.

• Being new and somewhat untested technologies, AM systems are not as
well established as their conventional alternatives. In addition, manufac-
turing standards for AM are not yet agreed upon except for certain appli-
cations. The safe route might therefore be to go with what is trusted and
known when a decision on how a components should be manufactured is
made.

AM is not suited for replacing conventional manufacturing processes in all or
even a majority of the cases. But for some applications, the adoption of AM
technologies is very rewarding. For the developers and suppliers of AM sys-
tems, identification of these applications might however prove to be just as a
challenging task as technology development itself.

Available technologies

There is a wide range of technologies available on the marketand under develop-
ment. Their main differences lie in how the material is conveyed to the process
and which power source is used for restructuring or melting the material.

Powder bed systems

The perhaps most well developed technology within AM, with many commercial
systems available, is the powder bed based system. A thin layer of metal pow-
der is distributed on a platform and is selectively melted bymeans of a power
source and re-solidifies, fusing the powder into the desiredgeometry. Another
powder layer is placed on top of the previous one and is selectively melted just
like the layer before. Through this stepwise procedure of distributing powder
layers and selectively melting them, it is possible to manufacture very complex
parts. Hollow, or even counter-intuitive geometries, suchas the Klein bottle
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Figure 1.2: Klein bottle manufactured using a powder bed process.

shown in Figure 1.2 can be created with these methods. Usually powder bed AM
systems give very good geometrical accuracy and allow for very high degrees
of design freedom [9]. However, surface finish, size limitations and production
speed might be substantial problems when utilising these methods.

Electron beam power source Arcam AB, is a Swedish company, which has
developed the combination of powder bed and electron beam technology. They
have been very successful in producing orthopaedic implants [10], and also mar-
ket products towards the aerospace industry [7]. Because ofthese application
areas, Arcam has specialised in titanium and cobalt-chromealloys. Process-
ing takes place in a low pressure processing chamber and resulting material is
claimed to be better than cast material and comparable to wrought material [11].
The use of electron beams offers the possibility of tuning surface parameters
such as porosity and roughness. The largest build envelope offered by Arcam
today is∅350×380mm with their Q20 machine [12].

Laser power source The use of a laser power source together with powder
bed technology is a relatively well established technologywith a number of
companies offering complete solutions [4, 13–16]. They allshare strengths and
weaknesses. These systems, often denoted Selective Laser Melting (SLM), are
well suited for smaller components with complex geometries, thin walls, hollow
structures etcetera. For some applications however, surface roughness is rela-
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tively high due to entrapped semi-molten powder particles.Hence, the finished
component might require post-processing such as milling. The use of a pro-
cess chamber also severely limits the size of produced components. This, along
with a relatively slow production speed, makes the technology mostly useful for
smaller components manufactured in small series. Using laser as a power source
allows for use in atmospheric pressure since it is not deflected, like an electron
beam is, by gas residing in the chamber. Considering the resulting material,
studies have shown that static mechanical properties are, although somewhat
anisotropic, comparable to those of wrought material whilethe fatigue strength
is decreased compared to conventional materials [9]. The previously used range
of materials include stainless steel, tool steel, cobalt-chrome, titanium and alu-
minium alloys.

Laser powder deposition

There are quite a few suppliers of systems which rely on powder being fed
through a nozzle into a weld pool which is created by a laser source [2, 17, 18].
Material is deposited, by melting and subsequent solidification, side-by-side and
layer upon layer. This technology, in this work referred to as laser metal powder
deposition (LMD-p), enables buildup of larger components than what is possi-
ble with powder bed solutions while still retaining good dimensional accuracy.
Usually, a powder delivery system delivers the powder through a nozzle which is
more or less integrated with the laser optics. The deposition tool can be mounted
onto either a robot or a NC-type movement actuator. The downsides of this tech-
nology lie in the fact that the use of powder might result in porous material if
not enough care is taken tuning the process. Furthermore, the handling of pow-
der requires health and safety precautions along with a powder collection system
for excess powder not fused into the deposit. Recycling of powder is currently
investigated by powder suppliers but proves hard to certifyfor high spec applica-
tions. Material used with this technology include: mild steel, Al-, Nb-, Ni-, Co-,
Cu- and Ti-based alloys. Due to the technology’s potential for processing exotic
materials which are otherwise hard to process, much work hasbeen spent inves-
tigating high temperature materials such as highly alloyedNi [2]. The material
characteristics are highly dependent on process parameters and may be tuned to
suit the target application. In general terms, laser powderdeposition allows for
larger build envelopes and higher deposition rates than powder bed solutions. In
turn, the solutions based on nozzle-fed powder achieve lower dimensional accu-
racy and less control of deposit material characteristics.
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Figure 1.3: Examples of laser wire deposition components manufactured at University
West.

Wire deposition

The main advantages of the wire deposition processes are dueto that, since wire
is used, all material is utilised and high deposition rates are possible. However,
the wire processes prove hard to control and commercial systems are typically
less developed than the powder based methods [19, 20]. Similarly to LMD-p,
described above, the build envelope of wire deposition technologies is typically
only restriced by the reach of the manipulator robot or gantry.

At University West in Trollhättan Sweden, a long-standing cooperation with
GKN Aerospace (formerly Volvo Aero) has resulted in a technology called robo-
tised laser metal wire deposition, in this work abbreviatedLMD-w. The technol-
ogy has proven to give aerospace specification grade deposits of titanium al-
loy [3] and is today used by GKN in production. Standard laserwelding equip-
ment such as a6 kW fibre laser, focusing optics and a robot is combined with
custom monitoring and control systems for successful deposition. This system,
although not yet productified, has proven to overcome some ofthe process’ in-
herent difficulties such as weld pool instability, poor material fusion and poor ge-
ometrical accuracy [3]. This technology also requires little or no post-machining
of parts for geometrical accuracy and surface finish. Examples of titanium de-
posits made with LMD-w are shown in Figure 1.3. This technology and the
associated process is at the center of this thesis and the subject of study. Sim-
ilar, but independently developed, technologies has been investigated and de-
scribed by Miranda et al. [21] as well as Syed et al. [22, 23]. Brandl et al. have
also investigated combined use of laser with wire feedstockfor additive man-
ufacturing [24–26]. The company Norsk Titanium uses another power source
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for depositing titanium. A plasma is used for melting the wire, which allows
for cheaper hardware and possibly a process which is less susceptible to distur-
bances than when using a laser [27]. However, deposited components require
post-process machining due to oxide scaling of the material. Despite this draw-
back, Norsk Titanium has proved that plasma based wire deposition is a viable
business case with high value for the customer. A critical element in this is to
quickly generate parts directly from a CAD-model without any manual adjust-
ments.

Another wire deposition technology, which is developed by Sciaky Inc. is
the use of an electron beam together with wire. Automatic processing of CAD-
models and their deposition technology allows for easy prototyping and pro-
duction of large scale components as large as5.5×1.2×1.2m directly from the
computer to the ready-for-machining component [8].

Cranfield University and Rolls Royce Inc. have jointly developed a technol-
ogy for depositing wire using a Tungsten Inert Gas (TIG)-weld source called
shaped metal deposition (SMD). A robotic arm is used together with path gen-
eration algorithms and automatic control of deposition. Much effort has been
addressed to material properties and evaluation [28–31]. This technology has
been extended and further developed by Cranfield Universityinto the Wire and
Arc Additive Manufacture (WAAM) process. The WAAM technology encom-
passes a variety of arc energy sources such as Cold Metal Transfer (CMT), DC
and AC TIG, Tandem Metal Inert Gas (MIG) as well as plasma [32,33]. A
number of academic publications describe the WAAM technology, both with re-
gard to material properties [34–39] and with regard to the process and process
control [34,40–43].

Fabrication strategies with additive manufacturing

The ability to use additive manufacturing technologies allows designers much
greater freedom when designing components, both with regard to load dimen-
sioning, materials used and possible geometries. Instead of casting or machining
entire components, geometrically complex parts of the component can be cast
or machined and then welded together or onto high strength sheet or bar mate-
rial. Smaller features such as stiffeners or welding preps can then be deposited
with AM. The possibilities and benefits of this fabrication strategy are many.
Weight can be saved through using higher specification materials, which allow
for weight optimised components. Higher geometrical freedom gives possibil-
ities to manufacture near optimal structures instead of being limited by a con-
ventional manufacturing method. Minimising the use of castings will decrease
the reliance on foundries and enable a larger part of the component value to be
generated within one manufacturing plant. Even though moreprocessing steps
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might be introduced, the steps performed might still be faster than machining or
casting an entire component. When introducing a fabrication concept into pro-
duction and design, AM technologies are essential for adding component parts
which are not easily manufactured with any other method. AM is very well
suited for creating flanges and stiffeners due to the abilityto add material onto
existing parts whereas most other processing methods removes material [3].

1.2 Previous work within LMD-w

Using wire as filler material for laser metal deposition shows great potential
when prioritising relatively simple geometries depositedat high speed. No com-
plete LMD-w systems are however available as a ready to use products, which
can be bought as of today to the author’s knowledge. One of themain reasons
for this is the very nature of the process which is typically hard to predict and
control. A good result has up until recently been totally dependent of a skilled
operator. In 2012 Almir Heralić defended his thesis”Monitoring and Control of
Robotised Laser Metal-Wire Deposition”in which he describes a way to use an
automatic geometry control system [3]. This control systemis shown to give a
stable process, which results in a deposit with dimensions well within tolerances.

Control of laser metal wire deposition

When developing LMD-w further, there are quite a few hurdlesto overcome.
Ensuring a stable process when the deposition speed is varied is one challenge.
Another challenge arises when processing different materials. Different mate-
rials behave differently, for example their melting temperatures, surface tension
and specific heat capacities differ [44]. In addition to these inherent physical
properties, different materials require different thermal management strategies in
order to control e.g. hardening and crack formation [45]. These effects require
tailoring of process parameters to each new material processed. Also, since the
geometry of the deposit and the fixture used will affect the thermal dissipation
and buildup of temperature, process parameters might have to be adjusted during
deposition depending on the specific deposit and fixture.

One major prerequisite for mitigating the problems mentioned above is the
ability to measure critical process parameters such as weldbead shape and tool-
to-workpiece distance. Another of these important parameters is temperature.
Measuring temperature accurately is however not a simple task since contacting
temperature measurement methods are not an option. This is due to the LMD-w
process itself. It is impossible to use contact thermometryon a structure which
is built up during processing. Also, the deposited materialmust not be contam-
inated by any foreign material such as a contacting temperature probe. Further,
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laser reflexes which may damage sensitive equipment and limited space for at-
taching instruments make the problem even more intricate.

Previously, Heralíc has implemented cameras for monitoring and automatic
droplet detection. A laser diode and a laser line scanner have been introduced for
height measurements, and a thermal camera for temperature field monitoring [3].
The laser line scanner and the cameras required cooling and protection from laser
reflexes, in order to operate successfully in within the processing chamber.

1.3 Process monitoring and control of AM processes

In this section, measurement and control solutions for AM processes, excluding
LMD-w , are described in order to give an overview of related work. Some com-
ments on the methods’ suitability for LMD-w are also given. Due to the inherent
nature of the AM processes, non-contact measurement methods are essential in
understanding and monitoring laser metal deposition processes. However the
powerful laser and the blackbody radiation from the weld pool demands careful
filtering and smart positioning of measurement instrumentsand devices.

Cameras

A number of articles make use of cameras for geometrical observations of AM
processes: [46–53]. Cameras are used for estimation of angles, weld pool di-
mensions, positioning of the nozzle and estimation of powder velocities. In the
related field of laser welding monitoring, specialised camera solutions have pre-
viously been employed to give insight into the fluid flow and dynamics of the
melt established by the laser [54].The main problem in usingcameras as sensory
equipment is to find placements that will not interfere with the deposition pro-
cess. Since the goal of camera monitoring typically is to gain information about
the actual processing, the camera should be aimed at the weldpool. Placing the
camera close to the laser optics, onto the manipulator tool,makes the camera
follow the weld pool and allows for good resolution due to theshort distance
to the weld pool. A placement parallel to the laser gives a lotof space for the
robot to move around, if a robot manipulator is used, but it will only give a top
view of the process. Attaching a camera perpendicular to thelaser will give a
much better view, but on the other hand it restricts manipulator movement and
requires a large chamber, if a chamber is used. Saturation ofCCD-sensors due
to thermal radiation and high power laser reflexes also causeproblems that are
best countered with careful filtering and positioning.
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Pyrometers

Pyrometers have found extensive use in previously reportedworks [46,51,52,55–
57] for temperature monitoring. The main use of pyrometers is to monitor weld
pool temperature automatically while depositing material. The weld pool tem-
perature affects resulting deposit material properties and the weld pool geometry
in all three dimensions. The main problem with pyrometers isthe wavelength
and temperature dependent emissivity of the material as explained in Paper 1.
Using a multi-wavelength pyrometer or spectrometer together with careful cali-
bration could possibly resolve this issue as described in Paper 1 and Paper 2.

Photodiodes

In papers by Leong et al. and Bi et al., photodiodes are used for temperature
measurement [58, 59]. However, as the signals received are very difficult to cal-
ibrate to true temperature values, they only give temperature dependent signals
and not absolute temperature signals. Such temperature dependent signals may
however be analysed for e.g. derivatives, transients and trends. Photodiodes are
also limited by low spatial resolution, which makes it hard to attribute readings
to any particular location in or near the weld pool [56].

Automatic AM process control

There are several articles discussing automatic control oflaser deposition pro-
cesses [31, 50, 52, 60–64]. Toyserkani and co-authors describe several systems
in their book ”Laser Cladding” [2]. Most of the articles discuss LMD-p in two
dimensions (thin wall/arced wall) and use geometry and temperature information
for automatic control, typically in feedback configurations.

For the TIG-based SMD process, many systems for automatic control have
been implemented [28,30]. Cameras, microphones, IR-phototransistors, thermal
cameras, and voltage measurements are used for automatic control of e.g. input
power or material feed rate.

1.4 Scope of work

In many ways, the LMD-w process challenges automation efforts. It is a sensitive
and typically unstable process with high demands on precisecontrol [3]. At
the same time, instrumentation proves difficult due to demands on non-contact
instruments, high temperatures and the presence of laser reflexes. This thesis
is focused on instrumentation and estimation solutions forthe LMD-w process,
which are able to give essential information when it comes toeither controlling
the process or relating key parameters to a certain result. Quite a lot of effort
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has been put into identifying suitable instrumentation solutions. Out of many
concepts and ideas, two are investigated within the scope ofthis thesis.

The larger portion of the thesis addresses non-contact temperature measure-
ments and varying emissivity, due to the complexity of the subject. Resistance
measurements are discussed to a lesser extent, but it is based on concepts that
are more familiar for readers with a general technical background, and therefore
require less introduction.

