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Refractometric biosensing based on optical phase flips in
sparse and short-range-ordered nanoplasmonic layers

Mikael Svedendahl, Ruggero Verre and Mikael Käll

Noble metal nanoparticles support localized surface plasmon resonances (LSPRs) that are extremely sensitive to the local dielectric

properties of the environment within distances up to 10–100 nm from the metal surface. The significant overlap between the sensing

volume of the nanoparticles and the size of biological macromolecules has made LSPR biosensing a key field for the application of

plasmonics. Recent advancements in evaluating plasmonic refractometric sensors have suggested that the phase detection of light can

surpass the sensitivity of standard intensity-based detection techniques. Here, we experimentally confirm that the phase of light can be

used to precisely track local refractive index changes induced by biomolecular reactions, even for dilute and layers of

short-range-ordered plasmonic nanoparticles. In particular, we demonstrate that the sensitivity can be enhanced by tuning in to a

zero reflection condition, in which an abrupt phase flip of the reflected light is achieved. Using a cost-effective interference fringe

tracking technique, we demonstrate that phase measurements yield an approximately one order of magnitude larger relative shift

compared with traditional LSPR measurements for the model system of NeutrAvidin binding to biotinylated nanodisks.
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INTRODUCTION

A considerable number of studies have demonstrated that localized

surface plasmon resonances (LSPRs) in noble metal nanoparticles

possess a number of promising characteristics for ultrasensitive and

cost-effective label-free molecular analyses for the life sciences and

beyond.1–4 Plasmons in metal nanoparticles can be used as transducers

of biological and chemical interactions because the plasmon strongly

couples to light and because its particle-specific resonance wavelength

shifts if the concentration, composition or conformation of molecules

changes within nanometric distances from the particle surface.1–4

Since the first report of an LSPR red-shift induced by molecular

adsorption by Englebienne5 in 1998, colorimetric detection using clas-

sical optical spectroscopy methods has been the most popular trans-

duction methodology. However, it has recently been proposed that the

phase information contained in light scattered or reflected from nano-

particles excited at resonance could be used to implement alternative

and even more effective LSPR sensing schemes.6–11 Indeed, phase

interrogation techniques have significantly decreased the limits of

detection in the case of classical surface plasmon resonance sensors

based on planar gold films.7,12–14 In this case, the sensitivity enhance-

ment is primarily due to the rapid phase flip that occurs when the

reflectance approaches zero close to the resonance wavelength. Similar

properties have been observed in studies of collective resonances in

periodic arrays of nanoparticles,8,9 which experienced high bulk

refractive index sensitivities due to sharp diffractive resonances in

combination with zero reflection, or so-called ‘topological darkness’,

a term coined by Kravets et al.8,15 However, large bulk refractive index

sensitivities do not directly lead to high sensitivity to molecular

adsorption in close proximity to the metal surface. Another important

parameter is the spatial confinement of the refractive index sensitivity,

as has been illustrated through comparisons between LSPRs in gold

nanoparticles and propagating surface plasmons in thin gold

films.16,17 Although the propagating plasmon has a bulk refractive

index sensitivity that is almost twenty times greater than that of

LSPRs, both methodologies yield similar resonance shifts upon

molecular adsorption due to the better overlap between the sensitive

fields and the molecules in the case of LSPRs.16

Although the collective resonances represent an interesting and

promising route to extreme sensitivities, periodic arrays of nanopar-

ticles with extremely narrow diffractive resonances require extreme

precision during the fabrication process. The applicability of the

phase-based methodology would clearly significantly increase if simi-

lar sensitivity could be achieved in less ordered structures, which are

much simpler and less expensive to fabricate. From this perspective,

the optical readout methodology can also be used to increase simpli-

city and decrease costs. However, there have only been a few reports on

phase-based biosensing methodologies,8,10,11 and only one report uti-

lized zero reflections (however, using collective resonances).8 To the

best of our knowledge, no studies have performed biosensing using the

zero reflection phase flip from purely localized plasmonic resonances.

