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ABSTRACT

The focus of the study is the free quantum evolution of Du�ng oscillators which
are nonlinearly coupled to bosonic environments. The work evolves from a par-
ticular system of an undamped, nonlinear graphene resonator mode to a more
generalized framework of oscillator modes interacting with two di�erent con�g-
urations of bosonic environments. In a model with no dissipation, the nonlinear
Du�ng oscillator allows an initial coherent state to evolve into a macroscopic su-
perposition state, a Schrödinger Cat state. By further subjecting a Du�ng mode
to nonlinear damping, the parity conservation due to the two-quanta system-bath
exchange, brings the system to a nonclassical steady state - an equilibrium state
very much di�erent from the ground state. The quantum features of this state
are analysed for temperatures above zero and in a more realistic scenario where
the interplay of linear and nonlinear decay is taken into account. The scope of the
study is then extended to bipartite systems of nonlinear interacting oscillators,
each nonlinearly coupled to a bosonic environment. The generation of entangle-
ment in initially separable states and entanglement's asymptotic behaviour are
investigated. One of the outcomes is the Du�ng nonlinearity not a�ecting the
entanglement asymptote. Therefore, �nally a bipartite system of harmonic oscil-
lators, with nonlinear system-bath coupling is initiated with entangled, squeezed
states, and the asymptotic behaviour is evaluated in the parameter space of tem-
perature, squeezing and dissipation rate. This is done for common and individual
reservoir con�gurations, and either zero or non-zero inter-mode coupling.

Keywords: Quantum Du�ng Oscillator, Nonclassical States, Nonlinear Damp-
ing, Entanglement
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Preface

Dear reader, it is an honour that you are looking through this thesis, especially if
it is by your own will. The main purpose of this work is to share the knowledge
acquired during the PhD studies in an understandable manner with a mixed
audience in mind. This is a challenging task. My intention was therefore to con-
struct this thesis according to the funnel structure. A typical funnel is initially
wide and gradually focuses towards a narrow end.

Correspondingly, this thesis begins with chapter 1 which is devoted to the broader
introduction of the scienti�c background, motivating the questions and problems
of my own research. This chapter summarises the development of the experi-
mental work probing quantum mechanics in several branches of physics, focusing
towards the nanoelectomechanical systems. The dynamics of such systems are
modelled by oscillators. The following chapter 2 and chapter 3 consider some
relevant theoretical concepts of quantum oscillator dynamics in closed systems
and in systems interacting with an environment. The contents of these chapters
should be comprehensible to physics students.

Finally, the focus narrows down to the study comprised in the appended research
papers. A brief summary of the most important outcomes is given in chapter 4,
and the publications can be found appended at the end of the thesis. The most
relevant calculations of the previous chapters are included as appendices, which
follow after the concluding remarks in chapter 5 and acknowledgements.

Below you will �nd a list of abbreviations used throughout the thesis. The
list is in alphabetical order.

1
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CHAPTER 1

Embracing the Quantum Nature

Our understanding of nature is dynamic and changes as new discoveries are made
and ideas evolve. In physics, a paradigm shift in the description of the micro-
scopic world took place in the early 20th century. Reports of e.g atomic emission
spectra, black-body radiation [1] and the photoelectric e�ect [2, 3], unexplainable
in terms of existing, deterministic Newtonian mechanics and classical electrody-
namics, pushed the greatest minds of that time to a new level of comprehension.

Ever since its emergence, the quantum theory has been probed experimentally in
various �elds of physics. In this chapter a short tour through some of the most
important results of quantum state engineering in the area of quantum optics
and quantum nanoelectromechanical systems (NEMS) will be given. It is natural
to begin with shining light on the area of quantum optics, which during the last
seventy years has had a fantastic development with respect to experimental veri-
�cation of quantum mechanics [4]. Quantum optics also provides a wide range of
theoretical achievements [5], which can be further implemented in the quantum
description of systems in other areas of physics.

1.1 Probing the Quantum with Light

"Quantum optics covers quantum phenomena in the radiation-atom interaction
[...], it is also an arena in which to illustrate and elucidate quantum e�ects."[7]
The successful development of quantum optics grew in parallel with advance-
ment of e.g. laser spectroscopy, quantum state detection methods [8], and faster
computers monitoring data sampling, to mention a few [7]. Speci�cally, the
excited Rydberg atoms [9] and the invention of the micromaser [10], were impor-
tant ingredients in quantum optical state engineering. Implementation of these
results led to beautiful experiments by the groups led by S. Haroche and D.
Wineland, enabling tests of the "Gedanken experiments" of quantum superpo-
sition and entanglement, which one only could dream about in the early 1900.
These achievements were awarded by the Nobel Prize in 2012, acknowledging the
scienti�c importance of the �eld [6, 11]. By trapping individual ions and isolating
single quantized �eld modes (photons), controlled creation and manipulation of
superpositions of photonic and phononic quantum states, such as Schrödinger

3
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a) b)

q

p

W

Figure 1.1: a) The experimental Wigner distribution W of a number state n = 3
in phase space of position q and momentum p. b) The experimental Wigner
distribution of a Schrödinger Cat state. The �gures are from [6].
c⃝The Nobel Foundation 2012, S. Haroche.

cat states1, became possible [12, 13].

Figure 1.1 is taken from the awarded work of S. Haroche [6] and shows the
experimentally derived Wigner distribution of quantum states of radiation. Fig-
ure 1.1 a) and b) are non-classical states which will be more discussed in chapter
2. The Wigner distributions were experimentally obtained by tomographic �eld
state reconstruction, often called Wigner tomography [14]. This is a reconstruc-
tion technique, based on statistical, non-destructive, measurements of the state,
where coherences of the state's number distribution are obtained. The visual-
ization of the state is given in terms of the Wigner distribution function. In
his Nobel lecture S. Haroche gives a good analogy to what a Wigner function
represents: "The Wigner function is to the density matrix what the hologram
is to the direct image of an object." [6].2 A detailed description of the Wigner
function can be found in chapter 2 and Appendix A. Engineering of quantum
states goes hand in hand with their veri�cation, and Wigner tomography is an
important ingredient in this process.

In Haroche's experiments the entanglement between matter and radiation is an
important element. Entanglement considers non-classical correlations between
spatially separated systems. The importance of its exploration is manifested in

1The mentioned quantum states will be discussed in more detail in the following chapters.
2The density matrix holds the information of the quantum state. A direct image is equiva-

lent to a photograph.
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the emergence of a new branch in physics - the quantum information theory. The
experimental investigation of the entanglement phenomenon originally belonged
to the quantum optical domain [15], but has over the years progressed to other
structures like e.g spin and solid state systems [16]. Recently entanglement of a
mechanical resonator and an electrical signal was demonstrated [17], by this ex-
tending the domain of accessible quantum information resources to macroscopic,
nanoelectromechanical systems (NEMS).

1.2 Quantum NEMS

As the experimental techniques progressed, so did the drive towards creation of
quantum states in bigger objects. Various research groups have succeeded with
superposing states of Cooper pairs in superconductors [18], molecules like the
C60 fullerene [19], depicted in �gure 1.3 c), and large organic molecules [20], even
viruses are proposed for a trial [21] Larger objects in which superposition states
can be created are represented by the nanoelectromechanical systems (NEMS).
These are nano- and micrometer-sized resonator devices like doubly clamped
beams, cantilevers, membranes, toroids and mirrors. In these devices one wishes
to detect the quantum motion and make the resonators simultaneously vibrate in
two states. An observation of this kind in human designed objects is considered
a scienti�c milestone.

The Race Towards Quantum Motion.

