
Modeling Energy Consumption
of Lock-Free Queue Implementations

Aras Atalar†, Anders Gidenstam†‡, Paul Renaud-Goud† and Philippas Tsigas†
†Chalmers University of Technology, 412 58 Göteborg; Email: name.surname@chalmers.se

‡University of Borås, 501 90 Borås; Email: name.surname@hb.se

Abstract

This paper considers the problem of modeling the energy behavior of lock-free concurrent queue data
structures. Our main contribution is a way to model the energy behavior of lock-free queue implemen-
tations and parallel applications that use them. Focusing on steady state behavior we decompose energy
behavior into throughput and power dissipation which can be modeled separately and later recombined
into several useful metrics, such as energy per operation. Based on our models, instantiated from synthetic
benchmark data, and using only a small amount of additional application specific information, energy
and throughput predictions can be made for parallel applications that use the respective data structure
implementation. To model throughput we propose a generic model for lock-free queue throughput
behavior, based on a combination of the dequeuers’ throughput and enqueuers’ throughput. To model
power dissipation we commonly split the contributions from the various computer components into
static, activation and dynamic parts, where only the dynamic part depends on the actual instructions
being executed. To instantiate the models a synthetic benchmark explores each queue implementation
over the dimensions of processor frequency and number of threads. Finally, we show how to make
predictions of application throughput and power dissipation for a parallel application using a lock-free
queue requiring only a limited amount of information about the application work done between queue
operations. Our case study on a Mandelbrot application shows convincing prediction results.1

Index Terms

lock-free; analysis; modeling; energy; power; throughput; queue; concurrent data structures

1The research leading to these results has received funding from the European Union Seventh Framework Programme
(FP7/2013-2016) under grant agreement 611183 (EXCESS Project, www.excess-project.eu).
Technical report - Department of Computer Science and Engineering, Chalmers University of Technology and Gteborg University
(2014:15)

1

Modeling Energy Consumption
of Lock-Free Queue Implementations

CONTENTS

I Introduction 3

II Related work 4

III Low-level Power Models for CPU-based Platforms 5
III-A General Power Model . 5
III-B Power Components Derivation . 6
III-C Dynamic CPU Power . 6
III-D Dynamic Memory and Uncore Power . 8
III-E Summary of Micro-Benchmarking for Power Modeling on CPU Platform 12

IV Framework 13
IV-A Synthetic Benchmark . 13

IV-A1 Skeleton . 13
IV-A2 Queue Implementations . 13

IV-B Notations and Setting . 14

V Throughput Estimation 14
V-A Throughput Decomposition Principles . 14
V-B Basic Throughputs . 15

V-B1 Low Intra-Contention . 15
V-B2 High Intra-Contention . 16
V-B3 Frontier . 16

V-C Combining Basic Throughputs . 16
V-D Instantiating the Throughput Model . 18

V-D1 Low Intra-Contention . 19
V-D2 High Intra-Contention . 19

V-E Results . 20

VI Power Estimation 20
VI-A CPU Power . 21
VI-B Memory and Uncore Power . 22
VI-C Instantiating the Power Model . 25
VI-D Results . 25

VII Energy per Operation Estimation 28

VIII Description of the Implementations 28
VIII-1 NOBLE [1], [2] . 28
VIII-2 Tsigas-Zhang [3] . 30
VIII-3 Valois [4] . 30
VIII-4 Michael-Scott [5] . 30
VIII-5 Moir-et al. [6] . 30

2

VIII-6 Hoffman-Shalev-Shavit [7] . 31
VIII-7 Gidenstam-Sundell-Tsigas [8] . 31

IX Towards Realistic Applications: Mandelbrot Set Computation 31
IX-A Description of Mandelbrot Set Application . 31
IX-B Mandelbrot Prediction . 32

X Conclusion 37

References 37

3

I. INTRODUCTION

Lock-free implementations of data structures is a scalable approach for designing concurrent data
structures. Lock-free data structures offer high concurrency and immunity to deadlocks and convoying,
in contrast to their blocking counterparts. Concurrent FIFO queue data structures are fundamental data
structures that are key components in applications, algorithms, run-time and operating systems. The
producer/consumer pattern, e.g., is a common approach to parallelizing applications where threads act
as either producers or consumers and synchronize and stream data items between them using a shared
collection. A concurrent queue, a.k.a. shared “first-in, first-out” or FIFO buffer, is a shared collection
of elements which supports at least the basic operations Enqueue (adds an element) and Dequeue
(removes the oldest element). Dequeue returns the element removed or, if the queue is empty, NULL. A
large number of lock-free (and wait-free) queue implementations have appeared in the literature, e.g. [3]–
[8] being some of the most influential or most efficient results. Each implementation of a lock-free queue
has obviously its strong and weak points so the impact on performance and energy when choosing one
particular implementation for any given situation may not be obvious.

As the number of known implementations of lock-free concurrent queues is growing, it is of great
interest to describe a framework within which the different implementations can be ranked, according to
the parameters that characterize the situation. A brute force approach could achieve this by running the
implementations on hand on the whole domain of study, gathering and comparing measurements. This
would yield high accuracy, but at a tremendous cost, since the domain is likely to be large. Additionally,
it would only bring a limited understanding on the phenomena that drive the behavior of the queue
implementations. Therefore, we propose generic models for predicting the behavior of lock-free queues
under steady state usage. The models are instantiated for the queue implementations and machine on
hand using empirical data from a limited number of points in the domain.

The implementations can be ranked according to a plethora of metrics. Traditionally, performance
in terms of throughput has been the main metric. Furthermore, the notion of energy efficiency has now
extended into every nook and cranny of Information Technology, at any scale, from the Exascale machines
that need huge improvements in terms of power dissipation to be feasible [9], to the small electronic
devices where the battery lifetime is a critical issue.

We decompose the energy behavior of queues, and subsequently applications, into two components:
(i) throughput and (ii) power dissipation. We model these components separately. The predicted throughput
and power dissipation can be recombined into the energy-efficiency metric energy per queue operation,
which is the ratio between power dissipation and queue throughput. When modeling an application,
this metric can be extended to energy per unit of application work. Further, plotting energy per oper-
ation or unit of work according to throughput allows exploration of the Pareto-optimal frontier of the
energy−performance bi-criteria optimization problem for the queues or the application.

Lock-free queue data structures generally offer disjoint-access parallelism: enqueuers and dequeuers
modify only their respective ends of the queue, and compete mostly with operations of the same kind.
Nonetheless, when the queue is close to empty, both ends point to the same part of the queue, then
enqueue and dequeue operations have to be synchronized, and every operation impacts the behavior of
any other.

Concerning the queue as a whole, a successful event can be seen as the dequeue of a non-NULL item,
since this event implies that the item has been enqueued and dequeued. Also, the throughput of the queue
is naturally defined as the number of such events per unit of time, which is a meaningful performance
criterion for queues.

In this work, we focus on queues that are in a steady state, i.e. such that the rate of each operation
attempt is constant. Then, the throughput T of the queue is the minimum between the throughput of all
dequeues Td , even those returning NULL, and throughput of enqueues Te . Indeed, if Te > Td , then the
queue grows and the throughput is determined by the dequeuers, which cannot obtain any NULL items;

4

and if Te ≤ Td , then the queue is mostly empty and NULL items are dequeued, but the throughput is
determined by the enqueuers.

Despite this decomposition, enqueuers’ and dequeuers’ throughput are still correlated when the queue
is mostly empty. In addition, the interactions between them are rather asymmetric, as in broad terms, an
enqueue can be delayed by any concurrent dequeue, while for a dequeue, concurrent enqueues will cease
to disturb it as they move away from the dequeue end.

Based on these facts, we decorrelate the throughput into several uncorrelated and basic throughputs,
and reconstitute the main throughput by combining them. Among the advantages of this process, we earn
a better understanding of the performance (as the basic throughputs are meaningful), and we reduce the
number of measurements needed to instantiate the model on the whole domain of study.

The domain of study that we envision here can be viewed as the Cartesian product of four sets: (i)
number of threads accessing the queue, (ii) CPU frequencies, (iii) a range of dequeue access rates, (iv) a
range of enqueue access rate. The cardinality of the first two sets is at most a few tens, while the last two
are continuous sets that are not even bounded. In this paper, thanks to the removal of the dependencies
between throughputs, we are able to instantiate the model with only a few data points, while the model
covers the whole intervals.

Finally, this decomposition also eases the study of power dissipation, where we reuse the same ideas
as in the throughput estimation part.

The rest of the paper is organized as follows. Section II discusses related work. Section IV introduces
our modeling framework for lock-free concurrent queues. Section V describes how the throughput of lock-
free concurrent queues is modeled, while Section VI describes how the power dissipation is modeled. In
Section IX we develop a method to model parallel applications using the queue models and apply it to
an application for computing the Mandelbrot set. Finally, Section X concludes this paper.

II. RELATED WORK

Hunt et al. [10] measured the performance and energy use of lock-free and lock-based implementations
of FIFO queues, double-ended queues and sorted singly linked lists. The results from the lock-free
and lock-based implementations are compared and also analyzed using captured hardware performance
counters, e.g. instruction count, user/system time, L1 cache miss ratio and branch misprediction rate.
Gautham et al. [11] compared the performance and energy use of locks and software transactional
memory in benchmarks from the STAMP benchmark suite.

A variety of models have been proposed to estimate power dissipation, based on different approaches.
PMC (Performance Monitoring Counters) based power models, build upon event selection and statistical
correlation, draw considerable amount of attention. Using this approach, Contreras et al. [12] estimated
CPU and memory power. Wang et al. [13] provided a two level power model for multiprocessors, which
uses frequency and IPC (Instructions Per Cycle) as the only PMC event. Isci et al. [14] described a
technique to estimate per-component power dissipation for CPU using PMCs and used this to determine
phases of a program. Tiwari et al. [15] created an instruction level power model. They determined a base
cost for each instruction type with micro-benchmarks and tried to clarify the inter-instruction impacts
to estimate power dissipation of compositions. Ge and Cameron [16] provided a power-aware speedup
model. They decompose the program into phases according to the degree of available parallelism and
on/off-chip access ratios that is used to capture the impact of frequency scaling and process count. Choi
et al. [17] introduced a roofline model which is parameterized with the maximum throughputs, operation
energy and power cap values. They bound the throughput with the power cap, since energy consumption
per unit of time depends on throughput, and extract the parameters’ values using regression.

As seen above there exist some empirical studies on energy/power consumption of lock-free data
structures and a huge variety of power models but we are not aware of any energy model targeting
lock-free data-structures. In this study, we aim to begin filling this gap by providing a detailed analysis
of power and performance of lock-free queues.

5

III. LOW-LEVEL POWER MODELS FOR CPU-BASED PLATFORMS

A. General Power Model

The power model presented in Equation 1 decomposes the total power into static, socket activation
and dynamic components. In this equation, f is the clock frequency, soc the number of activated sockets
on the chip, op is the considered operation and thr is the number of active cores; the active power is
proportional to the number of active sockets, while the dynamic power is proportional to the number of
active cores.

For modeling power consumption of data structures, we need to estimate the dynamic component which
depends on the frequency, number of active cores, locality and amount of memory requests together with
the instruction type. The loc parameter represents the locality of operands for instructions that can transfer
data between memory and registers, such a move from L1, L2, last level cache, main memory or remote
memory. {

P (f, op, soc, loc, thr) = Pstat + Pactive(f, soc) + P (dyn,()f, op, loc, thr)
Pactive(f, soc) = soc × Pactive(f)

(1)

Static Active Dynamic
CPU P (stat,C) P (active,C) P (dyn,C)

Memory P (stat,M) P (active,M) P (dyn,M)

Uncore P (stat,U) P (active,U) P (dyn,U)

TABLE I: Power views

To create another perspective, we decompose the power into two orthogonal bases, each base having
three dimensions. On the one hand, we define the model basis by separating the power into static, active
and dynamic power, such that the total power is computed by:

P = Pstat + Pactive + Pdyn .

On the other hand, the measurement basis corresponds to the components that actually dissipates the
power, i.e. CPU, memory and uncore. The power dissipation measurement is done through Intel’s RAPL
energy counters [18] read via the PAPI library [19], [20]. These counters reflect this discrimination by
outputting the power consumption along three dimensions:
• power consumed by CPU, which includes the consumption of the computational cores, and the

consumption of the first two level of caches;
• power consumed by the main memory;
• remaining power, called “uncore”, which includes the ring interconnect, shared cache, integrated

memory controller, home agent, power control unit, integrated I/O module, config agent, caching
agent and Intel QPI link interface.

Also, total power is obtained by the sum:

P = P (C) + P (M) + P (U).

This latter additional orthogonal dimension will provide a better perspective for modeling power con-
sumption of data structures, especially for the dynamic component. Table I sums up both dimensions.

In this section, we study each dimension, in each base, so that we are able to express the power
dissipation from any perspective:

P =
∑

X∈{C,M,U}

(
P (stat ,X) + P (active,X) + P (dyn,X)

)
.

6

B. Power Components Derivation

By definition, only the dynamic component of power is dependent on the type of instruction or more
generally the executing program. In order to obtain dynamic component P (dyn,X), we first have to
determine static P (stat ,X) and socket activation P (active,X) costs.

We examine a large variety of instructions with respect to their power and energy consumption. We
have observed a linear relation between the number of threads and power for instructions that do not
lead to data transfer between the memory hierarchy and registers. For instance, addition operates on
two registers and do not lead to data transfer. Data transfer is done via move instructions before or
after addition instruction if required. So, the locality parameter loc is only valid for instructions that is
dependent on the locality of data, like variants of the move instruction. These operations are also prone to
variability due to cache and memory states which can also change with the interaction between threads.
Briefly, P (dyn,M) and P (dyn,U) is ruled by the density of instructions that lead to data transfer in the
memory hierarchy. Also, the loc parameter is not only meaningful for P (dyn,M), P (dyn,U) but also for
P (dyn,C) as it could lead to stall cycles and decrease instructions per cycle which has a considerable
influence on P (dyn,C).

For derivation of P (stat ,X) and P (active,X), we just use the instructions that operate on the registers
because the P (active,M) and P (active,U) parts can be neglected for these instructions. We refer to these
instructions as opreg and utilize them to obtain static and socket activation costs for each component
(CPU, memory, uncore) of the orthogonal decomposition. A bunch of instructions belonging to opreg
is executed repeatedly for some time interval with varying number of threads for each frequency. We
formulate the derivation process as, for all X ∈ {C,M,U}:

P (dyn,)(f, op, loc, thr) =P (dyn,M,U)(f, op, loc, thr) + P (dyn,C)(f, op, thr , loc)

P (dyn,M,U)(f, opreg , loc, thr) = 0

P (dyn,C)(f, opreg , thr) = thr × P (dyn,C)(f, opreg)

P (dyn,X)(f, opreg) =
1

2

(
P (X)(f, opreg , soc, loc, 16)− P (X)(f, opreg , soc, loc, 14)

)
P (active,X)(f) =P (X)(f, opreg , 2, loc, 10)− P (X)(f, opreg , 1, loc, 8)− P (dyn,X)(f, opreg)× 2

P (stat ,X)() =P (X)(f, opreg , soc, loc, thr)− soc × P (active,X)(f)− thr × P (dyn,X)(f, opreg)

Using above equations, we verified that P (stat ,X∈{C,M,U}) is approximately constant according to
instruction type, pinning, number of threads and frequency thus we take the mean of the values of
P (stat ,X) over the whole space to find P (stat ,X). We apply the same approach to find P (active,X∈{C,M,U})

which only depends on frequency, and not on the operation. Having obtained P (stat ,X) and P (active,X),
we extract P (dyn,X∈{C,M,U}) for “all” types of instructions, thread, pinning and frequency setting, by
removing the static and active part from the total power.