Here, we show that the reflection from a sparse non-periodic layer

of gold nanodisks bound to a glass/water interface can be used for

phase-based refractometric biosensing in an inexpensive and simple

interferometric measurement set-up. The sensitivity of the method is
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maximized by tuning the sample and measurement parameters to a

zero reflection condition, in which the phase response is enhanced

similar to the case of phase-based surface plasmon resonance sensing.

The advantages of this method are compared to the established col-

orimetric detection technique, and the capability of the system is

demonstrated through biorecognition between the ,60 kD protein

NeutrAvidin (NA) and biotin bound to gold nanodisks.

This article is divided into two parts. We first provide experimental

and theoretical guidelines on how to achieve zero reflection and the

associated phase flip in a short-range-ordered plasmonic layer and

discuss the influence of this condition on the phase of the reflected

light. In the second part, we develop a spectrometer-free phase-based

sensing scheme and discuss its advantages in comparison to normal

colorimetric analysis.

MATERIALS AND METHODS

Sample fabrication

Poly(methyl methacrylate) was spin coated on top of a borosilicate glass

slide, and then polystyrene beads were dispersed on the surface. After

gold deposition, tape-stripping removal of the beads and etching of the

poly(methyl methacrylate), the areas previously occupied by the beads

were rendered available for the direct deposition of the desired material.

Thus, the geometry of the resulting nanoparticles was primarily deter-

mined by the initial bead size and the amount of evaporated material. A

2-nm-thick layer of chromium was deposited underneath the gold to

ensure proper adhesion. For laser diode measurements, we used a 5-mm-

thick glass substrate to decrease image distortions due to etalon effects.

Optical spectroscopy

A fiber-coupled halogen light source (HL-2000; Ocean Optics, Dunedin,

FL, USA) was collimated and used as an illumination source. Spectra

were collected using a fiber-coupled photodiode array spectrometer

(BRC711E; B&W Tek, Newark, DE, USA). Transmission and extinction

spectra were collected with the illumination normal to the sample.

Phase set-up

The laser diode (HL6360MG; Oclaro, San Jose, CA, USA) wavelength

was tuned to the minimum reflection wavelength through simple tem-

perature adjustments of the casing. The two birefringent prisms (DPU-

25; Thorlabs, Newton, NJ, USA) were mounted together with their

respective fast axes misaligned by 456. Because of the wedge-like structure

of the prisms, the retardation of a specific wavelength of light depends

on the beam position on the double prisms, i.e., the retardation increases

along a certain direction, X, perpendicular to the direction of propaga-

tion. Because the polarization states on the output side of the depolarizer

vary with X, different polarization states illuminate different areas of the

nanodisk array, generating spatially varying reflections. The reflections

pass through a polarization analyzer that generates a fringe pattern due

to the different polarization states reflected by the gold nanodisk layer.

The fringes are captured on a color CCD (charge coupled device) chip

(DC110; Thorlabs, Newton, NJ, USA). Note that the analyzer needs to be

aligned such that it transmits similar amounts of p- and s-polarized light

to obtain high contrast fringes that depend strongly on the phase differ-

ence between the two polarization components. Because the p-polarized

reflectance is significantly larger than the s-polarized reflectance, the ana-

lyzer must be slightly detuned from transmitting pure s-polarized light.

Biotin functionalization

The gold nanoparticles were immersed in a 99% thiol-PEG (NanoScience,

Pheonix, AZ, USA) and 1% thiol-EG-biotin (NanoScience) solution

overnight.18 Afterwards, the layers were sonicated in pure (99%) eth-

anol for 10 min to remove unbound or physisorbed thiols and then

dried under a nitrogen atmosphere before being mounted in the flow

cell. The NA (Sigma Aldrich, St Louis, MO, USA) experiment was

performed in 0.01-mol/L phosphate buffer.