In order to generate macroscopic quantum states in mechanical resonators, one
must be able to control them at the level of individual quanta. During the �rst
decade of the 21st century there was a "hot pursuit" race between several ex-
perimental groups with the goal of demonstrating controlled quantum motion
and reaching the ground state in NEMS. In 2003 Science magazine estimated
that within a half year time the quantum limit would be reached and obtaining
superposition states in NEMS would be possible. The estimate turned out to be
too ambitious.

To enter the quantum regime the temperature dependent thermal energy, kBT ,
is required to be smaller than the quantum energy level spacing, ∆En = h̄ω,
of a resonator with frequency ω. The resonator is to the lowest approxima-
tion assumed to behave as a harmonic oscillator, which is the backbone model
for the resonators. For a harmonic oscillator the energy spectrum is given by
En = h̄ω(n + 1/2), where n is the occupation number. An occupation number
of n = kBT/h̄ω− 1/2 < 1, indicates that the resonator is in its ground state. To
reach the ground state the system must be cooled down to temperatures close to
absolute zero. Even at absolute zero temperature no object stands perfectly still,
but is subject to quantum �uctuations in position q and momentum p, satisfying
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a) b)

Figure 1.2: The �rst two NEMS resonators were the quantum ground state is
reached and veri�ed. a) Left: The mechanical oscillator with oscillations of
its volume. Right: The full system set-up where the mechanical oscillator is
coupled to a qubit, which enables the readout of the oscillator's state. Reprinted
by permission from A. N. Cleland, Nature [22], copyright (2010). b) Zoom of
the mechanical oscillator membrane, part of an LC-circuit, strongly coupled to
a microwave cavity. Reprinted by permission from J. D. Teufel, Nature [23],
copyright (2011).

the Heisenberg uncertainty principle
√
⟨∆q̂2⟩⟨∆p̂2⟩ ≥ h̄/2. The uncertainty prin-

ciple, which will be discussed in chapter 2, relates to the resonator's zero point
motion. Detection of the zero point motion is a desirable proof of reaching the
ground state, but measuring it is in practice far from trivial. The challenges lie
within system cooling and state readout. While it is possible to cool a NEM res-
onator to the ground state using only a cryostat [22], most schemes additionally
involve active cooling techniques [24, 25]. Measurement of a quantum system
will always disturb it in some sense. This is called backaction. To achieve a
successful, continuous quantum state readout, backaction evading measurement
techniques must be implemented into the experimental set-up [8, 25].

Overcoming the challenges in reaching the quantum ground state and success-
fully measuring it, was �rst accomplished in the year 2010 by Andrew Cleland's
group [22]. This breakthrough was achieved by coupling a mechanical resonator,
with oscillations of its volume, to a two-level qubit system. The response of the
qubit is a�ected by the occupation of the mechanical resonator. The state of
the resonator can therefore be probed by measuring the response of the qubit.
The picture of the mechanical resonator and the experimental set-up is shown
in �gure 1.2 a). In 2011 Teufel et al. managed to cool a mechanical resonator
drum to such low temperatures that it seldom left its ground state [26]. The
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drum was a part of a superconducting circuit which was strongly coupled to an
optical cavity. Via side-band cooling, emission of the resonator energy into the
cavity enabled an e�cient reduction in resonator's temperature. The picture of
the resonator drum is shown in �gure 1.1 b). As mentioned in section 1.1 this
system was later implemented to create entangled two-mode squeezed states of
the mechanical and microwave oscillators.

Carbon based NEMS and The Era of Graphene

Figure 1.3: Schematic representation of three carbon allotropes. a) Four layers of
graphene. When stacked upon each other, multiple layers of graphene constitute
graphite. b) Graphene can also be cut and rolled into a carbon nanotube. c)
The C60 fullerene is another carbon allotrope.
Figure source: wikipedia/commons

The nano-resonators mentioned in the previous section typically vibrate at
frequencies of the order of a gigahertz, which results in energy quanta of the order
of millikelvin. To vibrate that fast, the size of the resonator has to be reduced.
A drawback of the small micro-fabricated resonator beams and drums is the de-
crease of their quality factor together with their size. The Q-factor is a measure
of how much of the energy stored in the resonator is lost to the environment
per cycle Q ∼ Ein/Eout. A low Q-factor means the resonator rapidly dissipates
energy, which is unfortunate with respect to the coherence of a quantum state.
The lower the Q-factor, the faster the system decoheres, and the more di�cult
it is to perform measurements on it. It has been observed that carbon-based
nanoresonators like carbon nanotubes and graphene membranes provide high Q-
factors [27, 28]. This combined with a small mass and high strength makes them
good NEMS resonator candidates with a detectable zero point motion, if put
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into quantum regime.

The carbon nanotube shown in �gure 1.3 b), emerged as a hot topic in solid
state physics in the 90s, with scienti�c visions and dreams regarding many an
application. In 2003-2004 isolation of a single-layer graphene by "the scotch
tape technique" was reported [29]. Since then graphene and the nanotube have
shared the role of the hot material science topic [30]. The existing, relatively
broad knowledge about the nanotubes accelerated the progressing graphene re-
search. At the moment graphene is attractive both for academic and industrial
purposes. In 2010 the Nobel Physics prize was awarded to A. Geim and K.
Novoselov for their ground breaking experiments with graphene.3 In one of his
Nobel lectures at Chalmers University of Technology, A. Geim claimed; "For a
material an average journey from academia to industry takes several decades.
For graphene it only took several years."

Graphene is a mono layer of carbon atoms arranged in a two-dimensional hexag-
onal (honeycomb) lattice and is a very light material. When many layers of
graphene are stacked on top of each other they are held together by the weak
van der Waals forces, and constitute graphite. Four layers of graphene are shown
in �gure 1.3 a). Most of us have encountered graphite through writing or drawing
with a pencil. Due to the covalent atomic bonds graphene is strong, yet �exible.
It is elastically stretchable up to 20%, which is very large compared to other
crystalline materials. Additionally, it is transparent and has ballistic electron
transport, making it interesting for optical and electronic implementations [31].
The de�ection in response to an applied force is nonlinear when graphene's out
of plane de�ection exceeds its thickness. The nonlinear response occurs at small
de�ection amplitudes [32], and tension induced nonlinear e�ects allow to tune
its resonance frequency [33, 34]. These nonlinear e�ects are attractive features
with respect to the quantum regime, as a nonlinear quantum oscillator exhibits
features which do not exist in the classical dynamics [35].

For graphene one of the experimental challenges in reaching the quantum regime
is to create su�ciently large coupling to a readout mechanism. By now several
successful optomechanical setups, where the graphene �ake plays the role of a
capacitor plate in the integrated circuit, its �exural motion changing the capaci-
tance, enabling optical cavity readout, are promising with respect to reaching the
quantum regime [36, 37, 38]. At the moment, the lowest number of mechanical
quanta in graphene's fundamental mode is about 50 [37].

Another interesting factor in recent experimental reports is graphene and carbon
nanotubes displaying nonlinear dissipation (NLD), when they are under ten-
sile strain [28]. The damping depends strongly on the amplitude of resonator's

3For about 60 years graphene was theoretically studied, and considered a theoretical mate-
rial, as it was presumed not to exist in a free state.
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motion, and the authors attribute NLD to clamping losses or linear damping
mechanisms coupled to geometric nonlinearities. It has also been proposed that
NLD in graphene occurs due to coupling between �exural and in-plane motion
[39]. There are several numbers of studies of NLD in NEMS [40], quantum optical
[41, 42], optomechanical [43] and solid state [44] systems underlining the impor-
tance and relevance of its theoretical and experimental exploration. In chapters
3 and 4 further discussion on NLD, and how it a�ects a nonlinear resonator in
quantum regime will be picked up.
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CHAPTER 2

The Quantum Mechanical Realm

In this chapter the basic concepts of quantum mechanics will be brie�y explained
and angled towards the upcoming chapters. Theory-wise this chapter will corre-
spond to "dipping the toes into the vast ocean".

