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Abstract

Applications of machine learning methods in-
creasingly deal with graph structured data
through kernels. Most existing graph kernels
compare graphs in terms of features defined
on small subgraphs such as walks, paths or
graphlets, adopting an inherently local perspec-
tive. However, several interesting properties such
as girth or chromatic number are global proper-
ties of the graph, and are not captured in local
substructures. This paper presents two graph ker-
nels defined on unlabeled graphs which capture
global properties of graphs using the celebrated
Lovász number and its associated orthonormal
representation. We make progress towards the-
oretical results aiding kernel choice, proving a
result about the separation margin of our kernel
for classes of graphs. We give empirical results
on classification of synthesized graphs with im-
portant global properties as well as established
benchmark graph datasets, showing that the ac-
curacy of our kernels is better than or competitive
to existing graph kernels.

1. Introduction
Graph kernels (Gärtner et al., 2003; Vishwanathan et al.,
2010) have been used in diverse fields including Computa-
tional biology (Schölkopf et al., 2004), Chemistry (Mahé
& Vert, 2009), Information retrieval (Hermansson et al.,
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2013) etc. Design of graph kernels has primarily been
motivated from capturing similar structural properties of
graphs (Borgwardt & Kriegel, 2005). Searching for struc-
tural similarities in a pair of graphs are often computation-
ally expensive. This has led to an interesting line of re-
search (Feragen et al., 2013; Shervashidze et al., 2009;
2011) which explores graph kernels with lower computa-
tional complexity.

From a conceptual standpoint, most existing graph kernels
compare features of small subgraphs extracted from the
original graph. This leads to an inherently local perspec-
tive, which may fail to capture global properties of graphs.
Further, as Shervashidze et al. (2009) identified, “There
is no theoretical justification on why certain types of sub-
graphs are better than others”.

Moreover, it is known that there are graph properties
which cannot be captured by studying only local struc-
tures, such as small subgraphs. Perhaps the most cele-
brated result on this topic is Erdős’ seminal proof of ex-
istence of graphs with high girth (the length of the small-
est cycle) and high chromatic number (Alon & Spencer,
1992, p. 41-42) – graphs for which all small-sized sub-
graphs will be trees. Another example is low density par-
ity check (LDPC) codes (Richardson & Urbanke, 2008)
which are constructed from particular low-density bipartite
graphs. A key property governing the performance of the
code is the girth of the graph (Bayati et al., 2009). Lastly,
Devroye et al. (2011) describes a method for detecting de-
pendencies among a set of random vectors by transforming
the real valued data into graphs. Posed as a problem of hy-
pothesis testing, the solution is given by the clique number
of the graph.

This paper attempts to address the gap between existing
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“local” kernels (i.e. kernels defined in terms of small size
subgraphs of the original graph) and global graph proper-
ties.

Main contributions We present two novel graph kernels
designed to capture global properties of unlabeled graphs.
The kernels are based on the Lovász number (Lovász,
1979), famous for its central role in combinatorial opti-
mization and graph theory (Goemans, 1997). The first ker-
nel, which we call the Lovász ϑ kernel (Lo-ϑ ), explicitly
leverages the orthonormal representation of graphs associ-
ated with Lovász number, see Section 3.1. The second ker-
nel, which we call the SVM-ϑ kernel (SVM-ϑ ), builds on
a recent alternative characterization of Lovász ϑ (Jethava
et al., 2014), enabling faster computation with known er-
ror bounds for classes of graphs, see Section 4. We derive
sampling approximations for efficient computation of both
kernels, with results for the sample complexities.

We evaluate our kernels empirically using graph classifica-
tion, see Section 5. We compare the accuracy of our kernels
with that of state-of-the-art graph kernels on both synthe-
sized and benchmark datasets. The synthetic datasets are
designed to test the kernels’ ability to capture global prop-
erties of the graphs. We show that on real-world benchmark
datasets, we produce results better or competitive with ex-
isting graph kernels.

Lastly, we take initial steps towards theoretical justification
of kernel choice proving a result bounding the separation
margin for both kernels in the task of classifying random
and planted clique graphs.