Temperature measurements

With temperature being a very important parameter within LMD-w and other
processes, the question of accurate temperature measurements is given much
attention in this work. Questions of instrument calibration with regard to emis-
sivity and emissivity variations are discussed in depth. Sources of emissivity
variation such as oxidation, surface restructuring and temperature dependences
are introduced and related to their relevance for industrial applications. How
multispectral information can be used to overcome problemsassociated with
varying emissivity is investigated and compared to conventional methods. This
multispectral concept is interesting both for LMD-w and forother industrial ap-
plications, since temperature is a parameter that is often monitored or controlled
for material quality purposes. In addition to the multispectral method itself, an
auxiliary signal processing procedure is presented, whichstrengthens the tech-
nology’s position in terms of implementation in industry.

Resistance measurements and control

One method, which is investigated for LMD-w control, is monitoring of the wire
and weld-pool resistance. How this can be measured in practice and how the
signal can be filtered and integrated into the control systemis discussed. Imple-
mentations of process control solutions, based upon resistance based measure-
ments, are carried out and discussed from practical perspectives. The integration
of resistance measurements into an iterative learning control scheme, previously
utilised with laser scanning data, is investigated and is also the topic of Paper 6.

1.5 Research questions

The fundamental initial research question, established early in this work was:

What measurement solutions could prove beneficial for LMD-wpro-
cess control and diagnostics?

With time, this general question was simplified and refined into the following
research questions that constitute the subject of this thesis:
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Q1 How can measurement systems for LMD-w be implemented and evaluated
in order to extract the essential information from the process?

Q2 How can temperature be accurately measured for the LMD-w process?

Q3 In the case of an oxidising metal object, how can accurate non-contact
temperature measurements be made despite the varying emissivity?

Q4 How can resistance measurements be used for monitoring or controlling
the LMD-w process?

1.6 Limitations

The main limitation of this thesis is that the work performedstems from the re-
quirements on non-intrusive instrumentation and estimation of the LMD-w pro-
cess. This is the setting in which the work has been conducted, resulting in the
direction of this thesis and the papers included. The applications of the results of
this thesis is not limited to only LMD-w, but the reader should keep in mind that
the developed technology was first intended to benefit monitoring and control of
LMD-w.

The scope of this thesis does not include control strategiesin a control theory
sense. Such methods have been previously developed by Heralić [3] and are only
briefly discussed in this work. Process controllers, which prove to be functional,
are implemented in Paper 5 and Paper 6, but a thorough study ontheir suitability
is not conducted. Further, discussions on laser welding, welding in general, and
materials science are left out of this work. These subjects,along with others, are
however very important when developing LMD-w , and the author has spent a
considerable amount of time and effort penetrating these areas, even though they
are not discussed in this thesis.

The equipment available to the Production Technology West (PTW) research
group at University West has limited some of the work. For example, ellipsomet-
ric measurements, for which PTW lacks equipment, could havefurther strength-
ened the hypotheses in Paper 1. The material and equipment used at University
West are described in detail in Section 2.2. In addition to the experiments per-
formed at PTW, a handful of tests have been performed at the Department of
Microtechnology and Nanoscience at Chalmers and together with Swerea IVF
in Mölndal.

1.7 Contributions

The contributions of this thesis are listed below. Their relations to the research
questions and the publications are presented in Table 1.1.
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Q1 Q2 Q3 Q4

Pyrometer calibration C1 Paper 1 Paper1
Emissivity of Ti6Al4V C2 Paper 1

Multispectral method C3 Paper 2 Paper 2&3
Validation of multispectral method C4 Paper 2 Paper 2&3

Automatic calibration method C5 Paper 4 Paper 4 Paper 4
Resistance measurementC6 Papers 5&6 Papers 5&6

Resistance for ILC C7 Paper 6 Paper 6

Table 1.1: Contributions and their relations to research questions and papers.

C1 A procedure for pyrometer calibration using thermocouplesand induction
heating.

C2 An investigation of the varying emissivity of Ti6Al4V and its impact on
non-contact temperature measurements between750K and1550K.

C3 A multispectral temperature measurement method that compensates for
variations in emissivity.

C4 Validation of the method in C3 in terms of experiments and simulations.

C5 An automatic method for calibrating the multispectral temperature mea-
surement method in C3.

C6 A method using resistance measurements for monitoring and control of
LMD-w.

C7 Resistance measurements used as input to an iterative learning controller
(ILC) for wire feed rate control of the LMD-w process.
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1.8 Outline

The remainder of this thesis is outlined as follows. First, the LMD-w process
is introduced in Chapter 2. Following that, process measurements and process
control are discussed in Chapters 3 and 4 respectively. Temperature measure-
ments are then discussed with emphasis on non-contact thermometry methods in
Chapter 5. In Chapter 6, a novel temperature measurement method, developed
as part of this thesis, is presented. Following those theoryoriented chapters is a
summary of the included papers in Chapter 7. Part I ends with the conclusions
and discussions on future work in Chapter 8.

In Part II, a total of six peer reviewed scientific papers are included. One of
these is a conference contribution and five of them are journal contributions. Out
of the journal contributions, one is currently resubmittedafter revision while the
others are published.

14



Chapter 2

The laser metal wire deposition
process

In this chapter, the LMD-w process is presented briefly. The process and the
equipment used are introduced. The measurement and controlstrategies for
LMD-w are discussed in Chapters 3 and 4 respectively.

2.1 Deposition process

Laser metal deposition with wire (LMD-w) is a process wherein a metal wire is
melted onto a substrate to form resolidified weld beads. These beads are placed
side-by-side and layer-upon-layer to form a deposit as indicated in Figure 2.1.

Performing laser metal deposition with wire as filler material is a far from
trivial task. Assuming a suitable system is available, an operator will first have
to establish parameters for deposition. Such parameters might be laser powerPL,
traverse speedvt, as actuated by a robot manipulator, wire feed ratevw, wire and
laser incidence angles relative to the substrate,αw andαL respectively, as well
as wire stick-out lengthl as indicated in Figure 2.2. When employing hot-wire
techniques, which introduce energy in the form of resistiveheating to the weld,
also wire current has to be set appropriately. Once such parameters are available,
through former experience or through a trial-and-error procedure, a deposition
pattern has to be created. It could be generated automatically, as described by
Ericsson et al. [65], or created manually by the operator. Inaddition to manual
creation of deposition patterns and robot code, software for pattern generation
has been developed by the author in MATLAB, later discussed in Section 2.2.
This software allows the operator to design a pattern semi-automatically. The
operator is able to script the generation of a geometry or generate it manually by
adding positions one-by-one, visualise the geometry and generate the robot code
automatically.
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Figure 2.1: Build-up of deposit by layer-wise deposition ofweld beads. The high-power
laser radiation (omitted from illustration) melts the wire(a) and the substrate (b) as wire
is fed into the weld pool (c) by the nozzle (d). The depositiondirection indicated is the
relative movement of the wire feeder nozzle to the substrate/deposit.

A deposition pattern should not only result in a desirable geometry but also
incorporate acquired knowledge regarding heat build-up, weld pool flow, possi-
ble laser reflections and productivity strategies among other issues. Such a pat-
tern must then be translated into robot instructions, whichwith the system used
at University West, means ABB RAPID code. With a set of generated robot
instructions, it is possible to start deposition performing the following steps.

1. Upload the robot code to the robot controller. In order to minimise oxi-
dation, fill the process chamber with argon gas and await sufficiently low
oxygen levels.

2. Initialise the deposition system by engaging the laser source and beam
switch, camera cooling, weld source, oxygen meter and othercontrol and
security systems.

3. Deposit a bead of molten material onto the substrate or previous layer.
Repeat until a whole layer is deposited. If resistance measurements are
made, these are collected and stored during this step.

4. Optionally, scan the deposited layer geometry if using a laser scanner.
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Figure 2.2: Left: wire plunged into weld pool (red) by tool nozzle. Right: geometrical
parameters.

5. Compute a control signal for next layer, either based on laser scan result
or on resistance measurements.

6. If not enough layers have been deposited, return to step 3,otherwise depo-
sition is finished.

2.2 Equipment

A large number of components constitute the system used for LMD-w at Uni-
versity West, used by the author. The most important ones arediscussed in this
section. Due to the high power laser used for deposition, allmonitoring, su-
pervision and control must be performed from outside the processing cell. This
situation requires reliable instruments, which can supplyan operator and the
control system with information with minimal time lag. In Figure 2.3, the equip-
ment described in the sections below is showed in context relative to the other
equipment in a schematic illustration.

Material

When performing deposition trials, plate material with dimensions300× 100×
3.6mm were used along with wire with a diameter between0.8mm and1.2mm.
The material used was either Ti6Al4V or Alloy 718.

Process chamber

In order to prevent oxidation of the metal substrate and deposit, all trials took
place in a process chamber made from transparent flexible plastic sheet filled
with argon. It is sealed to a stainless steel base with metallic adhesive tape and
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Figure 2.3: Schematic illustration of the equipment used for LMD-w and their inter-
connections. Connecting lines indicate connections whichare electrical, optical, data or
mechanical. The arrowheads indicate the flow of material, energy, mechanical action or
information.

is made easily accessible through zippers. A picture of the process chamber is
shown in Figure 2.4.

Laser

The laser power used for melting the wire is provided by a6 kW Ytterbium fibre
laser system from IPG Photonics with emission wavelengths between1070 and
1080nm.

Laser optics

The laser optics used for LMD-w at University West, is currently a laser weld-
ing optical assembly manufactured by Permanova Lasersystems AB, Gothenburg
Sweden. It has collimating lens with a focal length of120mm and a focusing
lens with a focal length of300mm. The optics are used for obtaining an out of
focus laser spot with a size of approximately⊘3mm when coupled to a600µm
diameter fibre.
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Figure 2.4: Picture of robot with tool and process chamber. Photograph courtesy of
Almir Heralić.

Robot

An ABB IRB 4400 6-axis robot arm with an IRC-5 controller is used for manip-
ulating the deposition tool described below. With the deposition tool the robot
manipulates the laser optics, the wire feeder nozzle and theattached measure-
ment instruments.

Wire feeder and weld source

A Fronius TransSynergic 4000 is used for providing wire feeding capabilities as
well as acting as a welding current source. It is capable of providing up to400A
to the weld by the means of a current passing through the wire and the weld pool.
The integrated wire feeder has a push-pull design, which encompasses feeding
mechanisms both on the feedstock side and close to the nozzle. This design gives
smoother feeding and gives better control of feed rates.

Oxygen meter

An Oxy 3 residual oxygen meter from Orbitec gives oxygen level readouts be-
tween0 and999 ppm.
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CHAPTER 2. THE LASER METAL WIRE DEPOSITION PROCESS

Cameras

A total of three cameras are used for surveillance of the processing cell, the
chamber and the weld pool. For monitoring the cell and the processing chamber,
C9000 QuickCam Pro and C920 HD Pro webcams from Logitech are used. Weld
pool visual feedback is provided by a Marlin F131B CMOS camera with a mirror
which reflects process laser radiation but transmits visualrange radiation. The
mirror protects the camera from high power reflexes from the highly reflective
metal which would otherwise ruin the detector.

Optical scanner

An laser line scanner from Micro Epsilon with software created in-house is used
for collecting geometrical data from the deposit. It has a specified depth accuracy
of 10µm and is attached to the robot via a pneumatic arm which can lower the
scanner into position for scanning. The pneumatic arm has been found to be
highly repeatable and an insignificant contribution to uncertainty when compared
to the robot’s positional accuracy.

Pyrometer

The pyrometer used for measuring temperature of either the substrate or the de-
posit is a single waveband pyrometer: Impac IGA 5-LO MB25, with a wave-
length range of:{1.45..1.8}µm.

Deposition tool

Mounted onto the robot is the deposition tool. It is an assembly of the wire feeder
nozzle, the laser optics and cameras for monitoring the weldpool as well as the
process chamber. Onto this deposition tool, sensors such asthe optical scanner
and the pyrometer is attached when required. Within the robot controller, the
Tool Center Point (TCP), is calibrated as the point in space,relative to the robot’s
sixth axis, where the wire intersects the laser beam. The geometry of the tool
defines the TCP and it is the TCP which moved around by the robotmanipulator
during deposition. In Figure 2.1, the TCP may be thought of tobe in the weld
pool.

Data acquisition hardware

Modular hardware from National Instruments is used for dataacquisition from
certain instruments, such as the pyrometer, and for communication over the field
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bus protocol Profibus. Such modules are also used for the resistance measure-
ments described in Paper 5 and Paper 6. The measurement and communication
modules are placed in a cDAQ-9172 rack, which is accessed over USB from the
control system computer.

PLC system

A Programmable Logic Controller (PLC) system from BeckhoffAutomation
with custom control software from Permanova Lasersystems is used for ensuring
secure operation in terms of enabling power sources only when certain prerequi-
sites are met, etcetera. The PLC also acts as a Profibus masternode for Profibus
communication between the robot, weld source, laser and computers.

Computers

Off the shelf PC:s, running Windows XP or Windows 7 are used for controlling
and monitoring most of the deposition process and logging data. A total of 4
computers are used in parallel for different tasks.

Software

Custom made software written in LabVIEW, MATLAB, MySQL, ABBRAPID
and AutoHotkey have been developed especially for the LMD-wsystem at Uni-
versity West. The LabVIEW system is used for time synchronised data acquisi-
tion, process monitoring and control. All instrument inputs are relayed through
LabVIEW software. During deposition, all relevant data is logged to the MySQL
database. MATLAB is used for analysing scanner and resistance data, calcu-
lating controller response, designing deposition patterns and for automatically
generating ABB RAPID robot code. The developed graphical user interfaces
developed for the deposition pattern design tool is illustrated in Figure 2.5.
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2.3. DIFFICULTIES IN LASER METAL WIRE DEPOSITION

Before the start of each deposition run, the robot code and controller software
source code are uploaded to the same database, which is used for logging process
data. This is for version handling and for making sure that itis possible to restore
all software used for a particular deposition trial. AutoHotkey executables are
used for downloading and uploading robot code to the database as well as for
initiating surveillance cameras.

2.3 Difficulties in laser metal wire deposition

During LMD-w processing, there are a number of factors whichmay cause prob-
lems if not handled properly by the control system or the operator. In this section,
these difficulties in LMD-w are listed and described.

Wire position relative to weld pool

When introducing wire into the weld pool, which is created bythe laser irradi-
ation, it is of uttermost importance that it enters both in a good position relative
to the pool and with a good feeding rate. A good positioning allows the wire
to absorb some laser radiance and thus being heated before entering the pool in
order to be fully melted. Please refer to Figure 2.2 and Figure 2.6 for illustrations
of the wire entering the weld pool. While absorbing some of the laser radiation,
the wire must not shade the pool so much that the weld pool getstoo cold and
solidifies prematurely. The wire should enter the weld pool in the pool’s symme-
try axis, which is parallel to the deposition direction. It also must not enter the
pool too close to the front or the back of the pool, in which case the wire might
easily leave the weld pool and the smooth material transfer might be broken.

