
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)
E. Oñate, J. Oliver and A. Huerta (Eds)

A NOVEL SOLVER ACCELERATION TECHNIQUE BASED
ON DYNAMIC MODE DECOMPOSITION

Niklas Andersson1 and Lars-Erik Eriksson2

1 Chalmers University of Technology, SE-41296 Gothenburg Sweden,
niklas.andersson@chalmers.se

2 Chalmers University of Technology, SE-41296 Gothenburg Sweden,
lars-erik.eriksson@chalmers.se

Key words: Computational Fluid Dynamics, Compressible Flows, Computing Methods,
Dynamic Mode Decomposition.

Abstract. The speed-up of finite-volume solvers for compressible flows is a difficult
task. There are several ways to achieve solver speed-up, more or less difficult to imple-
ment and more or less suitable for implementation in a parallel, unstructured type of
solver. Examples of such techniques are the multi-grid method and Implicit Residual
Smoothening (IRSM). In this article, a solver acceleration technique based on Dynamic
Mode Decomposition (DMD) is proposed. The technique does not depend on data format
or mesh structure and is thus as straightforward to implement in an unstructured parallel
code as in a structured sequential one. The main idea behind the proposed method is
that it is possible to use the information available in flow field modes extracted using the
DMD technique to find a correction that will bring the solution closer to a steady-state
condition, i.e. the method is only applicable to steady-state problems. In the presented
work the proposed DMD-based acceleration technique has been implemented in a mas-
sively parallel block-structured finite-volume Navier-Stokes solver for compressible flows.
The method has been tested on a turbine cascade case with promising results. To the
knowledge of the authors, the proposed method is not previously published in the open
literature.

1 INTRODUCTION

The Dynamic Mode Decomposition (DMD) was first introduced by Schmid [1] as a
method for extracting coherent dynamic flow structures from a previously generated set
of data samples. The fact that the method does not require any information about
the origin of the data means that it can be applied to data obtained from for example
transient numerical simulations or experiments. The DMD method is a Krylov subspace
method related to the iterative Arnoldi algorithm for extraction approximate eigenvalues

1



Niklas Andersson and Lars-Erik Eriksson

and eigenvectors of large matrices. The technique proposed by Arnoldi [2], also described
in detail by e.g. Ruhe [3] and Eriksson et al. [4], is based on the projection of a high-
dimension system matrix onto a subspace of significantly lower dimension. The nature
of this subspace is such that its eigenvalues represents the least damped modes of the
extensively larger system matrix. One of the benefits of the DMD method over a method
based directly on the Arnoldi algorithm is that it can be applied to an existing set of
samples as a post processing procedure whereas an eigenmode extraction method based
on the Arnoldi algorithm would require that the data set is generated as part of the
eigenmode extraction procedure and thus it is impossible to use this kind of method on
an already existing data set.

Eigenmode extraction methods such as the DMD method and methods based on the
Arnoldi algorithm have recently been used for the identification of dynamic flow structures
by a number of research groups. Rowley et al. [5] used an Arnoldi-based algorithm for
the identification of modes for a jet in cross flow. Seena et al. [6] used DMD to study
self-sustained oscillations in cavity flows. Muld et al. [7] analyzed flow structures around a
high-speed train obtained using Detached Eddy Simulation (DES) and DMD. Jourdain et
al. [8] used DMD to analyze the acoustic modes in a combustion chamber configuration.
Lárusson et al. [9] used an Arnoldi-based method to study eigenmodes in a separated
nozzle flow.

The Generalized Minimal Residual (GMRES) technique proposed by Saad et al. [10]
is a Krylov subspace method for solving linear systems. GMRES is related to the above-
mentioned Arnoldi algorithm and has been used to speed up the convergence of flow
solvers in steady-state application, see e.g. Nigro et al. [11] and Stridh et al. [12]. Since
the GMRES method is a Arnoldi-based technique that may be applied for solver speed-
up purposes, it seems natural that it is possible to utilize the mode information that
can be extracted using the DMD method to speed up the convergence of flow solvers as
well. The presented DMD-based acceleration technique uses a set of stored solver flow
fields to calculate a low-dimension projection of the system matrix describing the flow
field development. This approximate system matrix is than used to generate a flow field
correction that brings the solution closer to convergence. The flow corrections are done
in a step-wise manner alongside an otherwise normal solver execution. The most efficient
size and sample frequency of the generated data sets are very problem dependent and have
to be found by trial and error. However, with suitable settings, the proposed DMD-based
acceleration technique is able to produce significant speed-up.

