
Correlations between charge and energy current in

ac-driven coherent conductors

Francesca Battista1, Federica Haupt2 and Janine Splettstoesser3

1Departamento de F́ısica, FCEyN, Universidad de Buenos Aires and IFIBA, Pabellón I,
Ciudad Universitaria, 1428 CABA Argentina
2JARA Institute for Quantum Information, RWTH Aachen University, D-52056 Aachen,
Germany
3Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology,
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Abstract. We study transport in coherent conductors driven by a time-periodic bias voltage.
We present results of the charge and energy noise and complement them by a study of the mixed
noise, namely the zero-frequency correlator between charge and energy current. The mixed noise
presents interference contributions and transport contributions, showing features different from
those of charge and energy noise. The mixed noise can be accessed by measuring the correlator
between the fluctuations of the power provided to the system and the charge current.

1. Introduction
In the last years, big effort has been put in the theoretical study and in the experimental
investigation of charge transport in mesoscopic structures. Single particle sources, allowing for
the control in time and space of the flow of a small number of electrons or holes, have been
realized with time-periodically driven mesoscopic systems [1]. These setups are usually based
on the emission of particles from a confined region.

Levitov and coworkers [2] proposed an alternative way to achieve single-particle emission
without using quantum confinements. Special Lorentzian-shaped voltage pulses applied to a
conductor give rise only to single-particle excitations from a Fermi sea, free from electron-hole
pairs excitations. Such Lorentzian pulse V (t) satisfies the condition

∫ T
0 dteV (t)/h = l where l is

an integer number. Experimentally, Lorentzian pulses carrying an integer number of particles
can approximately be realized by superposing several harmonic driving potentials. In this case
a reduction of the charge current noise was measured in Refs. [3, 4].

Charge current noise in ac-driven systems has been widely studied. However the charge
carriers, electrons and holes, transport energy as well. It is thus important for future applications
to complement the existing literature (see e.g. [3, 5, 6, 7]) with an accurate study of energy
noise in these systems [8]. Recently, energy noise in normal conducting [9] and superconducting
systems [10] has been studied in the stationary regime; also fluctuation relations in systems with
a time-dependent driving have been considered [11, 12]. In this paper, we model the setups of the
latest experiments [3, 4] with a two-terminal conductor with a central scatterer. After reporting
results [8] on the correlator of charge current fluctuations (charge noise) and the correlator of
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energy current fluctuations (energy noise) we calculate and discuss the behavior of the correlator
between the charge and the energy current fluctuations (mixed noise) [9].

2. Formalism and model
Our considerations are based on the scattering theory for photon-assisted transport [13]. We
consider a coherent mesoscopic conductor connected to metallic contacts (reservoirs) by ballistic
leads. The reservoirs are subjected to time-periodic voltages Vα(t). The charge current operator
in contact α is [14]

ÎCα(t) =
e

h

∫ ∞
−∞

∫ ∞
−∞

dEdE′ei(E−E
′)t/h̄îα(E,E′), (1)

while the corresponding energy current operator is [15]

ÎEα(t) =
1

h

∫ ∞
−∞

∫ ∞
−∞

dEdE′
(E + E′)

2
ei(E−E

′)t/h̄îα(E,E′). (2)

Here, e < 0 is the electron charge and îα(E,E′) = b̂
†
α(E)b̂α(E′) − â†α(E)âα(E′). The vectors

âα and b̂α have the operators âαn and b̂αn as their components, annihilating an electron in
channel n in lead α moving towards or away from the scatterer, respectively. Of our interest are
the zero-frequency auto- and cross-correlators of charge current (charge noise), Sαβ, of energy
current (energy noise), SEαβ, as well as the correlators between charge and energy current (mixed

noise), SXαβ, which are expected to be nonzero because electrons and holes carry both charge and
energy. In the case of time periodic driving considered here, we can write in energy space [16]