2. Graph kernels
This section reviews prior work on graph kernels. Most
existing graph kernels are R-convolution kernels (Sher-
vashidze et al., 2011; Vishwanathan et al., 2010). Let χ and
χ ′ be spaces and k : χ ′× χ ′ → R a positive semi-definite
kernel. The R-convolution kernel for points x,y ∈ χ , as-
sociated with finite subsets χ ′x ⊆ χ ′ and χ ′y ⊆ χ ′ is defined
as (Haussler, 1999)

K(x,y) = ∑
(x′,y′)∈χ ′x×χ ′y

k(x′,y′) . (1)

Graph kernels decompose graphs into particular sets of
subgraphs and compare features of the subgraphs (Sher-
vashidze et al., 2011). For example, the shortest-path
kernel (abbreviated SP) (Borgwardt & Kriegel, 2005)
compares features of the shortest paths between all
pairs of nodes in two graphs. The random walk ker-
nel (RW) (Gärtner et al., 2003) counts (weighted) numbers
of walks of every length in graphs. The graphlet ker-
nel (GL) (Shervashidze et al., 2009) estimates and com-
pares graphlet spectra, distributions of subgraphs of sizes

3,4,5. Shervashidze et al. (2009) argue that the graphlet
spectrum is similar to a sufficient statistic for a graph. Sub-
tree kernels compare subtree patterns, matchings between
neighbors of pairs of nodes (Ramon & Gärtner, 2003; Sher-
vashidze & Borgwardt, 2009; Mahé & Vert, 2009). A graph
kernel is thus characterised by a selection of subgraphs and
a set of features of them. Commonly, graph kernels are
partitioned into two groups, one concerned with labeled or
weighted graphs, where nodes and/or edges are equipped
with attributes, and the other unlabeled graphs. In this pa-
per, we consider only unweighted, unlabeled graphs.

The graph kernels listed above are inherently local in their
perspective, repeatedly comparing subgraphs disjoint from
the rest of the graph. A kernel comparing all subgraphs
would constitute a complete kernel k, such that k(x, ·) =
k(x′, ·) implies x = x′ (Gärtner et al., 2003). While such
a kernel is highly expressive, it can be shown that con-
structing a complete graph kernel is NP-hard (Gärtner et al.,
2003). As a result, designing a kernel is a trade-off between
expressivity and efficiency (Ramon & Gärtner, 2003).

It is hitherto unknown whether global properties of graphs,
such as girth or chromatic number are captured, even ap-
proximately, by existing kernels.

3. Orthonormal labellings of graphs
In this section, we define the new Lovász ϑ kernel and
review the concepts of orthonormal labellings and Lovász
number.

Recall that an orthonormal representation, or labelling, of
a graph G = (V,E) consists of a set of unit vectors UG :=
{ui ∈ Rp : ‖ui‖= 1}i∈V where each node i ∈V is assigned
a unit vector ui such that (i, j) 6∈ E =⇒ u>i u j = 0. We
emphasize that the orthonormal representation UG captures
global graph properties since ui satisfy a global set of con-
straints, encoding independences in the entire graph.

It is instructive to consider a subset of vertices B ⊆ V and
their corresponding representation UG|B⊆UG := {ui ∈UG :
i ∈ B}. We note that UG|B not only captures the edges en-
coded in the subgraph of G induced by B, denoted G[B],
but is also consistent for the whole graph in that it satisfies
orthogonality constraints for the whole of G. This would
not have been the case had we first isolated the induced
subgraph G[B] and then taken its orthonormal representa-
tion. In general, UG|B 6=UG[B]. Thus, an orthonormal repre-
sentation UG and, more importantly, its subset UG|B capture
properties of the graph that G[B] does not. In the sequel, we
focus on orthonormal representations that capture global
properties accurately and concisely, and can be computed
efficiently.

An interesting orthonormal representation is associated
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with the Lovász number (Lovász, 1979). Commonly de-
noted ϑ(G), Lovász number has had great impact on com-
binatorial optimization, graph theory and approximation al-
gorithms, to the extent that Goemans remarked: It seems
all roads lead to ϑ ! (Goemans, 1997). ϑ(G) has been
used to derive fast approximation algorithms for max k-
cut (Frieze & Jerrum, 1997), graph coloring (Karger et al.,
1998; Dukanovic & Rendl, 2008) and planted clique prob-
lems (Feige & Krauthgamer, 2000).