The ability to use the hot-wire technique decreases the importance of pre-
heating the wire with the laser. The wire is heated resistively before it enters
the weld pool and also resistive power is introduced to the weld pool itself, thus
helping to sustain it. Positioning of the wire is affected bythe robot position
relative to the substrate in all three dimensions. As long asthe wire incidence
angle,αw as indicated in Figure 2.2, is not normal to the substrate, any change
in robot-substrate distance,d as indicated in Figure 2.6, will cause the wire to
enter the weld pool at a different place. Also,d will affect the geometry of the
weld pool and the material transfer mode as indicated in Figure 2.6. With a
too large distance, as illustrated in the rightmost part of Figure 2.6, there is a
significant risk that the material link will be broken. The laser will gradually
melt the wire and a droplet will build up at the wire tip. As thedroplet grows,
gravitational pull will eventually exceed surface tensionforces and the droplet
will enter the weld pool causing an uneven deposit in the formof the solidified
droplet. For a short time, the transfer link is re-established only to be broken
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CHAPTER 2. THE LASER METAL WIRE DEPOSITION PROCESS

Figure 2.6: Transfer modes, to the left: desired transfer with d = dnom. In the centre:
d < dnom causes stubbing. To the right:d > dnom, with risk of droplet formation.

again. A new droplet will build up and so forth. This causes a transfer mode,
which may not give inherently bad material properties but surely will give an
uneven deposit making subsequent layers harder to deposit [3]. In the case where
d is too short, the wire will not completely melt when introduced to the weld
pool, but instead protrude through the liquid state into theunmolten substrate as
seen in Figure 2.6, middle part. This causes so called stubbing, where the wire tip
scrapes against the substrate and moves rapidly from side toside. The incomplete
melting of the wire causes bad material properties and stubbing must be avoided
in order to maintain a sound process with good deposit quality. As the substrate
height may vary due to an uneven base substrate or uneven previously deposited
layers,d will vary throughout the deposition. Even if the surface topology is
known, there is still a problem with positioning the tool by the means of the
industrial robot manipulator. The robot’s positional accuracy and step response
to position changes determine how welld can be adjusted during deposition.
Apart from the physical limitations of the robot, the robot controller software
utilised is limited with regard to rapid adjustments in a certain direction while
performing a nominal movement.

Wire feeder

The wire feed rate,vw, at which the wire is fed into the weld pool is another
parameter which is beneficial to control. Weld pool materialflow might cause
uneven surface profiles that have to be mitigated by adjusting vw. When properly
controlled,vw can be used to fill troughs and to flatten ridges for consecutive
layers [3]. Proper control leads to controlled final geometries and also facilitates
subsequent layer deposition. Bad control leads to an inability to perform layer-
by-layer deposition while maintaining geometrical stability.

Laser power

Laser power affects the process in a number of ways. It determines the deposited
bead cross-section geometry as well as size and temperatureof the weld pool.
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2.3. DIFFICULTIES IN LASER METAL WIRE DEPOSITION

Raising the laser power, apart from affecting the aforementioned properties, also
increases the probability of high power reflexes which may cause damage to
the equipment. The absorptivity of the metal material limits the laser efficiency
and a lot of power is lost in the form of reflected laser radiation. Power added
resistively, in terms of increasing the current through thewire and the weld pool,
has higher energy efficiency compared to laser power for adding energy to the
weld pool. Resistive power also does not alter the geometry of the weld pool as
much as laser power [66, 67]. By balancing laser and resistive power, it is thus
possible to somewhat tailor bead cross-section geometry tosuit the application.

Deposit material

The material used for deposition affects the process in a number of ways. Its
liquidus temperature, enthalpy of fusion and surface tension greatly affects the
process behaviour. In trials performed by the author and Almir Heralić, not re-
ported in this thesis, deposition of Alloy 718 was compared to that of Ti6Al4V.
It was found that the higher surface tension of Alloy 718 [68], made the pro-
cess a lot less ”smooth” compared to Ti6Al4V. Higher energy input was needed
in order to successfully deposit Alloy 718 and the parameters which previously
proved to be suitable for Ti6Al4V deposition were not usefulfor depositing Al-
loy 718. Likewise, it may not be expected that process parameters, suitable for
one particular material, are suitable for deposition of other materials.

Deposition pattern

When depositing geometries such as round bosses which cannot be divided into
single straight beads [3], the deposition direction must differ from that shown in
Figure 2.2 if the tool cannot be rotated freely. Since the tool is attached to the
laser fibre and the wire feeder, together with a lot of other cables and tubes, it
cannot be rotated around its axis in order to maintain a constant deposition di-
rection in its current configuration. Changing the deposition direction effectively
changes positioning of the wire relative to the weld pool andthe process windows
becomes narrower [3]. Thus, when it is not able to arbitrarily rotate the tool, the
process will become more sensitive when depositing in any direction different
from that indicated in Figure 2.6. Utilisation of a tool withcoaxially fed wire
such as the COAXwire developed by Fraunhofer IWS could possible mitigate
these problems [19], however such a setup demands more precise control of the
wire feed rate in order to avoid stubbing or droplet formation.
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CHAPTER 2. THE LASER METAL WIRE DEPOSITION PROCESS

2.4 Summary

The LMD-w process is a relatively complex AM-technique, which is inherently
hard to control. It consists of many hardware subsystems, which are off-the-shelf
equipment with the exception of the optical scanner casing and the deposition
chamber. The hardware is tied together using a number of communication inter-
faces, such as Profibus, and custom made software in order to form a functional
LMD-w system. In order to deposit material with high quality, the process must
be supervised and controlled. This of course requires reliable process measure-
ments and actuators, topics which are discussed in the following chapter.
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Chapter 3

Process measurements and
actuators

Fundamental requirements for controlling the LMD-w process are the abilities
to measure process related entities and to actuate adjustments if needed. In this
chapter, measurement systems and actuators for LMD-w are discussed.

3.1 Limitations

With the aim of the LMD-w process development being to find solutions and
strategies which allow an LMD-w system to be utilised in an industrial setting,
there are many limitations on possible measurement systems. These restrictions
are both cost related and related to the harsh physical conditions. Generally,
instruments must be non-contacting and built to withstand high temperatures,
fumes and possible high power laser reflexes. Contacting instruments could both
introduce contaminants into the deposit and would also needrepositioning as the
deposition process progresses.

The aforementioned limitations exclude many types of sensors such as ther-
mocouples, thermistors, strain-gauges and indentation probes. The measurement
systems must rely on either electromagnetic radiation of some kind, acoustic
emissions, physically sampling the process chamber gas, reading internal data
from a deposition system module or exploit the process in itself as a sensor. This
latter approach can for example be realised by exploiting the fact that the weld
pool geometry changes whend changes, as indicated in Figure 2.6, and that weld
pool resistance can be related to geometry and indirectlyd as shown in Paper 5
and Paper 6.
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Figure 3.1: Flow of input information to control system computer.

3.2 Implemented systems

A number of measurement systems of varying complexity are integrated into the
LMD-w deposition cell at University West. The input information flow is illus-
trated in Figure 3.1. The readings from most of the subsystems and instruments
are logged in a common database. The recorded videos from thecameras are
however handled differently due to their large data sizes and stored as separate
files.

Optical scanner

The optical line scanner is mounted onto the deposition tooland is used for
recording the topography of the deposit. Its main purpose isto give height in-
put to the automatic control systems previously developed by Heralíc [3]. It is
described in more detail in Section 2.2.

Pyrometer

The pyrometer fitted to the deposition tool is a single waveband pyrometer fur-
ther detailed in Section 2.2. It was used for measurements both in Paper 1 and
Paper 2. As outlined in Section 5.4, pyrometers are not always well suited for
determining the true absolute temperature of an object. This, and the problems
associated with relating surface temperature in a single point to an appropriate
control action, further elaborated on in Section 4.3, limitthe use of pyrometer
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measurements. Pyrometer measurements are therefore typically used only for
comparison between trials during process development and for monitoring pur-
poses rather than for direct in-process control.

Robot position information

As a task running in parallel with the actual deposition taskin the robot con-
troller, the robot system introduced in Section 2.2 sends the current position of
the deposition tool to the control system. This informationis vital since most
other measurements are related to the robot position. Successful deposition is
dependent on both robot position in the substrate plane, i.e. the plane parallel
to the substrate, as well as the tool-to-workpiece distanced described in Sec-
tion 2.3. Reliable position information is thus one of the most important inputs
to an LMD-w control system.

Cameras

A total of three cameras are mounted in the deposition cell. Two are strictly for
monitoring the deposition procedure from a security and supervision perspective.
One surveys the cell as a whole and the other is used for monitoring the depo-
sition chamber and the tool as detailed in Section 2.2. The output from these
cameras are usually not saved in any way. The third camera is used for weld
pool and process monitoring. The video recorded from this camera is saved,
with process information such as elapsed time and position superimposed, as a
separate video file.

Oxygen meter

The oxygen level information, given by the oxygen meter described in Sec-
tion 2.2, is not used for control of the process. Its sole purpose is to ensure
that a sufficiently low oxygen content has been reached before commencing de-
position and is kept during processing. Too high oxygen levels might lead to
material oxidation with oxide inclusions in the final deposit and poor deposit
material properties. For traceability purposes, the oxygen might also be included
in the database along with the other process data.

Weld pool resistance metering

In Paper 5, a current is fed through the wire and weld pool using the welding
source. The current is measured along with the applied voltage. From these
measures, the total resistance of the weld pool and the wire stick-out is calcu-
lated. Through an empirical model, resistance is related tothe distance between
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the wire feeder nozzle and the substrate. This distance is crucial for controlling
the LMD-w process as discussed in Section 2.3. Resistance metering can thus be
used for controlling the process and maintaining a stable process as described in
more detail in Section 4.2. The resistance can be especiallyuseful for detecting
detachment of the wire from the pool. The detachment is a veryclear indica-
tion of an unstable process and is easily identified through the absence of current
transferred through the weld pool.

In the follow-up paper, Paper 6, the concept was developed further. Par-
tially due to signal disturbances experienced in Paper 5, and partially due to a
desire to reduce the current through the weld pool, the measurement method
was improved by introducing a wheatstone bridge. This is an electrical circuit
seen in Figure 3.2 where the weld pool resistance is measuredasRx and the
other resistance values are known. The setup enables very accurate readings of
resistance and did result in somewhat reduced noise levels compared to what
was achieved in Paper 5. But more importantly, the current could be reduced
to below1A. This meant that the input energy due to the current needed for
measuring resistance is negligible compared to the laser input. This is beneficial
when ”hot-wire” preheating of the wire is not desired.

R
ref

R
R

R x

V1 V

V2

Figure 3.2: Circuit for measuringRx.

3.3 Prospective technologies for measuring geome-
try in LMD-w

In this section, a compilation of measurement technologieswhich may be used
for geometrically monitoring the LMD-w process is listed inTable 3.1 along
with comments on their suitability. Since the main challenge in further automat-
ing LMD-w is process stability, only solutions aimed at maintaining a stable
process, and thereby geometry, are listed. Their suitability is judged with respect
to ease of application, robustness, cost and maturity. Already implemented tech-
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Technology Information provided Suitability

Laser line scanning Accurate surface topography Proven performance, but
time consuming and lacks
accuracy for chamfered edges

Resistance in-process Deposition height profile Proven performance, but
measurements along the deposition pattern further investigations into

limitations required

Spectral domain optical Very accurate distance Only point measurement and
coherence tomography [69] measurement through laser beam complex setup

3D Time-of-Flight camera [70] Surface topography with Camera with picosecond
accuracy> 0.2mm exposure time required

Scanning physical probe Point-wise distance Requires physical scan
measurement in 3 dimensions

Table 3.1: List of prospective control technologies

nologies such as resistance in-process control and laser scanning are included for
comparison.

The technologies which only provide point-wise measures ofbuilt height
are limited for deposition patterns which include rotationof the tool, i.e. non-
straight beads. For depositing straight beads, point-wisedistance measurements
can be used for control, but otherwise the benefit of such technologies is limited.
For a generally applicable control system, point-wise distance measures are not
sufficient. It is necessary to provide a control system with distance information
for all directions in the x-y plane so that stability can be maintained even while
rotating the tool, or with a distance measure which follows the deposition path
such as available with resistance in-process distance measurements. A solution
where an instrument for point-wise measurement is physically manipulated for
scanning is possible, albeit very impractical, for integration with an LMD-w tool.
Hence, the only two technologies listed in Table 3.1 which show real promise for
a versatile control system are the 3D Time-of-Flight (TOF) camera and resistance
in-process measurements. TOF technology, with the desiredresolution, however
requires an ultrafast camera with exposure times in the picosecond range and a
pulsed illumination laser [70]. The reported resolution indepth (0.2mm) might
prove enough for certain applications but is still a step back from that of the laser
scanner (10µm). Application of 3D TOF measurements during processing is
another possible limitation since a scan takes several seconds to perform and the
light generated by the process might cause disturbances. This leaves scanning
in between layers much alike what has been previously done with the laser line
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scanner. The only remaining advantage of the TOF system is then that a scan
can be performed in just a few seconds compared to the laser scan which takes
up to a minute. In regard to this, it might be more resource efficient to aim to
hasten the scanning procedure rather than investing in an advanced, expensive
and untested 3D TOF system in order to decrease scanning time. Tailoring a
scanning solution to the LMD-w process, rather than buying one off-the-shelf,
might open up new possibilities regarding determination ofsurface topography,
even during processing.

For the resistance based measurements however, hardware ischeap and avail-
able as off-the-shelf components. As mentioned in the discussion in Paper 6,
further investigations are required for discerning the method’s sensitivity to tool
rotation and other process parameters. Possibly could the dynamics of the re-
sistance, as a function of geometry, be more accurately modeled and coupled
into the control system design. Another benefit of the resistance based mea-
surements is that the profile information translates directly to deposition pattern
coordinates. There is no need to, like with the 3D scanning methods, translate a
topography map into deposition coordinates before calculating control action.

3.4 Actuators

In order to actuate control signals for the process, a numberof actuators are inte-
grated to the deposition system. The actual hardware is described in Section 2.2,
which is why only their properties are described in this section. A schematic
overview of the different actuators and the process parameters which they con-
trol are shown in Figure 3.3.