2 METHOD DESCRIPTION

This section describes the underlying theory of the proposed method and an example
of code implementation.

2



Niklas Andersson and Lars-Erik Eriksson

2.1 DMD-based Correction

The proposed correction technique is based on the assumption that the solver time
stepping scheme may be described using a linear expression

x(n+1) = Ax(n) + b (1)

where x represents the degrees of freedom (in our case the flow field variables in all grid
cells), n denotes time and A is the system matrix describing the temporal development of
x. Our aim is to use a Krylov subspace method to generate a projected system matrix of
significantly lower dimension that still contains the most essential information available
in A. To achieve this, a Krylov subspace is built up by saving a number of solution states
(flow field snap shots) with a specified sampling frequency which results in a set of vectors
{x(1), x(2), . . . , x(n+2)}. Differences of consecutive sampled solver states are used to define
matrices Vn and Vn+1

Vn =
[
x(2) − x(1), . . . , x(n+1) − x(n)

]
Vn+1 =

[
x(3) − x(2), . . . , x(n+2) − x(n+1)

]
(2)

Note that (n+ 2) samples are needed to generate the matrices Vn and Vn+1. The usage of
solver state differences has been shown to be beneficial for the performance of the DMD
algorithm [13].

The matrix Vn can be rewritten as

Vn = EnUn (3)

where En is a (m × n) matrix built up from a set of orthonormal vectors and Un is an
upper triangular (n×n) matrix. The sizes m and n corresponds to the number of degrees
of freedom and the number of samples, respectively.

According to the linear relation given by equation (1), Vn+1 can be expressed in terms of
Vn as

Vn+1 = AVn (4)

Now, combining equation (4) and (3) gives

Vn+1 = AEnUn (5)

3



Niklas Andersson and Lars-Erik Eriksson

Multiplying both sides of equation (5) by the transpose of the orthonormal base En from
the left gives

ET
n Vn+1 = ET

nAEn︸ ︷︷ ︸
Ãn

Un (6)

where Ãn = ET
nAEn is the projection of the system matrix A on the orthonormal base En.

Multiplying each side of equation (6) by the inverse of Un from the right, the projected

system matrix, Ãn, can now be obtained as

Ãn = ET
n Vn+1U

−1
n (7)

Now, let’s go back to the linear relation (equation (1)). The solution to this relation is
found when x(n) equals x(n+1). Inserting x(n+1) = x(n) = x in equation (1) gives

(I − A)x = b (8)

Introducing a correction ∆x, obtained by subtracting sample x(n+1) from x, equation (8)
can be rewritten as

(I − A)x = (I − A)∆x+ (I − A)x(n+1) = b (9)

Rearranging gives

(I − A)∆x = (A− I)x(n+1) + b︸ ︷︷ ︸
x(n+2)−x(n+1)

(10)

where, since x(n+2) = Ax(n+1) + b, the right hand side equals x(n+2) − x(n+1), which
corresponds to the last vector in Vn+1. We now introducing ∆y as the projection of the
correction ∆x on the orthonormal base En

∆x = En∆y (11)

replacing ∆x in equation (10) with the expression in equation (11) gives

(I − A)En∆y = x(n+2) − x(n+1) (12)

Multiplying both sides of equation (12) with the transpose of En from the left gives

ET
n (I − A)En∆y = ET

n

(
x(n+2) − x(n+1)

)
(13)

From before we have that Ãn = ET
nAEn is the projection of A on En. Inserting this

relation in equation (13) gives

(In − Ãn)∆y = ET
n

(
x(n+2) − x(n+1)

)
(14)

4



Niklas Andersson and Lars-Erik Eriksson

now, by multiplying with (In − Ãn)−1 from the left on each side we get an expression for

the correction ∆y in terms of the projected system matrix Ãn, the orthonormal base En

and the last vector in Vn+1.