It is well known that ϑ(G) has strong connections to global
properties such as the chromatic number χ(G) and the
clique number ω(G). See Knuth (1993) for a comprehen-
sive discussion of ϑ(G) and its characterizations. One def-
inition of Lovász number is given below.

Definition 1. (Lovász, 1979) For a graph G = (V,E),

ϑ(G) = min
c,UG

max
i∈V

1
(c>ui)2 , (2)

where the minimization is taken over all orthonormal rep-
resentations UG and all unit vectors c.

Geometrically, ϑ(G) is thus defined by the smallest cone
enclosing a valid orthonormal representation UG.

It is well-known that ϑ(G) can be computed to arbitrary
precision in polynomial time, by means of solving a semi-
definite program (Lovász, 1979), in contrast to ω(G) and
χ(G), which are both NP-hard to compute.

3.1. The Lovász ϑ graph kernel

We proceed to define the first of our graph kernels, namely
the Lovász ϑ kernel (abbreviated henceforth as Lo-ϑ ),
which compares graphs based on the orthonormal repre-
sentation UG associated with ϑ(G). Henceforth, whenever
referring to an orthonormal representation of G, unless oth-
erwise stated, we refer to Lovász’s representation defined
by the maximizer of (2), and denote it UG = {u1, . . . ,un}.

We begin by defining the notion of Lovász value of a subset
of nodes B⊆V , which represents the angle of the smallest
cone enclosing the set of vectors UG|B. Formally,

Definition 2 (Lovász value). The Lovász value of G[B], the
subgraph of G = (V,E) induced by B⊆V , is defined by,

ϑ B(G) = min
c

max
ui∈UG|B

1
(c>ui)2 ,

where UG|B := {ui ∈UG | i ∈ B} and UG is the maximizer of
(2). Note that in general ϑ B(G) 6= ϑ(G[B]).

We state a trivial, but important, result for ϑ B(G).

Lemma 1. Let G = (V,E). Then, for any subset B ⊂ V ,
with H = G[B] the subgraph of G induced by B,

ϑ(H)≤ ϑ B(G)≤ ϑV (G) = ϑ(G) .

The proof is left to the supplementary material (Johansson
et al., 2014).

Our goal is to develop a graph kernel capturing global prop-
erties of graphs, guided by the intuition that features of sub-
graphs should be placed in context of the whole graph. To
this end, we define a graph kernel on the Lovász value. As
opposed to subgraph features used in existing graph ker-
nels, the Lovász value encapsulates information from out-
side the subgraph by adhering to the global set of orthonor-
mality constraints (specified by the edge set E). We note
that using ϑ(H) as a feature of H = G[B] does not fulfil
this property, as ϑ(H) does not use information from out-
side H.

We now present the formal definition of Lovász ϑ kernel
in terms of the Lovász values of subgraphs.

Definition 3 (Lovász ϑ kernel). The Lovász ϑ kernel on
two graphs, G, G′, with a positive semi-definite kernel k :
R×R→ R, is defined as

K(G,G′) = ∑
B⊆V

∑
C⊆V ′
|C|=|B|

1
Z|B|
· k(ϑ B,ϑ

′
C) , (3)

with ϑ B = ϑ B(G), ϑ ′C = ϑC(G′), and Zd =
(n

d

)(n′
d

)
.

The kernel k is referred to as the base kernel. We state the
following important property.

Lemma 2. The Lovász ϑ kernel, as defined in (3), is a
positive semi-definite kernel.

Proof sketch. The kernel in (3) is an R-convolution ker-
nel (Haussler, 1999), see (1). For a complete proof, see
the supplementary (Johansson et al., 2014).

As K in (3) is a p.s.d kernel, we can represent it as an in-
ner product 〈ϕ,ϕ ′〉 in a reproducing kernel Hilbert space.
Choosing k to be the linear kernel k(x,y) = xy, ϕ can be
written explicitely, with its d:th coordinate

ϕ(d) =
(

n
d

)−1

∑
B⊆V
|B|=d

ϑ B(G) . (4)

In this case, ϕ(d) represents the average minimum angle
of cones enclosing subsets of orthonormal representations
of cardinality d. We refer to ϕ as the feature vector of the
kernel.