RESULTS AND DISCUSSION

Zero reflections from a sparse and short-range-ordered

plasmonic layer

The condition of zero reflection can be realized for arrays of nanopar-

ticles located at a dielectric interface by matching their scattered light

intensity in the specular reflection angle to the direct reflection of the

interface. We have previously reported that if the condition occurs at

incidence angles larger than the critical angle, hi.hc, all incident light

is absorbed by the nanoparticles.19 However, such constraints on hi are

not necessary to achieve rapid phase flips. Once the condition is satis-

fied, the phase associated with the specular reflection will vary rapidly

with wavelength and angle across the resonance condition. This con-

cept can be quantitatively illustrated using a model based on modified

Fresnel coefficients.20–24 The reflection coefficients for s-polarized and

p-polarized light, rs and rp, can be written as follows:20,23,24

rs~
ni cos hi{nt cos htzi

v

c
ra lð Þ

ni cos hiznt cos ht{i
v

c
ra lð Þ

ð1Þ

rp~
nt cos hi{ni cos ht{i

v

c
ra vð Þ cos hi cos ht

nt cos hizni cos ht{i
v

c
ra vð Þ cos hi cos ht

ð2Þ

where hi and ht are the angles of incidence and transmission, respec-

tively, a(l) is the wavelength-dependent polarizability parallel to the

interface of a single nanoparticle and r is the surface density of nano-

particles. We can study the variations in reflected intensity and phase

as a function of the particle density by modeling the gold nanodisks as

oblate spheroids located at a glass/water interface. Figure 1 shows that

as r decreases towards the zero reflection condition, which corre-

sponds to the case when the numerator in Equation (1) approaches

zero, the reflected phase exhibits an increasingly steeper transition.

The rapid phase dispersion indicates that a small shift in the LSPR

will result in a very large phase change for wavelengths near the reflec-

tance minimum. This is the basic principle underlying phase inter-

rogation methodologies for plasmonic biosensing applications.

Varying r is one approach for tuning the reflection minima. As

shown in Equation (1), the matching condition for achieving zero

reflection depends on the refractive index contrast of the interface,

ni and nt; the incidence angle; and the product ra. Therefore, rather

than varying r, increasing or decreasing a, by tuning the geometry or

material of the nanoparticles may also lead to zero reflections. For a

given ra, on the other hand, the incidence angle needs to be fine-tuned

to fulfill the condition. Naturally, the p-polarized reflections can also

be minimized using Equation (2), as we have previously shown.19

Based on the theory presented in this work, we constructed samples

that fulfilled the zero reflection condition for s-polarized light using

hole-mask colloidal lithography.25 Figure 2a and 2b shows the result-

ing gold nanoparticle layer as fabricated on an Si substrate to facilitate

scanning electron microscopy imaging. The surface is decorated

by gold nanodisks with a diameter and height of approximately 86

and 20 nm, respectively, and the surface density is approximately 14
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nanodisks mm22, or approximately 8% of the Si surface. Equivalent

samples, which are shown in the photograph in Figure 2c, were fabri-

cated on glass for optical characterization and sensing experiments.

Hole-mask colloidal lithography is a robust, simple and inexpensive

fabrication technique that can be used to produce homogeneous

arrays on large scales. The samples shown in Figure 2c are one inch

in diameter, and all of the samples possess nearly identical optical

properties, as shown in Supplementary Fig. S1. Note that the particle

density used is sufficiently high for the sample to effectively behave like

a homogeneous medium, or a metamaterial, within the wavelength

range of interest. This means that practically all reflected light is con-

centrated to the specular reflection angle and that diffuse scattering is

negligible.16,19

Fine-tuning towards the zero reflection condition is easily achieved

by altering the incidence illumination angle, compensating for small

deviations in the optical properties of the samples in Figure 2c in

accordance with Equation (1). Figure 3 illustrates how the reflection

can be tuned to minimize the reflection at a particular wavelength.

Although all s-polarized spectra exhibit dips around 640–650 nm, the

reflection is as low as 1.53102460.0001 at hi5556 incidence, com-

pared with 0.002 at hi5506and 586. As described in earlier reports, the

reflection spectrum results from interference between the Lorentzian-

like polarizability of the nanoparticles and the broad continuum of

the bare interface reflection, which is glass/water in this case.19,20

Therefore, the reflection spectra can be visualized as a Fano resonance,

with spectroscopic peaks, dips or asymmetric resonances depending

on the relative strengths of the two interfering components. Thus,

because p-polarized and s-polarized reflections from the bare interface

have different amplitudes within the incidence angle range investi-

gated in Figure 3, the resulting spectra show peaks for p-polarized

light and dips for s-polarized light.