Wire feeder

The wire feeder, described in Section 2.2, with its push-pull design enables ac-
curate control of wire feed rate,vw, at the feeder nozzle outlet. The feed rate
affects the cross-sectional area,Ac as illustrated in Figure 3.4, of the deposited
bead due to the mass balance required

vwπ(⊘/2)2[m3 s−1]

vt[m s−1]
= Ac[m

2] (3.1)

where⊘ is the wire diameter. However, the step response of the wire feeder
with deposit geometry as the output is not a causal one [3]. This is because the
weld pool redistributes material backwards relative to thedeposition direction.
This makes it seem as if there is a change in build height even before the change
in feed rate was made when evaluating the bead geometry. The redistributive be-
haviour of the weld pool along with surface tension effects might also give unex-
pected results, especially when depositing patterns with multiple adjacent beads
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Figure 3.3: Schematic illustration of actuators and controlled parameters.

Ac

Figure 3.4: Illustration ofAc as seen in an imagined bead cross-section.
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since the weld pool might redistribute material to neighbouring beads. These
complex plant dynamics is why the iterative learning control scheme, introduced
in Section 4.1, has proven to be useful for such situations [3].

Robot

The robot, detailed in Section 2.2, is used for maintaining correct tool-to-workpiece
distanced as well as actuating the traverse speedvt, which affects geometry as
seen in (3.1). The former,d, is achieved by raising the robot in a direction nor-
mal to the substrate. The robot has got good positioning repeatability but poorer
absolute accuracy [71]. This, and the limitation in runningparallel tasks on the
robot controller has proven to cause some problems with positioning and syn-
chronisation when developing the LMD-w system.

Laser

The laser power source, which is described in Section 2.2, can be controlled in
many ways. It may operate in pulsed or continuous mode. In pulsed mode, the
pulses may be tailored with regard to rise-times, pulse width etc. In continuous
mode, which has been used for the work in this thesis, the controllable parameter
is the power output. Laser power,PL, is typically seta-priori for a certain deposit
geometry and not varied throughout a deposition process. However, for finding
suitable laser power settings for a geometry, power settings are typically changed
in-between deposition trials based on the operator’s experience and possibly also
metallurgical evaluation.

Weld source

The weld source described in Section 2.2, with the configuration used in this
work, operates on a principle of constant current. A maximumvoltage is typi-
cally set to10V, and the current is automatically controlled by the weld source
voltage in order to maintain the desired current. Desired current level settings are
treated much like laser power in that they are not controlledduring deposition
but iteratively adjusted in between deposition trials.

3.5 Summary

Due to the nature of the LMD-w process, the possibilities forinstrumentation
are limited to non-contact instruments. Complicating things even more is the
fact that actuators often affect more than one process parameter. Adjustments
to many actuator control signals will have to be made in orderto, for example,
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decrease the bead width or preventing droplet formation. The availability of pro-
cess information from measurements and the ability to actuate control output
does not however guarantee a good result. A successful deposition also requires
a good process control strategy implemented in the control system. Control sys-
tems for LMD-w are presented in the following chapter.
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Chapter 4

Process control of LMD-w

In order to ensure a stable LMD-w process, resulting in a deposit with a geome-
try within tolerances and with deposited material exhibiting desired properties in
terms of limited amounts of cracks, pores, lack-of-fusion flaws etc., some control
scheme is required [3]. For very simple geometries such as single beads and for a
few layers, the process might prove stable enough without any control, provided
suitable parameter settings. For more than a handful layersor more complex
structures however, adjustments have to be made during deposition. The two pa-
rameters, which have proven most successful to control are the distance between
robot and workpiece,d, as indicated in Figure 2.2, and the wire feed rate,vw [3].
Basically, a correctd ensures that the wire is always in contact with the weld
pool but not scraping the unmolten substrate. A correctvw-value ensures that
the correct amount of material is deposited. By necessity, these two parameters
rely on correct laser power settings, tool tilting, traverse speed and, if used, wire
preheating power.

4.1 Previously implemented control strategies

In order to control the LMD-w process, several different control strategies can
be used. They vary in implementation complexity, from manual control based
on real-time video of the process, to off-line processing ofscanner or resistance
data in between layers for obtaining iterative learning control actuator responses.

Manual control

A skilled operator is able to successfully deposit materialusing LMD-w, based
on the appearance of the weld pool as it is captured by the weldpool camera
described in Section 2.2. The operator controls the tool-to-workpiece distanced,
by adjusting the robot’s z-position, and the wire feed rate,vw, by adjusting the
wire feeder’s setpoint feed rate, to ensure stable deposition. The main drawback
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of this control strategy is that it relies on a skilled operator. It takes time to train
an operator who also gets tired from concentrating long periods of time. Further,
different deposition patterns and different materials will require the operator to
adapt her or his actions to the process at hand. Reproducibility might be another
issue for manual control, along with the fact that the numberof parameters which
could be simultaneously controlled by an operator is limited. A fully automated
system might be more reproducible and able to control more parameters simul-
taneously, but on the other hand might not be as versatile andable to adapt to
new situations.

Iterative learning control

As described by Heralić [3], the concept of Iterative Learning Control (ILC) can
be employed for controlling LMD-w. Due to the process naturewhich propa-
gates disturbances over several layers, the ability of ILC to adapt control actions
and to learn the disturbance patterns is most valuable. Measurements of deposit
height are used for controlling deposition parameters. In Heralíc’s implementa-
tion, height measurements are made with a laser line scannerafter each deposited
layer. Wire feed rate,vw, andd are adjusted accordingly as the ILC-system learns
where and when disturbances occur and how these should be mitigated. In his
studies of the application of ILC to LMD-w, Heralić shows that with a conser-
vative selection of ILC learning gain parameters, it is possible to achieve stable
control of the LMD-w process.

The laser scanning solution used by Heralić has a few distinct limitations
however. Mainly, the scanning cannot be performed during deposition. After a
layer is deposited, the scanner is activated and positionedby the robot. This pro-
cedure takes time from the actual deposition, thus limitingprocess productivity.
The scanner also exhibits limitations when it comes to scanning highly reflective
surfaces and chamfered edges [3].

For production where several identical components are produced, the above
method is well suited. The first component is processed with ILC and laser scan-
ning while all parameters are recorded. These recorded parameters are then used
for subsequent components without any need for topography scanning, provided
no unexpected disturbances. However, for continuous in-process control, com-
bining a laser scanner with ILC proves to be of limited use. However, this is only
due to the limitations of the laser scanner. If geometry datais provided to the ILC
in another way, without the laser scanner’s limitations, the benefits of applying
ILC to LMD-w can be exploited even for continuous in-processcontrol.

38



4.2. RESISTANCE IN-PROCESS CONTROL

Process
udnom

Rd

Controller
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-
+

d

Figure 4.1: Control strategy as implemented in Paper 5, control signalsu are generated
in order to keep the distance,d equal to the nominal distancednom. The resistance model
outputs a distance estimation,d̂, based on resistance and control signals.

4.2 Resistance in-process control

As previously described in Section 2.3, the tool-to-workpiece distanced is very
important in order to avoid wire stubbing or droplet formation. A manual control
system with operator feedback based on real-time process video and the ILC-
system are both attempts to resolve the issue withd-control described by Her-
alić [72, 73]. In Paper 5 in this thesis, another method is proposed ford-control
which is based on measurements of resistance,R. When current is led through
the wire and the weld pool, the length of the wire stick-outl and the weld pool
geometry will affect the resulting resistance as describedin Paper 5. The weld
pool geometry is, as illustrated in Figure 2.6, very dependent ond. Wire stick-
out, l, is related tod by the wire incidence angle,αw, as indicated in Figure 2.2.
Through either empirical or analytical modelling of the relation betweenR and
d, the tool-to-workpiece distance can be measured indirectly from measurements
of R and the created model. The obtained estimated̂, of d, can then be used for
controlling the process and stabilisingd. The controller input̂d can either be used
for feedback control as demonstrated in Paper 5 and illustrated in Figure 4.1, or
with a control strategy which calculates actuator adjustments before deposition
such as the ILC system implemented in Paper 6. An on-line feedback controller
could, if it only makes adjustments when stubbing or dropletformation is de-
tected, aid in manual deposition as an automatic auxiliary function of the control
system. In the implementation presented in Paper 5, the resistance feedback
control is shown to successfully adjust the robot position in order to maintain a
nominal deposition distancednom using a simple PI-controller. As indicated in
Section 4.1 above, replacing the laser scanner input data with something else is
regarded to be beneficial. The significant contribution in Paper 6 from a control
perspective, is the coupling of the height information obtained through resistance
measurements to an Iterative Learning Controller for LMD-wpreviously devel-
oped by Heralíc for controlling LMD-w. The concept is based on adapting to the
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Figure 4.2: Illustration of ILC iteration domain with indexj. Control signal is updated
in between iterations in order to minimise deviations in thedeposition process.

periodical behaviour of the process, corresponding to deposition of beads on top
of each other as illustrated in Figure 4.2 for some layer iterationsj. Disturbances
are mitigated by feed-forwarding errors from previous layers when creating the
control signal for the current layer, at specific positions along the pattern (k), as
indicated in Figure 4.3. In Paper 6, the controller parameters such as plant and
learning gains were chosen according to Heralić’s previous studies [3, 73]. The
same ILC parameters were used when replacing the laser scanner data in [3,73],
with topography data from resistance measurements in Paper6, resulting in good
process control. There is however room for improvement of the controller with
more accurate tuning in the future.

4.3 Temperature control

For LMD-w in general, and especially for depositing Alloy 718, it is beneficial to
survey and control temperature in some way. The motivation for this being that
a too hot deposit might melt and that material properties might be affected by
the temperature history. The thermal history of Alloy 718 isespecially sensitive
since cracks, due to the formation of brittle phases, might form as a result of
prolonged periods with temperatures slightly below solidus temperature, which
is approximately1600K (1327 ◦C) [45,74].

Although a 3D temperature map of the entire deposit and the substrate would
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Figure 4.3: ILC architecture as implemented in Paper 6. The delay is in the iteration
domain andvw is the nominal wire feed rate. A description of the parameters is found
in Paper 6.

be preferable, especially for estimating and predicting material properties [45],
there are no available measurement methods that can providesuch information.
Generally, one is restricted to measurements of surface temperature, especially
during LMD-w processing since no holes may be drilled into the bulk during
deposition.

Temperature measurements on hot metals are preferably conducted with con-
tacting probes for cost and accuracy reasons. More detaileddescriptions of the
available methods are found in Section 5.1. For LMD-w, in-process temperature
measurements using contacting methods are not viable alternatives. The moti-
vation for this being that contacting temperature probes might contaminate the
deposit material as described in Paper 1. Also, difficultiesin attaching probes
during processing and the successive build-up of the deposit prevent the use of
contacting instrumentation. This leaves only non-contacttemperature measure-
ment methods, which are further elaborated upon in Chapter 5(Section 5.4) and
in Chapter 6. Temperature information ideally consists of absolute temperature
measurements, which have to be given by a correctly calibrated pyrometer as de-
scribed in Paper 1 or by an Emissivity Compensated Spectral Pyrometry (ECSP)
instrument developed by the author, presented in depth in Paper 2 and Paper 3.
If no ECSP measurements are possible, or if no correctly calibrated pyrometer
can be utilised due to e.g. oxidation, as discussed in Paper 1, relative temper-
ature information can still be collected with a pyrometer oreven with a photo
diode [2, 75, 76]. This information is useful only for relative comparison be-
tween similar scenarios, and should only be used with caution for other purposes
such as predicting material properties or temperature control.

Controlling temperature from measurements, whether relative or absolute, is
not a straightforward task. In the situation where a desiredsurface temperature
profile can be established, from e.g. material data and desired material structure,
the temperature will still vary throughout the material, even if surface temper-
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ature can be successfully controlled [77]. Since non-contact measurements can
only provide surface temperature information and surface temperatures typically
are lower than bulk temperature in a deposit, the bulk temperature will mostly
exceed that of the desired surface temperature profile. The relation between sur-
face and bulk temperatures is dependent on for example: deposit geometry and
thermal conductivity, fixture temperature, surface emissivity and the thickness
of the oxide layer. Hence, controlling bulk temperature distributions by moni-
toring only surface temperature is a most complex task. If simulations of heat
transfer were employed for such a purpose, they will have to include the varying
geometry into the simulation which makes them quite complex[78]. Temper-
ature control, in terms of maintaining a desired surface temperature profile, for
LMD-w is thus dependent on extensive numerical simulation and might not yet
be practical in an industrial setting.

The actuation of desired temperature control action is yet another problem.
Typically, heating is achieved by the laser or the resistivepower introduced by
the hot-wire current. Cooling on the other hand relies on dissipation of energy
through the fixture, radiation and convection or any kind of forced cooling. In
the case of Alloy 718, where it is desired to rapidly cool downthe material after
solidification, a few options are available for managing temperature. It is pos-
sible to minimise total energy input by depositing with a high deposition rate,
e.g. highPL, vw and vt. It is also possible to try to cool the workpiece and
the deposit as much as possible during deposition by means ofactive cooling.
However, cooling of the workpiece will require alterationsof process parame-
ters, typically by increasingPL since more energy is dissipated from the weld
pool. Also cooling will introduce higher thermal gradientswhich may cause
higher residual stresses. In a short unpublished study whenAlloy 718 was de-
posited onto a water cooled fixture, no significant reductionin cracking was seen
compared to the uncooled case.

The fact that temperature control generally is ill-suited for the LMD-w pro-
cess does not mean that temperature measurements are not important. To the
contrary, temperature measurements are instrumental in finding good control
strategies for LMD-w and other AM processes. Utilising simulation models for
predicting resulting geometry and material properties, asproposed by Raghavan
et al. [77], is a possible way to predict how measurable and controllable param-
eters affect the end result. Such knowledge can be used for designing suitable
control strategies, both general and tailored to specific applications. In order to
accurately calibrate such simulation models to reflect reality, temperature mea-
surements are very important for comparison. When calibrating a simulation
model, most often absolute temperature data is required. Thus, any bias or other
kind of error, which may not be a significant problem when maintaining constant
temperature in a feedback-loop, can have a big impact on the simulation model.
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The conclusion of this reasoning is that, not only is it important to measure tem-
perature within AM. For calibrating simulation models it must also be measured
as absolute and not relative temperature, and it must be measured accurately.

4.4 Summary

A number of process control strategies are available for LMD-w with regards to
maintaining stable deposition and achieving the desired geometry. They range
range from manual control, which while being the simplest control scheme still
is very complex to perform, to the even more intricate iterative learning con-
trol. ILC adopts a strategy of stepwise buildup of process characteristics and
appropriate control action. In addition to these two control schemes, the con-
cept of resistance in-process control is introduced. Its intended use is to either
serve as a complement to manual control, be used in a feedback-controller for
robot z-position, or to be used as a tool-to-workpiece distance input signal to an
iterative learning controller. Resistance measurements have successfully been
implemented for LMD-w-control both for avoiding droplet formation and for
topography control when coupled to an ILC controller.