∆y = (In − Ãn)−1ET
n

(
x(n+2) − x(n+1)

)
(15)

If we go back to the definition of ∆x we see that what we have achieved now is a relation
between the sampled solver state xn+1 and the assumed converged steady-state solution
x thus we can get a an estimate of the converged solution x as

xu = x(n+1) + ∆x = x(n+1) + En∆y (16)

Inserting (15) in (16) gives

xu = x(n+1) + En(In − Ãn)−1ET
n

(
x(n+2) − x(n+1)

)
(17)

2.2 A Simple Example

The correction method described above is applied to a simple linear relation described
by

xn+1 = axn + b

where the constants a and b equals 0.90 and 1.00, respectively. The exact solution for this
simple example is x = b/(1− a) = 10. x is updated three times starting with x(0) = 0.00
producing the following sequence of values

x(0) = 0.00
x(1) = 1.00
x(2) = 1.90
x(3) = 2.71

According to the definition of Vn and Vn+1 these matrices (or scalars in this case) can now
be obtained from the samples x(0) to x(3) as

Vn = x(2) − x(1) = 0.90
Vn+1 = x(3) − x(2) = 0.81

Since Vn is a scalar, En equals 1.0 and Un = Vn, see equation 3. Inserting the values
calculated above in equation (7) gives us the projected system matrix for this problem

Ãn = ET
n Vn+1U

−1
n = 0.90

The projected correction is obtained using equation (15)

∆y = (In − Ãn)−1ET
n (x(3) − x(2)) = 8.10

5



Niklas Andersson and Lars-Erik Eriksson

The correction ∆x is obtained from equation (11) by multiplying the projected correction
with the orthonormal base En

∆x = En∆y = 8.10

Finally, a corrected solution is obtained by using equation (16)

xu = x(2) + ∆x = 10.0

2.3 Solver Implementation

The above-described method has been implemented in a parallel Navier-Stokes solver
for compressible flows. The orthogonalization of Vn is done using the Gram-Schmidt
algorithm. The reason for not using a more robust technique like Singular Value Decom-
position (SVD) is that using the Gram-Schmidt algorithm, one only have to handle two
vectors in Vn at the same time whereas if using SVD one would have to work with the
entire matrix Vn. Moreover, when calculating the scalar products in parallel, only the
local part of the matrix has to be accessed and the only communication needed between
processes is the local contribution to each scalar product, i.e. a scalar value. Thus, the
Gram-Schmidt algorithm is more suitable for parallel computations than other available
alternatives. However, there are packages available that handles parallel SVD efficiently
such as for example SLEPc [14], which is an extension of the PETSc [15] library that can
be used for solving large matrix eigenvalue problems in parallel.

The DMD correction algorithm is set up by specifying the number of samples to be
used in each DMD-cycle, NS, and the number of solver iterations between each of these
samples, NI . The optimal choice of values for these two parameters for best performance
varies from application to application and has to be found by trial and error. Once
a DMD-cycle is completed, the sample database is reset and the sampling process is
restarted. In order to remove high frequency modes and thereby improve the efficiency of
the DMD method, a user-defined number of solver time steps, NP , are completed in each
DMD correction cycle before the sample generation is started. This will effectively remove
start-up transients and transients related to a previous correction, which otherwise might
disturb the acceleration procedure.

The implementation of the DMD correction method is done in an on-the-fly manner
meaning that it uses the same solver as when DMD correction is deactivated but in
the DMD case, samples are stored on disk with a user defined time step increment, NI ,
and a DMD correction is calculated when a user defined number of samples, NS, have
been extracted. This makes the overhead of this method significantly lower than related
methods such as for example GMRES.

6



Niklas Andersson and Lars-Erik Eriksson

3 TEST CASES

3.1 One-dimensional diffusion

The first test case is a simple one-dimensional diffusion case. The proposed acceleration
technique should perform very well for these types of problems since the system matrix for
such a problem has a spectrum that is suitable for Krylov subspace methods such as DMD.

one-dimensional diffusion of a quantity, q is described by the following relation

∂q

∂t
=
∂2q

∂x2
(18)

Discretizing equation (18) using a finite difference approach gives

qn+1
i − qni

∆t
=
qni−1 − 2qni + qni+1

(∆x)2
(19)

Inserting λ = ∆t
(∆x)2 in equation (19) gives

qn+1
i = λqni−1 + (1− 2λ)qni + λqni+1 (20)

It should be noted that solving these types of problems using a finite-difference approach
will result in very slow convergence and it is thus not the natural way forward but it will
demonstrate the capability of the DMD-based solver acceleration.