Consider an object which is con�ned to a potential in one dimension, like the
harmonic oscillator. When a localized system is investigated in the quantum
regime its observables such as energy, position and momentum are quantized.
In contrast to classical scalar system observables, the quantum observables are
described by matrices with probability weighted measurement outcomes, called
eigenvalues. The entire information of the system is encoded in the wave func-
tion |ψ⟩, expanded in a basis which spans the Hilbert space1. The evolution of
|ψ⟩ of a closed quantum system, i.e. when there is no environment interaction,
is described by the Schrödinger equation

ih̄∂t|ψ⟩ = Ĥ|ψ⟩, (2.1)

where Ĥ is the Hamiltonian, the system's energy operator.

If |ψ⟩ is constructed such that when acted on by an operator Ô it remains un-
changed, then |ψ⟩ is called an eigenfunction of the operator Ô. If two operators
do not have a common set of eigenfunctions, they can not be simultaneously
observed with an unlimited precision. The limit is set by the Heisenberg uncer-
tainty principle. A standard example of this principle can be illustrated by the
position and momentum operators q̂ and p̂. The uncertainty principle states that
the product of their quantum �uctuations is√

⟨∆q̂2⟩⟨∆p̂2⟩ ≥ h̄/2. (2.2)

Hence a precise observation of one observable quantity means decreased preci-
sion in the observation of the other. The uncertainty principle is an important
ingredient in both the theoretical and experimental investigation of quantum
systems.

1The Hilbert space is a complete inner product space.

11
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2.1 Modelling the Nature By Oscillators

Physicists love to describe systems in terms of harmonic oscillators, as the har-
monic model is a solvable and expandable generic model. In the upcoming section
the free evolution of an ideal system of a harmonic oscillator will be described.
The classical picture is �rst presented and subsequently compared with the quan-
tum mechanical representation. A similar approach is then repeated for a special
anharmonic oscillator, the Du�ng oscillator.

2.1.1 The Beloved Harmonic Oscillator

q

p

q

U(q)

Figure 2.1: a) Classical, free evolution of the harmonic oscillator in the phase
space of position and momentum (q, p). Circular trajectories visualize constant
oscillator energies. b) Schematic representation of a classical harmonic oscil-
lator swinging back and forth in a harmonic potential U(q) = mω2q2/2. The
classical harmonic oscillator has a continuous energy spectrum, and amplitude
independent frequency.

The classical expression for the total energy E of a harmonic oscillator is
given in terms of the sum of the kinetic and potential energy

E =
p2

2m
+

1

2
mω2q2. (2.3)

Here q is the oscillator position and p is its momentum. All the measurable
variables are scalars, which vary continuously. The oscillator frequency is given
by ω =

√
k/m, where k is the spring constant, and m is the oscillator's mass.

Imagine now displacing the oscillator from its equilibrium, and letting it swing
back and forth about its equilibrium. The free evolution of such ideal oscillator
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in the phase space of (q, p) is shown in �gure 2.1 a). The amplitudes of (q, p)
are frequency independent and the total energy is conserved, as indicated by the
circular trajectories. Figure 2.1 b) is a schematic representation of the oscillator
swinging back and forth about its equilibrium in the harmonic potential.

In the quantum mechanical representation of a harmonic oscillator the total
energy is given by the Hamilton operator Ĥ which is a sum of the kinetic and
potential energy, respectively expressed in terms of position and momentum op-
erators q̂, p̂

Ĥ0 =
p̂2

2m
+

1

2
mω2q̂2. (2.4)

In contrast to the classical scalar observables E, q, p in (2.3) the quantum me-
chanical observables Ĥ, q̂, p̂ are matrices. It is often convenient to represent the
position and momentum operators in terms of the ladder operators â and â† as

q̂ =
q0√
2
(â† + â), p̂ = i

p0√
2
(â† + â), q0 =

√
h̄

mω
p0 =

√
h̄mω (2.5)

which are expanded in the energy basis2 of the oscillator. These operators act on
the oscillator's energy state, a number state, by either increasing or decreasing
the state's quantum occupation number n

â|n⟩ =
√
n|n− 1⟩, â†|n⟩ =

√
n+ 1|n+ 1⟩. (2.6)

The ladder operators can be combined into e.g. the number operator n̂ = â†â.
By acting on a number state, this operator counts the number of energy quanta in
the state, and by this holding information of which energy eigenstate the system
is in

n̂|n⟩ = n|n⟩. (2.7)

When expressing the Hamiltonian in (2.4) by the operators in (2.6) and (2.7),
its number basis representation is

Ĥ0 = h̄ωn̂+
h̄ω

2
. (2.8)

The �rst term is simply the number operator, counting the energy quanta. The
second term is the zero point energy, or quantum vacuum energy. This term
represents the jitter motion of the oscillator when it is in its ground state as
mentioned in chapter 1. The quantum oscillator will never be "still", but �uc-
tuate in both position and momentum. The constant term is often neglected in
studies of levels above the ground state, which will also be done here. Figure 2.2

2The energy basis of the harmonic oscillator has a lot of names: number basis, occupation
basis or Fock basis.
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a) shows the harmonic potential and the �rst six quantized energy levels of the
quantum harmonic oscillator. For each energy level the position wave function
ψn(q) = ⟨q|n⟩ is included, to visualise the probabilistic properties of the oscillator
being at some given position.

a)

ℏ

q

n=0

n=1

n=2

n=3

n=4

n=5

qp

n=1

p q

n=0

p q

qp

q

Figure 2.2: a) Quantized energy levels of the quantum harmonic oscillator with
corresponding position wave functions ψn(q) for the �rst six energy levels.
b) Wigner representation of the �rst three number states of the harmonic oscil-
lator in the phase space of (q, p). Bottom n = 0, middle n = 1, top n = 2.
c) Wigner representation of the coherent state (|α = 1⟩) in the phase space of
(q, p).

In order to draw a quantum analogy to the classical harmonic pendulum
described above, the coherent state

|α⟩ = D̂(α)|0⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!
|n⟩ (2.9)

can be introduced. This is a minimum uncertainty state which is the quantum
analogue to displacing a pendulum. In (2.9) the displacement is represented in
terms of the displacement operator D̂(α) = exp[αâ† − α∗â], and the rightmost
expression in (2.9) is the coherent state expanded in the number basis. When
projected onto the position or momentum basis, in both bases, the coherent
state wave function obtains the shape of a Gaussian wave packet with minimum
uncertainty in the position and momentum observables. By (2.1) it can be shown
that the time evolution of |α⟩ in a harmonic potential is given by

|α(t)⟩ = Û(t)|α⟩ = e−iĤt/h̄|α⟩ = |αe−iωt⟩, (2.10)
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where Ĥ = Ĥ0 is the Hamiltonian in (2.4), t is time, and the operator Û(t) is
called the time evolution operator.

Quantum states in phase space of (q, p) can be conveniently visualized in terms
of the Wigner distribution or the Wigner function [45, 4], which accounts for the
Heisenberg's uncertainty principle. The Wigner function is a generalization of
the classical phase space probability density. When applied to a quantum state,
the distribution is based on the position and momentum eigenvalues, and can
have negative domains3 due to interference e�ects of the quantum probability
amplitudes. Detailed information on the Wigner function can be found in Ap-
pendix A. The Gaussian bell of the coherent state Wigner function is shown
in the main �gure 2.2 b) and the three lowest number states of the harmonic
oscillator are shown as insets 2.2 b).