Temperature control is another important factor in achieving desired deposit
characteristics. Even though the controller could be of a simple design, a tem-
perature control system requires a desired temperature which may or may not be
constant. This desired temperature would typically be derived from numerical
simulations and is therefore not obtained with ease. As discussed in the follow-
ing chapter however, temperature measurements are far fromtrivial and might
limit the applicability of temperature control for LMD-w.
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Chapter 5

Temperature measurements

Temperature is a central process property in many industrial applications. It is a
determining factor for material properties and process characteristics. Temper-
ature information is also often central for understanding aprocess and process
results. In this chapter, temperature measurements are discussed from both the-
oretical and practical viewpoints.

5.1 Contact thermometry

For measuring the temperature of an object, a multitude of options are available
when it is possible to put a measurement probe in physical contact with said
object [79]. One could employ thermistors, platinum resistance thermometers
such as Pt-100 or Pt-1000, thermocouples, liquid-in-glassthermometers, noise
thermometry, diodes or yet another out of many techniques. For applications to
LMD-w however, contacting probes are not an option due to reasons outlined
in Section 4.3. The lack of contacting options only leave non-contacting alterna-
tives, such as described in the following sections.

5.2 Radiation thermometry fundamentals

Any object above0K will emit electromagnetic radiation. For an idealised ob-
ject, called a blackbody, the radiation is quantified by Planck’s law [80,81]:

rP (T, λ) =
C1

λ5(eC2/(λT ) − 1)
(5.1)

whereC1 = 1.191× 108 Wµm4m−2sr−1 andC2 = 1.4388× 104 µm K [81, 82].
T denotes temperature in Kelvin andλ denotes wavelength in µm. Planck’s law
describes the energy exerted from an object dependent on itstemperature (T ) and
wavelength (λ), but independent of emission angle [83]. The anglesθ andφ used
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Figure 5.1: Direction of emitted radiation is denoted with anglesθ andφ. These are
defined in a euclidian coordinate system arbitrarily rotated around the z-axis, which is
normal to the material surface.

for denoting the emission angle in a certain emission direction are illustrated in
Figure 5.1.

By collecting the radiancerP , in a specified spectral interval{λstart..λend}
and in a certain direction, from a blackbody with a detector with known charac-
teristics, Planck’s law (5.1) can be inverted in order to give the temperatureT
of the blackbody. This is the basis for most non-intrusive temperature measure-
ments [81] with some exceptions such as line spectra to continuum comparisons
and band-edge thermometry [84,85].

5.3 Emissivity

No real object can be considered a true blackbody. Instead the radiance emitted
from a real object,rE , must also be described by the object’s emissivityε. The
emissivity of an object is defined by how the true radiation emitted differs from
that described by Planck’s law:

ε(T, λ, θ, φ) ≡ rE(T, λ, θ, φ)

rP (T, λ)
(5.2)

Note that emissivity is not a scalar quantity for a certain object but a function
of temperature, angles and wavelength [81].

When relating radiance to temperature through Planck’s law(5.1), it is nec-
essary to take emissivity into account, since it affects anyradiance measurement
made on any physical object. With unknown emissivity, it is not possible to de-
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Figure 5.2: Changes in reflectivity, and emissivity, are apparent for this welded steel
specimen.

duce the object’s temperature,T , only by measuring radiance. However, if the
emissivity,ε, is known, it is possible to make accurate temperature measure-
ments provided radiance measures such as described later inSection 5.4.

When consulting literature for emissivity values for a certain material, there
are several measures which might be given [83]. These aredirectional spec-
tral emissivitywhich is defined as in (5.2),directional total emissivitywhich is
an integral over all wavelengths at certain anglesθ andφ. There is alsohemi-
spherical spectral emissivityandhemispherical total emissivity, which both are
integrals over a hemisphere with the latter also being integrated over all wave-
lengths. When using a value of emissivity taken from literature, it is important
to know which value is required for the application and whichtype of value is
actually given.

Material dependence

As a result of the first law of thermodynamics (conservation of energy) the hemi-
spherical total emissivity of an object is complementary tothe object’s hemi-
spherical total reflectivity,Γ, such thatε + Γ = 1. As apparent even to the lay-
man, different objects have different reflectivities, as shown in Figure 5.2, and
thus different emissivities. The material studied is therefore of great importance
when conducting non-contacting temperature measurements.

Dependence on surface composition

Most often, the material studied is known. Common practice is that a value
of the material’s emissivity is read from a table and used forcreating temper-
ature estimates from radiance measurements. However, as shown in Paper 1,
the surface composition of the material greatly affects themeasured emissivity.
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Oxidation, crystalline reorganisation or diffusive processes might all cause the
emissivity of an object not only to be different from literature but also to vary
with time [81,86,87].

Temperature dependence

Emissivity is related to the material’s complex refractiveindex. By knowing
the incidence angle and the complex refractive index,n + κi, of every material
in the optical path, it is possible to calculate the material’s emissivity even for
layered structures [83,88]. However, the complex refractive index of a material,
besides being wavelength dependent, typically exhibits some kind of temperature
dependence due to electron-phonon collisions [89]. This implies that emissivity
is temperature dependent as well. This is also the case for several industrially
relevant materials such as silicon, titanium, zirconium and Alloy 718 [74, 90–
93]. The dependence of emissivity on temperature can be problematic since
measurement of one property is usually used for discerning the other as described
below and in Section 5.4.

Emissivity measurements

There are a number of ways of measuring or estimating the emissivity of a ma-
terial. A few examples are given in this section. The first andmaybe the most
intuitive is to measure an object’s temperature (T ) by some means and at the
same time measure the emitted radiance with some instrumentsuch as a pyrom-
eter, which is described in the following section. By employing the following
relation

ε = εi
eC2/(λcT ) − 1

eC2/(λcTp) − 1
. (5.3)

the object’s true emissivityε can be derived from the instrument’s emissivity
setting,εi, the reference absolute temperature,T , and the temperature reading
given by the instrument,Tp for the waveband centre wavelengthλc [87]. This
concept of measuring emissivity and calibrating a pyrometer is further elabo-
rated on in Paper 1 and also implemented by del Campo et al. [94] as well as
Shur and Peletskii [95]. Another approach is investigated by e.g. Corwin and
Rodenburgh II who measured reflectance and related this to emissivity as de-
scribed in Section 5.3 [96,97]. Through the relation between complex refractive
index and emissivity, mentioned above in this section, it isalso possible to use
ellipsometric measurements of complex refractive indicesin order to calculate
material emissivity [86,88]. This method is however not employed in this thesis.
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5.4 Pyrometry

Temperature measurement instruments which measure ”relatively high tempera-
tures, as in furnaces” are, as described inthe Britannica Concise Encyclopaedia,
pyrometers [98]. Typically, radiance is measured and related to temperature.
Historically, before the introduction of electronic radiation detectors, pyrome-
ters were based on comparing a reference filament to the object of measure with
the naked eye [83]. Modern pyrometers typically quantify radiance for a finite
number of wavebands and use set emissivity estimations for deducing temper-
ature through (5.1) or derivations of Planck’s law. Rewriting the definition of
emissivity in (5.2) results in

r(T, λ, θ, φ) = ε(T, λ, θ, φ)rP (T, λ) (5.4)

where it is obvious that the emissivityε affects the measured radiancer, which
is in turn converted into a temperature measure (T ) through inversion of (5.1).

Single waveband pyrometry

The most intuitive implementation of a quantitative pyrometric method is the sin-
gle waveband pyrometer. This method relies on radiance collected in a narrow
waveband of the electromagnetic spectrum. Ideally, a very narrow waveband
corresponding to a single wavelength is collected and is used for inversion of
(5.1). However, sufficient signal levels must be achieved thus requiring a min-
imal wavelength interval. This requirement and optical limitations restrict the
waveband from approaching a single wavelength. As previously explained in
Section 5.3, the emissivity must be known for the waveband which is to be used.
Also, the temperature dependence of emissivity for the certain wavelength must
be established and the instrument must be properly calibrated [83]. The latter
is to cancel out the instrument’s sensitivity,Q, to that certain wavelength and
optical attenuation,ρ, since the measured radiance,r, can be described by [83]:

r(T, λ, θ, φ) = ρQε(T, λ, θ, φ)rP (T, λ). (5.5)

Provided a good emissivity estimate and a well calibrated instrument, the single
waveband pyrometry method is a relatively cheap, simple androbust method for
performing radiation temperature measurements [83]. An implicit formulation
of the temperature is as follows

T = arg min
T

H (ρQεrP (T )− r) , (5.6)

whereH is some difference norm, such as absolute or squared differences of the
difference

z = ρQεrP (T )− r. (5.7)
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This formulation of the single waveband pyrometry functionality enables com-
parison with the other kinds of pyrometry, to be described later, by formulation
on a common form.

Dual waveband pyrometry

Employing more than one waveband is beneficial if the object is partially ob-
structed or if the emissivity is unknown but can be assumed tobe constant with
respect to wavelength. This assumption is a required constraint for dual wave-
band pyrometry, since radiance measures for two wavelengths are used for de-
termining three unknowns, namely,ε(λ1), ε(λ2) andT . Temperature,T , is cal-
culated through relating ratios of radiance to temperatureby constructing a ratio
of (5.5) for two wavelength bands with centre wavelengthsλ1 andλ2. Creating
the following ratio

r(λ1)

r(λ2)
=

ρ(λ1)Q(λ1)ε(λ1)rP (T, λ1)

ρ(λ2)Q(λ2)ε(λ2)rP (T, λ2)
(5.8)

and assuming thatρ(λ1) = ρ(λ2) andQ(λ1) = Q(λ2) the following relation is
found:

r(λ1)

r(λ2)
≈ ε(λ1)

ε(λ2)
· rP (T, λ1)

rP (T, λ2)
(5.9)

If the relationε(λ1)/ε(λ2) is knowna-priori, or if the object can be considered a
graybody with constant emissivity with relation to wavelength, the temperature
can be found from (5.9) and (5.1). This even holds for partialobstruction of the
optical path, measurement on objects smaller than the measurement spot, fumes
or other factors as long asρ(λ1) = ρ(λ2).

For comparison with the single waveband method, an implicitformulation of
T is given below:

T = arg min
T

H (z) (5.10)

where this time

z =
ε(λ2)r(λ1)

ε(λ1)r(λ2)
− rP (T, λ1)

rP (T, λ2)
. (5.11)

If the emissivity ratio changes over time however, either due to temperature
dependencies or due to changes in surface structure or composition, the dual
waveband pyrometry method will give erroneous temperaturevalues. Withouta-
priori knowledge of the object’s emissive properties with respectto wavelength,
dual waveband pyrometry will typically give less accurate readings than a single
waveband pyrometer [83]. Also a dual waveband pyrometer is more sensitive
to noise than the single waveband pyrometer due to the division operation per-
formed.
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Multispectral pyrometry

The concept of dual waveband pyrometry can be expanded into multispectral
pyrometry. For pyrometers with multiple wavelengths, where the number of
wavelengthsn > 2, other constraints than on a constant ratioε(λ1)/ε(λ2) are
required. The most common methods [99–105], are based on modelling spectral
emissivity with some mathematical function,ξ(λ), which has less degrees of
freedom than the number of wavelengths employed, and

T = arg min
T

H (z) (5.12)

with the difference vector

zi =
r(λi)

ξ(λi)
− rP (T, λi) (5.13)

where the formulation ofξ varies between different methods andH in this case
is a summation of errors over all wavelengthsλi in the spectrum. The many
wavelengths contained in the measured spectrum allow for simultaneous deter-
mination of bothT and parameters forξ. However, as concluded by Coates
as early as in the 1980’s [99, 106], these methods rarely givebetter accuracy
than single or dual waveband methods. Also, multispectral measurements re-
quire hardware which are roughly a factor of 10 more expensive than the more
conventional methods.

Emissivity corrected methods

One way to perform emissivity corrected temperature measurements is to mea-
sure the surface’s reflectivity as well as emitted radiation. As described in Sec-
tion 5.3, emissivity and reflectivity are complementary properties always adding
up to unity. By measuring reflectivity and radiance at the same wavelength it is
possible to discern the correct absolute temperature even as emissivity changes [96,
97,107]. This method requires optical path angles which do not change since that
would disrupt the reflectance measurements.

Another method, which probably should be denoted semi-intrusive is the use
of paints. The object is painted with a paint which has well defined emissive
properties. A conventional pyrometer with appropriate emissivity settings is then
used for absolute temperature measurements [108] . Apart from the need to paint
the material and the risk of contamination, there is anotherdownside to using
paints for temperature measurements. As shown in Paper 1, the paint may react
chemically with the object, thus altering the emissivity ofthe paint. The use of
paints is practical in some specialised applications wherereliable non-contact
measurements are needed but the areas of application are limited.
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From the physical theories such as Maxwell’s electromagnetic wave the-
ory, the Lorentz oscillator model, the Drude free-electrontheory and derivations
thereof [83,86,88,109], it is possible to calculate theoretical emissivity values for
non-conductors such as oxides, conductors such as metals and for layered struc-
tures such as oxides upon metal. However, these theoreticalvalues are based on
idealised conditions and are only applicable for well defined situations.

5.5 Summary

Non-contact temperature measurements on metallic materials prove to be very
challenging for high temperature applications. Due to temperature dependent
emissivity and oxidation, the object’s emissivity is rarely known with accuracy.
A calibrated single waveband pyrometer might be used, but large errors might
have to be accepted, especially in the case of significant oxidation. In the fol-
lowing chapter, a multispectral emissivity compensated pyrometry method de-
veloped by the author is presented.
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Emissivity compensated spectral
pyrometry

Note In this chapter, mathematical operations on vectors are described. Besides the operators

typically used for such operations,◦ and/◦ are used herein. These operators denote the Hadamard,

element-wise multiplication and division operations respectively on the vector elements [110].

To some readers, these might be recognised as the ”.*”- and ”./”-operators used in MATLAB

and Octave computer software.

A new temperature measurement method denoted Emissivity Compensated
Spectral Pyrometry (ECSP) is presented in Paper 2 and Paper 3. It is based on
spectral measurements of radiance and accommodates for varying emissivity in
some situations withouta-priori knowledge of emissivity.

For the purpose of brief notation,

εQ = ρQε (6.1)

is introduced for denoting compound emissivity in this chapter. This is the effec-
tive emissivity as seen by a user of a radiance measuring instrument. It includes
the optical attenuation and the sensitivity coefficients ofthe instrument itself.

In order to explain how ECSP works, it helps to assume that thechanges in
emissivity in between samples are limited in magnitude, i.e.

|εk − εk−1| < Dmax. (6.2)

This assumption makes it feasible to assume that any changesin emissivity over
time will evolve gradually, and no larger discrete jumps or leaps will occur.