C. Dynamic CPU Power

Having determined and excluded static and socket components, we obtain the dynamic power com-
ponent for each instruction, thread count, pinning and frequency setting. Among a large variety of
instructions that are surveyed, we pick a small set of instructions that can be representative for data
structure implementations, namely Compare-and-Swap, pause, floating point division, addition together
with vector addition. Compare-and-Swap can be representative for the retry loops and pauses/additions
can be used to represent the parallel work which determines the contention on the data structures. The
decomposition of dynamic power in terms of CPU, memory and uncore components for these instructions
are illustrated in Figures 1, 2 and 3.

7

thread=1 thread=2 thread=4 thread=6 thread=8 thread=10 thread=12 thread=14 thread=16

0

30

60

90

1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5
Frequency (GHz)

D
yn

am
ic

 c
pu

 p
ow

er
 (

W
at

t)
Instructions cas_1 cas_3 cas_50 pause fpadd avx_fpadd div

Fig. 1: Dynamic CPU power for micro-benchmarks

Based on the observation that P (dyn,C) shows almost linear behavior with respect to number of threads,
we model the convex P (dyn,C) as:

P (dyn,C)(f, op) = (A× fα +B)

Each instruction might provide different power behavior as illustrated in Figure 1, therefore we find A,
B, α for each instruction separately. B could be different for each instruction because of the activation
of different functional units, this is also why we included this constant in P (dyn,C).

A α B
cas 0.001392 1.6415 0.0510

fpdiv 0.001038 1.7226 0.0585
add 0.001004 1.8148 0.0912

avx-add 0.001130 1.7828 0.0894
pause 0.000854 1.7920 0.0736

TABLE II: Instruction power coefficients

To obtain A, B and α, we proceed in the following way. We are given an operation op, and we consider
the executions of this operation with 16 threads on 2 sockets. Let v(freq) be the vector of frequencies where
we want to estimate the dynamic power (we dispose F different frequencies, expressed in 10−1 GHz,
such that v(freq)1 = 12 and v

(freq)
F = 34). We note v(meas) the vector of dynamic powers that have been

computed from the measurements through the process described above, and v(est)(A,B, α) the vector of
estimated dynamic powers. More especially, for all i ∈ {1, . . . , F}:

v
(meas)
i = P (dyn,C)(v

(freq)
i , op)

v
(est)
i (A,B, α) =

(
A×

(
v
(freq)
i

)α
+B

)
The Euclidean norm of a vector v is denoted ‖v‖.

We solve the following minimization problem, with the help of the Matlab “fminsearch” function:

min
A,B,α

∥∥∥v(meas) − v(est)(A,B, α)
∥∥∥

Table II provides the values for power constants and exponent for selected instructions.

8

D. Dynamic Memory and Uncore Power

In the micro-benchmarks, we observe that many instructions do not lead to an increase in dynamic
memory and uncore power because of the locality of operands. On the other hand, Compare-and-Swap
micro-benchmark, in which threads execute Compare-and-Swap on the same cache line repeatedly, lead
to an increase in memory and uncore power only when the threads are pinned to different sockets. The
resulting ping-pong of the updated cache line between sockets is responsible for this effect. We observe
this empirically but we do not know the exact reason why this fact leads to memory consumption. In our
platform, 8 physical cores share a L3 cache in each socket which are connected via QPI links. The cache
line is expected to reside in the L3 cache of the remote socket even if it is not in the local one so can be
delivered without a memory access, as in intra-socket case. We do not have precise information about the
cache coherence protocol but we can make use of the study [21] to make some predictions about relevant
protocols. The remote transfer between L3 caches takes place with the assistance of Home Agents and
QPI link. Once request is delivered to remote Home Agent by local one over QPI, remote agent initiates
concurrent requests to memory and local cache domain. This might lead to memory consumption even
the data is supplied from the cache domain. As a second possibility, remote access triggers a write-back
to memory, which might again lead to memory consumption. In brief, it can be observed that the rate of
the inter-socket cache line transfers influence the memory consumption.

Compare-and-Swap micro-benchmarks are indeed prone to unfairness among threads. When Compare-
and-Swap is executed repeatedly by all threads on the same cache line without any work in between
Compare-and-Swap attempts, the thread which gets the ownership of cache line succeeds repeatedly
while others starve. This unfairness decreases the transfer rate of the cache line and grows when inter-
socket communication is in the play. In addition, the inter-socket communication is limited with a single
cache line as accesses are serialized due to atomicity requirement. Due to this, we introduce 3 different
Compare-and-Swap micro-benchmarks looping on 1, 3 and 50 shared variables that are aligned to different
cache lines. By doing so, we aim at increasing the traffic between cores and sockets. Figures 2 and 3
provide the dynamic memory and uncore power dissipations. It can be observed frequency play a role in
any case and also number of threads, if there are multiple cache line, as they increase the transfer rate.
As a remark for the provided figures, threads are pinned using a dense mapping strategy that leads to
inter-socket communication only after 8 threads.

When threads are pinned to same socket, intra-socket communication between them takes place via the
ring interconnect without introducing a memory access. Thus, absence of increase in memory power is
reasonable. However, one might expect an increase in uncore power for these cases because RAPL uncore
power includes L3 and ring interconnect power. We do observe a very slight increase in uncore power

thread=1 thread=2 thread=4 thread=6 thread=8 thread=10 thread=12 thread=14 thread=16

0

1

2

3

1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5
Frequency (GHz)

D
yn

am
ic

 m
em

or
y

po
w

er
 (

W
at

t)

Instructions cas_1 cas_3 cas_50 pause fpadd avx_fpadd div

Fig. 2: Dynamic memory power for micro-benchmarks

9

thread=1 thread=2 thread=4 thread=6 thread=8 thread=10 thread=12 thread=14 thread=16

0.0

0.4

0.8

1.2

1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5 1.5 2.0 2.5 3.0 3.5
Frequency (GHz)

D
yn

am
ic

 u
nc

or
e

po
w

er
 (

W
at

t)
Instructions cas_1 cas_3 cas_50 pause fpadd avx_fpadd div

Fig. 3: Dynamic uncore power for micro-benchmarks

1.8 GHz 2.3 GHz 3.4 GHz

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

● ● ●
●

● ● ● ●

●

● ● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

● ● ●
●

● ● ● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

● ●
●

●

● ● ●
●

● ● ●
●

● ● ● ●

●

●

●
●

●
●

●

●

●
●

●

●

● ●
●

●

● ●
●

●

● ●
●

●

● ●
●

●

● ●
●

●

● ●
●

●

● ● ●
●

● ● ● ●
● ● ● ●

●

● ● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

● ● ●
●

● ● ● ●

●

●
● ●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

● ● ●
●

● ● ● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

● ● ●
●

● ● ● ●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

● ●
●

●

● ●
●

●

● ● ●
●

● ● ●
●

● ● ● ●

●

● ● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

● ● ● ●

●

● ● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

● ● ●
●

● ● ● ●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

● ●
●

●

● ● ●
●

● ● ● ●

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

0

1000

2000

3000

stride=
64B

stride=
64B

stride=
4096K

B
stride=

4096K
B

Local access
R

em
ote access

Local access
R

em
ote access

2 4 6 8 2 4 6 8 2 4 6 8
Threads

T
hp

ut
 (

M
B

/s
ec

)

Pauses between acceses ● ● ● ● ● ● ● ● ● ● ● ●0 1 2 3 4 6 9 14 19 49 99 499

Fig. 4: Throughput for array traversal benchmark

with frequency, probably because it is in the same frequency domain, but not for number of threads. A
noticeable increase of uncore can be observed when threads are pinned to different sockets, due to remote
accesses which uses important uncore components such as the QPI link interface and Home Agent.

Briefly, dynamic memory and uncore power are seemed to follow the same trends as going off-chip
requires usage of major uncore components and also increases the memory power. Thus, the memory
and uncore power is ruled by the amount of local/remote memory accesses and inter-socket ping-pong
of cache lines per unit of time. Frequency has a direct impact on this rate but number of threads is

10

1.8 GHz 2.3 GHz 3.4 GHz

●

● ● ●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

● ●

● ● ● ●● ● ● ●● ● ● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

● ● ●
●

● ● ● ●● ● ● ●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

● ●

● ● ●

●

● ● ●
●

● ● ● ●● ● ● ●

●

●

● ●

●
●

● ●

●

● ● ●

●

●
●

●

●
●

●

●

● ● ●

●

● ●

● ●

● ●
●

●

● ●
●

●

● ● ● ●● ● ● ●● ● ● ●

●

● ● ●

●

●
● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ● ●

●

● ● ● ●● ● ● ●

●

● ● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●
●

●

● ● ● ●● ● ● ●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

● ●

● ●

● ● ●

●

● ● ● ●● ● ● ●

●

●

● ●

●
●

●

●

●
●

●
●

●

● ● ●

●
●

● ●

●
●

● ●

●
●

●

●

● ● ●

●

● ●
●

●

● ● ●

●

● ● ●
●

● ● ● ●

●
● ● ●

●

● ● ●

●

● ● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

● ● ● ●● ● ● ●

●

● ● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

● ● ● ●● ● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

● ●

●

● ●

●

●

● ●

●

●

● ● ●

●

● ● ● ●● ● ● ●

●

●

● ●

●
●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●
●

● ●

●
●

● ●

●
●

●

●

● ● ●

●

● ● ● ●● ● ● ●

2

4

6

2

4

6

2

4

6

2

4

6

stride=
64B

stride=
64B

stride=
4096K

B
stride=

4096K
B

Local access
R

em
ote access

Local access
R

em
ote access

2 4 6 8 2 4 6 8 2 4 6 8
Threads

D
yn

am
ic

 m
em

or
y

po
w

er
 (

W
at

t)
Pauses between access ● ● ● ● ● ● ● ● ● ● ● ●0 1 2 3 4 6 9 14 19 49 99 499

Fig. 5: Step-like power for array traversal benchmark

dependent on the multitude of cache lines in order to increase the rate of accesses.
An interesting observation regarding memory power is that it shows a step function behavior. We think

that this is because of the RAPL power capping algorithm which determines a power budget based on
memory bandwidth, as presented in the work of David et al. [22]. The RAPL algorithm specifies a power
cap for a time window depending on the memory bandwidth requirements of previous time intervals and
sets the memory in a power state that is expected to maximize energy efficiency. Based on the amount of
memory accesses, it jumps between states finding a trade-off between bandwidth and power. The finite
number of states leads to the step-like power curves in Figure 2.

To justify these observations, we use a benchmark which stresses the main memory. We allocate a huge
contiguous array and align each element of the array to a separate cache line. In addition, we force the
array to be allocated in the memory module residing in the first socket. Thus, we can regulate remote and
local memory accesses by pinning strategies. We pin all threads either to first or second socket to separate
cores, in this case the maximum number of threads is 8 as we disabled the logical cores. We change the
number of threads, frequency and interleave varying amount of pause operations between array accesses
to change the bandwidth requirements of the benchmark. Also, threads access independent portions of the
array with a stride. The hardware prefetcher increases the performance remarkably when adjacent cache
lines are accessed while traversing the array and a stride of page size can be used to disable the hardware
prefetcher. We run the same experiment both with a stride of 64 Bytes, which is the size of a cache
line, and 4096 kBytes which is the page size, to reveal effect of prefetching. As provided in Figure 4,
the system reaches its maximum bandwidth more rapidly when the prefetcher is activated and attains
better bandwidth. Moreover, the bandwidth difference between completely remote and local accesses
is noticeable. Another point is that frequency does not influence the maximum achievable bandwidth.

11

1.8 GHz 2.3 GHz 3.4 GHz

●

● ●●

●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

● ●

●●● ●●●●●●●●●

●

●

●●

●

●

●●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●●●
●

●●●●●●●●

●

●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●●

●

●

●●

● ●

●● ●

●

●●●
●

●●●●●●●●

●

●

● ●

●
●

● ●

●

● ● ●

●

●
●

●

●
●

●

●

●● ●

●

●●

● ●

●●
●

●

●●
●

●

●●● ●●●●●●●●●

●

●●●

●

●
●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●● ●

●

●●● ●●●●●

●

● ●●

●

●

●●

●

●

●●

●

●

● ●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●
●

●

●●● ●●●●●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●●

● ●

●●●

●

●●●●●●●●

●

●

● ●

●
●

●

●

●
●

●
●

●

● ● ●

●
●

● ●

●
●

● ●

●
●

●

●

●● ●

●

●●
●

●

●●●

●

●●●
●

●●●●

●
●●●

●

● ●●

●

● ●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●●● ●●●●●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●●● ●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

● ●

●

● ●

●

●

● ●

●

●

●● ●

●

●●● ●●●●●

●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●

● ●

●
●

● ●

●
●

●

●

●●●

●

●●● ●●●●●

2

4

6

2

4

6

2

4

6

2

4

6

stride=
64B

stride=
64B

stride=
4096K

B
stride=

4096K
B

Local access
R

em
ote access

Local access
R

em
ote access

0 1000 2000 30000 1000 2000 30000 1000 2000 3000
Thput (MB/sec)

D
yn

am
ic

 m
em

or
y

po
w

er
 (

W
at

t)
Threads ● ● ● ●1 2 4 8

Fig. 6: Memory power for array traversal benchmark

This fact means that there is opportunity for energy savings with DVFS for memory-bounded regions
of applications. We also illustrate the step-like power behavior, due to the RAPL algorithm, with this
benchmark in Figure 5.

In Figure 6, dynamic memory power consumption is plotted according to the number of bytes accesses
per second, in other words rate of accesses. From the analysis of the results, it can be deduced that the
memory power is strongly correlated with the number of bytes accessed per second. There is no clear
impact of the number of threads and frequency to the memory power except their indirect effect on
bandwidth. In contrast, access stride has a direct, though limited, impact on the memory power together
with its indirect impact as it increases the bandwidth. By accessing data with a stride of a cache line,
we possibly make use of the open page mode of DRAM which could be influential in terms of energy
efficiency due to avoidance of bit-line precharge and row access cost. But, we still observe a linear
relation between throughput and memory power for both strides. In addition, remote or local accesses do
not provide a noticeable difference for memory power in case the number of bytes accesses per second
is equal.

On the other hand, it is observed that uncore power depends on the frequency, partially because it
operates in the same frequency domain. Furthermore, the cost of accessing a byte remotely is larger than
locally because it requires QPI link interface which adds an additional cost compared to local memory
accesses as shown in Figure 7. All these observations regarding memory and uncore power will shed light
to the analysis and modeling of data structures. One major source of differences in power consumption
between different implementations is the memory and uncore consumption, which is related to locality
and bandwidth requirements of the implementations.