Sxyαβ = h

∫ ∞
−∞

∫ ∞
−∞

dEdE′〈∆Îxα(E)∆Îyβ(E′)〉, (3)

with ∆Â = Â−〈Â〉, and the charge current density, ÎCα(E) = e/h · îα(E,E), and energy current

density, ÎEα(E) = E/h · îα(E,E). This equation yields the charge noise for x = y = C, the
energy noise for x = y = E , as well as the mixed noise for x = C, y = E . The quantum statistical
averages, 〈Â〉, in Eq. (3) can be evaluated substituting b̂α(E) =

∑
β sαβ(E)âβ(E), where sαβ(E)

is the scattering matrix relating âα to b̂α, and for leads with Nα and Nβ channels has dimensions
Nα × Nβ. Interacting with Vα(t), the electrons in the reservoir α can absorb k energy quanta

h̄Ω with probability amplitude cαk =
∫ T

0
dt
T e
−i e

h̄

∫ t
0
dt′[Vα(t′)−V α] eikΩt, where Ω = 2π/T is the

frequency of the driving and V α is the dc component of Vα(t). A state with energy E in the
leads corresponds to a superposition of reservoir states with energy E−k = E − kh̄Ω [13]. The
statistics of the operators âαn(E) and â†αn(E) is thus

〈â†αn(E)âβm(E′)〉 = δαβδmn

+∞∑
k,`=−∞

c∗αkcβk+`fα(E−k)δ(E`−E′), (4)

with the Fermi function fα(E) = [1 + exp{(E − eVα)/kBT}]−1, the temperature T and the
Boltzmann constant kB. As a consequence of the unitarity of the scattering matrix we have
that SxyLL = SxyRR = −SxyLR = −SxyRL. For simplicity, from now on we will always refer to the
auto-correlators in the right reservoir S ≡ SRR, SE = SERR and SX ≡ SXRR.

Inspired by the experiments in Refs. [3, 4], we consider a two-terminal conductor and we
assume an energy-independent transmission D of the scatterer [3]. In order to simplify the
notation, we focus on a spinless single-channel conductor. The left contact is subject to a
periodic time-dependent potential VL(t) = Vac(t) + V̄ , where V̄ is a dc voltage offset and Vac(t)
is a pure ac component. The right contact is grounded VR(t) = 0, and energies are taken with
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respect to the electrochemical potential µ = 0 of this reservoir.1 The time-dependent driving
excites the Fermi sea of the left reservoir. Because of Pauli exclusion principle, only occupied
states above µ participate to transport and thus we define the excitations above µ as electron-
like. Empty states below µ contribute to transport as well. We refer to the excitations below
µ as hole-like excitations. Correspondingly, we write the energy resolved current operators as
the sum of two contributions, one carried by electron-like and the other by hole-like excitations,

ÎCα(E) =
∑
i=e,h Î

C(i)
α (E), and ÎEα(E) =

∑
i=e,h Î

E(i)
α (E) [16].

3. Results
We want to investigate the correlations between charge and energy currents carried by the
electron and hole excitations participating to transport. It is instructive to decompose the
charge, energy and mixed noise in terms of contributions that account for the correlations
between excitations of the same or of different kind [8]

Sxy(ij) = h

∫ ∞
−∞

∫ ∞
−∞

dEdE′〈∆Îx(i)(E)∆Îy(j)(E′)〉. (5)

These correlators show two contributions, Sxy(ij) = S
xy(ij)
tr + S

xy(ij)
int , see Ref. [8], where

S
xy(ij)
tr =

D(1−D)

h

∫
dE x̃ỹ

∞∑
`=−∞

|c`|2 {fL(E−`) [1−fR(E)]+fR(E)[1−fL(E−`)]} θi(E)θj(E),(6)