3.2. Computing the Lovász ϑ kernel

Direct evaluation of the Lovász ϑ kernel as defined in (3)
involves two main steps, namely, obtaining the Lovász or-
thonormal labelling UG for each graph G, in a set G , by
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solving the optimization in (2) and subsequently, comput-
ing the Lovász value ϑB(G) for all subgraphs B ⊆ G of
each graph G ∈ G . Exact computation of the Lovász ϑ

kernel is often infeasible, as it involves 2n computations of
minimum enclosing cones using e.g. the algorithm in Welzl
(1991). Next, we show that it is sufficient to sample a small
number of subsets to get a good approximation of the ker-
nel.

3.2.1. SAMPLE COMPLEXITY BOUND

We derive an efficient approximation of (3) by evaluating
the Lovász value for a smaller number of subgraphs S ⊂
2V and S ′ ⊂ 2V ′ respectively for all pairs of graphs G and
G′. Let Sd denote the subset of S consisting of all sets of
cardinality d in S i.e. Sd := {B ∈S : |B|= d}. Then, we
define

K̂(G,G′) = ∑
B∈S

∑
C∈S ′
|B|=|C|

1
Ẑ|B|
· k(ϑ B,ϑ

′
C) , (5)

where K̂ denotes the approximate value for K in (3) and
Ẑd = |Sd ||S ′

d |.

The time complexity of computing K̂(G,G′) is, leav-
ing out logarithmic factors and with s = max(|S |, |S ′|),
Õ(n2|E|ε−1 + s2 ·T (k)+ sn), where T (k) is the time com-
plexity of computing the base kernel k(·, ·) and the first two
terms represent the cost of semi-definite program in (2),
and, the worst-case complexity of computing the summa-
tion in (5) respectively. The last term represents the time
complexity of computing the Lovász values. The sampling
strategy and choice of base kernel k(·, ·) are critical in ob-
taining a good approximation. We discuss one such scheme
below.

We choose the linear kernel k(x,y) = xy as the base kernel
in (5) with its explicit feature representation ϕ given by (4).
Furthermore, we choose the sets Sd by sampling uniformly
at random sd subsets independently for each cardinality d
and let S = S1∪ . . . ∪Sn for each graph G ∈ G .1

Let ϕ̂(d) denote the random variable given as

ϕ̂(d) =
1
sd

∑
B∈Sd

ϑ B(G)

where Sd denotes a superset of sd subsets of vertices
B(1), . . . ,B(sd) ⊆ V each of size d (i.e. |B(i)| = d) chosen
uniformly at random. We can then state the following re-
sult,

Theorem 1. For graphs of n nodes, each coordinate ϕ(d)
of the feature vector of the linear Lovász ϑ kernel can be

1We note that repeatedly sampling pairs of subsets, one for
each graph, is not guaranteed to give a positive semi-definite ker-
nel.

estimated by ϕ̂(d) such that

Pr [ϕ̂(d)≥ (1+ ε)ϕ(d)]≤ O(1/n)

Pr [ϕ̂(d)≤ (1− ε)ϕ(d)]≤ O(1/n)

using sd = O(n logn/ε2) samples.

Proof sketch. We apply a multiplicative Chernoff bound on
ϑVr of sampled subsets Vr. For a complete proof, see the
supplementary material (Johansson et al., 2014).

This allows us to compute the approximate the linear
Lovász ϑ kernel accurately using K̂(G,G′)= 〈ϕ̂, ϕ̂ ′〉where
ϕ̂ is defined analogous to (4).

3.3. Signal subgraphs

Motivated by problems arising from the study of networks
in the brain, Vogelstein et al. (2013) introduced a frame-
work for graph classification based on signal-subgraphs,
subgraphs that have common properties within a class of
graphs, but differ between classes. Devroye et al. (2011)
had earlier considered a hypothesis testing problem arising
in applications such as remote sensing and argued that it
could be modelled as a planted clique problem in a random
geometric graph. This is a classical problem in the theory
of random graphs and algorithms (Feige & Krauthgamer,
2000; Alon et al., 1998) with many applications such as
cryptography (Juels & Peinado, 2000) and has connec-
tions to data mining problems such as epilepsy predic-
tion (Iasemidis et al., 2001). In the classical planted clique
problem, a hidden clique of Θ(

√
n) vertices is planted into

a random graph and the goal is for an algorithm to iden-
tify it. In a more general version, the planted subgraph
could have significantly higher or lower density compared
with the underlying random graph. Such planted models
are natural special cases of the general framework of Vo-
gelstein et al. (2013) . In their brain networks setting, a
denser subgraph could correspond to a subset of neurons
that have significantly higher (or lower) connectivity com-
pared to the rest of the network. With this in mind, we con-
sider the question of classifying planted subgraph models
with different densities.