12

1.8 GHz 2.3 GHz 3.4 GHz

●

●
●●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

● ●
●

●

●●
●

●
●●●

●
●●●●

●

●●
●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●
● ●

●

●
● ●

●

●●
● ●

●●●
●

●●●
●

●

●

●
●

● ●
●

●

● ●
●

●

●
● ●

●

●
● ●

●

● ●
●

●

●●
●

●

●● ●
●

●● ●
●

●●
●

●

●●
●●

●●●●

●

●

●
●

●●
●

●

●
●

● ●

●
● ● ●

●● ●
●

●●
●

●
●●

● ●

●
● ● ●

●●
● ●

●●
●

●
●●●

●

●●●
●

●
●●●

●
●

●●

●

●

●●

●
●

●
●

●
●

●

●

● ●
●

●

● ●
●

●

● ●
●

●

● ●
●

●

●● ●
●

●
●
● ●●●●

●

●

● ●
●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●
●

● ●

●

●

● ●

●

●

●
●

●

●

● ●
●

●

●●
● ●

●●● ●
●●●
●

● ●
●

●

●
● ●

●

●
●

●

●

●
● ●

●

●
●

●
●

● ● ●
●

● ●
●

●

●● ●
●

●● ●
●

●●●
●

●●●
●●●●

●

● ●

●
●

●
● ●

●
●

● ●
●

●● ●
●

●●
●

●
●● ●

●

●●
●

●
●● ●

●

●●
● ●

●●●
●

●●●

●
●
●●
●

●
●●

●

●

●
●
●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●●
●

●

●●
●

●

●●●
●

●

●●
●

●

●
●
●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●●
●

●

●●
●

●

●●
●
●

●

●

●
●

● ●
●

●

●
●

●

●

● ●
●

●

●
●

●

●

● ● ●

●

● ●
●

●

● ● ●

●

●●
●

●

●●
●

●

●●●

●

●●
●●

●

●

●
●

●● ●

●

●●
●

●

●● ●

●

●● ●

●

●●
●

●

●● ●
●

●● ●

●

●
● ●

●

●●●

●

●●
●

●

●●
●

●

24.5

25.0

25.5

26.0

26.5

24.5

25.0

25.5

26.0

26.5

24.5

25.0

25.5

26.0

26.5

24.5

25.0

25.5

26.0

26.5

stride=
64B

stride=
64B

stride=
4096K

B
stride=

4096K
B

Local access
R

em
ote access

Local access
R

em
ote access

0 1000 2000 30000 1000 2000 30000 1000 2000 3000
Thput (MB/sec)

U
nc

or
e

po
w

er
 (

W
at

t)
Threads ● ● ● ●1 2 4 8

Fig. 7: Uncore power for array traversal benchmark

E. Summary of Micro-Benchmarking for Power Modeling on CPU Platform

Figure 8 recalls the main achievements of the micro-benchmark study on CPU, where d is the amount
of memory accessed per unit of time in the main memory or through QPI link.

Static Active Dynamic
CPU P (stat ,C)() soc × P (active,C)(f) n×

(
A(op)× fα(op) +B(op)

)
Memory P (stat ,M)() d× P (dyn,M)(op, loc)

Uncore P (stat ,U)() d× P (dyn,U)(op, loc)

Static Active Dynamic
CPU P (stat ,C)(f, op, soc, loc, n) P (active,C)(f, op, soc, loc, n) P (dyn,C)(f, op, soc, loc, n)

Memory P (stat ,M)(f, op, soc, loc, n) P (active,M)(f, op, soc, loc, n) P (dyn,M)(f, op, soc, loc, n)

Uncore P (stat ,U)(f, op, soc, loc, n) P (active,U)(f, op, soc, loc, n) P (dyn,U)(f, op, soc, loc, n)

Dependency
removal

Fig. 8: Dependency shrinking

13

while ! done do
el ← Parallel_Work(pwe);
Enqueue(el);

end
Procedure Enqueuer

while ! done do
el ← Dequeue();
Parallel_Work(pwd);

end
Procedure Dequeuer

Fig. 9: Thread procedures

● Val [4] ● MS [5] ● TZ [3]

● Moi [6] ● Hof [7] ● Gid [8]

● Actual Prediction

Fig. 10: Key legend of the graphs

IV. FRAMEWORK

A. Synthetic Benchmark

1) Skeleton: We run the synthetic benchmark composed of the two functions described in Figure 9,
starting with an empty queue. Half of the threads are assigned to be enqueuers while the remaining ones
are dequeuers. We disable logical cores (hyper-threading) and map different threads into different cores,
also the number of threads never exceeds the number of cores. In addition, the mapping is done in the
following way: when adding an enqueuer/dequeuer pair, they are both mapped on the most filled but
non-full socket.

The parallel sections (Parallel_Work) shall be seen as a processing activity, pre-processing for the
enqueuers before they enqueue an item, and post-processing on an item from the queue for the dequeuers.
We assume that memory accesses in the parallel sections are negligible, and represent the parallel sections
as sequences of bunches of pause instructions in the benchmark; we note pwe (resp. pwd) the number of
bunches of 90 pauses (which corresponds to 1000 cycles) that compose the parallel work in the enqueuer
(resp. dequeuer).

From a high-level perspective, Enqueue and Dequeue operations follow a retry loop pattern: a thread
reads an access point to the data structure, works locally with this view of the data structure, possibly
performs memory management actions and prepares the new desired value as an access point of the
data structure. Finally, it atomically tries to perform the change through a call to the Compare-and-Swap
primitive. If it succeeds, i.e. if the access point has not been changed by another thread between the
first read and the Compare-and-Swap, then it goes to the next parallel section, otherwise it repeats the
process.

2) Queue Implementations: We study some of the most well-known and studied lock-free and lin-
earizable queues in the literature, as implemented in NOBLE [2].These queue algorithm are described
in some detail in Section VIII. The legend depicted in Figure 10 will be used throughout the paper.
The aim of this work is still to predict the behavior of any lock-free queue algorithm and not only the
ones mentioned above. These algorithms are used to validate the model that we present in the following
sections.

When we speak about implementations of the queues, we actually refer to the different implementations
of enqueuing and dequeuing operations, along with their memory management schemes.

14

B. Notations and Setting

We denote by n the number of running threads that call the same operation, and by f the clock
frequency of the cores (we only consider the case where all cores share the same clock frequency).

We recall that pwe (resp. pwd) is the amount of work in the parallel section of an enqueuer (resp.
dequeuer), as the number of bunches of 90 pauses. For a given queue implementation, we denote by
cwe (resp. cwd) the amount of work in one try of the retry loop of the Enqueue (resp. Dequeue)
operation. Associated with these amounts of work, we define, for o ∈ {d , e}, the average execution time
of the parallel section (resp. the retry loop and a single try of the retry loop) related to operation o as
t (PSo) (resp. t (RLo) and t (SLo)).

In the same way, for o ∈ {d , e}, we denote by P
(X)
o (resp. P (X)

o,PS and P
(X)
o,RL) the dynamic power

dissipated by component X in (resp. the parallel section related to and the retry loop related to) operation
o.

Finally, for o ∈ {d , e}, we denote by ro the ratio of the time that a thread spends in the retry loop,
while it is associated with operation o.

In Sections V and VI, in order to keep expressions as simple as possible, we define one unit of time
as λ sec, where λ is the execution time of 90× f pauses (as the pause instructions are perfectly scalable
with clock frequency, λ is constant). Throughput is expressed in number of operations per unit of time,
i.e. per λ secs. Finally, we derive the power in Watts.

All experiments and their underlying predictions are done on the following platform:
• CPU: Intel R© Xeon R© CPU E5-2687W v2

– 2 sockets, 8 cores per socket
– Maximum frequency: 3.4GHzGHz, Minimum frequency: 1.2GHzGHz, frequency speedstep

by DVFS (Dynamic Voltage and Frequency Scaling): 0.1− 0.2GHz., Turbo mode: 4.0GHz.
– Hyperthreading (disabled)
– L3 cache: 25MB, internal write-back unified, L2 cache: 256 kB, internal write-back unified. L1

cache (data): 32 kB internal write-back
• DRAM: 16GB in four 4GB DDR3 REG ECC PC3-12800 modules run at 1600MTransfers/sec.

Each socket has 4 DDR3 channels, each supporting 2 modules. In this case 1 channel per socket is
used.

• Motherboard: Intel Workstation W2600CR, BIOS version: 2.000.1201 08/22/2013
• Hard drive: Seagate ST10000DM003-9YN162 1TB SATA.
We run the implementations at the two extreme frequencies 1.2GHz and 3.4GHz, for all possible even

total numbers of threads, from 2 to 16, i.e. for n ∈ {1, . . . , 8}.

V. THROUGHPUT ESTIMATION

A. Throughput Decomposition Principles

We recall that the throughput of the queue is defined as:

T = min (Te , Td) ,

where Te and Td are the enqueuers’ and dequeuers’ throughput, respectively.
As we are in steady state, one operation o is performed every t (PSo) + t (RLo) unit of time by each

thread, and n threads attempt to concurrently execute o, hence the general expression of the throughput
To :

To =
n

t (PSo) + t (RLo)
.

We have seen that the parallel sections of the benchmark are full of pauses, thus the time t (PSo)
spent in a given parallel section is straightforwardly given by t (PSo) = pwo/f . The execution time

15

of dequeue and enqueue operations is more problematic, for two main reasons. Primo, because of the
lock-free nature of the implementations. As the number of retries is unknown, the time spent in the
function call is not trivially computable. Secundo, when the activity on the queue is high, the threads
compete for accessing a shared data, and they stall before actually being able to access the data. We
name this as the expansion, as it leads to an increase in the execution time of a single try of the retry
loop.

The contention on the queue is twofold. At any time, and even if it could be negligible, threads that
perform the same operation disturb each other, since they try to access the same shared data. In addition,
when the queue is mostly empty, enqueuers and dequeuers try to access the same data, then interference
occurs; enqueuers make dequeuers stall and vice versa. We call the former case intra-contention, and the
latter one inter-contention.

As expected, we have noticed a marked difference between the execution time of a dequeue operation
returning NULL and one that returns a queue item, i.e. whether the queue was empty or contained at
least one item. That is why we decompose Td into throughput of dequeue on empty queue T (+)

d (that
returns a NULL item), and dequeue on non-empty queue T (-)

d (that does not return NULL).
Further, the impact of inter-contention on dequeue operations is negligible compared to the impact of

the queue being empty; therefore we ignore inter-contention for dequeues.
In contrast, the queue being empty does not notably change the execution time of the enqueue operation,

while dequeue operations can impact the behavior of concurrent enqueue operations greatly when the
queue is close to empty. Hence, we split Te into the enqueue throughput T (+)

e when the queue is not
inter-contended, and the enqueue throughput T (-)

e when the queue experiences the maximum possible
inter-contention.

These basic throughputs fulfill the two following inequalities: T (+)
d ≥ T (-)

d and T (+)
e ≥ T (-)

e .
Thanks to this separation into the four basic throughput cases T (+)

d , T (-)
d , T (+)

e and T (-)
e , we earn

a better understanding of the factors that influence the general throughput, and we deinterlace their
dependencies, which dramatically decreases the number of points in the parallel section sizes set where
we need to take measurements for our modeling. More precisely, by construction, T (+)

d and T (-)
d do not

indeed depend on pwe , while T (+)
e and T (-)

e do not depend on pwd . Nonetheless Td (resp. Te) is defined
as a barycenter between T (+)

d and T (-)
d (resp. T (-)

e and T (+)
e), whose weights depend on both pwd and

pwe .
In Section V-B, we describe the basic throughputs, we combine them in Section V-C, then we explain

how to instantiate the parameters of the model in Section V-D, and finally exhibit results in Section V-E.

B. Basic Throughputs

We aim in this section at estimating the throughput T (b)
o of one of the basic operations described in

the previous subsection, where o ∈ {e, d} and b ∈ {+,-}. We assume that T (b)
o depends only on pwo , in

addition to the tacit dependencies on the clock frequency, number of threads and queue implementation.
We denote by cw

(b)
o the amount of work in a single try of the retry loop related to operation o in case

b when the queue is not intra-contended.
1) Low Intra-Contention: We study in this section the low intra-contention case, i.e. when (i) the

threads do not suffer from expansion due to threads that perform the same operation, and (ii) a success
is obtained with a single try of the retry loop. As it appears in Figure 11, we have a cyclic execution,
and the length of the shortest cycle is t (PSo) + t

(
SL

(b)
o

)
. Within each cycle, every thread performs

exactly one successful operation, thus the throughput is easy to compute:

T (b)
o =

n

t (PSo) + t
(
SL

(b)
o

) =
nf

pwo + cw
(b)
o

. (2)

16

Cycle

Retry
Loop Parallel Work

Fig. 11: Cyclic execution under low intra-contention

2) High Intra-Contention: As explained in Section V-A, in this case, the direct evaluation of the
execution time of a retry loop is more complex, but we have experimentally observed that the throughput
is approximately linear with the expected number of threads that are in the retry loop at a given time.
In addition, this expected number is almost proportional to the amount of work in the parallel section.
As a result, a good approximation of the throughput, in high intra-contention cases, is a function that is
linear with the amount of work in the pwo .

Fig. 12: Intra-contention frontier

3) Frontier: We now have to estimate whether the queue is highly intra-contended. We recall that,
generally speaking, a long parallel section leads to a low intra-contended queue since threads are most
of the time processing some computations and are not trying to access the shared data. Reversely, when
the parallel section is short, the ratio of time that threads spend in the retry loop is higher, and gets even
higher because of both expansion and retries.

That being said, there exists a simple lower bound of the amount of work in the parallel section, such
that there exists an execution where the threads are never failing in their retry loop. We plot in Figure 12
an ideal execution with n = 3 threads and t (PSo) = (n− 1)× t

(
SL

(b)
o

)
. In this execution, all threads

always succeed at their first try in the retry loop. Nevertheless, if we shorten the parallel section, then
there is not enough parallel potential any more, and the threads will start to fail: the queue leaves the
low intra-contention state.

In practice, this lower bound (t (PSo) = (n − 1) × t
(
SL

(b)
o

)
) is actually a good approximation for

the critical point where the queue switches its state.

C. Combining Basic Throughputs

We are given parallel sections sizes, and show how to link the throughput of the four basic operations,
with the dequeuers’ and enqueuers’ throughput. There are two possible states for the queue: either it is
mostly empty (i.e. some NULL items are dequeued), or it gets larger and larger.

In the first case, some of the dequeues will occur on an empty queue. In 1 unit of time, Te items are
enqueued. These items are dequeued in Te/T

(-)
d units of time (the queue is non-empty while they are

17

dequeued), which leads to a slack of 1 − Te/T
(-)
d , where dequeues of NULL items can take place at a

rate T (+)
d , hence the following throughput formula:

Td =
Te
T (-)
d

× T (-)
d +

(
1− Te
T (-)
d

)
× T (+)

d . (3)

Concerning the enqueuers, we use the same assumption on inter-contention as used on intra-contention
in Section V-B2, saying that the throughput is linear with the expected number of threads inside the retry
loop. Here, the expected number of threads inside the dequeue operation is proportional to the ratio rd of
the time spent by one dequeuer in its dequeue operation. We do not know t (RLd), but we know that in
average, to complete a successful operation, a thread needs t (PSd) + t (RLd) units of time, and among
this time it will spend t (PSd) in the parallel section. Therefore

rd = 1− t (PSd) /(t (PSd) + t (RLd)) = 1−
Td × pwd

n× f
.

The minimum inter-contention is reached when this ratio is 0, while the maximum is obtained when it
is 1, thus:

Te =
Td × pwd

n× f
× T (+)

e +

(
1−
Td × pwd

n× f

)
× T (-)

e . (4)

In the second case, enqueuers and dequeuers do not access to the same part of the queue, thus inter-
contention does not take place, then Te = T (+)

e , and all dequeues return a non-NULL item, hence
Td = T (-)

d .

The discrimination of these two cases is trivial when enqueuers’ and dequeuers’ throughput are given:
the queue is in the first state (mostly empty) if and only if Te ≤ Td .