S
xy(ij)
int =

D2

h

∑
α=L,R

∞∑
k,`,q=−∞

c∗α`cα(`+q)c
∗
α(k+q)cαk

∫
dE x̃ỹqfα(E−`) [1− fα(E−k)] θi(E)θj(Eq), (7)

with distinct physical origins. The expressions for the charge, energy, and mixed noise, are
obtained by replacing x̃ = e (x̃ = E) when x = C (x = E) and ỹ = e and ỹq = e (ỹ = E
and ỹq = Eq) when y = C (y = E). We introduced θe/h(E) = θ(±E) with the Heaviside step
function θ(E). The first term, Eq.(6), depends on the Fermi distribution of the two reservoirs
and it is related to correlations due to the exchange of particles between the two contacts. We
call it transport part of the noise [8], and it is nonzero only if one considers correlations between
the same type of excitations, i.e. Sxy(eh) = Sxy(he) = 0. This indicates that electrons and
holes contribute independently to the transport terms. The scatterer randomly transmits and
reflects charge and energy carriers and this is reflected in the factor D(1−D). The second term,
Eq.(7) originates ultimately from correlations due to the exchange of particles between states
with different energies in the same reservoir. Without periodic driving, only elastic exchange
processes (i.e. thermal fluctuations) contribute to the noise, since cLk = δk0 if Vac = 0. In the
presence of a periodic driving, correlations between states with different energies E`, Ek do in
general contribute to the charge, energy and mixed noise. However, how large this contribution
is depends on the interference between different “paths” in energy space, that electrons can
take when being promoted from one energy state to another by interacting with the ac-field.

Therefore we refer to S
xy(ij)
int as the interference part of the noise [8].

In the following we summarize the main features of the interference and the transport part
of the charge and energy noise studied in Ref. [8], and then focus on the mixed noise. In
all cases, we make examples taking the drivings used in Ref. [3]: a simple harmonic driving
V h

L (t) = V̄ + V0 cos(Ωt) and a bi-harmonic driving V bh
L (t) = V̄ + V0 cos(Ωt) + V0

2 cos(2Ωt).

4. Charge noise

We first analyse the interference part of the charge noise, Sint =
∑
ij S

(ij)
int . It can be shown

that this simply corresponds to thermal fluctuations Sint = 2 e
2

h D
2kBT , indicating that, even in

1 Note that with this choice the energy current in the right reservoir coincides with the heat current.
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Figure 1. Plots of the interference and transport contributions to the charge (S
(ij)
int , S

(ij)
tr ), energy

(S
E(ij)
int , S

E(ij)
tr ) and mixed (S

X(ij)
int , S

X(ij)
tr ) noise as a function of the dc offset of the driving. Inset

in panel b) Line-shape of the applied voltages: harmonic driving, V h
L (t) = V̄ + V0 cos(Ωt), and

bi-harmonic driving of the form V bh
L (t) = V̄ +V0 cos(Ωt)+ V0

2 cos(2Ωt). In all panels kBT = 0 and
eV0 = 2h̄Ω. Full lines correspond to the case of harmonic driving while dashed lines represent
the case of bi-harmonic driving.

the presence of an ac-field, inelastic exchange processes in one reservoir interfere destructively
when they all contribute to a certain observable with the same weight (e2, for the case of the
charge noise) [8]. In Fig. 1a) we plot the interference parts of the different contributions S(ij)

as a function of the dc component of the bias at zero temperature. We find S
(ee)
int = S

(hh)
int =

−S(eh)
int = −S(he)

int giving indeed Sint(kBT = 0) = 0.

We now consider the transport contribution to the charge noise, Str =
∑
i S

(ii)
tr , given by

Str =
e2D(1−D)

h

+∞∑
`=−∞

|cL`|2(`h̄Ω + eV̄ ) coth

(
`h̄Ω + eV̄

2kBT

)
. (8)

At zero temperature this is the total charge noise Str(kBT = 0) = S(kBT = 0) and it can be
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written as the sum of a contribution due to electron-like excitations and a contribution due to
hole-like excitations [7],

S(kBT = 0) =
∑
i=e,h

e2Ω

2π
D(1−D)Ni . (9)

Here, Ni = σi
∑+∞
`=−∞ |cL`|2(`+ eV̄ /h̄Ω)θi(`h̄Ω + eV̄ ) is the number of electrons (i = e) or holes

(i = h) that arrive on the scatterer during one period, with σe/h = ±. Gabelli and Reulet [3]
observed a reduction of the shot noise in a tunnel junction driven by a bi-harmonic signal with
respect to the shot noise due to a simple harmonic driving. This is a consequence of the inhibition
of electron-hole pair creation [6]. In Fig. 1b) we plot the transport contributions to the charge

correlator S
(ii)
tr at zero temperature. It indeed shows a minimum in the noise when a biharmonic

signal is applied, which corresponds to a reduction of S
(ee)
tr and S

(hh)
tr with respect to the case of

harmonic driving.