Now the pieces can be put together to represent the quantum analogy of the
oscillator evolving in a harmonic potential, where its quantum state is repre-
sented by the Wigner distribution. The schematic evolution is shown in �gure
2.3.

Figure 2.3: Schematic representation of the free, harmonic quantum evolution
of a coherent state |α = 1⟩. The state is visualized by the Wigner function in
the phase space of (q, p) in which it takes the form of a Gaussian wave packet,
or the Gaussian bell. Contrary to the classical evolution, at every point of the
trajectory, there is now an uncertainty in q and p encoded in the width of the
Gaussian bell.

3The negative domains are purely quantum mechanical, with no classical analogue.
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2.1.2 The Du�ng Oscillator

The harmonic oscillator is in many cases an idealized model of a system. Most
physical systems are nonlinear to some extent. A Du�ng oscillator is widely used
as a representative model in description of mechanical resonators with nonlinear
elastic behaviour, like e.g. graphene in chapter 1. In contrast to the harmonic
oscillator the anharmonic oscillator can have amplitude dependent frequency, as
there is a nonlinear relation between the applied force and system response.

The total energy of the classical Du�ng oscillator is given by

E =
p2

2m
+

1

2
mω2q2 +

α0

4
q4, (2.11)

where the variables are as in equation (2.3), and α0 is the Du�ng constant. For
most NEMS the Du�ng part of the Hamiltonian is much smaller than the har-
monic part, which is assumed here. When displacing the Du�ng oscillator, in
the same manner as the harmonic oscillator, it will swing back and forth about
its equilibrium. The phase space trajectory will be slightly elliptic, but is hard
to distinguish from the harmonic circular path without an extensive zoom.

While a quantum harmonic oscillator displays a behaviour analogous to its
classical counterpart, the same does not hold for nonlinear Du�ng oscillator.
The presence of the nonlinearity facilitates the creation of non-classical states.
In the quantum analogy, the Hamilton operator is given in terms of position and
momentum operators and has an additional quartic Du�ng potential term

Ĥ =
p̂2

2m
+

1

2
mω2q̂2 +

α0

4
q̂4. (2.12)

Like for the harmonic oscillator, the Du�ng Hamiltonian can be expressed in
terms of number operators: when only keeping the ladder operator combinations
with equal number of â and â† in q̂4, i.e. performing the rotating wave approxi-
mation (RWA), which is valid when the oscillator amplitude is of the order of the
zero point amplitude and h̄α0/m

2ω2 ≪ ω, the Hamiltonian (2.12) is in number
basis given by

Ĥ = h̄ωn̂+ h̄µn̂2, (2.13)

where µ = 3h̄α0/8m
2ω2. Details on the RWA can be found in appendix B. The

energy spectrum of the Hamiltonian in 2.13 has the same energy basis as (2.4),
but the eigenenergies of the Du�ng oscillator are slightly shifted with respect to
the energy levels of the harmonic oscillator, En = h̄(ωn + µn2), and the energy
levels are non-equidistant, as can be seen in �gure 2.4 a).

Although µ ≪ ω, when a quantum Du�ng oscillator is initiated in a coherent
state, its free evolution possesses e�ects which do not exist in the corresponding



2.1. MODELLING THE NATURE BY OSCILLATORS 17

a) b)

q

n=0

n=1

n=2

n=3

n=4

n=5

n=6

n=7ℏ

q q

t=3T/4p

q

t=T/2p

q

Figure 2.4: a) The �rst eight quantized energy levels of the Du�ng oscillator
with µ/ω = 5 · 10−3 (blue). The quantized energy levels and the potential
of the harmonic oscillator are included for comparison (black). The quartic
Du�ng term in (2.12) shifts the energy levels with respect to the levels of the
harmonic oscillator, and the energy levels are no longer equidistant. b) Schematic
representation of the free quantum evolution of a coherent state |α = 2⟩ in a
Du�ng potential, µ/ω = 5 ·10−3. The state is visualized by the Wigner function
in the phase space of (q, p), in which it initially takes the form of a Gaussian wave
packet. Due to the Du�ng potential, at times π/2µ and 3π/2µ the Gaussian
bell evolves into a quantum superposition state - a cat state.

classical evolution. Under the evolution of (2.13) at time t = π/2µ, the ini-
tial coherent state |α, t = 0⟩ evolves into a "Schrödinger cat state" a quantum
superposition of two coherent states

|α, π/2µ⟩ = e−iπ/4

√
2

[|α⟩+ i| − α⟩] . (2.14)

In a quantum system isolated from an environment this evolution is periodic in
time. As depicted in �gure 2.4 b), the oscillator state will periodically evolve to a
cat state at times of T/4 and 3T/4, and back into a coherent state at times of T/2
and T , where T = 2π/µ. At other intermediate times the oscillator undergoes
a "zoo" of states, which also appear and reappear cyclically. The intermediate
states do not have neat mathematical expressions. The derivation of the coherent
state evolving into a cat state can be found in Appendix C.
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The cat state has a distinct Wigner function representation, a top view of which
is shown in �gure 2.4 b), at t = T/2 and t = 3T/4. It consists of two Gaussian
bells separated by interference fringes, which have alternating positive and nega-
tive domains, indicating the state being a quantum superposition. The cat state
with phase of π/4, as in (2.14), is also sometimes referred to as "the Yurke-Stoler
cat" as a tribute to Yurke and Stoler [46], who contributed with the early ideas
on how to create a freely propagating optical superposition state. They theoreti-
cally showed that when a coherent state propagates in a Kerr medium, a medium
with a nonlinear susceptibility, it can under suitable conditions, evolve into a cat
state. The Kerr self phase modulation can be modelled by the Hamiltonian in
(2.13). The general term "cat state" originates from the "Schrödinger cat state"
and is a concept of a great physical relevance, as such a state represents the
quantum mechanical essence of state superposition and entanglement.

2.2 State Superposition and Entanglement

Figure 2.5: Semi-artistic interpretation of the Schrödinger's cat Gedanken ex-
periment.

By the early 1930s the fundamental backbone of the non-relativistic quantum
theoretical description of the microscopic world was established [47]. However,
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the outcomes of the newly established theory showed signs of very strangely
correlated behaviour in two-particle systems. Theoretical predictions of global
states in spatially separated bipartite systems, which cannot be written as prod-
uct states of the individual sub-systems, contradicted the common sense. Even
more strangely, theoretical predictions indicated that if one sub-system were
probed and resulted in a particular measurement outcome, the other sub-system
would instantaneously collapse into an identical measurement outcome, or if the
sub-systems were anti-correlated, the opposite outcome. It was as if the subsys-
tems could communicate faster than the speed of light without being directly
coupled in any obvious way. This contradicted the theory of relativity.

The problem of this "spooky action at a distance" was �rst recognized and the-
oretically addressed in the historical papers of Einstein, Podolsky and Rosen
(EPR) in [48], and Schrödinger in [49]. The term "entanglement" was intro-
duced by Schrödinger as a name for the strange correlations. Although entangle-
ment was formally accepted, it was far from understood4. The argument of the
EPR-paper was that the existing quantum mechanical description of the physical
reality was incomplete. The attempt was to use the concept of entanglement to
ascribe values to physical quantities a priori to measurement by the local hidden
variable model, (LHVM). This model can be comprised to three statements:

a) Realism - measurement outcomes are properties intrinsically carried by a
system, and exist prior to and independent of a measurement.

b) Locality - measurements obtained at a certain location in space are inde-
pendent of any actions performed elsewhere.

c) Free will - the local measurement apparatus is independent and does not
a�ect the hidden variables which determine the local measurement results.