3.1.1 Solver Settings and Boundary Conditions

In this specific case, the one-dimensional diffusion problem is discretized using 100
nodes. The parameter λ in equation (20) is set to 0.25. Direchlet boundary conditions
for q are used both at the left and the right end. At the left end q = 1.0 and at the right
end q = 2.0. The test convergence criteria used is that the residual should be lower than
10−7. Also, the total number of iterations was limited to 30000.

3.1.2 Finding Optimum DMD Settings

In order to find settings for the DMD algorithm that improves the solver performance
as much as possible a number of tests were done. In each configuration a combination of
values of the parameters NS and NI were tested. The result is shown in Table 1. It can
be seen, that for this specific case the best result is obtained for NS = 15 and NI = 75.
It should be mentioned that when the DMD acceleration is deactivated convergence is
not achieved within the limited number of time steps specified for the test. Also, a more
efficient combination of number of samples (NS) and number of iterations (NI) can most
likely be found by refining the test setup. However, the data presented in Table 1, gives
an indication of the trend and, what is more important, it shows that the DMD-based

7



Niklas Andersson and Lars-Erik Eriksson

correction method has a great potential in accelerating the convergence of a diffusion type
of problem significantly.

Table 1: One-dimensional diffusion test matrix: number of iterations to reach convergence for different
combinations of number of samples in each DMD-cycle, NS , and number of iterations between each
sample, NI

NI

50 75 100 125 150

NS

5 7659 7599 7304 7897 8495
10 3501 4030 4186
15 2381 1280
20 2006

3.1.3 DMD Performance

Figure 1 shows the samples and corrected result for the first DMD cycle using the
optimal configuration found in the test described above, see Table 1. In this case one
DMD cycle is enough to get a solution that is very close to convergence.

0 20 40 60 80 100
0

0.5

1

1.5

2

a

b

cell index

q

Figure 1: The samples of variable q (dashed lines) and the corrected solution after the first DMD cycle
(solid line)

8



Niklas Andersson and Lars-Erik Eriksson

3.2 One-dimensional Convection-Diffusion

In section 3.1 it was shown that the proposed DMD-based correction technique works
for a simple diffusion problem. In order to show that the method is suitable for a Navier-
Stokes type of problem, it is applied to a simple convection-diffusion problem. Introducing
convection changes the spectrum of the system matrix and will therefore have an impact
on the performance of the DMD acceleration.

A one-dimensional convection-diffusion problem can be described by the following re-
lation

∂Q

∂t
+ C

∂Q

∂x
= ε

∂2Q

∂x2
(21)

where

C =

[
0 1
1 0

]
and Q =

[
q1

q2

]
Discretizing equation (21) using a finite difference approach gives

∆x
d

dt
Qi + C

[
Q̂i+ 1

2
− Q̂i− 1

2

]
= ε

(
∂Q

∂x

)
i+ 1

2

− ε
(
∂Q

∂x

)
i− 1

2

(22)

In equation (22), Qi denotes cell average of Q in cell i, Q̂i+ 1
2

is an estimate of Q at the
right cell face of cell i obtained from cell averages of Q as

Q̂i+ 1
2
≈ − 1

12
Qi−1 +

7

12
Qi +

7

12
Qi+1 −

1

12
Qi+2 (23)

and
(
∂Q
∂x

)
i+ 1

2

is the spatial derivative of Q at the right cell face of cell i estimated as(
∂Q

∂x

)
i+ 1

2

≈
Qi+1 −Qi

∆x
(24)

Q̂i− 1
2

and
(
∂Q
∂x

)
i− 1

2

are the corresponding properties at the left cell face of cell i. Equation

(22) is solved using a three-stage Runge-Kutta time-marching solver.

3.2.1 Solver Settings and Boundary Conditions

The one-dimensional convection-diffusion problem is discretized using 100 cells, each
with a cell width ∆x = 0.001 m. The solver time step is set using CFL = ∆t

∆x
= 0.7.