5. Energy noise

The interference part of the energy noise, SEint =
∑
ij S
E(ij)
int reads

SEint =
D2

h

2π2 (kBT )3

3
+

+∞∑
k=−∞

|e vLk|2
2

kh̄Ω coth

(
kh̄Ω

2kBT

) , (10)

with vLk =
∫ T

0
dt
T VL(t)eikΩt. While the first term is again only given by thermal fluctuations,

the second one is given by all the inelastic processes due to the ac driving field. This second
term corresponds to the variance, |evLk|2/2, of the energy of a classical, charged particle in the
oscillating potential vLk cos(kΩt) (i.e. the kth Fourier component of Vac(t)), multiplied by the
characteristic rate at which electrons exchange the energy kh̄Ω with the ac field by fluctuating
between states in the same reservoir [8]. In Fig. 1c) we plot the interference contributions

S
E(ij)
int to the energy noise as a function of the dc offset of the driving. The correlators between

different kinds of particles, S
E(eh)
int = S

E(he)
int , have the same order of magnitude as the ones for

equal kinds of particles, as long as the dc component of the driving signal is very small, but they
decay rapidly for increasing V̄ . Depending on the sign of V̄ and on the shape of Vac(t) we find

S
E(ee)
int > S

E(hh)
int or S

E(ee)
int < S

E(hh)
int .

The shape of the ac driving also determines the features of the transport contribution to the

energy noise, SEtr =
∑
i S
E(ii)
tr , given by

SEtr =
D(1−D)

3h

+∞∑
`=−∞

|cL`|2 coth

(
`h̄Ω + eV̄

2kBT

)[
(`h̄Ω + eV̄ )3 + (`h̄Ω + eV̄ )(πkBT )2

]
. (11)

This quantity depends not only on the number of electron and hole excitations but also on their
energy distribution, determined by V (t): for example, if maxVac(t) > |minVac(t)|, the spread in
energy of the electron-like excitations is larger than the one of the corresponding holes and this

leads to S
E(ee)
tr > S

E(hh)
tr , as shown in the case of biharmonic driving in Fig. 1d). Differently from

what observed for the charge noise, the suppression of the creation of charge-neutral excitations
(electron-hole pairs) is therefore not enough to lead to a minimum of SEtr. It has been shown in
Ref. [8] that a trade-off between the number of the excitations and the energy range they span
has to be reached in order to minimize the transport part of the energy noise, see Fig. 1d).
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6. Mixed noise
We now turn to the mixed correlator [9]. The total interference contribution, SXint =

∑
ij S

X(ij)
int

is

SXint =
e

h
D2eV̄ kBT. (12)

The interference part of the mixed noise shows different features from Sint and SEint. It is
proportional to the interference part of the charge noise Sint times eV̄ /2, which is the average
energy of the electrons injected into the system at the left contact, with respect to VR = µ = 0.
It is hence non-vanishing only if the system is driven out of equilibrium and temperature is finite.

In Fig. 1e) we plot the contributions to SXint from excitations of the same or of different kind,

S
X(ij)
int , as a function of eV̄ at zero temperature. We find S

X(ee)
int = −SX(he)

int and S
X(hh)
int = −SX(eh)

int
giving as a consequence that the interference contribution to the correlator between fluctuations
of the energy carried by the electrons (holes) and the total charge current is zero. Moreover, we

have in general S
X(ee)
int 6= S

X(hh)
int , apart for the case when eV̄ = 0 and Vac(t) is symmetric with

respect to one of its nodes, so that the holes and the electrons are symmetrically distributed
in energy with respect to µ = 0. In that case they just have opposite sign. If an asymmetry
in the energy distribution of the electron- and hole-like excitations is introduced only as an
effect of the dc-bias, see e.g. the case of the harmonic signal shown in Fig. 1e), then we have

S
X(ee)
int (eV̄ ) = −SX(hh)

int (−eV̄ ).