Reversely, if we know the four basic throughputs, and aim at reconstituting the dequeuers’ and
enqueuers’ throughput, several solutions could be consistent.

Theorem 1: Given
(
T (+)
e , T (-)

e , T (+)
d , T (-)

d

)
, there exists a solution (Td , Te) with a growing queue if

and only if T (+)
e > T (-)

d . In addition, this solution is unique and is such that Te = T (+)
e and Td = T (-)

d .
Proof 1: (⇒) If the queue is growing, then Te > Td . Moreover, dequeues never occur on an empty

queue, hence Td = T (-)
d , and there is no inter-contention, thus Te = T (+)

e .
(⇐) Let us assume now that T (+)

e > T (-)
d . Te = T (+)

e and Td = T (-)
d is a valid solution, such that the

queue is growing, since then Te > Td .
By construction, Te ≤ T

(+)
e ; if we had another solution such that the queue grows and Te < T

(+)
e , it

would mean that enqueues are inter-contended, which is possible only when the queue is mostly empty.
This is absurd, hence the uniqueness.

Theorem 2: Given
(
T (+)
e , T (-)

e , T (+)
d , T (-)

d

)
, there exists a solution (Td , Te) with a mostly empty queue

if and only if
T (-)
e

T (-)
d

≤ 1−
pwd

n× f

(
T (+)
e − T (-)

e

)
. (5)

In addition, this solution is unique and is given by Equations 4 and 3.
Proof 2: (⇒) Let a solution with a mostly empty queue. By construction, the throughputs follow

Equations 4 and 3. As Te is an increasing function according to Td (because T (+)
e ≥ T (-)

e), we derive

Te ≥
T (-)
d × pwd

n× f
× T (+)

e +

(
1−
T (-)
d × pwd

n× f

)
× T (-)

e .

18

The queue is mostly empty, thus the dequeues of non-NULL items have to be faster than the enqueues,
which translates into T (-)

d ≥ Te . The two inequalities combined show the implication.
(⇐) Let us assume now that Inequality 5 is fulfilled. Equation 3 can be rewritten into

Te =
Td − T

(+)
d

1− T
(+)
d

T (-)
d

.

Let us consider now Te ′ and Te ′′ two functions of Td
′ that fulfill the following system of equations:

Te ′ (Td
′) =

Td ′−T (+)
d

1−T (+)
d

T (-)
d

Te ′′ (Td
′) =

Td ′×pwd

n×f × T (+)
e +

(
1− Td

′×pwd

n×f

)
× T (-)

e .

We have Te ′
(
T (+)
d

)
= 0 and Te ′

(
T (-)
d

)
= T (-)

d . According to Inequality 5, we know also that

Te ′′
(
T (+)
d

)
≤ T (+)

d . In addition, Te ′′ is a linearly increasing function of Td
′ and Te ′ a linearly decreasing

function of Td
′. This shows that there exists a unique Td such that Te ′ (Td) = Te

′′ (Td), and if we define
Te as Te = Te ′ (Td) = Te

′′ (Td), the pair (Td , Te) is such that
T (-)
d ≤ Td ≤ T

(+)
d

T (-)
e ≤ Te ≤ T

(+)
e

Te ≤ Td

.

This implies that it is a solution with an empty queue, and we have shown that this solution is unique.
Corollary 1: Given

(
T (+)
e , T (-)

e , T (+)
d , T (-)

d

)
, there exists at least one solution (Td , Te).

Proof 3: We show that if the inequality of Theorem 1 is not fulfilled, i.e. if T (+)
e ≤ T (-)

d , then the
inequality of Theorem 2 is true. We have indeed

T (-)
d ×

(
1−

pwd

n× f

(
T (+)
e − T (-)

e

))
− T (-)

e = T (-)
d ×

(
1−

pwd × T
(+)
e

n× f

)
− T (-)

e ×

(
1−

pwd × T
(-)
d

n× f

)

≥ T (-)
d ×

(
1−

pwd × T
(+)
e

n× f

)
− T (+)

e ×

(
1−

pwd × T
(-)
d

n× f

)
≥ T (-)

d − T (+)
e

T (-)
d ×

(
1−

pwd

n× f

(
T (+)
e − T (-)

e

))
− T (-)

e ≥ 0,

which proves the Corollary.
One can notice that if T (+)

e > T (-)
d and Inequality 5 are fulfilled and the queue could be either mostly

empty or growing. In this case, we choose, for each operation, the mean of the two solutions, in order
to minimize the discontinuities.

D. Instantiating the Throughput Model

We recall that, for all o and b, T (b)
o depends only on pwo , while Te and Td depend on both pwd and

pwe . We denote now by Td (pwd , pwe) (resp. Te(pwd , pwe)) the dequeuers’ (resp. enqueuers’) throughput
as the amount of work in the parallel section of the dequeuers is pwd and enqueuers’ one is pwe . The
estimate of a value is denoted by a hat on top, while the measured value does not wear the hat.

Let ps = 1, pm = 20 and pb = 1000 be three distinctive amounts of work, that corresponds to different
states of the execution. If pwo = pb, we can neglect the impact of operation o on the queue, pwo = pm

19

is a low intra-contention case since the non-expanded critical sections are experimentally less than 2 units
of time, and pwo = ps corresponds to a highly inter- or intra-contention case. We note the we cannot
use a 0 size as amount of work since it leads to undesirable results due to the back-to-back effect (a
thread does not allow other threads to access the queue for several consecutive iterations).

1) Low Intra-Contention: The basic throughputs that are not intra-contended can be spawned from
cw

(b)
o , which we try to estimate here. We pick four points where the basic throughputs are easy to

approximate. We have Td (pm, ps) < Te(pm, ps), as the order of magnitude of the amounts of work in
the retry loops is less than a few units. For the same reason, at this point, we are in low intra-contention
from the dequeuers’ point of view. Altogether,

Td (pm, ps) = T
(-)
d (pm) =

n× f
pm + cw

(-)
d

, hence

̂
cw

(-)
d =

n× f
Td (pm, ps)

− pm.

Then, according to Equation 3, we have

nf

pm +
̂
cw

(+)
d

= T (+)
d (pm)

nf

pm +
̂
cw

(+)
d

=
Td (pm, pb)− Te(pm, pb)

1−

(
pm+

̂
cw

(-)
d

)
×Te(pm,pb)

n×f

,

from which we can extract
̂
cw

(+)
d since we know already

̂
cw

(-)
d .

In the same way, we can compute
̂
cw

(+)
e then

̂
cw

(-)
e , by using (pb, pm) and (ps, pm).

2) High Intra-Contention: We aim here at estimating T (b)
o on a high intra-contention point. ps = 1

and pm = 20 are such that Td (ps, pm) ≥ Te(ps, pm). According to Equation 3, we have

Td (ps, pm) = Te(ps, pm) +

1− Te(ps, pm)

T̂ (-)
d (ps)

× T̂ (+)
d (ps).

In addition, if Td (ps, ps) ≥ Te(ps, ps), then

Td (ps, ps) = Te(ps, ps) +

1− Te(ps, ps)

T̂ (-)
d (ps)

× T̂ (+)
d (ps),

otherwise, Td (ps, ps) = T̂
(-)
d (ps). In both cases, we can find the two unknowns T̂ (-)

d (ps) and T̂ (+)
d (ps)

thanks to the two equations.
This last point is also used in the same way for enqueuers: if Td (ps, ps) ≥ Te(ps, ps), then

Te(ps, ps) =
Td (ps, ps)× ps

n× f
× T̂ (+)

e (ps) +

(
1−
Td (ps, ps)× ps

n× f

)
× T̂ (-)

e (ps),

otherwise, Te(ps, ps) = T̂
(+)
e (ps).

Like previously, we have Td (pm, ps) < Te(pm, ps), hence T̂ (+)
e (ps) = Te(pm, ps). This implies that in

any cases we can compute T̂ (+)
e (ps), but we do not have access to T̂ (-)

e (ps) if Td (ps, ps) < Te(ps, ps).

20

In this case, the bottleneck of the queue is likely to be the dequeuers, hence we set the value T̂ (-)
e (ps) =

T̂ (+)
e (ps) by default.

All T̂ (b)
o are then obtained by joining T̂ (b)

o (ps) to the leftmost point of the low intra-contention part:

T̂ (b)
o (pwo) =


f̂

cw
(b)
o

−T̂ (b)
o (ps)

(n−1) ̂cw (b)
o −ps

× (pwo − ps) + T̂
(b)
o (ps) if pwo ≤ (n− 1)

̂
cw

(b)
o

n×f
pwo+

̂
cw

(b)
o

otherwise.

Finally, dequeuers’ and enqueuers’ throughput are reconstituted as explained in Section V-C: if Equa-
tion 5 is fullfilled, then they are computed through Equations 3 and 4 that can be rewritten as:

T̂d (pwd , pwe) =
T̂ (+)
d (pwd)+T̂

(-)
e (pw e)

(
1− T̂ (+)

d
(pw

d
)

T̂ (-)
d

(pw
d
)

)

1− pw
d

nf

(
T̂ (+)
e (pw e)−T̂

(-)
e (pw e)

)(
1− T̂ (+)

d
(pw

d
)

T̂ (-)
d

(pw
d
)

)

T̂e(pwd , pwe) =
T̂d(pwd ,pw e)×pwd

n×f × T̂ (+)
e (pwe) +

(
1− T̂d(pwd ,pw e)×pwd

n×f

)
× T̂ (-)

e (pwe).

Otherwise, T̂d (pwd , pwe) = T̂
(-)
d (pwd) and T̂e(pwd , pwe) = T̂

(+)
e (pwe).

E. Results

The throughput predictions are animated in Figure 13 for the enqueuers, and in Figure 14 for the
dequeuers (the legend is in Figure 10, p13). You need to run animations using a recent version of Adobe
Acrobat and in case they do not appear we also provide graphs in Figures 15, 17, 16 and 18 for some pwd

values. Points are measurements, while lines are predictions. We will follow this rule for all comparisons
between prediction and measurement.

In the actual execution, the queue goes through a transient state when the amount of work in the
parallel section is near the critical point, but the prediction is not so far from the actual measurements,
as illustrated in Figure 13. Under intra-contention, some of the curves get flat, since only one thread can
be succeeding at the same time, according to the definition of the retry loop. Some curves even decrease
because the successful one is stalled by other failing ones due to serialization of the atomic primitives,
namely expansion. The slope presumably indicates the density of atomic primitives in retry loops which
depends on the algorithm.

The animation in Figure 13 illustrates the impact of inter-contention. A decrease of the highest point of
Te , due to an increase of cwe , can be observed for the more inter-contended cases. When cwe increases,
some critical points shift slightly towards the right as the intra-contention starts with a larger pwe . In
Figure 14, decomposition of Td is apparent. When enqueue rate is low, i.e. when pwe is high, Td is ruled
by T (+)

d due to majority of NULL dequeues, and it tends towards T (-)
d when the enqueue rate increases.

VI. POWER ESTIMATION

We recall that we are interested only in the dynamic powers as we assume that static and activation
powers are known.

21

Fig. 13: Enqueue throughput

A. CPU Power

Firstly, as we map each thread on a dedicated core, there is no interference between the CPU power
of different cores, so we can compute the dynamic power as

P (C) = n× P (C)
e + n× P (C)

d . (6)

Secondly, we assume that we can segment time and consider that, given a thread performing operation
o, the power dissipated in the retry loop and the power dissipated in the parallel section are independent.
There only remains to weight the previous powers by the time spent in each of these regions:

P (C)
o = ro × P (C)

o,RL + (1− ro)× P (C)
o,PS . (7)

As shown in Section V-C, the ratio can be obtained through

ro = 1− To × pwo

n× f
. (8)

Altogether, we obtain the final formula for dynamic CPU power

P (C) = n

 ∑
o∈{e,d}

P
(C)
o,RL +

To × pwo ×
(
P

(C)
o,PS − P

(C)
o,RL

)
n× f

 (9)

22

Fig. 14: Dequeue throughput

B. Memory and Uncore Power

We have noticed that the dynamic memory power is proportional to the intensity (number of units of
memory accessed per unit of time) of main memory accesses and remote accesses, when the threads read
separate places of the memory.

Here, the data structure does not directly involve the main memory since we keep its size reasonably
bounded (if the queue reaches the maximum size, we suspend the measurements, empty the queue, and
resume), hence the power dissipation in memory is only due to remote accesses, which only appears as
the threads are spread across sockets (i.e. when n > 4).

Moreover, as the parallel sections are full of pauses, communications can only take place in the retry
loop, and there is no dynamic memory power dissipated in the parallel sections. Concerning the retry
loops, we make the following assumption: the amount of data accessed per second in a retry loop depends
on the implementation, but given an implementation, once a thread is in the retry loop, it will always
try to access the same amount of data per second. When the queue is highly intra-contended, if a thread
fails then it will retry and will access the data in the same way as in the previous try; and if there is
expansion, then the thread will still try to access the data for the whole time it is in the retry loop.

In addition, the dequeuers (and the same line of reasoning holds for the enqueuers) tries here to access
the same data. Therefore either memory requests are batched together when sent outside the socket, or
the Home Agent keeps track of the previous requests. This implies that the number of threads attempting
to access the data does not impact the dynamic memory power greatly when the rate of requests is high.

All things considered, as a thread working on operation o spends a fraction ro of its time inside its
retry loop, we obtain that the dynamic memory power dissipated in the retry loop is proportional to ro

23

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●
●● ●●

●

●

●

●

● ●● ●●

●

●

●

●

●●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

● ●●

●

●●●

●
●

●

●

●●

●

●
●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

● ●● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●●

0

1

2

0

2

4

6

1.2 G
H

z
3.4 G

H
z

10 1000 10 1000 10 1000 10 1000 10 1000 10 1000 10 1000 10 1000
Parallel work in enqueue

E
nq

ue
ue

 t
hr

ou
gh

pu
t

Fig. 15: Enqueue throughput with pwd = 7

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●●● ●● ● ●● ●● ● ●● ●● ●● ●● ●●●● ●●●

●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●●

●● ●
● ●● ●●

●●●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●●
●●

●● ●● ●● ●● ●● ●

●
●

● ●●

●● ●● ●● ●● ●

●

●●●● ●●

●● ●● ●● ●● ●●●●
●● ●

● ●● ●●
●●

●●
●● ●● ●● ●● ●●●● ●

●

●

●
●

● ●●

●●

●●

●● ●● ●● ●● ●●●● ●● ●
● ●● ●●

●●●●

●
●

●
●

●
● ●●

●●
●●

●● ●● ●● ●● ●●● ●● ●● ●● ●● ●●● ●
●

●
● ●● ●●

●●●●
●

●

●

●

●

● ●●

●
●

●

●●●
●●

●
●

●
●

●
●● ● ●

●

●
●

●
● ●● ●●

●●
●●

●
●

●

●
●

● ●●
●●

●●
●

● ●● ●● ●● ●●●● ●

●

●

●

●

● ●●

●
●

●●

●● ●● ●● ●● ●●●● ●
●

●
●

●
● ●●

●●
●●

●
●

●

●

●
● ●●

●●
●●

●
●

●
● ●● ●●

●●
●●

●
●

●
● ●● ● ●● ●● ●● ●● ●●●●●

●●
●● ●

●

●

● ●●

●
●

●●

●

●
●

● ●

●
●

●●
●●

●

●

●

●
●

●
●

●

●

●

● ●●

●●

●●

●
● ●● ●●

●●
●●

●
●

●
● ●● ●●

●●
●●

●

●

●

●

●

● ●●

●

●

●●

●● ●● ●● ●● ●●●●
●

●
●

●

●
● ●●

●●
●●

●

●

●

●

●

● ●●

●
●

●●

●

●
●

● ●● ●●

●
●●●

●

●

●

●

●

●

●●

●
●

●
●

●● ●● ●● ●● ●●●●
●

●

●

●

●

● ●●

●

●

●

●

●

● ●●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●● ●●

●
●

●●
●● ●●

●●●●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●● ●●

●

●●●
●

●

●

●

●

● ●
●

●
●

●

●

●
●

●
●

●
● ●●

●●
●●

●

●

●

●

●

● ●●

●
●

●
●

●

●

●

●

●

● ●●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●
●

●
●

●
● ●

● ●●
●●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

● ●●

●

●

●
●

●
●

●
●

●● ●●
●●

●●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●
●

●● ●●
●●

●
●

●●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●
●

● ●●

●●

●●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●
●

● ●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

0.4

0.8

1.2

1.6

1

2

3

4

1.2 G
H

z
3.4 G

H
z

10 1000 10 1000 10 1000 10 1000 10 1000 10 1000 10 1000 10 1000
Parallel work in enqueue