The diffusion coefficient, ε, is set to 10−4. At the left boundary, q1 = 1.0 and q2 is
extrapolated from the interior and at the right boundary, q1 is extrapolated from the
interior and q2 = 1.0. As in the diffusion case, the test convergence criteria used was that
the solver residual should be lower than 10−7 and if the solution was still not converged
after 30000 iterations the execution was halted.

9



Niklas Andersson and Lars-Erik Eriksson

3.2.2 Finding Optimum DMD Settings

As for the one-dimensional diffusion case, a number of combinations of settings for NS

and NI were tested in order to find the combination that produces the most speed-up.
For the convection-diffusion case the best results was found for NS = 50 and NI = 10.
The results from the tests are presented in Table 2. Comparing results from the one-
dimensional diffusion case and the convection-diffusion case, Table 1 and Table 2, the
difference in nature of the two problems is obvious. For the diffusion case, the most speed-
up is obtained when using 15 samples and 75 iterations between each sample whereas in
the convection-diffusion case, the most efficient configuration has 50 samples in each
DMD-cycle and only 10 iterations between each sample, i.e. in the diffusion case, the
number of samples is 30% of the number of samples used in the convection-diffusion case
but the number of iterations between each sample is 7.5 times higher.

Table 2: One-dimensional convection-diffusion test matrix: number of iterations to reach convergence for
different combinations of number of samples in each DMD-cycle, NS , and number of iterations between
each sample, NI

NI

10 25 50 75 100 125 150

NS

10 30000 5852 5036 5519 9441 5458
15 2299 3359 4557 4501 7660 4792
20 2016 3355 4501 4001
25 30000 1909 2795 2667
30 2871 1870 2044 2301
35 1071 1760 1773
40 809 1160 2001
45 628 1126 2251
50 547 1251
55 551 1376
60 601 1501

3.2.3 DMD Performance

Figure 2 shows the samples and corrected result for the first DMD cycle using the
optimum configuration found in the test described above, see Table 2. As for the one-
dimensional diffusion case, one DMD cycle is sufficient to get a solution that is quite close
to convergence.

10



Niklas Andersson and Lars-Erik Eriksson

0 20 40 60 80 100
−2

−1

0

1

2

3

4

a

b

cell index

q 1

(a)

0 20 40 60 80 100
−2

−1

0

1

2

3

4

a

b

cell index
q 2

(b)

Figure 2: Samples of variable q1 and q2 (dashed lines) and the corrected solutions after the first DMD
cycle (solid lines)

3.3 2D Cascade Flow

In this section, the DMD-based acceleration technique is used for accelerating the
convergence of a steady-state Reynolds-Averaged Navier-Stokes (RANS) simulation for a
low-Mach-number turbine cascade configuration. The code used for this test is a CFD
code for compressible flows called VolSol++, jointly developed by Chalmers and GKN
Aerospace Sweden AB (former Volvo Aero Corporation). VolSol++ is based on the G3D
family of codes developed by Eriksson [16], which has previously successfully been used for
eigenmode extraction using Arnoldi and DMD methods [8, 9, 13]. The solver is based on a
three-stage third-order explicit Runge-Kutta time-marching technique. Convective fluxes
are evaluated using a third-order upwind scheme and the diffusive fluxes are calculated
using a second-order centered-difference approach. The turbulence model is a standard
realizable k − ε model. Without the DMD-acceleration activated, i.e. the reference
simulation, convergence was reached after 11610 iterations. In order to achieve significant
acceleration using the DMD correction technique, a wide range of DMD settings were
tested. In this case, finding optimum settings is not as straightforward as in the cases
described in the previous sections. Preliminary studies indicated that, for this specific
case, it was beneficial to activate the DMD acceleration after an initial sequence where the
solver runs without any modifications. This is probably due to the fact that this removes
modes only present in the start-up of the simulation that dominates the flow field at this
stage. After these start-up modes has been damped out, the DMD technique is more
likely to describe the modal content of the flow field and thus the flow field corrections
will be more accurate. Of the wide variety of settings tested the best results in terms of
solver speed-up were obtained when using the setup described in Table 3. As indicated in

11



Niklas Andersson and Lars-Erik Eriksson

Table 3 convergence was reached after three completed DMD cycles using these settings.