By illuminating the layer with circularly polarized light through a

glass prism and measuring different polarization states, the phase

difference between p- and s-polarized reflections can be retrieved.

Because we use circularly polarized light, the sample is illuminated

by equal intensities of s- and p-polarized light. The s- and p-polarized

reflection components were measured together with a component

with the vibration vector oriented 456relative to the plane of incidence,

which is denoted as Rs1p in Figure 3. The phase can then be calculated

from the relation as follows:

Rszp lð Þ~
rpzirs

�
�

�
�

2

2

~
rp lð Þ
�
�

�
�

2
z rs lð Þj j2z2 rp lð Þ

�
�

�
� rs lð Þj j sinD lð Þ

2

ð3Þ

We modeled the optical response of the layer using the same

methodology as in Refs. 19 and 20. In brief, the analytical polariz-

ability of a gold ellipsoid is used together with the modified long

wavelength approximation to represent the responses of individual

nanoparticles.26–28 The only fitting parameter used was the effective

refractive index surrounding the nanoparticles, located at an inter-

face, which was tuned to match the resonance wavelength to an

experimental transmission spectrum (Supplementary Fig. S2). The

reflections were calculated using Equations (1) and (2) by inserting

the model polarizability, the surface density of nanoparticles and

the refractive index of the interface. The similarity between the

experimental and theoretical data is striking, particularly consider-

ing that the only fitting parameter is the effective refractive index

surrounding the nanoparticles.

As shown in Figure 4, we observed that D indeed varies faster as the

reflection approaches zero. D shows the steepest response for hi5556,

where the s-polarized reflection showed a minimum. The experi-

mental data show that by properly adjusting the incidence angle by

a few degrees, steeper phase responses can be achieved. The reflected

phase shows a rapid ,1806 flip as the zero reflection condition is

traversed at hi5556. How fast the phase changes is dependent on both

the incidence angle and on the wavelength, with the most rapid res-

ponses occurring close to the minimum reflection angle and wave-

length. By tuning the incidence angle from 506 to 556, the phase

response becomes steeper by a factor of 4.7 at the reflection minima.

Because sinD, which is the actual measured parameter, is only defined

between 6906 and because the uncertainty of the measurements is

large around sinD<61 (as L sinD!LD cosD), the recorded phase

appears somewhat distorted compared with Figure 1. However, the

c

300 nm3 m

a b

Figure 2 SEM images of typical gold nanodisk arrays and spectroscopic mea-

surement of the sharp phase response near the zero reflection wavelength. (a and

b) SEM and (c) photograph of one-inch homogeneous arrays of gold nanodisks

with a mean diameter of 86 nm and height of approximately 20 nm. SEM, scan-

ning electron micrograph.
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response does indeed agree well with analytical theory if D is extracted

using Equation (3) with Rszp lð Þ~ rpzirs

�
�

�
�

2
, where rs and rp are

calculated from Equations (1) and (2), as illustrated in Figure 4b.

By mathematically adjusting the phase response for 556 incidence

(by inverting the phase values to the red of the singularities at 6906), a

phase spectrum that appears more natural can be obtained, with a

continuously varying function from approximately 06 to 23606, as

shown in Figure 5. The phase clearly varies much faster across the

resonance position than the reflected intensity. This difference is

clearly observed in Figure 5 a as the phase varies by approximately

146per nanometer in the vicinity of the reflection minimum, in com-

parison to less than 16 nm21 calculated from a (Supplementary Fig.

S3). Thus, there is a significant benefit in measuring phase responses in

the vicinity of the zero reflection condition.