D
eq

ue
ue

 t
hr

ou
gh

pu
t

Fig. 16: Dequeue throughput with pwd = 7

24

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

0

1

2

0

2

4

6

1.2 G
H

z
3.4 G

H
z

10 1000 10 1000 10 1000 10 1000 10 1000 10 1000 10 1000 10 1000
Parallel work in enqueue

E
nq

ue
ue

 t
hr

ou
gh

pu
t

Fig. 17: Enqueue throughput with pwd = 50

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8

●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●● ●● ● ●●● ●● ●●● ●●● ●● ●●●● ●●●

●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●

●●● ●●● ●● ●●●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●● ●●

●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●

●●● ●●● ●● ●●●● ●●● ●●● ●● ●●● ●●● ●●● ●● ●●● ●●● ●●● ●● ●●●● ●●●
●●● ●● ●●●●●● ●●● ●●● ●●● ● ●

●

●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●
●● ●●● ●●

●
●●●

●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●

●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ● ●●● ●●● ●● ●●●●● ●●●● ●●● ●●
●

●●●
●●● ● ●●● ●●●● ●●

●●

●●● ●●● ●●● ●● ●●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●
●●

●
●● ●●

●
●●●

●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●

●●●
●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●

●●

●
●● ●●

●●● ●●● ●● ●●●● ●

●●●

●● ●●●
●

●
●

●●●● ●● ●●
●●● ●●● ●● ●●● ● ●●● ●●● ●● ●●●● ●● ●● ●●●● ●

●
●

●

●
● ●●

●

●●●

●
●●

●●● ●●
●

●●●

●
●

●
●●

● ●●
●

●●●
●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●● ●

●●
●●● ●●

●
●●● ●

●
●

●

●
● ●●

●

●●●

● ●●

●
●

●●
●

●

●

●● ●
●● ●●● ●● ●●●●

●

●

●

●

●

● ●●

●

●
●●

●●● ●●● ●● ●●●● ●●●
●●● ●●

●●●●
●

●
●

●●
● ●●

●
●●●

●
●

●

●●
● ●●

●
●●●

●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●
●●● ●●● ●● ●●●● ●

●●
●●● ●●

●
●●● ●

●
●

●

●

● ●●

●

●
●●

●

●

●

●
●●

●●●
●

●●

●
●●● ●●● ●●

●●●● ●●● ●● ●●●● ●●

●

●

●

●

● ●●

●

●

●
●

●●● ●●● ●● ●●●● ●●
●

●

●
●

● ●●

●
●●●

●
●

●

●●

● ●●

●
●

●●
●●● ●●● ●● ●●●● ●●● ●●● ●● ●●●●
●●● ●●● ●● ●●●● ●

●●
●●● ●●

●
●●●

●

●

●

●

●

● ●●

●

●

●●

●

●
●

●● ●●● ●●
●●●●

●●

●
●

●
●

●

●
●

●

●
●

●
●●

● ●●
●

●●●
●

●

●

●

●

● ●●

●

●

●●

●●● ●●● ●● ●●●●
●

●
●

●
●

● ●●

●
●

●●

0.05

0.10

0.15

0.20

0.1

0.2

0.3

0.4

0.5

1.2 G
H

z
3.4 G

H
z

10 1000 10 1000 10 1000 10 1000 10 1000 10 1000 10 1000 10 1000
Parallel work in enqueue

D
eq

ue
ue

 t
hr

ou
gh

pu
t

Fig. 18: Dequeue throughput with pwd = 50

25

(times the amount of data accessed per unit of time in the retry loop, which is a constant). Hence

P (M) = re × ρ(M)
e + rd × ρ

(M)
d , (10)

where ρ(M)
e and ρ(M)

d are constants.
The dynamic uncore power is computed exactly in the same way as the dynamic memory power.

C. Instantiating the Power Model

We use once again ps = 1, pm = 20 and pb = 1000 as three distinctive amounts of work, that allows
easy approximations for the power dissipation expressions.

We have seen that if X ∈ {M,U}, then P (X) = rd × ρ
(X)
d + re × ρ(X)

e , which can be approximated
at (pwd , pwe) = (pb, ps) by P (X)(pb, ps) = re(ps)× ρ(X)

e , since rd is then nearly 0. It implies that

ρ̂
(X)
e =

P (X)(pb, ps)

1− Te(pb,ps)×psn×f

.

We obtain ρ̂(X)
d similarly at (pwd , pwe) = (ps, pb).

Concerning the dynamic CPU power, we firstly estimate the power dissipated in the parallel sections.
According to the implementation, the CPU power dissipated by the parallel section of enqueuers and
dequeuers is the same for both, and this power does not depend on the amount of work. These restrictions
are not a loss of generality, since the aim here is to study the queue implementations. It can then be
estimated by using (pb, pb), where the ratios ro can be considered as 0, which leads to

P̂
(C)
o,PS =

P (C)(pb, pb)

2n
.

We reuse the point (pb, ps), where rd is very close to 0, to derive that

P (C) = n

(
re(ps)× P̂ (C)

e,RL + (1− re(ps))P̂ (C)
e,PS

)
+ nP̂

(C)
d ,PS ,

which is equivalent to

P̂
(C)
e,RL =

P (C)(pb, ps)

n
(
1− Te(pb,ps)psn×f

) −
 2

1− Te(pb,ps)psn×f

− 1

 P̂
(C)
o,PS

Once again, we obtain P̂ (C)
d ,RL with the same line of reasoning at (pwd , pwe) = (ps, pb).

Finally, P̂ (M) and P̂ (U) (resp. P̂ (C)) are computed by using Equation 10 (resp. Equations 6 and 7),
and the estimates of the ratios that are issued from Section V

D. Results

The prediction and measurements, regarding power, are plotted in Figures 19, 20, 21, 22 and 23, where
we observe that the most significant differences lie in the dynamic memory power. The differences in
CPU power are almost invisible, since the dynamic power of the parallel sections (composed of pauses
instructions) is very close to the dynamic power of the retry loops. As in Section III-D, we remark some
steps in the measured memory power, but we prefer to keep a continuous estimate.

As the retry loop, which is particular to each implementation, is mainly composed of memory opera-
tions, the main difference between the various implementations in terms of power occurs in the dynamic
memory power, which we represent in Figure 19 (legend is in Figure 10). Overall, the prediction reacts
correctly to the variations of parallel section sizes, and some specifics of the algorithms are caught,

26

pwe=1 pwe=3 pwe=7 pwe=20 pwe=50 pwe=150 pwe=1000

●

● ●

●

● ● ● ●

●●

●

● ● ● ●

●●

●

●

● ● ● ●

●

● ●
● ●

● ● ● ●

● ●
●

● ● ● ●

●

●
●

●
●

● ● ● ●

●
●

●

● ● ● ●

●●

●

● ● ● ●

●
●

●
● ●

● ● ● ●

●

● ● ●
●

● ● ● ●

●
● ●

● ● ● ●

●
●

● ●
●

● ● ● ●

●

●
●

● ● ●

●

●

●

● ● ● ●●

●

●

●

● ●

● ● ● ●

●

● ● ● ●

● ● ● ●

● ●
●

● ● ● ●

●●

●

● ●

● ● ● ●

●

●

●

● ● ● ●

●

●

●

● ● ● ●

●

●

●● ●

● ● ● ●

●●

● ● ●

● ● ● ●

●
● ●

● ● ● ●

●●

● ● ●

● ● ● ●

●

●

●

● ● ● ●

●

●

●

● ● ● ●

●

●

●● ●

● ● ● ●

●● ●

● ●

● ● ● ●

●

● ●

● ● ● ●

●● ●

● ●

● ● ● ●

●

●

●
●

● ● ● ●

●

●

●

● ● ● ●

●

●

● ●

● ● ● ●

●● ● ● ●

● ● ● ●

●

●
●

● ● ● ●

●● ●

●
●

● ● ● ●

●

●

●

●

● ● ● ●

●

●

●

● ● ● ●

●

●

● ●

● ● ● ●

●● ●
●

●

● ● ● ●

●

● ●

● ● ● ●

●

● ● ●

●

● ● ● ●

●

● ● ●

●●
●

●●

● ● ● ●●

●

●

●

● ●

● ● ● ●

●

●
● ● ●

● ● ● ●

●

●
●

● ● ● ●

●●

●

●
●

● ● ● ●

●

● ● ●

●● ●

●

●

● ● ● ●●

●●

●

● ●

● ● ● ●

●

● ● ● ●

● ● ● ●

●
●

●

● ● ● ●

●●

●
●

●

● ● ● ●

●

● ● ●

●

●

●

●
●

●

● ● ● ●●

●●

● ●

● ● ● ●

●●

● ● ●

● ● ● ●

●

●
●

● ● ● ●

●
●

●
●

●

● ● ● ●

●

● ● ●

●●

●
●
●

● ● ● ●●

●
●

●● ●

● ● ● ●

●●

● ● ●

● ● ● ●

● ●

●

● ● ● ●

●●

●

● ●

● ● ● ●

●

● ● ●

●● ●

●

●

●

● ● ● ●● ●●

●

●

● ● ● ●

●

●

●

● ●

● ● ● ●

● ● ●

● ● ● ●

●●

● ●

●

● ● ● ●

●

● ● ●

●● ●

●●

● ● ● ●● ●●

●

●

●

● ● ● ●

●

●

● ●

●

● ● ● ●

● ● ●

● ● ● ●

●●

● ●

●

● ● ● ●

●

● ● ●

●
● ●

●●

● ● ● ●● ●●

●

●

●

● ● ● ●

●

●

● ● ●

● ● ● ●

● ● ●

● ● ● ●

●
●

● ●
●

● ● ● ●

●
●

●

●
●

● ● ●

● ●

● ● ● ●●

●●

●

●

● ● ● ●

●

●

● ● ●

● ● ● ●

● ●
●

● ● ● ●

●●

● ●

●

● ● ● ●

●

●

●

●
●

● ● ●

● ●

● ● ● ●●

●

●

● ●

● ● ● ●

●

●

● ● ●

● ● ● ●

● ●
●

● ● ● ●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

● ● ●

●
●

● ● ● ●● ●●

●

●

● ● ● ●

●●

● ●
●

● ● ● ●
●

● ●

● ● ● ●

●●

●
● ●

● ● ● ●

●

●

●

●

●

● ● ●

●

●

● ● ● ●● ●●

● ●

● ● ● ●

●●

●

● ●

● ● ● ● ●

● ●

● ● ● ● ●

● ●

● ●

● ● ● ●

●

●

●

● ●

● ● ●

● ●

● ● ● ●● ●● ●

●

● ● ● ●

●
●

●

●

●

● ● ● ● ● ●

●

● ● ● ● ●●

● ●

●

● ● ● ●

●

●

●

● ●

● ● ● ●

●

● ● ● ●● ●● ●
●

● ● ● ●

●

●

● ●

●

● ● ● ● ● ● ●● ● ● ● ●●

● ● ●

● ● ● ●

●

●

●

●

●

● ● ● ●

●

● ● ● ●● ●● ● ●● ● ● ●

●

●

● ●

●

● ● ● ● ● ● ●● ● ● ● ●●

● ● ●

● ● ● ●

●

● ●

● ● ●

●

●

●

● ● ● ●●

●

●

●

● ●

● ● ● ●

●●

● ● ●

● ● ● ●

● ● ●

● ● ● ●

●●

●

● ●

● ● ● ●

●

●

● ● ●
●

●

●

● ● ● ●●

●

●●

●

●

●

● ● ● ●

●●

● ● ●

● ● ● ● ●
● ●

● ● ● ●

●

●

●

●

●

● ● ● ●

●

●

● ● ● ●●

●

● ● ● ●●

●

●●

●

●

●

● ● ● ●

●●

●
● ●

● ● ● ● ● ● ●● ● ● ● ●●

● ●

●

● ● ● ●

●
●

●

● ● ● ● ●● ● ● ●● ●●●
●

● ●● ● ● ● ●

●
●

●

●

● ● ● ● ● ● ●● ● ● ● ●●
●

● ●

● ● ● ●

● ●● ● ● ●● ●● ● ● ●● ●●● ●● ●● ● ● ● ●●
●

● ●

● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

● ● ●● ● ● ●● ●● ● ● ●● ●● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

● ● ●● ● ● ●● ●● ● ● ●● ●● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

●

●

●

● ● ●
●

●

●

●

● ● ● ●● ●● ●

●

● ● ● ●

●●

●

●
●

● ● ● ●

●
● ●

● ● ● ● ●●

●
● ●

● ● ● ●

●●

●

● ● ● ● ●

●

●
● ● ● ●● ●● ● ●● ● ● ●

●

●

●

●

●

● ● ● ● ● ● ●
● ● ● ● ●● ●

●
●

● ● ● ●

●●

●

● ● ● ● ●

●

●● ● ● ●● ●● ● ●● ● ● ● ●●

●

●

●

● ● ● ● ● ● ●● ● ● ● ●● ● ● ●
● ● ● ●

●● ●● ● ● ● ●● ●● ● ● ●● ●● ● ●● ● ● ● ●●
●

●

●

● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

●● ●● ● ● ● ●● ●● ● ● ●● ●● ● ●● ● ● ● ●● ●
●

●

● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

●● ●● ● ● ● ●● ●● ● ● ●● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

●● ●● ● ● ● ●● ●● ● ● ●● ●● ● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

●●

●

● ● ● ● ●●

●

● ● ● ● ●● ●● ●● ● ● ●

●

● ●

● ●

● ● ● ● ●
● ●

● ● ● ● ●● ● ● ●● ● ● ●

●●

●

● ● ● ● ●● ●● ● ● ● ●● ●● ●● ● ● ● ●● ● ●
●

● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

● ● ●● ● ● ●● ●● ● ● ●● ●● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

●● ●● ● ● ● ●● ●● ● ● ● ●● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

● ● ●● ● ● ●● ●● ● ● ●● ●● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

●● ●● ● ● ● ●● ●● ● ● ● ●● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

●● ●● ● ● ● ●● ●● ● ● ● ●● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

●●● ●

●

● ● ● ● ● ●●● ● ● ● ● ●● ●● ● ● ●

●

● ● ● ●● ● ● ●
●

●

● ● ● ● ●● ● ● ●● ● ● ●

●●● ●●● ● ● ● ● ●●● ● ● ● ● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

● ●●● ● ● ● ● ●●● ● ● ● ●● ●● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ●