The transport contribution, SXtr =
∑
ij S

X(ii)
tr , is given by

SXtr =
eD(1−D)

2h

+∞∑
`=−∞

|cL`|2(`h̄Ω + eV̄ )2 coth

(
`h̄Ω + eV̄

2kBT

)
(13)

At zero temperature, it is the only non-vanishing contribution to the mixed noise, SX(kBT =
0) = SXtr (kBT = 0). We can separate a contribution due to electron-like excitations from the
one due to hole-like excitations

SX(kBT = 0) =
∑
i=e,h

Ω

2π
D(1−D)Ξi. (14)

The quantity Ξi is formally similar to the definition of Ni,

Ξi = σie
+∞∑
`=−∞

|cL`|2
(`h̄Ω + eV̄ )(`+ eV̄ /h̄Ω)

2
θi(`h̄Ω + eV̄ ), (15)

but each contribution coming from a different subband l is weighted by its corresponding energy.
It can thus be understood as the total average energy transported by i-like excitations multiplied
by σe/he = ±e the corresponding charge. Indeed, (Ξe − Ξh)/(eT ) = eVL(t)2/2h corresponds to
the power P dissipated to one of the leads per period. In a two-terminal conductor characterized
by energy-independent transmission probability at the central scatterer, the energy is equally
dissipated in the two reservoirs resulting in the factor 1/2.

In Fig. 1f) we plot S
X(ii)
tr at zero temperature as a function of the dc part of the driving

signal. The correlators S
X(ee)
tr and S

X(hh)
tr have opposite signs, as a consequence of the fact

that electron- and hole- excitations have different charges but both give a contribution to the
energy current of the same sign. Moreover, they become negligible when eV̄ � 0 or eV̄ � 0,
respectively, since Ξe and Ξh are suppressed in these voltage ranges. This leads to a change of
sign of the total transport contribution SXtr as a function of eV̄ , in contrast to Str and SEtr.
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We now relate the mixed noise to the zero frequency correlator between the power fluctuations

and the charge current fluctuations, 〈∆P (t)∆ÎR(t+ τ)〉 =
∫ T

0 dt
∫∞
−∞ dτ〈{∆P̂ (t),∆ÎR(t +

τ)}/(2T ), a measurable quantity. Here, we define P̂ (t) = −VL(t)ÎL(t), the operator for

the power provided by the time-dependent voltage source. We find 〈∆P (t)∆ÎL(t + τ)〉 +

〈∆P (t)∆ÎR (t+ τ) 〉 = 0, since neither charge nor energy can be accumulated in the conductor.
Explicitly, we have

〈∆P (t)∆IR(t+ τ)〉 = 2SXint + 2SXtr , (16)

with the mixed correlator contributions discussed in Eqs. (12) and (13). Importantly, for a
completely transparent scatterer, D = 1, 2SXint is the only contribution to the zero-frequency
correlator of power and charge current fluctuations; if the transparency of the scatterer is
reduced, the second term which corresponds to 2SXtr , is the dominant one. Both terms should
thus be well observable.

7. Conclusions
We considered a two-terminal conductor subjected to a time-periodic bias voltage. We discussed
the correlator of charge current fluctuations and energy current fluctuations and the correlator
between charge and energy current fluctuations. All the considered correlators show a transport
contribution, due to correlations between particles exchanged between the two leads, and an
interference contribution, due to the exchange of particles between different energy states in the
same lead. The mixed noise is nonzero since electrons and holes are carriers both of charge
and energy. At zero temperature, it is formally analogous to the charge noise, but now what is
partitioned at the scatterer is not the number of impinging electrons or holes, but their energy,
averaged over the different subbands. In contrast with charge and energy noise, it does not show
a minimum as a function of an applied dc bias, but it changes sign when the bias is reversed.
All discussed effects are expected to be observable by looking at the correlations between power
and charge current fluctuations, under given conditions.
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