Table 3: Parameters defining the DMD settings that were used for the turbine cascade test case. NP is
the number of iterations that are completed before the sampling is initiated for each DMD cycle, NS is
the number of samples in each cycle and NI is the number of iterations completed between each of these
samples.

Cycle NP NS NI

1 900 19+2 56
2 200 18+2 120
3 200 18+2 140

Figure 3 shows a comparison of the residual history (continuity residuals) for the refer-
ence simulation and for the simulation with the DMD correction activated. The vertical
dashed lines in the figure marked 1, 2 and 3 represent the three DMD corrections. As can
be seen in the figure the corrections have significant effects on the residual history. This
is especially true for the first correction, which makes the residual drop about one order
of magnitude. The following two corrections do not leave as pronounced marks on the
residual history but there are noticeable changes related to these corrections as well. The
second correction leads to a significant reduction of residual fluctuations and the third
correction is followed by another distinct drop in residual and shortly after this correction
the convergence criteria is reached. This happens after 8216 completed iterations which
should be compared to the 11610 iterations needed to reach convergence using the ref-
erence solver setup, i.e. the DMD correction technique reduces the number of iterations
needed to reach convergence with 3394 or almost 30%.

The converged solutions obtained using the reference solver settings and the DMD-
based correction method with settings as described above has been compared in order
to ensure that the same solution is reached in both cases. Figure 4 shows a comparison
of Mach number contours obtained from the two simulations. As can be seen there are
absolutely no differences in these two solutions that can be detected by the naked eye. In
order to make a more qualitative comparison, the pressure coefficient, Cp, and the skin
friction coefficient, Cf , were calculated using estimates of blade surface pressure and wall
friction obtained from the two simulations. A comparison of these quantities is shown in
Figure 5 and again, there are no visible differences between the two data sets.
Cp and Cf are here defined as follows:

Cp =
p− p∞

1
2
ρ∞U∞

2 (25)

Cf =
τwall

1
2
ρ∞U∞

2 (26)

12



Niklas Andersson and Lars-Erik Eriksson

0 2000 4000 6000 8000 10000 12000

10
−7

10
−6

10
−5

10
−4

10
−3

a

b

1 2 3

a

b c

a

b

c

significant

residual drop

correction

decreases residual

fluctuations

significant

residual drop

(900, [19 + 2] × 56)

(200, [18 + 2] × 120)

(200, [18 + 2] × 140)

– Reference simulation

– DMD-correction

iteration

re
si

d
u

al

Figure 3: Convergence history. The solid red line represents the reference simulation, i.e. no correction,
and the solid blue line represents the simulation with the DMD-based correction activated. The dashed
vertical lines indicate the iterations where the DMD corrections are done.

Figures 6-8 shows the extracted corrections for each of the three completed DMD
cycles. The corrections are represented by contours of density, internal energy and the
cartesian momentum components in the x and y directions. These four variables along
with the corresponding k and ε fields are added to the solver variables. It should be noted
that the k and ε correction fields, not shown in Figures 6-8, are focused to the boundary
layers and thus reveals less information about the modal content of the flow corrections.
There are a few interesting differences in the contour plots obtained for the correction
flow fields. First of all, it is quite evident that the levels of the variables representing the
first of the three corrections are much higher than those in the two following corrections.
For example if one compares the density values in the first correction field (Figure 6a)
with those in the second correction field (Figure 7a), they are roughly 100 times higher
in the first field. It is of course natural that the levels will decrease as the solution gets
closer to the converged steady-state solution but the change in levels between the first
two corrections is quite remarkable. This is of course related to the residual drop caused
by the first correction (see Figure 3). Looking closer on the correction fields, it seems
that the first correction is more related to some large-scale pressure fluctuation whereas
the later corrections seems to be more related to boundary layer and wake flow (compare
Figure 6a with Figures 7a and 8a). This is natural since it is the boundary layer that is
usually most difficult to converge. Also, most likely the boundary layer and wake flow
modes are hidden by the higher amplitude large-scale pressure modes when they are still
present. Therefore, after the first correction when the high-amplitude modes are removed,
the DMD algorithm is capable of catching the modes with lower amplitude.