●●● ●●● ● ● ● ● ●●● ● ● ● ● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

● ●●● ● ● ● ● ●●● ● ● ● ●● ●● ● ● ● ● ●● ● ● ●● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ●● ● ● ●

●●● ●●● ● ● ● ● ●●● ● ● ● ● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

●● ●● ●● ● ● ● ● ●●● ● ● ● ● ●● ●● ● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ●● ● ● ●● ● ● ●

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

pw
d=

1
pw

d=
3

pw
d=

7
pw

d=
20

pw
d=

50
pw

d=
150

pw
d=

1000

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Number of threads

D
yn

am
ic

 m
em

or
y

po
w

er

Fig. 19: Dynamic memory power at f = 3.4GHz

pwe=1 pwe=3 pwe=7 pwe=20 pwe=50 pwe=150 pwe=1000

●

●

●
●

● ● ● ●●

● ● ●

●

● ● ●

●

● ● ●

● ● ● ●●

● ●

●
●

● ● ●●

●
●

● ●

●

● ●● ●

●

●
●

● ●●

●

●
● ●

● ● ● ●●

● ● ● ●

● ● ●

●

● ● ●

● ● ● ●● ●

● ●

●

● ● ●●

●

●

● ●

●

● ●● ●

● ●

●

● ●●

● ● ●

●

● ● ● ●● ●

● ● ●

● ● ●

●

● ● ●

● ● ● ●● ●

●
●

●

● ● ●●

●●

●

●
●

● ●● ● ●●

● ●

●

●

●
● ● ●

● ● ● ●● ●

● ● ●

● ● ●

●

●
● ●

● ● ● ●● ●

●
● ●

● ● ●●

●● ●

● ●

● ●● ●

● ● ●

● ●●

●

● ● ●

● ● ● ●● ●

● ● ●

● ● ●

● ●

● ●

● ● ● ●● ●

●
● ●

● ● ●●

●● ●

●
●

● ●● ●

●

● ●

● ●●

●

● ● ●

● ● ● ●● ●

● ● ●

● ● ●

● ●

● ●

● ● ● ●● ●

● ● ●

● ● ●●

●● ● ●

●

● ●● ●

● ●

●

● ●●

●

● ● ●

● ● ● ●● ●

● ● ●

● ● ●

● ●

● ●

● ● ● ●● ●

● ● ●

● ● ●●

●● ●

●

●

● ●● ●

● ●

●

● ●●

● ●

●

●

● ● ● ●●

●

●
● ●

● ● ●

●

● ● ●

● ● ● ●● ●
● ●

●

● ●● ●●

●●

●
●

●

● ● ●●

●

●

●

● ●

● ●

●

●

● ● ● ●● ●

● ● ●

● ● ●

●

● ● ●

● ● ● ●● ● ●

●

●

● ●● ●●

●●

● ●

●

● ● ●●

● ●

●

● ●

●

● ● ●

● ● ● ●● ● ●

● ●

● ● ● ●

●

● ●

● ● ● ●● ● ●

●

●

● ●● ●●

●

●

●

●

●

● ● ●●

● ●

●

● ●

●

●

● ●

● ● ● ●● ● ● ●

●

● ● ● ●

●

● ●

● ● ● ●● ● ● ● ●● ●● ●●

●

●

● ●

●

● ● ●●

●

● ●

● ●

● ●

● ●

● ● ● ●● ● ● ●

●

● ● ● ●

●

● ●

● ● ● ●● ● ● ● ●● ●● ●● ●●

● ●

●

● ● ●●

● ●

●

● ●

● ●

● ●

● ● ● ●● ● ● ●

●

● ● ● ●

●

●

●

● ● ● ●● ● ● ● ●● ●● ●● ●●

● ● ●

● ● ●●

● ●

●

● ●

● ●

● ●

● ● ● ●● ● ● ● ●● ● ● ●

● ●

●

● ● ● ●● ● ● ● ●● ●● ●● ●●
●

● ●

●● ● ●●

● ● ●

●

● ●
●

●

● ● ● ●●

● ● ●
●

● ●

● ●

● ●

● ● ● ●● ● ●
● ●

● ●● ●

●

●

● ●

●● ●

●

● ● ●

●● ●●●

●
●

●

●

● ● ● ●● ●

● ● ●

● ●

● ●

● ●

● ● ● ●● ● ● ●

●
● ●● ● ●

●

●

●

●● ●

●

●
● ●

●● ●●●

● ●
●

●

● ● ● ●● ● ● ● ●● ● ●

●

●
●

● ● ● ●● ● ● ● ●● ●● ● ●

●

● ●

●● ●

●

●

● ●

● ●● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●

●

●

● ● ● ●● ● ● ● ●● ●● ● ● ● ●

●

●● ● ●

● ●

●

●● ●●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ●

●
●

● ● ● ●● ● ● ● ●● ●● ● ● ● ● ●●● ● ● ●

● ●

●● ●●●

● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ●

●

●

● ● ● ●● ● ● ● ● ●● ●● ● ● ● ●●● ● ● ● ●
●

●● ●

● ● ● ●● ● ● ●● ● ● ● ● ●● ● ● ● ●
●

●

● ● ● ●● ● ● ● ● ●● ●● ● ● ● ●●● ● ● ● ● ●●● ●

● ●
● ●

● ● ● ●● ● ●
●

●

● ● ● ●

● ● ●

● ● ● ●● ● ● ● ●● ● ●●

●

●
●

●

●

● ●● ● ●●

● ● ●

●

● ● ●
●

● ● ● ●● ● ● ●

●

● ● ● ● ●

● ●

● ● ● ●● ● ● ● ●● ● ●●

●

● ●

● ●

● ●● ● ●●

●

● ●

●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ●

●

● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ●● ● ●●

●

● ●

●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ●● ● ●● ●

● ●

●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ●● ● ●● ● ● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ●● ● ●● ● ● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ●● ● ●● ● ● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●

● ●

● ● ● ●● ● ● ● ●● ●● ●● ● ● ● ●● ●● ●

●

●

●

● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ●● ●● ● ● ● ●● ●● ● ●

●

●

● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ●● ● ●

● ●

●● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ●● ●● ● ● ● ●● ●● ● ● ●

●

● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ●● ● ● ● ●●● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ●● ●● ● ● ● ●● ●● ● ● ● ●● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ●● ●● ● ● ● ●● ●● ● ● ● ●● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ●● ● ● ● ●● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ●● ● ● ● ●● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ●● ● ●● ● ● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ●● ● ● ● ●● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ●● ● ●● ● ● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ●● ● ● ● ●● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ●● ● ● ● ●● ●●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ● ● ● ●● ● ●● ●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ● ● ● ●● ● ●● ●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ● ● ● ●● ● ●● ●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ● ● ● ●● ● ●● ●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ● ● ● ●● ● ●● ●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ● ● ● ●● ● ●● ●

● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ●● ●● ● ● ●● ● ● ● ●● ● ●● ●