Recall that all pyrometry methods require some constraint in order to de-
rive both temperature and emissivity from one radiance measurement, as de-
scribed in Chapter 5. For ECSP, the constraint does not regard assumptions in
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wavelength, such as constant emissivity ratios for dual-waveband pyrometry (see
Section 5.4). Instead, the constraint is applied in temporal domain. It is assumed
that emissivity does not vary extensively over time, which can be formalized by
the assumption in (6.2). This fundamentally differentiates ECSP from the con-
ventional methods presented in Section 5.4, which all applysome constraints in
the wavelength dimension.

The implicit formulation of ECSP, similar to those in (5.6),(5.10) and (5.12),
is

T̂ = arg min
T

H (z) (6.3)

where

zi = βi

[

r(λi)

ε̂Q(λi)
− rP (T, λi)

]

(6.4)

whereβi is a of weight for a certain wavelengthλi further described in Sec-
tion 6.3,H(·) is a difference norm, and̂εQ is a compound emissivity estimate.
This estimate, constructed from the previous temperature estimationT̂k−1 and
previous measured spectrark−1, is the simplest available approximation

ε̂Q

k (λi) =
rk−1(λi)

rP (T̂k−1, λi)
(6.5)

given (6.2).

6.1 ECSP functionality

The functionality of ECSP is that it, to a certain degree, discriminates between
changes in measured radiance,r, and identifies those as either changes in emis-
sivity, which are arbitrary but spectrally continuous, or changes in temperature
whose characteristics are given by Planck’s law, (5.1). Fora new measurement
of spectral radiance,r, the change in temperature which best explains the mea-
sured change in radiance is determined from (6.3). Based on this estimated tem-
perature, and the measured radiance, emissivity is adaptedto fit the measured
radiance, assuming that the temperature estimate is correct.

Another simplified explanation is to say that ECSP tries to find the most ap-
propriate temperature to satisfy the measured data, based on an estimation of
emissivity derived from the previous sample. Given this temperature estimate,
all characteristics inr which may not be explained by a temperature change
are instead explained by a change in spectral emissivity. Inorder to illustrate
this, consider the following case, between samplek = 0 andk = 1, emissivity
changes from0.5 to 0.4 for all wavelengths in a wavelength range from190 and
870nm, corresponding to that of the hardware used in Paper 2. This is illustrated
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Figure 6.1: Upper two plots, measured radiancesr0 (solid line) andr1 (dashed line), as
well as the result of temperature estimationrP (T̂1)ε̂

Q

1 indicated by a dotted line. Bottom
plot, true emissivitiesεQ

0 (solid) andεQ

1 (dashed), as well as the resulting emissivity
estimation,ε̂Q

2 , obtained at samplek = 1 after determiningT̂1.

in the bottom part of Figure 6.1. Please note that this is onlyan example for illus-
tration purposes. A change in emissivity of0.1 in between samples is very large
and does not agree very well with (6.2) and the short samplingintervals used
in practice for ECSP measurements. Between the two samplinginstances, the
temperature is fixed at1000K and T̂0 = T0 = 1000K. The measured radiance,
r0 andr1, for these samples are illustrated by solid and dashed linesrespectively
in the upper parts of Figure 6.1. In determining the temperature estimate,̂T1,
for samplek = 1, an estimate of compound emissivity,ε̂Q

1 , at k = 1 has to be
used. As introduced above in (6.5), the estimate typically used within ECSP is
ε̂Q

1 = r0/◦rP (T̂0). Based onr1 and ε̂Q

1 , T̂1 can be determined using (6.3). The
result of this determination of̂T1, in order to best explainr1, can be seen as the
black dotted line in the upmost plot of Figure 6.1. For this particular example,
T̂1 was found to be995K, i.e. |T̃1| = |T̂1 − T1| = 5K. Note that, in order to
make the changes inr more visible, only a limited wavelength range is shown in
the upper part of Figure 6.1, while the entire range is shown in the middle part.

In the lower part of Figure 6.1, indicated by a dashed black line, the emissiv-
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ity estimationε̂Q

2 resulting fromr1 andT̂1 is seen.

This ability of the algorithm to separate temperature changes from emissivity
changes is explained in some more detail in Appendix A. In Appendix A, it is
also concluded that the non-linearity of Planck’s law is an important factor in
explaining why the algorithm works.

To put the workings of ECSP in other words: If any change in temperature
results in a distinct change in measured radiancer, corresponding tor′

P , this
change may be attributed to a temperature change. Otherwise, this change should
be attributed to an emissivity change. Thanks to the fact that rP/◦r′

P for Planck’s
law is relatively low (see Appendix A), i.e. the change inr (andrP ) due to a
change inT is significant, the ECSP algorithm is applicable for use withPlanck’s
law.

There is of course a possibility to, rather than selecting only one single tem-
perature value, create a population of temperatures, each with some certain prob-
ability measure, and from these temperatures create a population of emissivity
estimates. These estimation populations could then be treated similarly to pop-
ulations of particles in a particle filter, updating populations based on new mea-
surements and the estimates’ prior probabilities as time progresses [111]. This
approach first and foremost requires some quantification of probability. The
probability measure should ideally give an indication of when the estimates di-
verge from probable ones, perhaps based on the residuals of the fit obtained in
(6.3). Since each singlêT in the population will branch out to some number of
new T̂ ’s, the total number of̂T ’s will increase exponentially unless the major-
ity of the T̂ ’s can be eliminated at each iteration step based on their probability
measure. Additionally, it should be noted that the ECSP method is already quite
computationally intensive, and the proposed method of using populations might
prove to be impractical due to very long computation times required.

6.2 Algorithm

A brief description of the ECSP algorithm is given in Table 6.1. For an in-depth
description of the algorithm, please refer to Paper 3. The implicit expression of
the ECSP method in (6.3) can beneficially be reformulated somewhat to improve
the method. When noise is introduced to the measured signal,r, the noise, even
if its first moment is zero, will cause an overestimation of temperature due to the
nonlinearity in Planck’s law which is effectively invertedin (6.3). Because of
this, the following dimension-less formulation is proposed

T̂ = arg min
T

H (z) (6.6)
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Step no Word description Math description

1 If initial emissivity is known, go to Step 5

2 Collect spectrum when the temperature is known r0, T0

3 Filter the spectrum Fλ(Ft(r0))

4 Calculate emissivity ε̂Q =
Fλ(Ft(r0))

rP (T0)
◦

5 Collect spectrum for unknown temperature rk

6 Filter the spectrum Fλ(Ft(rk))

7 Numerically invert Planck’s law T̂ = arg min
T

H

(

β

[

Fλ(Ft(rk))

rP (T )
◦ − ε̂Q

])

8 Calculate emissivity estimate ε̂Q =
Fλ(Ft(rk))

rP (T̂ )
◦

9 Terminate if no more samples, otherwise go to Step 5

Table 6.1: Simplified description of the ECSP algorithm. Allvariables except forT
are wavelength resolved vectors. A fraction line with a ”◦” denotes the element wise
division operation. Please refer to Paper 3 for an in-depth description of the algorithm.

where

zi = βi

[

r(λi)

rP (T, λi)
− ε̂Q(λi)

]

(6.7)

Note that this formulation differs from that in Paper 2 and Paper 3 and does not
compare as well with (5.6), (5.10) or (5.12) as the formulation in (6.3).

Recursive formulation

Introducing the functionsGT (ε̂
Q, r) andGε(T̂ , r), corresponding to algorithm

Steps 5-7 and Step 8 from Table 6.1 respectively, a simplifiedrecursive formu-
lation of the algorithm can be made. With samples ranging from 0 to k, and a
correct first temperature estimation

T̂0 = T0 (6.8)

givena-priori. The first emissivity estimation becomes

ε̂Q

1 = Gε(T̂0, r0) = Gε(T0, r0) = εQ

1 . (6.9)

The following temperature estimation for sample1 is

T̂1 = GT (ε̂
Q

1 , r1) (6.10)
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followed by the new emissivity estimation

ε̂Q

2 = Gε(T̂1, r1) (6.11)

and so forth, resulting in

T̂k = GT (ε̂
Q

k , rk) (6.12)

and

ε̂Q

k+1 = Gε(T̂k, rk). (6.13)

As seen above in (6.12) and (6.13),T̂k and ε̂Q

k , are determined recursively and
an error in one estimation is progressed, and possibly amplified, to the latter
estimates. Note that the key enablers for application of this recursive approach
is (6.8), the fact thatT0 is givena-priori and also that Planck’s law is highly
non-linear as discussed in Appendix A.

6.3 Weights and filtering

In real world situations, noise will be part of the measured spectral radiancer.
In order to counter this, filters are applied. Based on assumptions of limited
changes both related to wavelength and time for both emissivity and radiance,
see (6.2) and (5.1), low-pass filtering is applied in both spectral and temporal
dimensions. In time domain, each wavelength channel is filtered with a second
order Butterworth filter, whereas a Savitzky-Golay filter [112–114], is used for
filtering in wavelength domain. Based on comparison of the filtered and unfil-
tered spectra, signal to noise ratios (SNR) and variances can be estimated for all
wavelength channels, see Paper 3. The SNR and variance values are essential in
deciding which wavelength channels to include in the numerical inversion (Step
7 in Table 6.1). Channels with too low SNR are not included at all, while the in-
cluded channels are weighted with respect to their variances. Experiences from
performed tests have given that a good formulation of the weight vectorβ, when
H(·) = ∑

λ∈Λ β(·)2, is

β(λi) =
1

σ̂2
χ i

. (6.14)

where σ̂2
χ i is the estimated variance of the measured radiance atλi. For the

weighted least squares regression method, the Best Linear Unbiased Estimator
(BLUE), is obtained if each weight is equal to the reciprocalof the variance
of the measurement [115, 116]. This corresponds well to the empirically based
findings presented in (6.14), reflecting that the weighted inversion in Step 7 in
Table 6.1 is related to weighted least squares regression.
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Ttransition

T

t

Figure 6.2: Temperature curve during cooling of a material exhibiting a phase transfor-
mation atTtransition.

6.4 Calibration

As described in Section 5.3, the temperature can be determined unambiguously
from measured radiancer, if the emissivity is known. One of the fundamental
problems of pyrometry is how to handle the fact the emissivity only rarely is
known [81, 83]. The ECSP method constitutes a new approach tothe problem
but is in no way a complete solution. The fact remains that onedesires to de-
termine temperature which is one of two unknowns which affect the radiance
measurement, the other one being emissivity.

The requirement for the ECSP method thatT0 (or εQ

0 ) needs to be knowna-
priori constitutes a severe drawback of the method. Basically the problem comes
down to the fact that one must know the temperature (or emissivity) at some point
(k = 0) in order to measure the temperature for the other samples. This ”teach-
in” calibration type, where a known temperature or emissivity is used to calibrate
the system at a point in time, is only available in some applications. In the
situations where teach-in calibration is possible and emissivity is not expected
to vary, all conventional pyrometry methods, described in Section 5.4, give good
accuracy and there is no need to use ECSP. However if emissivity is expected
to vary, ECSP should be considered as an alternative, if teach-in calibration is
possible.

In Paper 4, a new approach for enabling teach-in calibrationis presented.
The fact that material phase transitions may occur during the measurement is
exploited. If a material, for example, during cool down undergoes a phase tran-
sition, as illustrated in Figure 6.2, a ”hump” or plateau will be seen at the phase
transition temperatureTtransition. This hump, and thus the phase transition, can
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be automatically identified from radiance measurements in anumber of ways as
described in Paper 4 and in [117]. If the phase transition temperature is known,
this temperature can be used asT0 and allows for applying the algorithm both
forwards and backwards in time. These techniques for automatic calibration are
not restricted to use with ECSP, but are also well suited for teach-in calibration
of multispectral pyrometry as described in Section 5.4.

6.5 Sensitivity analysis

In the following section, a sensitivity analysis study is presented in the form of
a number of simulated scenarios, Scenario 1 to Scenario 5. The purpose of the
sensitivity analysis is to illuminate both the limitationsand the benefits of the
ECSP method. For this purpose, all scenarios except Scenario 4 are simulated
without any artificial measurement noise. The absence of noise is to illuminate
the ECSP method’s dynamics rather than its sensitivity to noise. Additionally,
all filtering and weighting of wavelengths normally carriedout for the ECSP
method, see Paper 3 for details, are left out in order to make afair comparison
to other methods. The multispectral method simulated in this study, assumes
graybody emissivity, i.e. constant emissivity for all wavelengths.

Reflecting the spectrometer used in Paper 2,2048 wavelengths are simulated
between190 and870nm for ECSP and multispectral pyrometry. The tempera-
ture ramp is identical for all scenarios, except for Scenario 2, in which constant
temperature is simulated. The simulated test set comprisesof 1000 samples.
With the sampling rate in Paper 2 (50Hz), this corresponds to a duration of20 s.
During the first50 samples, temperature is kept constant, followed by a linear
increase in temperature from1000K to 1500K during700 samples, followed by
a constant temperature for the remaining250 samples as indicated in the upper-
most part of Figure 6.3. This is a temperature range which, interms of signal
strength, is suitable for the wavelength range of the simulated instrument.

The simulated instruments’ accuracies are illustrated in the result plots by the
absolute relative error

∣

∣

∣

∣

∣

T̂ − T

T

∣

∣

∣

∣

∣

, (6.15)

expressed in percent. All pyrometry methods are calibratedwith regard to emis-
sivity at the first sample,k = 0, for each simulation scenario, meaning that the
first temperature and emissivity estimations are correct. The emissivity calibra-
tion is then retained throughout each simulation for the conventional pyrometry
methods, while the emissivity estimation in the ECSP methodis gradually al-
tered.
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Scenario 1: Constant emissivity, varying temperature

The results of the simulated scenario with constant emissivity is shown in Fig-
ure 6.3. All methods give negligible errors as might be expected.
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Figure 6.3: Results from Scenario 1 with constant emissivity. All methods give negligi-
ble errors. Note that no noise is introduced in the simulation.

Scenario 2: Time varying graybody, constant temperature

This scenario encompasses varying emissivity that changeslinearly over time,
from 0.3 to 0.7, over a range of1000 samples. Although a somewhat idealised
situation, this scenario might be representative of some real world conditions.
The results from this simulation are presented in Figure 6.4. Note that due to
the assumption of graybody emissivity, both the multispectral method and the
dual waveband method performs without estimation errors. Temperature is not
varied throughout this scenario. It is also worth noticing that if instead of1000
samples, a lower number of samples are used for simulating the same magnitude
of emissivity change, the resulting errors remain the same.

Scenario 3: Time varying graybody, varying temperature

For this scenario, where emissivity varies as a graybody over time, emissivity
varies linearly from0.3 to 0.5 from sample0 to sample300, followed by con-
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Figure 6.4: Results from Scenario 2 with time varying graybody emissivity and constant
temperature. Note that no noise is introduced in the simulation.

stant emissivity for200 samples, another linear increase to0.7 followed by an-
other200 samples of constant emissivity as seen in Figure 6.5. This choice of
simulated emissivity is made in order to illustrate how bothvarying and constant
emissivity affects the temperature estimate. Note that emissivity is the same for
all wavelengths for a certain sample instance. The emissivity changes simulated
in this scenario could be caused by e.g. gradual obstructionof the optical path,
an articulated temperature dependence of emissivity of thematerial or oxidation.