Classifying planted clique graphs We let G(n, p) de-
note the random graph of n nodes, where every edge is
present, randomly and independently, with probability p.
Further, we let G(n, p,k) denote the graph formed by sam-
pling a random G(n, p) graph and planting a clique of size
k within.

We focus now on using the Lovász ϑ kernel for classifica-
tion of G(n, p) and G(n, p,k) as two different classes. We
give a result showing that the two classes of graphs are lin-
early separable with reasonably large margin in the feature
space of the linear Lovász ϑ kernel.
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Lemma 3. There exist, with high probability, Pr ≥ 1−
O(1/n), a linear separator in linear Lovász ϑ kernel
space, separating G(n, p) and G(n,1− p,k) graphs, k =

2t
√

n(1−p)
p , where p(1− p) = Ω(n−1 log4 n), with margin

γ ≥ (t− c)

√
n(1− p)

p
−o(
√

n) ,

for some constant c, and large enough t ≥ 1.

Proof. The proof is left to the supplementary material (Jo-
hansson et al., 2014).

These results indicate that the Lovász ϑ kernel is a good
candidate kernel for problems related to the detection of
large cliques. Similar results can be proved for the more
general problem of classifying planted subgraphs with dif-
ferent densities using the results of Jethava et al. (2014,
Section 4.3).

4. The SVM-ϑ kernel on graphs
In this section we define the new SVM-ϑ kernel and intro-
duce the concept of SVM-ϑ (Jethava et al., 2014).

State-of-the-art algorithms for computing Lovász number
have time complexities O(n5 logn ·ε−2) (Chan et al., 2009)
and O(n2m logn · ε−1 log3(ε−1)) (Iyengar et al., 2011),
where n and m are the number of nodes and edges respec-
tively and ε the error. These methods are prohibitively slow
for most applications.

An alternate characterization of ϑ(G) was given
by (Jethava et al., 2014), who showed that for a graph
G = (V,E), such that |V |= n,

ϑ(G) = min
κ∈L

ω(κ)

with ω(κ) the kernel one-class SVM,

ω(κ) = max
αi>0

i=1,...,n

2
n

∑
i=1

αi−
n

∑
i, j=1

αiα jκ i j (8)

and S+n the set of n×n positive semi-definite matrices,

L := {κ ∈ S+n |κ ii = 1,∀i,κ i j = 0,(i, j) 6∈ E} .

With slight abuse of notation, from now on, we let αi de-
note the maximizers of (8). We give a particularly interest-
ing choice of κ below.
Definition 4 (Luz & Schrijver (2005)). Let A be the adja-
cency matrix of G, ρ ≥ −λn(A), with λn(A) the minimum
eigenvalue of A, and set

κLS(G) =
A
ρ
+ I � 0

Let U be any matrix such that κLS(G) =U>U.

Jethava et al. (2014) showed that,

ω(κLS(G)) =
n

∑
i=1

αi

where αi are the maximizers of (8). Further, (Jethava et al.,
2014) proved that on families of graphs, referred to by them
as SVM-ϑ graphs, ω(κLS) is w.h.p. a constant factor ap-
proximation to ϑ(G),

ϑ(G)≤ ω(κLS)≤ γϑ(G) .

Important graph families such as Erdős-Rényi random
graphs and planted clique graphs have this property.

We proceed to define a new graph kernel called the SVM-
ϑ kernel. Inspired by the results of Section 3.3, we seek
an SVM-ϑ analogue of the Lovász value, ϑ B to use as a
feature of subgraphs. We note that αi adheres to the global
optimality conditions of (8) defined by the edge set, and
thus captures global properties of graphs. Based on this
observation, and the connection between ω(κ) and ϑ(G),
we let ∑i∈B αi serve as an analogue for ϑ B in (3), when
defining our new kernel.