Schrödinger on the other hand, tried to use the existing quantum formalism to
explain entanglement by his famous thought experiment with the cat in a box.
By this, shedding light on how one could interpret an entangled, macroscopic
superposition state: The famous cat is put into a black box with a poisonous gas
container. The container may by chance be broken by a mechanism triggered by
the decay of a radioactive substance. An intact container means the cat is alive,
which can be denoted by the system state vector |u, a⟩, unbroken container, alive
cat. Breaking the container results in a dead cat, denoted by the state vector
|b, d⟩, broken container, dead cat. After a time corresponding to many half-times
of radioactive decay, and shorter than the lifetime of a cat, both outcomes are
possible, but cannot be detected by the observer. Assuming the probabilities for
the outcomes are equal, the system state vector can be written as

|Ψ⟩ = 1√
2
(|u, a⟩+ |b, d⟩) .

4We still do not have a complete understanding of entanglement.
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The system is hence in what is called a superposition state, the so-called "cat
state". Both outcomes exist simultaneously until someone performs a measure-
ment. It is also an entangled state, since both a dead and alive cat is correlated
with a broken or an unbroken container. Figure shows a semi-artistic interpre-
tation of Schrödinger's cat Gedanken experiment.

About three decades after the initial entanglement discussion Bell theoretically
proved the EPR-arguments to be wrong. In his work he showed that it is ex-
actly the entanglement that rules out the possibility of including the classical
determinism of LHVM into the quantum mechanical theory [50]. Bell mathe-
matically formalized the EPR-hypothesis. The assumptions a)-c) impose certain
constraints on statistical correlations in bipartite systems and their mathematical
description is referred to as the Bell inequalities. The correlations of entangled
states violate the Bell inequalities, meaning that entanglement cannot be ex-
plained within the classical formalism of LHVM.

The �rst successful experiments testing Bell's theory followed shortly after with
outcomes strongly indicating entanglement's existence [51]. All doubt was re-
moved in the following decades with numerous reports with results pointing to-
wards the correctness of the quantum mechanical predictions [47, 52]. From the
experimental reports of the past two decades it is clear that entanglement is not
a merely a philosophical matter, but a quantum resource which can be manipu-
lated, distilled, controlled, broadcast and can take on tasks that are impossible
to perform classically [47]. These are strong motivation factors for continuing
to extend our understanding of entangled states and their possibilities of imple-
mentation.

2.2.1 Entangled States

By general de�nition any pure multipartite state in the Hilbert space H for a
system consisting of n sub-systems

|Ψ⟩ ∈ H = ⊗n
i=1Hi, (2.15)

is entangled if it cannot be written as a product of n vectors corresponding to
Hilbert spaces of the sub-systems Hi [47]

|Ψ⟩ ̸= |Ψ1⟩ ⊗ |Ψ2⟩ · · · ⊗ |Ψn⟩. (2.16)

In addition to the cat states in section 2.1.2, examples of signi�cant pure entan-
gled states are the EPR states, also called Bell states, singlet states or e-bits5.
These are maximally entangled states with maximal knowledge of the total sys-
tem and no knowledge of the subsystems

5The name e-bit, entangled bit, is often used in the �eld of quantum information.



2.2. STATE SUPERPOSITION AND ENTANGLEMENT 21

|ψ±⟩ = 1√
2
(|0⟩|1⟩ ± |1⟩|0⟩) |ϕ±⟩ = 1√

2
(|0⟩|0⟩ ± |1⟩|1⟩). (2.17)

These states have a �nite dimensional Hilbert space, consisting of �nite dimen-
sional Hilbert sub-spaces. Systems like the quantum harmonic oscillator is a
continuous variable (CV) system, with a Hilbert space with an in�nite dimen-
sion.

Two-mode squeezed states are entangled states of CV systems and are related to

p

q

Figure 2.6: Top view of the Wigner distribution of an amplitude squeezed vacuum
state with squeezing parameter r = 1, in phase space of position q and momentum
p.

the Bell states. They are well studied, rather easily generated and implemented
[17, 53]. For a single oscillator the simplest squeezed state is the squeezed vac-

uum state Ŝ|0⟩, where Ŝ = e
1
2
(ξâ2−ξ∗â†2) is the squeezing operator and ξ = reiθ is

the squeezing parameter. The Wigner function of amplitude squeezed vacuum,
in the phase space of (q, p), is shown in �gure 2.6. The Gaussian wave packet of
the state is centred around the phase space origin and in contrast to the circular
area of a ground state, its area is "cigar shaped". Its width is squeezed below
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the minimum uncertainty in q (r > 0). The with of the bell is correspondingly
increased in p, so the area of the state is not changed, in order not to violate the
Heisenberg uncertainty relation. Correspondingly, if the squeezing is done in p
(r < 0), the width of the Gaussian bell is increased in q.

When expanding the object of study to a bipartite system, the one-mode squeezed
state can be extended to a two-mode squeezed state. The simplest is the two-

mode squeezed vacuum Ŝ12|00⟩, where Ŝ12 = e(ξ
∗â1â2−ξâ†1â

†
2) is the two-mode

squeezing operator. Two-mode squeezed states display "Global squeezing", re-
duced �uctuations in linear combinations of variables of both subsystems. Indi-
vidual squeezing is not observed in the �uctuations of each subsystem alone. In
the limiting case of r → ∞, the two-mode squeezed states approach the maxi-
mally entangled EPR states in (2.17).

All of the above mentioned states are pure entangled states. In the lab pure
states are rare due to the interaction with the environment. One has to deal
with mixed states, represented in terms of a density matrix ρ̂. A mixed state ρ̂
of n subsystems is entangled if it cannot be represented as a classical mixture of
separable states

ρ̂ ̸=
∞∑
i=0

piρ̂
i
1 ⊗ ρ̂i2 ⊗ . . . ρ̂in, (2.18)

each with
∑

i pi = 1 and pi ≥ 0.6 In order to be able to classify which states are
entangled and which are not, and if entangled, how strong the entanglement is,
there are developed theoretical density matrix analysis methods, which can be
applied to mixed as well as to pure states. Next, the theoretical methods of state
classi�cation and entanglement quanti�cation, used in the appended papers, will
be introduced.

2.2.2 Classi�cation and Quanti�cation of Entanglement

One of the strongest criteria classifying whether a state is entangled or not is
the Peres criterion of separability, which is shown to be true for all 2 ⊗ 2 and
2 ⊗ 3 systems [54] and also for continuous variable systems [55, 56]. The Peres
criterion, also called the Positive Partial Transpose (PPT) criterion, states that
if a state ρ̂ = ρ̂AB is separable, then after a partial transpose

⟨nA, iB|ρ̂TA|mA, jB⟩ = ⟨mA, iB|ρ̂|nA, jB⟩, (2.19)

the eigenspectrum of ρ̂ is still positive. If at least one eigenvalue is negative, then
the state is non-separable, and by de�nition of (2.18), is entangled.

There exist numerous mixed state entanglement quanti�cation methods [47, 57].

6A convex combination of product states.
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Figure 2.7: Negativity N of the two-mode squeezed vacuum state as function of
the squeezing parameter r.