As seen in Figure 6.5, and as expected for a graybody, the simulated dual
color and multispectral pyrometers are superior to all other methods for this ide-
alised scenario. The ECSP method steadies at a constant temperature and does
not drift for the last samples when all parameters are constant, even though it is
a recursive method. This can be explained by the fact that

ε̂Q

k+1 = Gε(T̂k, rk) (6.16)

and

T̂k+1 = GT (ε̂
Q

k+1, rk+1) = GT (ε̂
Q

k , rk) = T̂k (6.17)

for the two subsequent samplesk andk+1 when temperature and emissivity are
constant, and̂εQ contains no noise.
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Figure 6.5: Results from Scenario 3 with time varying graybody emissivity. Note that
no noise is introduced in the simulation.

Scenario 4: Time varying graybody, varying temperature - with added noise

Along with Scenario 3, another simulation was performed. Itwas identical to
Scenario 3 except for the fact that noise is introduced. In order to have constant
noise levels independent of temperature and wavelength, proportional gaussian
noise with a standard deviation of0.5% of the signal amplitude is added. Note
that the proportional behaviour of the added noise does not reflect what might be
expected in reality, but is added only to illustrate how the ECSP algorithm is af-
fected by noisy measurements. If a constant amplitude additive noise was added,
its impact would very much depend on the temperature and the resulting radiance
amplitude. Since no filtering is applied in the simulation, the added noise ampli-
tude of0.5% should, in this particular case, be compared to the noise remaining
after filtering during normal measurements where filtering is performed.

The results of Scenario 4 are presented in Figure 6.6. It shows strong resem-
blance to Figure 6.5 just as might be expected, but exhibits fluctuations in the
temperature estimations, especially for the single- and dual waveband methods.
When noise is introduced, like in this scenario, the ECSP estimates will drift
somewhat, even when all parameters are constant such as after sample800. This
effect is barely visible in Figure 6.6, and is therefore shown magnified in Fig-
ure 6.7. The drift is of minor importance for the ECSP method as long as noise
levels and the number of samples resemble those in this scenario. For details into
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the impact of noise in ECSP measurements, please refer to Paper 3.
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Figure 6.6: Results from Scenario 4 with added noise. Note that noise is introduced in
the simulation, equivalent to0.5% of the signal strength. Compare to Figure 6.5. A
magnification of the area indicated with green is shown in Figure 6.7.

Scenario 5: Varying spectral emissivity, varying temperature

Scenario 5 is similar to Scenario 3 in that no noise is added, the difference lies in
that the spectral emissivity in Scenario 5 varies not only with samples (k) but also
with wavelength (λ). Again, the minimum emissivity is0.3 and the maximum is
0.7. The function used to generate the emissivity set, as seen inthe middle part
of Figure 6.8, is

εQ(k, λ) = 0.5 + 0.2(k λ− λ) (6.18)

where the normalised timek = (k−k1)/(k1000−k1) and normalised wavelength
λ = (λ− λ1)/(λ2048 − λ1).

In Figure 6.8, the similarity in errors of ECSP and the multispectral method
can be seen. Both these methods perform temperature estimation based on the
same information and use similar approaches, compare (5.12) and (6.3). While
ECSP exhibits a slightly better result compared to multispectral pyrometry in
this case, this outcome depends on how the spectral emissivity, εQ(k, λ), changes
with time. In some cases the multispectral method proves to be superior but ex-
perience suggests that ECSP is better in a majority of these situations. However,
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Figure 6.7: Magnification of the area indicated with green inFigure 6.6 with results from
Scenario 4. The temperaturêT (k = 801) is indicated with a dashed black line in order
to show the drift for the ECSP method (solid black line).

using ECSP comes with the tendency for drift as seen for Scenario 2 with added
noise in Figure 6.6.

Conclusion - sensitivity analysis simulation study

ECSP gives quite similar performance to the multispectral pyrometry methods
but has the advantage that it somewhat adapts to varying emissivity and gives
more accurate temperature estimations. Due to the fact thatthe calculations are
iterative and without any feedback, the method is prone to divergence and drift
with time provided that noise is present in measurement data. However, for the
scenarios simulated above, which correspond to moderatelyfast changes in tem-
perature and emissivity for shorter time spans, the inherent divergence of the
ECSP method does not cause significant estimation errors. This should never-
theless be a concern when utilising ECSP measurements, longperiods of mea-
suring without recalibrating should be avoided. In Paper 3,it is shown that the
accumulated root mean square error, due to noise, depends asa square root of
the number of samples since it is a summation of temperature estimation errors,
each one normally distributed around zero.

65



CHAPTER 6. EMISSIVITY COMPENSATED SPECTRAL PYROMETRY

0 100 200 300 400 500 600 700 800 900 1000
1000

1500

T
em

pe
ra

tu
re

 [K
]

0.35
0.40.45 0.5

0.5 0.55
0.55

0.6

0.60.6 0.65
0.650.65

W
av

el
en

gt
h 

[n
m

] ε

100 200 300 400 500 600 700 800 900 1000

200

400

600

800

0 100 200 300 400 500 600 700 800 900 1000

0

1

2

3

4

5

Sample nr

A
bs

ol
ut

e 
re

la
tiv

e 
er

ro
r 

[%
]

 

 
ECSP
Single
Dual
Multi

Figure 6.8: Results from Scenario 5 with time varying spectral emissivity. Note that no
noise is introduced in the simulation.

6.6 ECSP results

ECSP has been successfully applied to a number of measurement situations, in
Paper 2, in Paper 4 and in [117]. Thermal cycling of Ti6Al4V with oxidation is
described in Paper 2. Errors proved to typically be below1% of absolute tem-
perature. This translates to actual errors of approximately 10 ◦C in the interesting
temperature range. In Figure 6.9, the results for the thermal cycling of Ti6Al4V
is shown. The measurement situation is illustrated by Figure 6.10 where the oxi-
dation of the object is clearly seen. In Paper 3, simulationsof measurements are
performed with variable noise levels, changing emissivityand changing tempera-
ture. These results indicate that the main limiting factor for accurate temperature
estimations is the signal to noise ratio. This has the effectthat higher tempera-
tures typically give higher accuracy provided a fixed spectral range. Apart from
the published results, a number of tests have been successfully performed for
induction hardening of steel and for Molecular Beam Epitaxy(MBE) deposition
of GaN on SiC. In both of these latter situations, emissivitychanges are con-
siderable and have previously proved to be difficult to compensate for within
pyrometric measurements.

In Section 6.5 a short simulation study is presented, aimed at illustrating the
dynamics of the ECSP method, mainly for cases without simulated measurement
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Figure 6.9: ECSP-measurements compared to thermocouple reference. Results from
Paper 2.

noise. The ECSP method is shown to give similar results to themultispectral
pyrometry method described in Section 5.4, but also exhibits an ability to adapt
to varying emissivity.

A PCT patent application has been filed for the ECSP method with reference
number PCT/EP2012/071393.

6.7 ECSP for LMD-w monitoring

As described earlier in Section 4.3, calibration of simulation models is a consid-
erable motivation for measuring temperature within the LMD-w process. The
accurate measurements made possible with the ECSP method, even for oxidis-
ing metal, are well suited as inputs for calibrating such simulation models. In-
accuracy caused by surface oxidation such as described in Paper 1 is minimised
and absolute temperatures, which are usually required for model calibration, are
measured. Simulation models for LMD-w have previously beencalibrated us-
ing thermocouples [78], which are constrained to static measurement points on
the substrate since they cannot be mounted onto the deposit before it is actually
being built.

However, when using the ECSP method together with LMD-w, there are a
few problems which are encountered. In order to calibrate the ECSP method,
at least one phase transition, such as liquid to solid, has tobe observed during
processing [118]. This can be achieved by directing the spectrometer onto the
cooling material at a fixed point and in such a way record the cooling behaviour
and identify the phase transition. After depositing a bead,the robot pauses in a
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Figure 6.10: Induction heated titanium specimen. Oxide visible as bluish taint on base
plate.

position in which the spectrometer is focused onto a certainpoint of the recently
deposited bead, as the bead cools down. In this way, measurements can be made
on every new bead if the spectrometer is also mounted onto therobot with a fixed
relative distance to the laser focus and wire feeder as shownin Figure 6.11.

The setup proposed in the above paragraph is however problematic because
of the robot dynamics. When the deposition is halted, the robot set speed is
decreased to zero, the laser is turned off and spectrometer measurements start.
Due to dynamics during the retardation of the robot, the robot and the position
of the spectrometer measurement spot moves relative to the substrate even when
the robot is not supposed to move any longer. Since the spatial thermal gradi-
ents are high on the substrate, even the slightest movement of the measurement
spot gives rise to significant temperature signal changes. This effect is illustrated
in Figure 6.12, in which a second order system is used to modelthe position-
ing dynamics of the robot. The effects of the robot dynamics severely limit the
possibilities to identify phase transitions, since distinguishing them from phase
transitions in the spectrometer data proves to be difficult.Using the same hard-
ware as in Paper 2 and a sampling rate of66Hz, the liquid to solid transition of
Ti6Al4V could not be confidently identified in a not-published study conducted
by the author.

6.8 Summary

The Emissivity Compensated Spectral Pyrometry (ECSP) method, developed
within the scope of this thesis, is a new pyrometry method, which adapts to
varying emissivity of a material during temperature measurements. In order to
solve the problem of estimating temperature from radiance where emissivity is
unknown, ECSP does not use a wavelength-domain constraint like the conven-
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Figure 6.11: Spectrometer mounted onto robot. Measurementspot indicated with ma-
genta.

tional pyrometry methods. The method instead uses a temporal constraint, as-
suming that the changes in emissivity are limited with regard to time. This leads
to an emissivity compensating pyrometry method, accomplished through col-
lection of spectrally resolved radiance measurements, which are processed with
an adaptive algorithm based on the temporal constraint. Dueto the fact that
ECSP requires ”teach-in” calibration and exhibits a tendency to drift in practical
situations, it should only be used for particular situations where its advantages
exceed its disadvantages. Such situations may be where a phase transition can be
identified, allowing for automatic calibration, and emissivity is expected to vary
significantly over time in an unknown way. In these suitable situations however,
it proves to be more accurate than conventional pyrometry methods.
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CHAPTER 6. EMISSIVITY COMPENSATED SPECTRAL PYROMETRY
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Figure 6.12: Illustration of temperature response for LMD-w bead deposition as a result
of robot dynamics. Temperature is assumed to depend linearly on position error, i.e.
positive position error results in higher temperature signal.
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Chapter 7

Summary of included papers

In this chapter, the papers appended in the second part of this thesis are sum-
marised.

Paper 1

P. Hagqvist, F. Sikström, and A-K. Christiansson
Emissivity estimation for high temperature radiation pyrometry on
Ti-6Al-4V
Measurement, 46(2):871-880, Feb 2013, 46(2):871-880, Feb 2013

Author’s contribution: Principal author. Devised and carried out
experiments. Analysed data and proposed theoretical explanations
of found results.

Paper addresses research questionsQ1 andQ2.

This paper discusses the difficulties in emissivity calibration for non-contact
temperature measurements on Ti6Al4V. Prior work in the areaof determining
Ti-alloy emissivities is briefly reviewed and discussed. A narrow waveband py-
rometer is used for radiance measurements and used for emissivity calibrations
by also measuring the true temperature of the object with twodifferent meth-
ods. Platinum thermocouples proved to be useful as temperature references up
to 1723K. An emissivity reference paint proved to evaporate or diffuse into the
material at elevated temperatures around1473K. The result of the emissivity
calibration showed hysteresis of emissivity with regard totemperature and time.
This hysteresis, it is argued, is the result of surface oxidation which affects the
resulting surface emissivity. From this, it is concluded that emissivity calibra-
tion can only successfully be employed for Ti6Al4V if the oxidation state is well
defined and the calibration is carried out at a similar oxidation state.
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Paper 2

P. Hagqvist, F. Sikström, A-K. Christiansson and Bengt Lennartson
Emissivity compensated spectral pyrometry for varying emissivity
metallic measurands
Measurement Science and Technology, 25:025010 2013, Feb 2014

Author’s contribution: Principal author and idea originator. Devised
and carried out experiments. Implemented algorithm and compiled
results.

Paper addresses research questionsQ2 andQ3.

Paper 2 introduces and evaluates a new method for non-contact temperature mea-
surements called Emissivity Compensated Spectral Pyrometry (ECSP). A stan-
dard UV-Vis spectrometer is used together with an adaptive algorithm for mea-
surements of absolute temperature which are compensated with regard to varying
spectral emissivity. This is achieved by using the abundantradiance information
supplied by the spectrometer. The paper presents the main principles of ECSP
and validates the method by performing measurement trials on a heated metal-
lic specimen. ECSP proves to give accurate temperature values, compared to a
thermocouple reference, even when the specimen clearly oxidises.

Paper 3

P. Hagqvist, F. Sikström, A-K. Christiansson and Bengt Lennartson
Emissivity compensated spectral pyrometry - algorithm andsensi-
tivity analysis
Measurement Science and Technology, 25:025011 2013, Feb 2014

Author’s contribution: Principal author. Devised, carried out and
evaluated simulations.

Paper addresses research questionQ3.

In this paper, the ECSP method introduced in Paper 2 is further elaborated upon.
Details regarding filters and numerical inversion procedures are discussed. The
algorithm is presented in detail in equation form as opposedto the text used in
Paper 2. Computer simulations are employed for investigating the method’s per-
formance with regard to noise levels and changes in temperature and emissivity.
An error model is introduced and its implications are discussed. Estimations

72



of expected errors are created from theoretical reasoning and confirmed through
simulation results.

Paper 4

P. Hagqvist and A-K. Christiansson
Automatic detection of material phase transitions from spectroscopic
data
Proceedings of IECON 2013 - 39th Annual Conference on IEEE In-
dustrial Electronics Society.pages 2384-2389, Vienna AUT, Nov
2013

Author’s contribution: Principal author and idea originator. Devised
and carried out experiments. Conceived and implemented automatic
detection methods. Presented paper orally at conference.

Paper addresses research questionsQ1, Q2 andQ3.

Automatic methods for detecting material phase changes from spectral data are
presented in this paper. Such methods are vital for applyingthe ECSP tempera-
ture measurement method discussed in Paper 2 and Paper 3 in anindustrial con-
text. Sectioning with derivatives, steady-state identification and cross-correlation
are the methods investigated for conducting the automated detection. All three
of these methods proved to accurately identify the liquidus-solidus transition of
a solidifying copper sample. It is concluded that the methods may be used in
conjunction for increased robustness. The importance of automatic phase de-
tection is discussed along with the possible alternatives for initiating the ECSP
algorithm.