Definition 5. The SVM-ϑ kernel is defined, on two graphs
G,G′, with corresponding α , α ′ maximizers of (8) for κ =
κLS(G), with a positive semi-definite kernel k : R×R→R,
as

K(G,G′) = ∑
B⊆V

∑
C⊆V ′
|C|=|B|

1
Z|B|

k(1>αB,1>α
′
C) (9)

where αB = [αB(1), . . . ,αB(d)]
> with d = |B|, Zd =

(n
d

)(n′
d

)
and 1 the all one vector of appropriate size.

Lemma 4. The SVM-ϑ kernel, as defined in (9), is a posi-
tive semi-definite kernel.

Proof sketch. The kernel in (9) is an R-convolution ker-
nel (Haussler, 1999), see (1). For a complete proof, see
the supplementary (Johansson et al., 2014).

4.1. Computing the SVM-ϑ kernel

Computation of the SVM-ϑ kernel has the following
phases. First, for each graph G, κLS(G) is computed in
O(n3) time (due to the eigenvalue computation). Then, the
one-class SVM in (8) is solved, in O(n2) time (Hush et al.,
2006), to obtain αi(G). This offers a substantial speed-
up compared to the first step of computing the Lovász ϑ

kernel, see Section 3.2. Finally, the kernel is computed
as in (9). The dominating factor in the complexity is the
summation over all subsets, so in a fashion analogous to
Section 3.2, we approximate the SVM-ϑ kernel using sam-
pling.

For the SVM-ϑ kernel with a linear base kernel k(x,y) = xy
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and its explicit feature representation ϕ ,

ϕ(d) =
(

n
d

)−1

∑
B⊆V
|B|=d

∑
j∈B

α j(G) ,

we can state the following result.

Theorem 2. For graphs of n nodes, each coordinate ϕ(d)
of the feature vector of the linear SVM-ϑ kernel can be
estimated by ϕ̂(d) such that

Pr [ϕ̂(d)≥ (1+ ε)ϕ(d)]≤ O(1/n)

Pr [ϕ̂(d)≤ (1− ε)ϕ(d)]≤ O(1/n)

using sd = O(n2 logn/ε2) samples.

Proof. We leave the proof to the supplementary mate-
rial (Johansson et al., 2014).

We observe in practice that a lower number of samples is
sufficient for good performance in graph classification. The
overall time complexity of the sampled SVM-ϑ kernel is
O(n3+s2T (k)+sn), where s is the number of sampled sub-
graphs per graph, and T (k) is the time complexity of com-
puting the base kernel k. The first and third term are due to
eigenvalue computation and summation of αi respectively.

4.2. Planted clique graphs

A result about the margin of the SVM-ϑ kernel in classi-
fication of planted clique graphs, similar Lemma 3 can be
derived. We leave the result and proof to the supplementary
material (Johansson et al., 2014).

5. Experiments
We evaluate the Lovász ϑ and SVM-ϑ kernels by per-
forming graph classification of synthetic and benchmark
datasets. We report the classification accuracy using 10-
fold cross-validation with a C-Support Vector Machine
classifier, LIBSVM (Chang & Lin, 2011). All experiments
were repeated 10 times and the results averaged, to counter
the effects of randomized folds. The SVM parameter C
was optimized for each kernel and fold and the best was
used for the final accuracy.

5.1. Experimental setup

We compare our kernels to state-of-the-art kernels for unla-
beled, unweighted, selected so as to represent three major
groups of graph kernels, based on walks, small subgraphs
and paths respectively. The chosen walk kernel is the p-
random walk kernel, denoted RW, which counts common
random walks up to length p (a special case of Gärtner
et al. (2003)). p was chosen from {1,10,100,1000} and
λ with the heuristic of Shervashidze et al. (2011) as the

Table 1. Average classification accuracy (%). Numbers in bold
indicate the best results in each column. The kernels introduced
in this paper are Lo-ϑ and SVM-ϑ . † Lo-ϑ was run on M = 100
graphs. ‡ Lo-ϑ did not finish within 2 days. LDPCg are synthetic
graphs of girth≥ g for g= 4,5,6 used for low density parity check
codes.