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

pw
d=

1
pw

d=
3

pw
d=

7
pw

d=
20

pw
d=

50
pw

d=
150

pw
d=

1000

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Number of threads

D
yn

am
ic

 m
em

or
y

po
w

er

Fig. 20: Dynamic memory power at f = 1.2GHz

27

pwe=1 pwe=3 pwe=7 pwe=20 pwe=50 pwe=150 pwe=1000

●

●

●

●

●
●

● ●
●●

●

●
●

● ●

●

●

●

●

●

●

● ●

●●

●

● ●

●
●

● ●

●

● ●

●
●

● ●

●●

●

● ●

● ●
● ●

●

●

●

● ●
● ●

●
●

●

● ●

● ●

●

●

●●
●

● ●
● ●

●●

●

●
●

● ●
● ●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

● ●

● ●
●

●

●

●

● ●
● ●

●

●

●

●●
●

● ● ● ●

●●

●

●
●

● ●
●

●

●

● ●

● ●
● ●

●●

●

● ●

● ●
● ●

●

●

●

● ●
●

●

●

●

●

● ●
● ●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

● ● ● ●

●●

●

●
●

●
● ● ●

●

●

●

● ●
● ●

●

●

●

● ● ● ●

●

●

●● ●

● ● ●
●

●

●

●

● ●

● ●
● ●

●
● ●

● ● ● ●

●●

●

● ●

● ●
●

●

●

●

●

●

● ●
●

●

●

●

●

● ●
● ●

●

●

● ●

● ●
● ●

●

●

●

● ●

● ●
● ●

●
● ●

● ● ●
●

●●

●

● ●

● ●
● ●

●

●

●

●

● ●
● ●

●

●

●

● ●
● ●

●

●

● ●

● ●
● ●

●

●

●
● ●

● ●
●

●

●
● ●

●
●

● ●

●●

●

● ●

● ●

● ●

●

● ●
●

●
●

● ●●

● ●
● ●●

●
●

●● ●

● ●
● ●

●●

●
● ●

●
●

●
●

●

● ●

● ●
● ●

●●

● ● ●

● ●
● ●

●

● ●
●

●
● ●

●●

● ●
● ●●

●
●

●● ●

●
●

●
●

●●

●
● ●

● ●
● ●

●

●

●

● ● ●
●

●●

●
● ●

● ●
● ●

●

● ● ●

●

●
●

●
●

●

● ● ●
●●

●●

● ●

● ● ● ●

●
●

●

● ●

● ● ●
●

●

● ●

● ● ● ●

●
●

●

●
●

● ● ● ●

●

● ● ●

●
●

●

●

●

● ●
● ●●

●
●

●
●

●

● ● ● ●

●

●

●
●

●

● ● ● ●

●
● ●

● ● ● ●

●●

●

● ●

● ● ●
●

●

● ● ●

●
●

●
●

●

●

● ●
● ●

● ●●

●
●

● ● ●
●

●

●

●

● ●

● ●
● ●

●
● ●

● ● ● ●

●●

●

● ●

● ● ● ●

●

● ●
●

●
● ●

●

●

● ● ● ●
● ●●

●

●
●

● ● ● ●

●

●

●
● ●

● ● ● ●

●
● ●

● ● ● ●

●
●

●

● ●

● ● ● ●

●

● ● ●

●
●

●

●

●

● ● ● ●●
●●

●

● ●

● ● ● ●

●

●

●

● ●

● ● ●
●

●
● ●

● ● ●
●

●●

●

● ●

● ● ● ●

●

●

●

● ●

● ●
●

●
●

● ● ● ●
●

●

●

●
●

●
●

● ●

●
●

●
● ●

● ● ● ●

● ● ●

● ● ● ●

●●

● ●
●

● ● ● ●

●

●

●

● ●

● ● ●

●
●

● ●
● ●●

●
●

● ●

● ● ● ●

●
●

● ●
●

●
● ● ●

●
● ●

● ● ● ●

●

●

●
●

●

● ● ● ●

●

●

●

● ●

● ●
●

●

●

● ●
● ●●

●●

●

●

● ●
● ●

●

●

●
●

●

● ● ● ●

●
● ●

● ● ● ●

●
●

●

● ●

●
● ● ●

●

●

●

● ●

● ● ●

●

●

● ● ●
●●

●●
● ●

● ● ● ●

●●

●

●
●

● ● ● ●

● ● ●

● ● ● ●

●●

●
●

●

● ● ● ●

●

●

●

●
●

● ● ●

●
●

● ● ●
●● ●●

● ●

● ● ● ●

●
●

●

●
●

● ● ● ●

● ● ●

● ● ● ●

●●

● ●

●

● ● ● ●

●
●

●

● ●

● ● ●

●
●

● ● ● ●● ●●
● ●

●
● ●

●

●

●

●
●

●

● ● ● ●

● ● ●

● ●
● ●

●
●

●
●

●

● ● ●
●

●

●

●

●
●

● ● ●

● ●

● ● ● ●● ●●
● ●

● ● ● ●

●

●
●

●
●

● ● ●
●

●
● ●

● ● ●
●

●
●

●
●

●

● ● ●
●

●

● ●

● ● ●

●

●

●

● ●
● ●●

●

●

●
● ●

● ● ● ●

●●

●

● ●

● ● ● ●

●
● ●

● ●
● ●

●
●

●

● ●

● ● ●
●

●
●

● ● ●

●●

●

● ● ●
●●

●

●●

●
●

●

● ● ● ●

●●

● ● ●

● ● ● ●

● ● ●

● ● ● ●

●
●

●
●

●

● ●
● ●

●

●

● ● ●

●●

●

● ● ● ●●

●

●●

●
●

●

● ● ●
●

●
●

●
● ●

● ● ● ●

● ● ●

●
● ● ●

●●

●
● ●

● ● ● ●

●
●

●

● ● ●
●

●

●
● ● ●●

●

●●

●

● ●

● ● ● ●
●●

●
●

●

● ● ● ●
● ● ●

● ● ● ●
●●

● ●
●

● ● ● ●

●
●

● ● ●
●●

●

●
● ●

●●
●

●● ●● ●● ● ●
●

●●
● ● ●

● ● ● ●
● ● ●

● ● ● ●
●●
● ●

●
● ● ● ●

●
● ●

● ● ●
●
●

●
● ● ● ●●

●
● ●● ●

● ● ● ●
●●
● ● ●

● ● ● ●
● ● ●

● ● ● ●
●●
● ● ●

● ● ● ●

●
● ●

● ● ● ●●
●

● ● ● ●●
●

● ●● ●
● ● ● ●

●
● ● ● ●

● ● ●
● ● ● ●

● ● ● ●
●

●
● ● ●

● ● ●
●

●
●

●

● ● ●

●
●

●
●

● ● ● ●●
●●

● ●

● ● ● ●

●●

●

●

●

● ● ● ●

● ● ●

● ● ● ●

●●
● ●

●

● ● ● ●

●●

●

● ●
●

●
●
●

●

● ● ● ●●
●●

● ●

● ● ● ●

●
●

●

●

●

● ● ●
●

●
●

●

● ● ●
●

●
●

●
● ●

● ● ● ●

●●

●

● ● ●

●
●● ●

● ●
● ●● ●●

● ●

● ●
● ●

●
●

●

●

●

● ● ● ●
●

● ●

● ● ●
● ●●

●
● ●

● ● ● ●

●●
●

● ● ●
●

●● ●

● ● ● ●● ●●
● ●

● ● ●
● ●●

●

●

●

● ● ● ● ● ● ●

● ● ●
● ●●

● ● ●

● ● ●
●

●●
●

● ● ●
● ●● ●

● ● ● ●
●

●●
● ●

● ● ● ●
●●
●

● ●

● ● ● ● ● ● ●

● ● ● ● ●●
●

● ●

● ● ● ●

●●
●

● ●
● ● ●● ●

● ● ●
●● ●●

● ●
● ●

● ● ●● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ●● ● ● ●

● ● ● ●

●●
●

● ● ●
● ●● ●

● ● ●
●● ●●

● ●
● ●

● ● ●● ● ●
●

● ● ●
● ● ● ●

● ● ● ● ●●
● ● ●

● ● ●
●

●
●

●

● ● ● ● ●●

●

● ● ● ●
●

●
●● ●

● ● ● ●

●
●

●
● ●

● ● ● ●

●
● ●

● ● ● ●
●●
● ● ●

● ● ● ●

●
●

●

● ● ●
● ●●

●

● ● ● ●
●

● ●●
●●

● ●
●

●
●

● ● ●

● ● ● ●

● ● ●
● ● ● ●

●
●

● ● ●
● ● ● ●

●
● ●

● ● ●
●●

●
● ● ●

●● ●
● ●●

●● ● ● ●
●

●
●

● ●

● ● ●
● ● ●

●● ● ●
● ●

●
●

●
●

● ● ●
●

●
● ●● ● ● ● ●●

●
● ● ● ●

●
● ●● ●

● ● ●
● ●●

● ● ●

● ● ●
● ● ● ●

● ● ● ●
●●
● ● ●

● ● ● ●

● ● ●
● ● ● ●●

●
● ●

● ●
● ●

●
●● ●

● ● ● ●
●●
● ● ●

● ● ● ● ● ● ●
● ● ●

● ●●
● ● ●

● ● ● ●

●●
●

● ● ● ● ●● ●
● ● ● ● ●

●
●● ●

● ● ● ●
●● ● ● ●

● ● ● ●
● ● ●

● ●
● ● ●●

● ● ●
● ● ●

●

●●
●

● ● ●
●

●● ●
● ● ● ● ●●

●● ●
● ● ●

● ●
●

● ● ●
● ● ● ●

● ● ●
● ● ● ● ●● ● ● ●
● ● ● ●

●
●

●
●

●

● ● ● ●
● ●
●

● ● ● ●
● ●

●
●

● ● ● ●

●

●
● ● ●

● ● ● ●

● ●

● ● ● ● ●
●

● ● ●
● ● ● ●

●●
● ●

●
● ● ● ● ● ●●
● ● ● ● ●

●
●

●● ● ● ●
●

●
● ● ●● ● ●

●
● ●

● ● ● ● ●●
● ●

●● ● ● ●

● ●●● ● ● ● ● ●●
● ● ● ●

●
● ●● ● ● ●

● ●
●

● ● ●● ● ● ●
● ● ●

● ● ●
● ● ●

●
● ● ●● ● ● ●

●●● ●●● ●
● ● ●

●●
● ●

● ● ●
●● ●● ● ● ●

●●
● ● ●● ● ● ● ● ●

● ● ● ● ●● ● ● ●
● ● ● ●

●
●●

● ● ● ● ●
●

●● ● ● ● ●● ●
● ● ● ● ●

●
●

● ● ●
● ● ● ● ● ● ●
●

● ● ● ● ●● ● ● ●
●

● ● ●

●●
● ●●● ● ● ● ● ●●

● ● ● ● ●
●● ●

● ● ● ● ●● ● ● ●
● ● ● ● ● ●
● ● ●

● ●● ● ● ●
● ● ● ●

●
● ●● ●

● ● ● ● ●
●

●● ● ●
● ● ●● ●

● ● ● ●
●

● ●
● ●

● ●
● ● ● ●

● ● ● ●
●● ● ● ●

● ● ● ●

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

pw
d=

1
pw

d=
3

pw
d=

7
pw

d=
20

pw
d=

50
pw

d=
150

pw
d=

1000

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Number of threads

D
yn

am
ic

 u
nc

or
e

po
w

er

Fig. 21: Dynamic uncore power at f = 3.4GHz

pwe=1 pwe=3 pwe=7 pwe=20 pwe=50 pwe=150 pwe=1000

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

5
10
15
20
25

5
10
15
20
25

5
10
15
20
25

5
10
15
20
25

5
10
15
20
25

5
10
15
20
25

5
10
15
20
25

pw
d=

1
pw

d=
3

pw
d=

7
pw

d=
20

pw
d=

50
pw

d=
150

pw
d=

1000

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Number of threads

D
yn

am
ic

 C
P

U
 p

ow
er

Fig. 22: Dynamic CPU power at f = 1.2GHz

28

pwe=1 pwe=3 pwe=7 pwe=20 pwe=50 pwe=150 pwe=1000

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●●

●●

●
●

●

●

●●
●

●●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●
●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●●

●
●

●

●
●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

20

10

20

10

20

10

20

10

20

10

20

10

20

pw
d=

1
pw

d=
3

pw
d=

7
pw

d=
20

pw
d=

50
pw

d=
150

pw
d=

1000

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Number of threads

T
ot

al
 d

yn
am

ic
 p

ow
er

Fig. 23: Sum of dynamic powers at f = 1.2GHz

e.g. Hof detached from the others when pwe = 50 or Gid mostly well-predicted both absolutely
and relatively as the less power-dissipating implementation. One can observe once again the asymmetry
between enqueue and dequeue operations by comparing the power values at (pwd , pwe) = (2, 1000) and
(1000, 2); this asymmetry is predicted by the model, with a lower impact though.

VII. ENERGY PER OPERATION ESTIMATION

In Figures 24 and 25 is represented the energy per operation. Overall we observe that the successful
operations (dequeue of a non-NULL item) are cheaper and cheaper when the number of threads is
increasing on the same socket: the cost of turning the machine on is made profitable by an increase in
performance. However, under high-contention, the lack of performance improvement while increasing
the number of cores makes the use of supplementary cores useless. The inefficiency of adding cores
is even more apparent when cores are spread across the sockets. In this case, under high-contention,
performance could even be degraded by the implication of new cores, then, as performance decreases
and power increases, the energy per operation dramatically increases.

VIII. DESCRIPTION OF THE IMPLEMENTATIONS

1) NOBLE [1], [2]: Most of the implementations that we use are part of the NOBLE library. The
NOBLE library offers support for non-blocking multi-process synchronization in shared memory systems.
NOBLE has been designed in order to: i) provide a collection of shared data objects in a form which
allows them to be used by non-experts, ii) offer an orthogonal support for synchronization where the
developer can change synchronization implementations with minimal changes, iii) be easy to port to
different multi-processor systems, iv) be adaptable for different programming languages and v) contain
efficient known implementations of its shared data objects. The library provides a collection of the most

29

●

●

●
● ●

●

●

●

●

●
● ● ●

● ●
●

●
●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

● ● ●
●

● ● ●

●

●

●
● ●

●
● ● ●

●
●

●

●
●

●

●
●

●

●
●

●
●

●● ●●

●

●●

●
●

●

●●

●

●

●

●

●
● ● ●

● ●

●

●
●

●

●

●
● ●

●

●

●
● ●

●● ●

●

●

●

●
●
●

●

●

●

●

●● ●●
● ●

●

●

●

● ●
●

● ● ●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

● ●

●

●

●

●
●●

●

●●

●

●

●

● ●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
● ●● ●●

●
●

●

●

●
● ●

●

●

●

●

●

●

●
● ●

● ● ●

●

●
● ● ●● ● ●

●

●

●
● ●

●
●

●

●

●

●

●
● ●

●

●

●
● ●● ●● ●

●

●

●
● ●

●

●

●

●

●

●

●
● ●

● ● ●

●

●
● ● ●● ● ●

●

●

●
● ●

●●

●

●

●

●

●
●● ●

●

●

●

●● ●●

● ●

●

●

●

●
●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●
●

●
●

● ●

●

●

●

● ●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●● ●●
●●
●

●

●

●

●
●

● ● ● ●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

● ●

●

●

●

● ●
●

●
●

●

●

●

●

●
●

●

●

●

●● ●●

● ●

●

●

●

●
●

● ● ●
●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

● ●

●

●

●

● ●●

●

●

●

●

●
●● ●

●

●

●

●● ●●

● ●

●

●

●

●
●

●
● ● ●

●

●

●

●

●
● ●

●

●

●

●
●

●
●

● ●

●

●

●

● ●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●
●

●●

●● ●

●

●

●

●
●

●
●

● ●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

● ●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●● ●●

● ●

●

●

●

●
●

●
● ●

●

●

●

●

●
● ● ●

●

●

●

●
●

●
●

● ●

●

●

●

● ●●

●

●

●

●

●
●● ●

●

●

●

●● ●●

● ●

●

●

●

●
●

●
●

● ●

●

●

●

●
● ● ●

●

●

●

●
●

●
● ● ●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

●

●

●

pwd=2, pwe=2 pwd=2, pwe=7 pwd=2, pwe=50 pwd=2, pwe=1000

pwd=7, pwe=2 pwd=7, pwe=7 pwd=7, pwe=50 pwd=7, pwe=1000

pwd=50, pwe=2 pwd=50, pwe=7 pwd=50, pwe=50 pwd=50, pwe=1000

pwd=1000, pwe=2 pwd=1000, pwe=7 pwd=1000, pwe=50 pwd=1000, pwe=1000

1e−04

2e−04

3e−04

1e−04

2e−04

3e−04

4e−04

6e−04

8e−04

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

1e−04

2e−04

3e−04

1e−04

2e−04

3e−04

4e−04

6e−04

8e−04

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

3e−04
4e−04
5e−04
6e−04
7e−04
8e−04

3e−04
4e−04
5e−04
6e−04
7e−04
8e−04

4e−04

6e−04

8e−04

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.005

0.010

0.015

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Number of threads

E
ne

rg
y

pe
r

op
er

at
io

n
(J

ou
le

s
pe

r
op

)

Fig. 24: Energy per operation at f = 3.4GHz

●

●

●
●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ● ● ●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●●

● ● ● ● ●●

●

●
●

●

●

●

●
●

●

●●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●●
●

● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●●
●●

● ● ●

●

●

● ● ●

●

●

●

●

●

● ● ●
●

●

●

●

●
●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●●

● ●
● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●

●
● ● ●

●

●●
●

● ● ●

●●

●

●

●
●

● ●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●●
●●

● ● ●

●

●

● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●● ●●
● ● ●

●●

●

●●
● ● ●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●●

●
●

● ● ●

●

●

●
● ● ● ●

●
●

●

●●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●

●
●

● ●

●

●●
●

● ● ●

●●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●●
●●

● ● ●

●

●

● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●●
●●

● ● ●

●

●●

●

●●

● ● ●

●

●
● ● ●

●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●
●

● ● ●

●●

●
●

● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●●
●

● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●

●

●
● ● ●

●

●

●●
●●

● ● ●

●

●

● ● ●

●

●

●

●

●

pwd=2, pwe=2 pwd=2, pwe=7 pwd=2, pwe=50 pwd=2, pwe=1000

pwd=7, pwe=2 pwd=7, pwe=7 pwd=7, pwe=50 pwd=7, pwe=1000

pwd=50, pwe=2 pwd=50, pwe=7 pwd=50, pwe=50 pwd=50, pwe=1000

pwd=1000, pwe=2 pwd=1000, pwe=7 pwd=1000, pwe=50 pwd=1000, pwe=1000

0.00005

0.00010

0.00015

0.00020

1e−04

2e−04

0.0004

0.0008

0.0012

0.0016

0.01

0.02

0.03

1e−04

2e−04

1e−04

2e−04

0.0004

0.0008

0.0012

0.0016

0.01

0.02

0.03

0.0005

0.0010

0.0015

0.0005

0.0010

0.0015

0.0005

0.0010

0.0015

0.01

0.02

0.03

0.005
0.010
0.015
0.020
0.025
0.030

0.01

0.02

0.03

0.01

0.02

0.03

0.005
0.010
0.015
0.020
0.025
0.030

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Number of threads

E
ne

rg
y

pe
r

op
er

at
io

n
(J

ou
le

s
pe

r
op

)

Fig. 25: Energy per operation at f = 1.2GHz

30

commonly used data types. The semantics of the components, which have been designed to be the very
same for all implementations of a particular abstract data type, are based on the sequential semantics
of common abstract data types and adopted for concurrent use. The set of operations has been limited
to those which can be practically implemented using both non-blocking and lock-based techniques. Due
to the concurrent nature, also new operations have been added, e.g. Update which cannot be replaced
by Delete followed by Insert. Some operations also have stronger semantics than the corresponding
sequential ones, e.g. traversal in a List is not invalidated due to concurrent deletes, compared to the
iterator invalidation in STL. As the published algorithms for concurrent data structures often diverge
from the chosen semantics, a large part of the implementation work in NOBLE, besides from adoption
to the framework, also consists of considerable changes and extensions to meet the expected semantics.

The various lock-free concurrent queue algorithms that we include in this study are briefly described
below.

2) Tsigas-Zhang [3]: Tsigas and Zhang [3] presented a lock-free extension of [23] for any number
of threads where synchronization is done both on the array elements and the shared head and tail
indices using CAS, and the ABA problem is avoided by exploiting two (or more) null values. In [3]
synchronization is done both directly on the array elements and the shared head and tail indices using
CAS2, thus supporting multiple producers and consumers. In order to avoid the ABA problem when
updating the array elements, the algorithm exploits using two (or more) null values; the ABA problem is
due to the inability of CAS to detect concurrent changes of a memory word from a value (A) to something
else (B) and then again back to the first value (A). A CAS operation can not detect if a variable was
read to be A and then later changed to B and then back to A by some concurrent processes. The CAS
primitive will perform the update even though this might not be intended by the algorithm’s designer.
Moreover, for lowering the memory contention the algorithm alternates every other operation between
scanning and updating the shared head and tail indices.

3) Valois [4]: Valois [4], [24] makes use of linked list in his lock-free implementation which is based
on the CAS primitive. He was the first to present a lock-free implementation of a linked-list. The list uses
auxiliary memory cells between adjacent pairs of ordinary memory cells. The auxiliary memory cells
were introduced to provide an extra level of indirection so that normal memory cells can be removed by
joining the auxiliary ones that are adjacent to them. His design also provides explicit cursors to access
memory cells in the list directly and insert or delete nodes on the places the the cursors point to.

4) Michael-Scott [5]: Michael and Scott [5] presented a lock-free queue that is more efficient, synchro-
nizing via the shared head and tail pointers as well as via the next pointer of the last node. Synchronization
is done via shared pointers indicating the current head and tail node as well via the next pointer of the
last node, all updated using CAS. The tail pointer is then moved to point to the new item, with the use of
a CAS operation. This second step can be performed by the thread invoking the operation, or by another
thread that needs to help the original thread to finish before it can continue. This helping behavior is an
important part of what makes the queue lock-free, as a thread never has to wait for another thread to
finish. The queue is fully dynamic as more nodes are allocated as needed when new items are added.
The original presentation used unbounded version counters, and therefore required double-width CAS
which is not supported on all contemporary platforms. The problem with the version counters can easily
be avoided by using some memory management scheme as e.g. [25].

5) Moir-et al. [6]: Moir et et al. [6] presented an extension of the Michael and Scott [5] lock-free
queue algorithm where elimination is used as a back-off strategy to increase scalability when contention
on the queue’s head or tail is noticed via failed CAS attempts. However, elimination is only possible
when the queue is close to empty during the operation’s invocation.

2The Compare-And-Swap (CAS) atomic primitive will update a given memory word, if and only if the word still matches a
given value (e.g. the one previously read). CAS is generally available in contemporary systems with shared memory, supported
mostly directly by hardware and in other cases in combination with system software.

31

6) Hoffman-Shalev-Shavit [7]: Hoffman et al. [7] takes another approach in their design in order
to increase scalability by allowing concurrent Enqueue operations to insert the new node at adjacent
positions in the linked list if contention is noticed during the attempted insert at the very end of the
linked list. To enable these ”baskets” of concurrently inserted nodes, removed nodes are logically deleted
before the actual removal from the linked list, and as the algorithm traverses through the linked list it
requires stronger memory management than [25], such as [26] or [27] and a strategy to avoid long chains
of logically deleted nodes.

7) Gidenstam-Sundell-Tsigas [8]: Gidenstam et al. [8] combines the efficiency of using arrays and the
dynamic capacity of using linked lists, by providing a lock-free queue based on linked lists of arrays, all
updated using CAS in a cache-aware manner. In resemblance to [3], [23], [28] this algorithm uses arrays
to store (pointers to) the items, and in resemblance to [3] it uses CAS and two null values. Moreover,
shared indices [28] are avoided and scanning [3] is preferred as much as possible. In contrast to [3],
[23], [28] the array is not static or cyclic, but instead more arrays are dynamically allocated as needed
when new items are added, making the queue fully dynamic.