Paper 5

P. Hagqvist, A. Heralíc, A-K. Christiansson and Bengt Lennartson
Resistance measurements for control of laser metal wire deposition
Optics and Lasers in Engineering, 54:62-67, Mar 2014

Author’s contribution: Principal author and idea originator. Devised,
carried out and evaluated experiments. Integrated existing and new
hardware and software for collecting measurements and controlling
LMD-w.
Paper addresses research questionsQ1 andQ4.
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In Paper 5, the concept of resistance monitoring for automatic control of LMD-w
is investigated. From theoretical reasoning and prior knowledge, the method’s
usability for control of LMD-w is discussed. An empirical model relating the
wire and weld-pool resistance to tool-to-workpiece distance is created. This
model is used for real-time control of LMD-w using a PI-controller. Promising
results are presented along with a discussion on future development and limita-
tions of the control strategy.

Paper 6

P. Hagqvist, A. Heralíc, A-K. Christiansson and Bengt Lennartson
Resistance based iterative learning control of additive manufactur-
ing with wire
Resubmitted after revision toMechatronics, Jan 2015

Author’s contribution: Principal author, devised, carried out and
evaluated experiments in cooperation with A. Heralić. Integrated ex-
isting and new hardware and software for collecting measurements
and controlling LMD-w using an iterative learning controller based
on resistance measurements.
Paper addresses research questionsQ1 andQ4.

The principal contribution in Paper 6 is the implementationof an iterative learn-
ing controller for geometric control of an LMD-w deposit, based on resistance
measurements. Also, the publication demonstrates the benefits of using a wheat-
stone bridge for measuring the resistance within LMD-w.
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Chapter 8

Conclusions and future work

Finding instrumentation and estimation solutions suitable for LMD-w is the core
objective of this work. In response to this, a survey of suitable measurement
techniques has been performed. Especially temperature measurement methods
and resistance measurements have been thoroughly investigated and found to be
of use. Due to the complex process and difficulties in utilising sensitive equip-
ment within the process chamber, no other new instrumentation attempts have
been made.

Resistance based process monitoring and control shows promise with regard
to maintaining a nominal distance between the tool and the workpiece. A func-
tional first generation feedback controller was implemented with a satisfactory
outcome. However, when attempting to generalise this result, in order to con-
trol a more application-like deposition situation, the method of feedback control
based on resistance proved to lack in distance accuracy and was limited by the
actuator response time. Instead, using the distance information obtained through
in-situ resistance measurements for feed forward control seems to be a more
viable route. When coupling resistance based distance measurements to an iter-
ative learning control system, good geometrical accuracy together with a stable
deposition process is obtained. This methodology should befurther investigated
in order to discern its limitations and capabilities, but due to its simplicity, it is a
very attractive solution when automating LMD-w. Also the possibilities of fus-
ing different data such as from resistance measurements andfrom image analysis
should be investigated for serving as input to an LMD-w control system in the
future.

Regarding temperature measurements, much work has been directed towards
non-contact temperature measurements on varying emissivity specimens. For
LMD-w, Ti6Al4V is an important alloy due to its use within theaerospace in-
dustry [3]. It is an alloy which easily oxidises even when processed in argon
atmosphere due to residual oxygen. The surface oxidation and oxide migration
into the bulk both affect the resulting material emissivity. This is in addition to
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the dependence of material phase and temperature the emissivity of Ti6Al4V ex-
hibits by itself. An attempt was made in Paper 1 to calibrate asingle waveband
pyrometer for measurements on Ti6Al4V for use with LMD-w. Itwas found that
this approach resulted in relatively large errors and that conventional pyrometry
methods all give very limited accuracy for oxidising objects. In response to this,
a new method which utilises spectral radiance information has been developed.
It is shown in both experimental trials as well as simulations, to compensate for
varying emissivity and to give more accurate temperature readings than conven-
tional pyrometry techniques. This method, which is denotedEmissivity Com-
pensated Spectral Pyrometry (ECSP), has been proven successful for measure-
ments on Ti6Al4V and copper. An auxiliary method that automatically detects
material phase transitions has also been developed, limiting the dependence on
conventional calibration for ECSP instruments. The applicability of the technol-
ogy for other industrially relevant materials such as steelor semiconductors has
not fully been determined, but ECSP shows promise for some ofthe tested appli-
cations such as induction hardening of steel and semiconductor processing. The
application of ECSP for these purposes and a thorough investigation regarding
the method’s suitability should be conducted in the future.

Conclusions have also been made regarding the usefulness ofobtainable tem-
perature information for LMD-w. With measurements that arelimited to the sur-
face, temperature information can only with the help of tuned simulations give
bulk temperature estimates. Since such simulations are complex and therefore
not feasible for every deposition trial, bulk temperature histories will not, at least
in the near future, typically be produced based on radiationthermometry mea-
surements within LMD-w. Bulk temperature histories are of great importance for
material properties and one of two main reasons for performing accurate abso-
lute temperature measurements within LMD-w. The other reason is to calibrate
or tune simulation models, which can be used for either estimating temperature
histories or for getting deeper insight into LMD-w fundamentals. Absolute tem-
perature measurements are therefore of limited interest unless there is a model
to be tuned. However, relative temperature measurements such as for comparing
two trials might still be of interest for selection of suitable process parameters
for a certain geometry. For these measurements however, lower accuracy mea-
surements, such as provided by a single-waveband pyrometer, might suffice.

One substantial conclusion which has been drawn regarding the topic of non-
intrusive instrumentation and estimation for control of LMD-w is that it is truly
a multidisciplinary topic. The practical challenges require that knowlegde from
a multitude of disciplines is fused, in order to find solutions to problems. This
thesis has, to varying extent, dealt with for example: physics, surface science,
materials science, control theory, signal processing, robotics and welding. This
multidisciplinary approach has proved fruitful. Progresswithin the field has been
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made as a result of the work leading up to this thesis. This is in the form of
more reliable temperature measurement solutions for metallic materials and new
control solutions for LMD-w based on resistance measurements.
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Appendix A

The importance of Planck’s law for
ECSP

In this appendix, the importance of the properties of Planck’s law for the func-
tionality of the ECSP method is illustrated by mathematicalapproximations and
assumptions of ideal cases. It is meant to give some further insight into how and
why the ECSP method works.

In order to illustrate how some of the properties of Planck’slaw (5.1) affect
the temperature estimates made with the ECSP method, first introduce some
imagined radiance functionrx, which is used with the ECSP algorithm. The
functionrx will replace Planck’s law (rP ) in the equations that follow in order
to show how the formulation ofrx affects the resulting temperature estimates.
Also, define

T̃k = Tk − T̂k (A.1)

as the temperature error at samplek.
First, assume thatrx is only a function of temperature and not of wavelength.

As a result of this,rx(T ) will end up being a scalar functionrx(T ) instead of a
wavelength resolved vector. As introduced in (6.6), the temperature estimation
is in ECSP found by the following implicit relation

T̂ = arg min
T

H (z) (A.2)

with z as introduced in (6.7) and with the measured radiancer

zi = βi

[

r(λi)

rP (T, λi)
− ε̂Q(λi)

]

. (A.3)

With a scalarrx, the above relations are satisfied by the scalar relation foreach
time instancek

β

[

rk

rx(T̂k)
− ε̂Q

k

]

= 0. (A.4)
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For anyβ 6= 0, this is equivalent to

rk

rx(T̂k)
= ε̂Q

k . (A.5)

This expression may be rewritten usingrx as an analogue torP in the definition
rk = rP (Tk) ◦ εQ

k as introduced in (5.5), resulting in

rx(Tk)ε
Q

k

rx(T̂k)
= ε̂Q

k . (A.6)

Using a Taylor expansion ofrx(T̂k) aroundrx(Tk) results in

rx(Tk)ε
Q

k

rx(Tk)− T̃ r′x(Tk)
≈ ε̂Q

k (A.7)

wherer′x denotes the temperature derivative ofrx. Solving this equation for̃Tk

yields the temperature error

T̃k ≈ rx(Tk)

r′x(Tk)

(

1− εQ

k

ε̂Q

k

)

(A.8)

which also can be written as

T̃k ≈ rx(Tk)

r′x(Tk)

(

εQ

k − ε̂Q

k

ε̂Q

k

)

(A.9)

in order to further illuminate that it is the emissivity estimation errorεQ

k − ε̂Q

k that
governs the temperature estimation errorT̃k. What conclusions may be drawn
from the above expression? First, the trivial observation that T̃k = 0 in the case
that εQ

k = ε̂Q

k confirms the findings presented in Scenario 3 in Chapter 6 that
with a correct emissivity estimation, the temperature estimation will be correct.
Second, the ratio ofrx to its temperature derivativer′x determines how much any
error in the estimation ofεk affectsT̃k. Thus, arx with r′x = 0 will give infinite
errors. This agrees with the intuitive notion that ifrx does not change with
temperature, the method is not at all appropriate for estimating temperature. On
the other hand, ifr′x is large,T̃k will be small.

Given the definition of̃Tk given in (A.1),T̂k may be expressed as

T̂k = Tk − T̃k. (A.10)

This expression can be used for calculatingε̂Q

k+1 as outlined in Table 6.1

ε̂Q

k+1 =
rk

rx(T̂k)
. (A.11)
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The expression to the right of the equality sign is, for the scalar case, equal to
(A.5):

ε̂Q

k+1 =
rk

rx(T̂k)
= ε̂Q

k . (A.12)

Which results in
ε̂Q

k+1 = ε̂Q

k . (A.13)

This may seem a surprising result, but it is actually rather intuitive. Recall that in
this example, rather than solving for a multitude of wavelengths, we are solving
a scalar problem, looking for the temperature which best satisfies our measured
radiancerk given the emissivitŷεQ

k . In the scalar case,rx is a bijective func-
tion. This implies that there exists a functionr−1

x such thatT = r−1
x (rx(T )) and

rx(T ) = rx(r
−1
x (rx(T ))) [119]. This leads to that in the scalar case:

T̂k = r−1
x

(

rk
ε̂Q

k

)

(A.14)

from (A.5), and
ε̂Q

k+1 =
rk

rx(T̂k)
(A.15)

from (A.11). Inserting (A.14) into (A.15) gives

ε̂Q

k+1 =
rk

rx

(

r−1
x

(

rk
ε̂Q
k

)) = ε̂Q

k (A.16)

once again arriving at the expression in (A.13) for the scalar case. The vectorised
case will now be analysed using the same approach as in (A.14)to (A.16).

CalculatingT̂ for the vectorised case through the minimisation in (A.2) is
an overdetermined problem. Since exact solutions to such problems are mere
exceptions, a residual vector

δk =
rk
ε̂Q

k

− rx(T̂k) ∀λ ∈ {λ1 . . . λn} (A.17)

typically exists, i.e.δ 6= 0 where0 is a vector of zeros. Rewriting (A.17) results
in

rx(T̂k) =
rk
ε̂Q

k

− δk ∀λ ∈ {λ1 . . . λn}. (A.18)

Thus, for each wavelength, the scalarT̂k is (redundantly) determined for each
wavelength by

T̂k = r−1
x

(

rk
ε̂Q

k

− δ

)

∀λ ∈ {λ1 . . . λn} (A.19)

while the vector̂εQ

k+1 is still for each wavelength determined by

ε̂Q

k+1 =
rk

rx(T̂k)
∀λ ∈ {λ1 . . . λn}. (A.20)
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Inserting (A.19) into (A.20), results in

ε̂Q

k+1 =
rk

rx

(

r−1
x

(

rk
ε̂Q
k

− δ
)) 6= ε̂Q

k ∀λ ∈ {λ1 . . . λn}, (A.21)

proving that it is required thatδ 6= 0 in order to obtain̂εQ

k+1 6= ε̂Q

k .
In the case where an exact solution is found for the overdetermined problem

in (A.2), the residual vectorδ = 0 and consequentlŷεQ

k+1 = ε̂Q

k . Such an exact
solution can only be produced (for noise-free measurements) if emissivity does
not change between samples i.e:εQ

k = εQ

k−1. Since an exact solution implies
that emissivity does not change, there is reason to keep the emissivity estimate
ε̂Q

k also when calculatinĝεQ

k+1. This intuitively corresponds to thatδ = 0 leads
to ε̂Q

k+1 = ε̂Q

k in this special case. Normally however, this will not be the case
for the overdetermined problem created when using multispectral measurements.
The utilisation of multiple wavelengths will typically give non-zero residuals and
consequently result in an update ofε̂Q

k that can not be achieved by using only a
single wavelength with the ECSP method.

The above equations (A.19) to (A.21) prove that multispectral measurements
are required in order to achieve emissivity estimate updates with the ECSP method
and that the method can not be successfully used only with a single wavelength.
Apart from being a necessity in order to obtain ”new” emissivity estimates, the
use of many wavelengths also enable using the weight vectorβ in order to best

employ wavelengths with minimal
rx(Tk)

r′x(Tk)
-quotients in order to minimise tem-

perature estimation errors.

Due to the impact of
rx(Tk)

r′x(Tk)
in (A.8) and (A.9), it is interesting to try to

quantify it for Planck’s law, i.e.rx = rP . Planck’s law (5.1) can be simpli-
fied provided that the wavelength and temperature ranges employed ensure that
C2 ≫ λT , where the constantC2 = 0.014 388K m [81–83]. This approxima-
tion is called Wien’s approximation and is

rP (TA, λ) ≈
C1

λ5(eC2/(λTA))
(A.22)

whereC1 = 1.191× 108 Wµm4m−2sr−1. Using the approximation in (A.22)
gives that

rP (Tk, λ)

r′P (Tk, λ)
≈ T 2

kλ

C2

. (A.23)

This result helps in quantifying (A.8) when the wavelength is known and the

temperature is known approximately. In Paper 2, it is found that T
2
k
λ

C2
≈ 38K for

the wavelengths and temperature ranges used therein.
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Returning to (A.8), it is seen that the remaining unknown in this expression
is

1− εQ(λ)k
ε̂Q(λ)k

= 1− ε(λ)k
ε̂(λ)k

=
ε̂(λ)k − ε(λ)k

ε̂(λ)k
=

−ε̃(λ)k
ε̂(λ)k

(A.24)

sinceεQ = ρQ ◦ ε and ε̃ = ε − ε̂. This value will reflect how correct the
emissivity estimation used actually is. If the estimation deteriorates with time, as
experienced with the ESCP method,ε̃ will increase and thus result in an increase
in T̃ .

The above approximations and derivations illustrate how crucial it is that the
temperature derivative of Planck’s law is relatively largewhen using the ECSP
method. It is also shown that ECSP requires wavelength resolved measurements,
something which is possible thanks to that Planck’s law dictates a wavelength
dependence of radiance and that this radiance can be measured using spectrom-
eters.
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