KERNELS ERDOS LDPC4 LDPC5 LDPC6
SP 61.8 60.6 74.2 96.5
GL 56.7 50.0 50.0 50.0
RW 58.8 50.0 50.0 54.1
Lo-ϑ 63.2† ‡ ‡ ‡

SVM-ϑ 66.3 60.6 75.0 95.5

largest power of 10 smaller than the inverse of the squared
maximum degree.

For a kernel counting small subgraphs, we use the graphlet
kernel, counting all subgraphs of size 4 (Shervashidze
et al., 2009), denoted GL. For a kernel on paths, we use
the (delta) shortest-path kernel which counts shortest paths
of identical length (Borgwardt & Kriegel, 2005), denoted
SP. For the SP and GL kernels, we use the publicly avail-
able Matlab implementations of Shervashidze & Borgwardt
(2012). Note that while some of the kernels used for com-
parison have variants exploiting labels, these have not been
included, as the focus of this paper is unlabeled graphs. We
sample the Lovász ϑ kernel using n logn samples per coor-
dinate, and the SVM-ϑ kernel using n2 logn samples. Both
kernels were used with either the linear kernel k(x,y) = xy
or the radial basis function kernel k(x,y) = e−‖x−y‖22/(2σ2)

with σ from the set [0.01,10].

5.2. Synthesized graphs with global properties

We perform graph classification on a suite of synthesized
datasets with known global properties.

Datasets An important family of graphs are graphs of
high girth and high chromatic number (Alon & Spencer,
1992). These have the property that all small subgraphs
are trees (Erdős, 1959). Such graphs can be constructed
by sampling a random Erdős-Rényi G(n, p) graph and re-
peatedly removing a node from each small cycle until the
graph has the desired girth (Alon & Spencer, 1992). The
resulting graphs are guaranteed to have at least n′ ≥ n/2
nodes. In this manner, we generate M = 300 graphs with
n = 100 for each p ∈ {0.03,0.01, . . . ,0.25}, removing all
cycles of length ≤ 3, and denote the resulting numbers of
nodes and densities, after cycle deletion, by n′m and p′m, for
m = 1, . . . ,M, labeled (+1). Then we generate a set of M
random G(n, p) graphs with p and n matching the distri-
bution of p′m and n′m, labeled (-1). This dataset is denoted
ERDOS. The average accuracy (over varying p) in classifi-
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Figure 1. Classification accuracy on the PC dataset of 100 ran-
dom G(n,1/2) graphs (labeled -1) and G(n,1/2,k) planted clique
graphs (+1) with varying clique size. The horizontal axis is the
factor t for the clique size k = 2t

√
n.

cation of the two sets of graphs, using a selection of graph
kernels, is presented in Table 1.

In information theory, low-density-parity-check (LDPC)
codes, are used as error correcting codes, and are con-
structed using a bipartite graph (Richardson & Urbanke,
2008). It is known that high girth of the graph is a factor
contributing to the performance of the code (Bayati et al.,
2009). To this end, we generate sets of sparse graphs with
girth g ≥ g′ for g′ ∈ {4,5,6}. We use the construction
of Bayati et al. (2009), which adds one edge at a time, with-
out destroying the girth property. For this experiment, we
generate M = 100 graphs, with n = 200 and 200 edges,
labeled (+1), and M random graphs with n nodes and m
edges, where a new edge is added with uniform probability
until m has been added (-1). These sets are denoted LDPCg,
for g ∈ {4,5,6}.

We synthesize a third dataset, PC, to evaluate the practical
implications of Lemma 3. The dataset consists of N = 200
graphs, half of which are random graphs G(n, 1

2 ), labeled (-
1), and half planted clique graphs G(n, 1

2 ,k) with k = 2t
√

n
and n = 200 (+1). Such a set is constructed for each of
t ∈ {0,0.5, . . . ,3}.

Results The results of classifying the ERDOS and LDPC
datasets are presented in Table 1. We note that the SVM-ϑ
kernel performs well through-out the experiments, as does
the SP kernel. These results indicate that SVM-ϑ and SP
capture the global property girth, better than GL and RW.