13



Niklas Andersson and Lars-Erik Eriksson

(a) (b)

Figure 4: Mach contours for turbine cascade obtained using a RANS solver for compressible flows with
and without the DMD-based acceleration technique activated. The left figure (a) shows Mach contours
representing the converged solution obtained using the reference solver and the right figure (b) shows the
corresponding quantity obtained from the converged solution for the solver using DMD-based correction.

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

a

b

(x− xmin)/(xmax − xmin)

C
p

(a)

0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

a

b

(x− xmin)/(xmax − xmin)

C
f

(b)

Figure 5: Comparison of turbine blade pressure coefficient, Cp, and skin friction coefficient, Cf . Solid red
lines with red circles represent the reference simulation and the solid blue lines represent the simulation
where DMD-based correction is utilized for solver acceleration.

14



Niklas Andersson and Lars-Erik Eriksson

ρ

(a)

ρe0

(b)

ρu

(c)

ρv

(d)

Figure 6: DMD correction number one represented by (a) contours of density ρ, (b) density times
internal energy ρe0, (c) the x-direction momentum component ρu and (d) the y-direction momentum
component ρv. The first correction is done after 2076 iterations (see Figure 3).

15



Niklas Andersson and Lars-Erik Eriksson

ρ

(a)

ρe0

(b)

ρu

(c)

ρv

(d)

Figure 7: DMD correction number two represented by (a) contours of density ρ, (b) density times
internal energy ρe0, (c) the x-direction momentum component ρu and (d) the y-direction momentum
component ρv. The second correction is done after 4676 iterations (see Figure 3).

16



Niklas Andersson and Lars-Erik Eriksson

ρ

(a)

ρe0

(b)

ρu

(c)

ρv

(d)

Figure 8: DMD correction number three, the last correction before reaching convergence, represented by
(a) contours of density ρ, (b) density times internal energy ρe0, (c) the x-direction momentum component
ρu and (d) the y-direction momentum component ρv. The third correction is done after 7676 iterations
(see Figure 3).

17



Niklas Andersson and Lars-Erik Eriksson

4 CONCLUSIONS

A solver speed-up technique for steady-state problems based on Dynamic Mode De-
composition (DMD) has been presented. In the proposed method, a Krylov subspaces
built up from solver flow state snap shots is used to extract a correction that brings
the solution closer to the converged steady-state solution. The snap shot sampling is
done alongside an otherwise normal solver execution and the method does not interfere
with the solver other than when the corrections are done. The new method has been
tested for low-Mach-number turbine cascade configuration with promising results. For
the specific solver setup presented in this article, the number of iterations needed to reach
convergence was reduced from 11610 to 8216, i.e. a reduction of almost 30%. Since the
implementation of the DMD-based acceleration is made such that solver overhead is al-
most negligible, the convergence time for the simulation with DMD correction activated
is about 70% of that of the reference simulation. In order for solver speed-up based on the
proposed method to be considered successful, more speed-up would be needed. It should
be noted, however, that the maximum speed-up is limited by the need for a number of
statistically independent samples in each Krylov subspace in order to be able to extract
the most dominating modes. There is, however, room for improvement when it comes to
the extraction of these modes. In the presented study, Gram-Schmidt orthogonalization
is used in the DMD algorithm. The correction cycles could probably be made more ef-
ficient by using a DMD algorithm based on Singular Value Decomposition (SVD). Also,
combining the DMD-based correction method with Implicit Residual Smoothing (IRSM)
would probably be beneficial.

The setup of the DMD-based correction is very case dependent and the optimum
settings for a specific case has to be found by testing, i.e. there is no generic way to
find the best values for the parameters defining the DMD-based correction that will give
the most efficient solver. However, in an engineering situation where often the same
type of analysis is done repeatedly, the solver settings can be reused and thus the search
for optimum settings will pay off. The DMD correction method is set up by defining
the number of samples to be extracted in each correction cycle, NS, the number of solver
iterations between each of these samples, NI and the number of iterations to be completed
before starting the sampling of snap shots, NP . Each correction cycle can be defined
independently with specific values of NS, NI and NP . The results presented for the low-
Mach-number turbine cascade shows that as one correction cycle is completed, the nature
of the problem can change significantly which justifies the use of independent definition
of the correction parameters for each cycle.