Refractometric biosensing using phase interrogation

Although the data in Figure 5 indicate that the spectroscopic measure-

ment of sinD is a promising sensing modality, a single wavelength

detection scheme takes greater advantage of the spectral sharpness

because it does not require expensive spectrometers and it can fully

utilize the availability of inexpensive but powerful monochromatic

light sources. As shown in Figure 6a, we implemented a simple inter-

ferometric phase interrogation scheme based on the work of Halpern

et al.29,30 The set-up is based on off-the-shelf optical components and a

laser diode emitting at 639 nm, i.e., close to the reflection minimum of

the nanoparticle layer. In brief, the collimated diode output is linearly

polarized before passing through a double birefringent wedge prism

that creates a spatially varying polarization state across the illuminated

area. The nanoparticle sample is positioned on the backside of a

borosilicate glass prism with an intermediate layer of index-matching

oil. The reflected light passes through a polarization analyzer and
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generates a fringe pattern on a CCD chip due to interference between

the p- and s-polarized reflection components. The resulting sinusoidal

intensity variations, which are a direct measure of the change in the

phase difference between s and p, can then be tracked during the

experiments.

The refractive index sensitivity of the nanoparticle layer was tested

using the interferometric technique and compared to spectroscopic

measurements performed in reflection and transmission modes.

Solutions with different refractive indices were prepared by mixing

water with various concentrations of ethylene glycol (EG). The shifts

in the LSPR wavelength between pure water and solutions with 2.5%

and 5% EG were on the order of 0.5 nm and 1 nm, respectively (see

Supplementary Information), which are in good agreement with pre-

viously reported bulk refractive index sensitivities for similar nano-

structures.16,31,32

As illustrated in Figure 6b–6d, the corresponding fringe movements

were approximately 506and 756, respectively, for an analyzer angle of 46.

Note that the fringe shift obtained for the 2.5% EG solution relative to

water is clearly observed by the naked eye (compare Figure 6b and 6c),

whereas the colorimetric shift of 0.5 nm requires sensitive spectro-

scopic quantification to be observed. This result is a good indication of

the intrinsic sensitivity of the interferometric detection methodology.

The fringe sensitivity does, however, depend on the alignment of the

analyzer because it will transmit different ratios of p- and s-polarized

light. Naturally, for an analyzer angle parallel to s-polarization, cor-

responding to 06in Figure 6e, only s-polarized light is transmitted, and

the fringes therefore do not shift upon changes in the refractive index.

Because the s-polarized light reflected from the nanoparticle layer is

considerably weaker than the reflected p-polarized light, larger analy-

zer angles are dominated by the p-polarized light and the interference
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effect is weak. At the optimum analyzer angle, both components sub-

stantially contribute to the resulting fringe pattern.

To investigate the relevance of the interferometric methodology for

bioassays, in which the plasmonic nanoparticles are typically functio-

nalized with antibodies or similar capture agents linked to the metal

surface, we studied the biorecognition reaction between NA and biotin.

The experiment was performed in phosphate buffer with 100-mg mL21

NA to facilitate the formation of a monolayer on the gold nanodisks.

As shown in Figure 7a, an 18.56shift of the fringes was measured after

35 min. The corresponding colorimetric shift was 2.2 nm (Figure 7b).

Assuming that the molecular adsorption can be described as a ran-

dom sequential adsorption process of non-interacting entities, a com-

plete monolayer corresponds to ,55% of the total nanoparticle surface

area being covered by NA.33 The surface area of an individual nanopar-

ticle is approximately 10 000 nm2 and the molecules are approximately

5.635.034.0 nm3 in size,34 which corresponds to ,200–275 NA mole-

cules per particle. Interestingly, the biomolecular sensitivity observed in

this work is in good agreement with the data reported by Grigorenko

and co-workers, who obtained a ,256phase shift for ,100 streptavidin

molecules per particle, despite the orders of magnitude difference in the

bulk refractive index sensitivities (,15 0006 RIU21 in the present case

compared with ,100 0006 RIU21 reported in Ref. 9). This contradiction

can be explained by considering the different nanostructures investi-

gated, that is, well-ordered particle arrays resulting in sharp diffractive

resonances with considerably greater penetration depth into the bulk

environment compared to the samples studied here, for which short-

range optical near-fields dominate the response. Additionally, the hole-

mask colloidal lithography fabrication technique is significantly less

expensive, faster and simpler than the electron beam lithography-based

fabrication used in Refs. 8 and 9.