A frequently used analytic tool is the negativity. The measure of negativity was
introduced by Vidal and Werner and is built upon the PPT criterion [58]. The
negativity N (ρ̂) is the sum of negative eigenvalues εi of the partial transpose ρ̂

TA

of a density matrix ρ̂ = ρ̂AB, and by this measures the degree of how much ρTA

fails to be positive de�nite

N (ρ̂) =
∑
i

|εi|, εi < 0. (2.20)

An equivalent representation is

N (ρ̂) =
1

2
(||ρ̂TA || − 1), (2.21)

where ||ρ̂TA|| is the trace norm of the partial transpose ρ̂TA . The trace norm of

any general, Hermitian operator is ||Ô|| = Tr
√
Ô†Ô =

∑
i εi. Since ρ̂TA may

have negative eigenvalues, the general trace norm reads as

||ρ̂TA || = 1 + 2
∑
i

|εi| ≡ 1 + 2N , εi < 0. (2.22)

Figure 2.7 shows the negativity N of the two-mode squeezed vacuum state as
function of the squeezing parameter r. The negativity is calculated by the method
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described above. When r = 0 also N = 0, and negativity's increase with r cor-
responds to increased entanglement of the squeezed state.

As already mentioned, an environment interaction strongly a�ects pure quan-
tum states. In the next chapter this will be further discussed in the context of
dissipation mechanisms.



CHAPTER 3

Dissipation

In the previous chapter the dissipation free evolution of a harmonic and a Du�ng
oscillator was reviewed. In nature dissipation free systems are as good as impos-
sible, as no system is completely isolated from interactions with its surroundings.
Dissipation, or damping, refers to the transfer and conversion of energy and is
an essential mechanism in physical, chemical and biological processes. In this
chapter the phenomenological classical dissipative model of Brownian motion is
brie�y presented. The corresponding quantum description in the weak coupling
limit, and how the dissipation a�ects the quantum states, are discussed for the
cases of linear and nonlinear system-bath coupling.

3.1 Classical Dissipation

The classical model of Brownian motion, or a Wiener process1 considers the
dynamics of a particle in a viscous medium. The e�ects of the dissipation are
treated statistically, where the in�uence of the environment is separated into two
forces: a friction force and a random force. The classical dynamics of the dissipa-
tive system is described by the Langevin equation, which is used in a wide range
of systems like particles in liquids or gases, electric circuits, motion of diatomic
molecules in a solution and more. For a harmonic oscillator, linearly coupled to
an environment the Langevin equation can be solved exactly.

Assume the system of interest is a harmonic or a Du�ng oscillator, and couple
it bilinearly to an environment which can be described by a collection of non-
interacting harmonic oscillators.2 The total Hamiltonian of the one-dimensional
oscillator, in a potential U(q), is

1The �rst reports on Brownian motion came already in 1700's, but bear the name of the
botanist R. Brown, who in 1827, discovered that tiny pollen grains suspended in water, ex-
hibited a continuous but also erratic motion. This physical behaviour was explained by A.
Einstein [59], showing that the particles were randomly bombarded by the water molecules.
The rigorous mathematical formalization of the Brownian motion as a random process was
developed out by N. Wiener. Therefore, the Brownian process is also known as the Wiener
process.

2In physics this kind of environment is often called a bosonic heat bath.

25
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a) b)

q

p

Figure 3.1: a) Schematic representation of an oscillator system immersed into
a heat bath of a liquid or a gas. The oscillator interacts with the bath and is
a�ected by the random collisions with the particles in the bath. b) Example
of the classical Brownian dynamics of a harmonic oscillator in the phase space
of position and momentum (q, p). The friction and the random forces are re-
spectively manifested in the spiral trajectory of diminishing system energy, and
the random �uctuations in the trajectory line. The dashed circle is included for
comparison and represents the undamped evolution of the harmonic oscillator.

H =
p2

2m
+ U(q) + q

∑
k

gkqk +
∑
k

p2k
2mk

+
mkω

2
k

2
, (3.1)

where pk, ωk,mk are the momentum, frequency and mass of the k'th bath mode
and gk is the coupling constant of the system's position coordinate q to the k'th
mode's position coordinate qk. A schematic representation of the system and the
bath is shown in �gure 3.1 a). By means of Hamilton's equations one can from
(3.1) derive the generalized Langevin equation of motion

mq̈ = −∂qŨ(q)−
∫ t

0

dτ q̇(τ)Γ(t− τ) +R(t). (3.2)

The terms, from left to right, are the resultant force, the restoring force from the
renormalized potential Ũ(q), the friction force described by a memory integral
containing the friction kernel Γ(t − τ), and a random force R(t). In general,
from the moment the coupling between the system and the bath is established,
the friction integral depends on the entire history of the system's evolution. The
physical meaning of the bath memory is the bath requiring a certain �nite time
to respond to any �uctuation in the system. This again a�ects how the bath acts
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back on the system. It is often adequate to ascribe the environment an ability of
memoryless response to changes. Such environment is called Markovian3, in case
of which the friction kernel is Γ(t) = 2Γ0δ(t) and the memory integral in (3.2)
is easily evaluated. The special case of the Brownian motion in a Markovian
environment is described by the classical Langevin equation

mq̈ = −∂qŨ(q)− 2Γ0q̇ +R(t). (3.3)

The random force R(t) is completely determined by the dynamics of the bath.
For a large number of bath degrees of freedom one is simply not able to account
for the detailed microscopic dynamics. It is therefore convenient to treat the bath
as a macroscopic ensemble with certain statistical properties. For a harmonic
bath model R(t) is a Gaussian random process, called δ-correlated white noise
with in�nitely short correlation time ⟨R(t)R(t′)⟩ ∼ δ(t − t′). The random and
friction forces are connected by the �uctuation-dissipation theorem.

For a harmonic potential U(q) = mω2q2/2, the Langevin equation (3.3) is of-
ten represented in the form

q̈ + γq̇ + ω2q = f(t), (3.4)

where the renormalized quantities are γ = 2Γ0/m, f(t) = R(t)/m. Figure 3.1
b) shows the Brownian dynamics of a harmonic oscillator in the phase space of
position and momentum (q, p), interacting with a harmonic environment. The
friction force is manifested in the spiral shaped trajectory of diminishing oscillator
energy, and the random force manifests itself in the �uctuations of the trajectory
line. The dashed circular trajectory is included for comparison of the dissipation
free evolution of the harmonic oscillator in �gure 2.1 a).

3.2 Quantum Dissipation

The quantum mechanical evolution of a system interacting with an environment
is given by a Quantum Master Equation (QME), the common e�ect of which is
the irreversible relaxation to equilibrium. A quantum description of the Brow-
nian motion is treated by several models, depending on certain approximation
limits of the system in question. In the limit of weak coupling and the bath's
correlation time being much smaller than the system's relaxation time, known
as "the quantum optical limit", the Born-Markov QME in the RWA is a con-
venient description for the dissipative quantum dynamics, and is widely used [60].

The derivation of a QME begins with the von Neumann equation

3A Markov process is a random process in which the future is independent of the past, given
the present.



3.2. QUANTUM DISSIPATION 28

ih̄
dρ̂

dt
= [Ĥ, ρ̂], (3.5)

which is equivalent to the Schrödinger equation (2.1), extended to consider the
evolution of the total density matrix ρ̂ of the system and the bath. The total
Hamiltonian Ĥ for the combined system consists of three terms

Ĥ = ĤS + ĤSB + ĤB, (3.6)

which represent the system Hamiltonian, the system-bath interaction, and the
bath Hamiltonian. In the next section, the QMEs for the linear and nonlinear
system-bath couplings will be discussed for the harmonic and Du�ng oscillator
systems. A rigorous treatment of quantum master equations can be found in the
literature [60, 61].