REFERENCES

[1] Schmid, P. J., “Dynamic mode decomposition of numerical and experimental data,”
Journal of Fluid Mechanics , Vol. 656, 2010, pp. 5–28.

[2] Arnoldi, W. E., “The principle of minimized iteration in the solution of the matrix

18



Niklas Andersson and Lars-Erik Eriksson

eigenproblem,” Quart. Appl. Math., Vol. 9, 1951, pp. 17–29.

[3] Ruhe, A., “Rational Krylov Sequence Methods for Eigenvalue Computation,” Linear
Algebra and its Applications , Vol. 58, 1984, pp. 391–405.

[4] Eriksson, L.-E. and Rizzi, A., “Computer-Aided Analysis of the Convergence to
Steady State of Discrete Approximations to the Euler Equations,” Journal of Com-
putational Physics , Vol. 57, 1985, pp. 90–128.

[5] Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P., and Henningson, D. S., “Spectral
analysis of nonlinear flows,” Journal of Fluid Mechanics , Vol. 641, 2009, pp. 115–127.

[6] Seena, A. and Sung, J., “Dynamic mode decomposition of turbulent cavity flows for
self-sustained oscillations,” International Journal of Heat and Fluid Flow , Vol. 32,
2011, pp. 1098–1110.

[7] Muld, T. W., Efraimsson, G., and Henningson, D. S., “Flow structures around a
high-speed train extracted using Proper Orthogonal Decomposition and Dynamic
Mode Decomposition,” Computers & Fluids , Vol. 57, 2012, pp. 87–97.

[8] Jourdain, G., Eriksson, L.-E., Kim, S. H., and Sohn, C. H., “Application of dynamic
mode decomposition of acoustic-modes identification and damping in a 3-dimensional
chamber with baffled injectors,” Journal of Sound and Vibration, 2013.

[9] Lárusson, R., Andersson, N., Eriksson, L.-E., and Östlund, J., “Linear Stability Anal-
ysis Using the Arnoldi Eigenmode Extraction Technique Applied to Separated Nozzle
Flow,” 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA,
USA, 14-17 July 2013.

[10] Saad, Y. and Schultz, M. H., “GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems,” SIAM J. Sci. Stat. Comput., Vol. 7,
No. 3, 1986, pp. 856–869.

[11] Nigro, N., Sorti, M., Idelsohn, S., and Tezduyar, T., “Physics based GMRES pre-
conditioner for Compressible and Incompressible Navier-Stokes Equations,” Comput.
Methods Appl. Mech. Engrg., Vol. 154, 1998, pp. 203–228.

[12] Stridh, M. and Eriksson, L.-E., “Solving harmonic linear problems in unsteady tur-
bomachinery flows using a preconditioned GMRES solver,” ECCOMAS CFD 2006 ,
Egmond an See, Holland, Sept. 2006.

[13] Jourdain, G. and Eriksson, L.-E., “Numerical comparison between the Dynamic mode
decomposition and the Arnoldi extraction technique on an afterburner test case,”
18th AIAA/CEAS Aeroacoustic Conference, Vol. AIAA 2012 of 2012-2147 , Colorado
Springs, Colorado, USA, 04-06 June 2012.

19



Niklas Andersson and Lars-Erik Eriksson

[14] Hernandez, V., Roman, J. E., and Vidal, V., “SLEPc: A Scalable and Flexible Toolkit
for the Solution of Eigenvalue Problems,” ACM Trans. Math. Software, Vol. 31, No. 3,
2005, pp. 351–362.

[15] Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F., “Efficient Management of
Parallelism in Object Oriented Numerical Software Libraries,” Modern Software Tools
in Scientific Computing , edited by E. Arge, A. M. Bruaset, and H. P. Langtangen,
Birkhäuser Press, 1997, pp. 163–202.

[16] Eriksson, L.-E., “Development and Validation of Highly Modular Flow Solver Ver-
sions in G2DFLOW and G3DFLOW,” Internal report 9970-1162, Volvo Aero Cor-
poration, Trollhättan, Sweden, 1995.

20