IX. TOWARDS REALISTIC APPLICATIONS: MANDELBROT SET COMPUTATION

The performance and energy behavior of an application using a lock-free queue depends on both the
application specific code and the implementation of the data structure. For applications where the queue
is used in a steady state manner, predictions can be made using the model instantiated with the synthetic
benchmark, combined with information about the behavior of the application specific code. What is
needed is:
• The size of the parallel work part of the application, both for enqueuers and dequeuers. These may

be distributions rather than single values.
• The dynamic power for these parts (as it may differ from that of the parallel work in the synthetic

benchmark).

A. Description of Mandelbrot Set Application

As a case-study we have used an existing application3 that computes and renders an 8192×8192 pixel
image of the Mandelbrot set [30] in parallel using the producer/consumer pattern. The program uses a
concurrent queue to communicate between two major phases:
• Phase 1 consists of computing the number (with a maximum of 255) of iterations for a given set of

points within a chosen region of the image. The results for each region together with its coordinates
are then enqueued.

• Phase 2 consists of, for each region dequeued from the queue, computing the RGB values for each
contained point and draw these pixels to the resulting image. The colors for the corresponding
number of iterations are chosen according to a rainbow scheme, where low numbers are rendered
within the red and high numbers are rendered within the violet spectrum.

Half of the threads perform phase 1 and the rest perform phase 2. The size of each square region is
chosen to be one of 16× 16, 8× 8, 4× 4, or 2× 2 pixels which also determines the amount of work to
perform per queue operation and, hence, the level of contention. Similarly to the synthetic benchmark,
the application uses a dense pinning strategy, pinning producer/consumer pairs to consecutive pairs of
cores. This is just one of many possible ways to divide the work and pin threads, it remains as future
work to explore other ways.

3Previously used for evaluation in [29].

32

B. Mandelbrot Prediction

There are two main differences between the Mandelbrot application and the synthetic benchmark:
(i) the instructions in the parallel section differ; and (ii) the size of the parallel section for producers
varies in Mandelbrot.

Firstly, we need to measure the CPU power dissipation for Mandelbrot; we cannot expect to be able to
predict the power dissipation of any application that uses a queue without having any knowledge about
the power characteristics of the application. In contrast, memory power dissipation for the computation
intensive Mandelbrot parallel section is negligible in comparison to queue operations; hence, the dynamic
memory power that we have measured and extrapolated in the synthetic benchmark is unchanged.

Secondly, Mandelbrot provides a variety of producer parallel works. To deal with this, the pixel region
is decomposed row-wise in an interleaved manner among producer threads. This decomposition leads
to long enough execution intervals in which the parallel sections of the producer threads are similar
and constant. This is due to the computationally expensive pixels belonging to the Mandelbrot set being
concentrated together in the center of the domain and surrounded by cheaper pixels which diverge quickly.
This characteristic is congruent with our model where the data structure is used in a steady state manner.
Thus, predictions can be made using the instantiated model over a linear combination of execution
intervals.

We measure the latency of the computation intensive producer and consumer parallel works for each
frequency and contention level (2×2, 4×4, 16×16). For this process, we make use of CPUID, RDTSC
and RDTSCP instructions as specified in [31]. The distribution of parallel works reveals that there are
two main groups for producers, that corresponds to regions belonging to the Mandelbrot set or not.
Concerning 2×2 contention, due to the wide distribution, we gather the parallel works into bins of width
10 pauses; the number of elements in the ith bin is then denoted by size(i) and its average amount of
work by pw

(i)
e . We scale the width of bins linearly with the area of the region for other contention levels.

For the consumers, parallel works are similar for the whole execution.
To make predictions, we assume that all consumer/producer pair (pwd, pw

(i)
e) is executed in a steady

state during an interval of time. For each frequency, thread, algorithm and contention of interest, we
obtain the throughput T (i) = T (pwd, pw

(i)
e) and the powers P (X)

i = P (X)(pwd, pw
(i)
e) for this interval

from the corresponding synthetic benchmark input. The only part of the model, instantiated with the
synthetic benchmark that needs to be replaced by an application specific entry, is the dynamic CPU power
parameter. Then, we combine intervals to obtain total execution time and average power dissipation. This
accumulation strategy should be applied with care as the synthetic benchmark is based upon the steady
state assumption. An interval which is assumed to take place with a mostly empty queue, could actually
not be in this state due to leftover items from the previous interval. Although our model is capable of
taking this initial state into consideration and provide metrics accordingly, we assume that each interval
is independent. This approximation is reasonable since the consumer parallel work corresponds to the
producer bin with one of smallest values, hence a mostly empty queue.

Note that we have implemented a constant back-off equivalent to the consumer parallel work, after
dequeuing a NULL item instead of retrying immediately, because of several advantages. It cannot decrease
the performance, since either the queue is growing, and then the back-off never takes place, or the queue
is mostly empty, and then the producers are the bottleneck of the queue. Conversely, it can increase the
performance by diminishing the queue contention. Those motivations drove the design of the synthetic
benchmark, that we can accordingly reuse here.

For each frequency, thread, algorithm and contention configuration, execution time and power estimates
for Mandelbrot application are obtained with the following equations:

Timetotal =

BinCount∑
i=1

size(i) × λ

T (i)

33

P (X) =

BinCount∑
i=1

(size(i) × λ
T (i))× P (X)

i

Timetotal
In Figure 26, execution time estimates catch the queue algorithm specific trend for high contention

cases, which exhibit a more complicated behavior than the low contention cases. Also, they reveal the
impact of different queue implementations to overall application performance, which does not appear
under low contention. For the highest contention level with region size 2 × 2, an increasing trend in
execution time is observed after 8 threads for many algorithms. The reason is the increasing latency of
atomic synchronization primitives originating from two main sources: (i) inter-socket communication,
which starts after 8 threads due to our pinning strategy, and (ii) the increasing serialization (expansion)
probability for atomic primitives due to increasing number of threads that interfere in the retry loop. The
ratio of atomic primitives and the size of queue operations show variations between algorithms which in
turn leads to different behaviors. For the 4×4 contention case, the difference between algorithms can still
be observed but the parallel sections are large enough to avoid interference in the retry loop. Therefore,
execution time decreases with the increasing number of threads. The difference between algorithms is due
to different queue operation sizes which loses its significance gradually with the decreasing contention
level, as observed in low contention cases.

Contention=2x2 Contention=4x4 Contention=16x16

25

50

75

10

20

30

1.2 G
H

z
3.4 G

H
z

4 8 12 16 4 8 12 16 4 8 12 16
Total Number of Threads

E
x
ec

u
ti

on
 T

im
e

(s
ec

)

Fig. 26: Mandelbrot Execution Time

Power estimates are quite satisfactory except algorithm Hof which is overestimated. In the power
versus time plot which is not presented here, we observe a step like decrease in power at the end of

34

Contention=2x2 Contention=4x4 Contention=16x16

15

20

25

30

50

75

100

1.2 G
H

z
3.4 G

H
z

4 8 12 16 4 8 12 16 4 8 12 16
Total Number of Threads

C
P

U
 P

ow
er

 (
W

at
t)

Fig. 27: Mandelbrot CPU power

the execution, implying that Hof is prone to unfairness among producers. Some producers finish their
regions early and go to sleep which decreases the power dissipation.

As mentioned before, dynamic memory and uncore power are dominated by the queue implemen-
tations so we do not use any application specific memory/uncore power samples in our estimations,
due to compute intensive character of the Mandelbrot parallel works. Even if this was not the case,
memory/uncore power in the parallel sections could have been extracted. One can get the memory/uncore
power measurement from the application and subtract the memory/uncore power that we have measured
and extrapolated in the synthetic benchmark. Then, using the ratio of retry loops and parallel sections
thanks to our throughput model, the memory/uncore power can be estimated.

Similar to the synthetic benchmarks, Mandelbrot dynamic memory/uncore power becomes noticeable
with the inter-socket communication, after 8 threads, and decreases gradually with the decreasing ratio
of retry loops, with contention level.

35

Contention=2x2 Contention=4x4 Contention=16x16

2

3

4

2

3

4

5

6

1.2 G
H

z
3.4 G

H
z

4 8 12 16 4 8 12 16 4 8 12 16
Total Number of Threads

M
em

or
y
 P

ow
er

 (
W

at
t)

Fig. 28: Mandelbrot Memory Power

36

Contention=2x2 Contention=4x4 Contention=16x16

24.4

24.6

24.8

25.0

25.2

25.4

25

26

1.2 G
H

z
3.4 G

H
z

4 8 12 16 4 8 12 16 4 8 12 16
Total Number of Threads

U
n
co

re
 P

ow
er

 (
W

at
t)

Fig. 29: Mandelbrot Uncore Power

37

X. CONCLUSION

In this paper we have:
(i) proposed models for predicting the throughput and power behavior of lock-free concurrent queues
under steady state usage;
(ii) shown how these models can be instantiated for the queue implementations and machine on hand
using 10 measurements per frequency and number of threads via a synthetic benchmark; and
(iii) demonstrated that the energy behavior of a parallel application that uses a lock-free queue in a steady
state manner can be predicted using these models and only a small amount of queue-implementation-
independent empirical information about the application.

As a future work, it would be of interest to study the strength of the model that has been presented
here by testing it on other applications, in particular on more memory-intensive ones.

Furthermore, the model can hopefully be extended to several directions. While staying focused on the
queue data structure, lock-based implementations may be included, and behave in a similar way as their
lock-free counterparts. To conclude, it would be interesting to generalize the model to other data types.

REFERENCES

[1] H. Sundell and P. Tsigas, “NOBLE: A Non-Blocking Inter-Process Communication Library,” in Proceedings of the
Workshop on Languages, Compilers and Run-time Systems for Scalable Computers (LCR), ser. Lecture Notes in Computer
Science, 2002.

[2] ——, “NOBLE: Non-blocking programming support via lock-free shared abstract data types,” SIGARCH Computer
Architecture News, vol. 36, no. 5, 2008.

[3] P. Tsigas and Y. Zhang, “A simple, fast and scalable non-blocking concurrent FIFO queue for shared memory multiprocessor
systems,” in Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), July 2001, pp.
134–143.

[4] J. D. Valois, “Implementing Lock-Free Queues,” in Proceedings of International Conference on Parallel and Distributed
Systems (ICPADS), December 1994, pp. 64–69.

[5] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking and blocking concurrent queue algorithms,” in
Proceedings of the ACM Symposium on Principles of Distributed Computing (PoDC), May 1996, pp. 267–275.

[6] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit, “Using elimination to implement scalable and lock-free fifo queues,” in
Proceedings of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), July 2005, pp. 253–262.

[7] M. Hoffman, O. Shalev, and N. Shavit, “The baskets queue,” in Proceedings of the International Conference on Principle
of Distributed Systems (OPODIS), December 2007, pp. 401–414.

[8] A. Gidenstam, H. Sundell, and P. Tsigas, “Cache-aware lock-free queues for multiple producers/consumers and weak
memory consistency,” in Proceedings of the International Conference on Principle of Distributed Systems (OPODIS), vol.
6490, December 2010, pp. 302–317.

[9] J. Dongarra and P. Beckman, “The international exascale software roadmap,” International Journal of High Performance
Computing Applications (IJHPCA), vol. 25, no. 1, pp. 3–60, 2011.

[10] N. Hunt, P. Sandhu, and L. Ceze, “Characterizing the performance and energy efficiency of lock-free data structures,” in
Workshop on Interaction between Compilers and Computer Architectures (INTERACT), February 2011, pp. 63–70.

[11] A. Gautham, K. Korgaonkar, P. SLPSK, S. Balachandran, and K. Veezhinathan, “The implications of shared data
synchronization techniques on multi-core energy efficiency,” in Workshop on Power-Aware Computing and Systems, October
2012.

[12] G. Contreras and M. Martonosi, “Power prediction for intel xscale processors using performance monitoring unit events,”
in Proceedings of International Symposium on Low Power Electronics and Design (ISLPED), August 2005, pp. 221–226.

[13] S. Wang, H. Chen, and W. Shi, “Span: A software power analyzer for multicore computer systems,” Sustainable Computing:
Informatics and Systems, vol. 1, no. 1, pp. 23–34, 2011.

[14] C. Isci and M. Martonosi, “Runtime power monitoring in high-end processors: Methodology and empirical data,” in
International Symposium on Microarchitecture (MICRO), December 2003, pp. 93–104.

[15] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: a first step towards software power minimization,”
in Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD), November 1994, pp. 384–
390.

[16] R. Ge and K. W. Cameron, “Power-aware speedup,” in Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS), March 2007, pp. 1–10.

[17] J. Choi, M. Dukhan, X. Liu, and R. Vuduc, “Algorithmic time, energy, and power on candidate HPC compute building
blocks,” in Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS), Phoenix, AZ, USA,
May 2014.

38

[18] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl: Memory power estimation and capping,” in
Proceedings of International Symposium on Low Power Electronics and Design (ISLPED), August 2010, pp. 189–194.

[19] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable programming interface for performance evaluation
on modern processors,” International Journal of High Performance Computing Applications (IJHPCA), vol. 14, no. 3, pp.
189–204, August 2000.

[20] V. M. Weaver, M. Johnson, K. Kasichayanula, J. Ralph, P. Luszczek, D. Terpstra, and S. Moore, “Measuring energy and
power with papi,” in Proceedings of International Conference on Parallel Processing Workshops (ICPPW), September
2012, pp. 262–268.

[21] J. R. Goodman and H. H. J. Hum, “Mesif: A two-hop cache coherency protocol for point-to-point interconnects,”
University of Auckland, Tech. Rep., November 2009. [Online]. Available: http://hdl.handle.net/2292/11594

[22] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanaa, and C. Le, “RAPL: memory power estimation and capping,” in
Proceedings of International Symposium on Low Power Electronics and Design (ISLPED), August 2010, pp. 189–194.

[23] L. Lamport, “Specifying concurrent program modules,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 5, no. 2, pp. 190–222, 1983.

[24] J. D. Valois, “Lock-Free Data Structures,” Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, New York, 1995.
[25] M. M. Michael, “Hazard pointers: Safe memory reclamation for lock-free objects,” IEEE Transactions on Parallel and

Distributed Systems (TPDS), vol. 15, no. 8, August 2004.
[26] A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas, “Efficient and reliable lock-free memory reclamation based

on reference counting,” IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 20, no. 8, pp. 1173–1187,
2009.

[27] M. Herlihy, V. Luchangco, P. Martin, and M. Moir, “Nonblocking Memory Management Support for Dynamic-sized Data
Structures,” ACM Transactions on Computer Systems (TOCS), vol. 23, pp. 146–196, May 2005.

[28] J. Giacomoni, T. Moseley, and M. Vachharajani, “Fastforward for efficient pipeline parallelism: a cache-optimized
concurrent lock-free queue,” in Principles and Practice of Parallel Programming (PPoPP). New York, NY, USA: ACM,
February 2008, pp. 43–52.

[29] H. Sundell, A. Gidenstam, M. Papatriantafilou, and P. Tsigas, “A lock-free algorithm for concurrent bags,” in Proceedings
of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), June 2011.

[30] B. B. Mandelbrot, “Fractal aspects of the iteration of z → λz(1 − z) for complex λ and z,” Annals of the New York
Academy of Sciences, vol. 357, pp. 249–259, 1980.

[31] G. Paoloni, “How to benchmark code execution times on Intel R© ia-32 and ia-64 instruction set architectures,” Intel, Tech.
Rep. 324264-001, September 2010.