3.2.1 Linear Coupling

The quantum Hamiltonian corresponding to (3.1) is

Ĥ =
p̂2

2m
+ U(q̂) + q̂

∑
k

gkq̂k +
∑
k

p̂2k
2mk

+
mkω

2
kq̂

2
k

2
, (3.7)

where the considered potential

U(q̂) =
1

2
mω2q̂2 +

α0

4
q̂4 (3.8)

is either the Du�ng, or if α0 = 0, the harmonic potential. In accordance with
(3.6), the �rst two terms on the right hand side in (3.7) represent the system
Hamiltonian ĤS, the middle term is the interaction Hamiltonian ĤSB with a
bilinear system-bath coupling, and the last term is the Hamiltonian of the bosonic
bath ĤB. Inserting the Hamiltonian (3.1) into (3.5) and assuming the bath
being in thermal equilibrium, Markovian, and with a weak system-bath coupling
gk ≪ ω (Born approximation), the bath will not be a�ected by the changes in
the system. The reservoir is then treated as a statistical ensemble. This enables
tracing over the bath degrees of freedom, and the QME reduces to the evolution
of the reduced density matrix for the system, ρ̂S. For the system given above,
the Born-Markov QME in Schrödinger picture and RWA is

˙̂ρS = −i[Ĥ ′

S, ρ̂S]−
γ(ω)

2
[{â†â, ρ̂S} − 2âρ̂Sâ

†]− γ(−ω)
2

[{ââ†, ρ̂S} − 2â†ρ̂Sâ], (3.9)

where m = 1 and h̄ = 1, and Ĥ
′
S is the RWA system Hamiltonian. A detailed

derivation of (3.9) can be found in Appendix D. In (3.9) the �rst commutator
term is the coherent evolution of the oscillator systems discussed in chapter 2.
The term multiplied by the dissipation rate γ(ω) = Γ0(NB(ω) + 1) describes the
emission of energy quanta from the system to the bath. The term multiplied
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by the excitation rate γ(−ω) = Γ0NB(ω) describes the absorption of the energy
quanta by the system from the bath. The in�uence and characteristics of the
bath are incorporated into the calculation of the rates, which both depend on
the dissipation strength Γ0 and the Bose-Einstein distribution NB(ω).

4 The
excitation and dissipation terms have the same Lindblad structure [60, 62]

L̂[X̂]ρ̂ = {X̂†X̂, ρ̂} − 2X̂†ρ̂X̂. (3.10)

Here L is the Lindblad superoperator, X̂ and ρ̂ are a general operator and a
density matrix. In the case of a linear system-bath coupling, X̂ and (X̂†) are the
creation and (annihilation) operators to the �rst power. The anti-commutator
term in (3.10) governs the exponential evolution, whereas the term with oper-
ators on both sides of ρ̂ is the jumping term, providing discrete transitions of
single energy quanta.

Equation (3.9) can further be written in a compact form

dρ̂S
dt

= Lρ̂S = (L0 + L1)ρ̂S, (3.11)

with L0ρS = −i[ĤS, ρ̂S] and L1ρ̂S = (L[â] + L[â†])ρ̂S. In analogy with the time
evolution operator in (2.10), given that Ĥ, and hence, L are time independent,
the time evolution of ρ̂S(t) is

ρ̂S(t) = exp[L(t− t0)]ρ̂S(t0), (3.12)

where exp[L(t − t0)] is the time evolution superoperator. Figure 3.2 a) shows
the dissipative quantum evolution of an initial coherent state of a harmonic os-
cillator, α0 = 0 in (3.8), at temperature T = 0, linearly coupled to a bosonic
environment. This is a quantum analogy of the classical, dissipative evolution in
�gure 3.1 b). The evolution is obtained by integration of the QME (3.11), and
is represented by the Wigner function in the phase space of (q, p). The leftmost
dashed circle is the contour of the initial coherent state wave packet with the
�uctuations incorporated into its width. The spiral is its midpoint trajectory
towards the steady state. The equilibrium steady state is the ground state |0⟩,
centred about the origin and shown by the Wigner function (colourmap).

Figure 3.2 b) shows the dissipative quantum evolution of an initial Yurke-Stoler
cat state of a harmonic oscillator at T = 0, linearly coupled to a bosonic en-
vironment. The evolution is represented by a Wigner function (colourmap) in
the phase space of (q, p). The four snapshots show the initial cat state at t = 0,
decohering cat states at two subsequent times of t = T0 and t = 2T0, and the
�nal equilibrium steady state, the ground state at t = 10T0. Here T0 = 2π/ω is

4The dissipation strength Γ0 is obtained by the assumption of an Ohmic bath of non-
interacting bosonic modes, which are distributed according to the Bose-Einstein distribution
N(ω).
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Figure 3.2: a) Dissipative quantum evolution, Wigner function representation, of
a coherent state of a harmonic oscillator weakly coupled to a bosonic, Markovian
environment at zero temperature. The initial state is indicated by the dashed,
leftmost circular contour. The spiral indicates the trajectory of the Gaussian
bell's midpoint. The Gaussian bell of the equilibrium state |0⟩ is centred about
the origin and is shown by the coluormap. b)- e) Dissipative quantum evolution,
Wigner function representation of a Yurke-Stoler cat state with α = 2 of a
harmonic oscillator. The snap shots are taken at times t = 0, t = T0, t = 2T0,
and t = 10T0, where T0 = 2π/ω is one period of the coherent oscillation. The
cat state quickly decoheres and reaches the ground state equilibrium.

one period of the harmonic oscillation. The purpose of the �gure is to visualise
the quantum state's fragility and its rapid loss of quantum coherence due to the
bath interaction. In the Wigner distribution of a cat state the decoherence is
manifested in the loss of the interference pattern as the state evolves into a clas-
sical mixture. Finally the two Gaussian bells merge into one and center about
the origin in the ground state. This behaviour has been extensively investigated
and it is shown that when expressed in the coherent basis, both the diagonal and
o�-diagonal density matrix elements of the cat state rapidly decay. Additionally,
the decoherence rate increases with the initial size of the cat [63, 64, 65].
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Figure 3.3: Evolution of the Wigner function of a coherent state of a Du�ng
oscillator, linearly and weakly coupled to a bosonic, Markovian environment at
zero temperature. The snap shots are taken at times when cat states and coherent
states are expected to emerge. a) Initial coherent state |α = 2⟩ at t = 0. b) The
�rst emerging and decohering cat state at t = T0/4. c) Decohering coherent state
at t = T0/2. d) The second, strongly decohered cat state at t = 3T0/4. Here
T0 = 2π/µ and µ is the Du�ng constant in (2.13) with µ/ω = 5 · 10−3.

Figure 3.3 a) - d) show the Wigner function evolution of a damped Du�ng
oscillator initiated with a coherent state |α = 2⟩. The snap shots are at taken at
times t = [0, T0/4, T0/2, 3T0/4], with T0 = 2π/µ, and are a comparison to the
dissipation free evolution in �gure 2.4 b). As in the dissipation free dynamics, the
coherent evolution part of the QME (3.9) will cyclically evolve the initial coherent
state into a cat state. However, this evolution is disturbed by the in�uence of the
system-bath interaction. The e�ect is, as for the damped harmonic oscillator,
destruction of quantum interference, prevention of state recurrence and �nally,
a saturation to the ground state [66].
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3.2.2 Nonlinear Coupling

As seen in previous section, the linear system-bath coupling results in a dissipa-
tive process, linear damping (LD), which kills quantum coherence and relaxes the
system to an equilibrium steady state. At zero temperature this is the ground
state. If a system possesses conservative nonlinearities, it is natural to take into
account higher orders of the system-environment coupling [67]. This results in
a dissipative process, nonlinear damping (NLD), very much di�erent from the
LD. The total system Hamiltonian of an oscillator nonlinearly coupled to the
environment is