The results of the planted clique experiment are presented
in Figure 1. We see that for t = 3, all of the kernels give per-
fect classification. We also see, as expected that the clas-
sification rate is 0.5 at t = 0, were semi-random and ran-
dom graphs are equivalent. Lo-ϑ , ksp, and GL all perform
well, distinguishing between the two classes of graphs for
small t. The results for SVM-ϑ conform with the results
of Jethava et al. (2014), who showed empirically that t = 3

was the lower limit for perfect distinction. Worst is RW
which did not perform well in either experiment.

5.3. Classification of benchmark graphs

We evaluate perform graph classification on a collection of
established datasets of varying origin, commonly used for
evaluation of graph kernels.

PTC (Predictive Toxicology Challenge) is a set of 417
chemical compound graphs labeled according to their car-
cinogenic effects on rats and mice (Helma et al., 2001).
Those saidd to have clear or some evidence are labeled (+1)
and thos said to have no evidence (-1). The dataset is split
into groups by male or female rats or mice. A separate clas-
sifier was trained for each group and the average accuracy
of all four is reported.

MUTAG (Debnath et al., 1991) is a dataset of 188 graphs
representing mutagenetic compounds, labeled according to
their mutagenic effects. ENZYME is a collection of 600
graphs representing tertiary protein structures collected by
(Borgwardt et al., 2005), each labeled with one of the 6 EC
top-level classes. NCI1 is a set of 4110 graphs represent-
ing a subset of chemical compounds screened for activity
against non-small cell lung cancer cell lines (Wale et al.,
2008).

Results We report the CPU runtimes for computing each
kernel on the benchmark experiments in Table 2, as mea-
sured in Matlab R2012a on a 3.4GHz Intel Core i7 with 4
cores and 32GB RAM.

The classfication accuracies of all kernels on the bench-
mark datasets are presented in Table 2. On PTC, MUTAG,
and ENZYME one or both of the kernels presented in this
paper perform better than state-of-the-art in terms of accu-
racy. On NCI1, the Lovász ϑ kernel achieved the second
highest accuracy. For all sets except NCI1, the SVM-ϑ ker-
nel and Lovász ϑ kernel performed the best using a RBF
base kernel with σ ∈ [0.1,1]. On NCI1, a linear kernel per-
formed better.

The SVM-ϑ kernel showed accuracies better than or com-
petitive to state-of-the-art kernels on all datasets, while also
being competitive in terms of runtime.

6. Conclusion
We have defined two graph kernels for unlabeled graphs,
the Lovász ϑ and SVM-ϑ kernels, based on the Lovász
number and its associated orthonormal representation. The
kernels are designed to capture global properties of graphs
such as the girth or the clique number. We derive sampling
approximations of both kernels with known sample com-
plexity. The kernels are competitive with state-of-the-art



Global graph kernels using geometric embeddings

Table 2. Average classification accuracy (%) using 10-fold cross-validation on benchmark datasets. The columns labeled T(·), contain
the CPU time used to compute the kernels for each dataset. Numbers in bold indicate the best results in each column. The kernels
introduced in this paper are Lo-ϑ and SVM-ϑ .

KERNELS PTC MUTAG ENZYME NCI1 Tptc Tmutag Tenzyme Tnci1
SP 63.0 87.2 30.5 67.3 0.39” 0.2” 1.32” 6.46”
GL 63.1 83.5 26.7 62.9 6.30” 4.5” 42.6” 1’32”
RW 60.6 85.6 21.2 63.1 14.4” 0.4” 24.1” 3’30”
Lo-ϑ 64.3 86.2 26.5 65.2 24’31” 6’39” 41’40” 2h 42’
SVM-ϑ 63.8 87.8 33.5 62.7 1’6” 17.8” 5’7” 3’19”

graph kernels for unlabeled graphs, in terms of accuracy, in
several classification tasks, even reaching the highest accu-
racy on the majority of datasets. The datasets comprise syn-
thesized graphs with important global properties, as well
as benchmark graph datasets. We provide a result bound-
ing the separation margin between two classes of graphs
in Lovász ϑ kernel space. Future work include design-
ing global kernels which leverage attributes on nodes and
edges, and theoretical results about generalization error on
classes of graphs.
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