To quantitatively compare the performances of the interferometric

and spectroscopic detection schemes, we can define a visibility mea-

sure by normalizing the adsorption-induced shifts to the full-width at

half-maximum of the fringe/spectral resonance. Using this approach,

the visibilities of the phase shifts are approximately one order of mag-

nitude greater than that for regular colorimetric detection. The fringe

shift that occurs upon NA adsorption corresponds to ,10.6% of the

full-width at half-maximum, whereas the dip in the reflection spec-

trum shifts by ,2.2 nm (Figure 7b), which is ,1.4% of the spectral

width. However, note that many bioassays rely on measurements of

the kinetics of molecular interactions rather than of the final, end-

point, response of the sensor. We found that the perfor-

mance in terms of stability over time was still better for the more

mature spectroscopic technique: tracking the fringes over time

resulted in a standard deviation of ,0.016 during 100 min (see the

Supplementary Information), and the spectroscopic peak position

only fluctuated by 0.5 pm. The signal-to-noise ratio in terms of the

shift relative to temporal fluctuations is then 18.56/0.01651850 com-

pared with 2.2 nm/0.0005 nm54400 for the phase and spectroscopic

measurements, respectively. The discrepancy is at least partly due to

stability issues of the rather inexpensive light source and detector used

in the fringe set-up, which costs approximately one-tenth of the equip-

ment required for the colorimetric detection scheme. Substantial per-

formance improvements can most likely be achieved by further

optimizing the set-up and equipment.

CONCLUSIONS

In summary, we have shown how plasmonic metamaterial layers that

consist of sparse and short-range-ordered arrays of gold nanodisks

may be designed to achieve a zero reflection condition, and we have

demonstrated how to use the abrupt optical phase flip that is a con-

sequence of this phenomenon for biosensing applications. By fine-

tuning the incidence angle, the particle surface density and the

oscillator strength of the particles, we obtained a plasmonic metasur-

face with a large phase dispersion suitable for interferometric analysis.

A simple optical interferometry set-up was constructed, and measure-

ments of bulk refractive index sensing and biosensing were performed

and compared to standard colorimetric analysis. The results demon-

strated that the obtained phase shifts had superior visibility compared

to the spectroscopic shifts.

There are naturally a number of possible improvements to the pre-

sented methodology that may lead to substantially better signal-to-

noise ratios and sensitivities. These improvements include obvious

technical improvements, such as better isolation of the optical set-

up from temperature fluctuations and vibrations; better sample prop-

erties, such as higher particle homogeneity; and improvements to the

measurement scheme. Note that the optical set-up shown in Figure 6

has the drawback that different areas of the nanoparticle layer are

illuminated with different polarization states. Variations in sample

uniformity, particularly the nanoparticle surface density, may subse-

quently decrease the quality of the fringe pattern and limit the mini-

mum reflectance from the layer. The spectroscopic technique, on the

other hand, integrates over the entire illuminated area, which should

result in a more efficient ensemble averaging. It is thus possible that

alternative phase-sensitive methodologies, for instance, based on
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Figure 7 Refractometric sensing using fringe tracking and spectroscopy. (a)

Tracking the minimum fringe position during the binding of a monolayer of

NeutrAvidin to biotinylated gold nanodisks resulted in a phase shift of 18.56

and (b) a shift of the Rs minimum wavelength by 2.2 nm.
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phase-stepping or wave-plate rotation techniques, which also measure

from the entire illuminated area, could increase the signal-to-noise

ratio of the measurements. Similarly, a more uniform array could, in

principle, decrease the minimum reflection amplitude even further

and thus, increase the sensitivity of the phase measurements. It is

hoped that further optimization along these lines will lead to cost-

effective sensing devices suitable for a wide range of biological and

chemical analysis applications.
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