Ĥ =
p̂2

2m
+ U(q̂) + q̂2

∑
k

gkq̂k +
∑
k

p̂2k
2mk

+
mkω

2
kq̂

2
k

2
, (3.13)

where the potential is as in (3.8). Compared to (3.7) the interaction between
the system and the bath is now quadratic in q̂, and this coupling contributes
to a renormalisation of the Du�ng constant, which is assumed to be negligibly
small. By similar treatment as in section 3.2.1, the nonlinear QME in RWA and
Shrödinger picture is

˙̂ρS = −i[Ĥ ′

S, ρ̂S]−
γ(2ω)

2
[{â†2â2, ρ̂S}−2â2ρ̂Sâ

†2]− γ(−2ω)

2
[{â2â†2, ρ̂S}−2â†2ρ̂Sâ

2],

(3.14)
whereH

′
S is the system Hamiltonian in RWA. In analogy to (3.9) the �rst commu-

tator term is the coherent evolution of the oscillator system discussed in chapter
2. The dissipative part has the Lindblad structure of equation (3.10). In cur-
rent QME X̂, (X̂†) are creation and annihilation operators to the second power,
meaning that in the case of a nonlinear system-bath coupling the discrete en-
ergy transitions involve two quanta. As in (3.9) the term multiplied by the
dissipation rate γ(2ω) = Γ0(NB(2ω) + 1) describes the emission of two energy
quanta from the system to the bath. The term multiplied by the excitation
rate γ(−2ω) = Γ0NB(2ω) describes the absorption of two energy quanta by the
system from the bath. The in�uence and characteristics of the bath are incorpo-
rated into the calculation of these rates. Both depend on the dissipation strength
Γ0 and the Bose-Einstein distribution NB(2ω). The detailed derivation of (3.14)
can be found in Appendix D.

The two-quanta transition process provides parity conservation of the initial
quantum state's density matrix elements. This results in a non-classical steady
state, which at T = 0, is a coherent superposition of the ground and the �rst
excited number states [68]

ρ̂S(t = ∞) = ρ00|0⟩⟨0|+ ρ01|0⟩⟨1|+ ρ10|1⟩⟨0|+ ρ11|1⟩⟨1|. (3.15)

This can be shown, as by the QME in (3.14), ˙̂ρS(t = ∞) = 0. The NLD-preserved
coherence of the o�-diagonal matrix elements is a contrast to linear damping, by
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which ρ01 and ρ10 would rapidly vanish. This can be inferred by the QME in
(3.9), by which ˙̂ρS(t = ∞) ̸= 0.

Figure 3.4 a) shows the Wigner distribution of the initial state |α = 1⟩ of a
harmonic oscillator, and b) shows the steady state, described by (3.15), in which
the oscillator saturates. The negative domain in the Wigner distribution con-
�rms the steady state's non-classical features. A further discussion of the NLD
and its e�ects on quantum states of single and bipartite oscillator systems, at
both T = 0 and T > 0, will be presented in chapter 4.

a) b)

p pq q

Figure 3.4: a) Wigner function of the initial coherent state of harmonic oscillator
|α = 1⟩. b) Wigner function of the non-classical steady state of the harmonic
oscillator, as result of the nonlinear system-bath coupling to a bosonic, Markovian
environment at zero temperature. The dark, negative domain in the Wigner
distribution indicates the state's non-classicality.
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CHAPTER 4

Summary of Appended Papers

This chapter serves as a summary of the appended papers put into the context
of the previous chapters. In paper I the main question of interest is what kind of
quantum features can be observed in the dynamics of the two lowest degenerate
vibrational modes of a nonlinear graphene resonator. The system consisting of a
graphene membrane and two voltage back-gates is isolated from the interaction
with the environment and the mode dynamics is analysed. In paper II the Du�-
ing oscillator system investigated in paper I is extended to include environment
interaction. The focus is directed towards the dynamics of the lowest vibrational
mode. The main interest lies within what kind of quantum features emerge when
the system-bath interaction is nonlinear, and how these properties are further
in�uenced by inclusion of linear damping. The following paper III extends the
analysis in paper II to a bipartite system of two coupled Du�ng oscillators, each
nonlinearly interacting with an environment. The primary quest is how the NLD
in�uences the entanglement of initially separable states in such a system. Pa-
per IV is a continuation of paper III in which the study is extended to initially
entangled states. The asymptotic entanglement is investigated in the parameter
space of squeezing, dissipation rate and temperature. This is done for two di�er-
ent bath con�gurations. The study also includes a systematic comparison with
known results of asymptotic entanglement in linearly damped bipartite systems.

4.1 Paper I

Generating Macroscopic Superposition States in
Nanomechanical Graphene Resonators

In this paper the system consisting of a graphene membrane, suspended over
two voltage gates is investigated. The system is assumed to be in the quantum
regime and isolated from interactions with the environment. Figure 4.1 shows
the system setup of the square graphene membrane suspended above two local
backgates. By manipulating the membrane with voltage pulses, generation of
non-classical Schrödinger cat states in the membrane's lowest �exural modes is
possible. For a comparative convenience with the appended paper, the notation
here will be as in the original manuscript. For detailed description of equations

35
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Figure 4.1: Cross section of a square graphene membrane resonator. A fully
clamped graphene membrane with side L is suspended a distance u0 above the
substrate. Below, covering two adjacent quadrants beneath the membrane, are
local backgates with time dependent voltage biases V1,2(t). By applying pulses
to the local gates, non-classical states can be generated.

and parameters, please see publication I.

The graphene sheet behaves as a nonlinear membrane, and the attention is re-
stricted to its two lowest degenerate de�ection modes. These modes are quantized
and labelled as mode 1 and mode 2. When both modes are initially in the ground
state |0, 0⟩ and a common bias pulse is applied to both gates at time t > 0, the
system of the two �exural modes is described as two weakly interacting quantum
Du�ng oscillators, where oscillator 2 is displaced. For details see equation (6),
paper I. The displacement of mode 2 arises from the voltage dependent capaci-
tive coupling between the membrane and the gate. The dynamics of the modes
decouple as their coupling term is shown to be weak, and during the voltage onset
mode 1 remains close to its ground state. By focusing on mode 2, introducing
the displaced ladder operator basis transformation b̂2 = â2−ξ0/

√
2, and applying

RWA, the system Hamiltonian of mode 2 resembles the Yurke-Stoler Hamiltonian
(2.13) discussed in chapter 2. The initial ground state of mode 2 in the a-basis
corresponds to a coherent state in the displaced b-basis |0⟩a2 = | − ξ0/

√
2⟩b2 at

the instant of the voltage onset. Figure 4.2 a) and b) schematically illustrate the
system before and at the instant of the voltage pulse. In 4.2 a) the Gaussian wave
packet centred about the origin represents the position probability distribution
P (ξ) of the amplitudes ξ of mode 2. The mode is in the ground state |0⟩a2 of a
Du�ng potential in the original coordinate system of the a-basis.

When the voltage is on, the potential of mode 2 is displaced with ξ0 and lowered
with respect to the origin of the a-basis, as shown by the parabola in �gure 4.2
b). The potential energy of the wave packet increases with respect to the bottom
of the potential well. The b-basis represents a coordinate system which is shifted
with respect to the a-basis coordinate system. Here the origin corresponds to
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Figure 4.2: Schematic representation of the Gaussian probability distribution
P (ξ) of the mode amplitude ξ, represented in two coordinate systems (a and b-
bases) for three di�erent cases: a) Probability distribution in the case of no gate
voltage. The potential is represented by the parabola. b) Probability distribution
at the instant of the voltage onset. c) Probability distribution at the instant of
the superposition states (4.1). The arrows in c) represent the motion of the wave
packets.

the a-basis coordinate ξ0, so that at the instant of the voltage onset the potential
well is symmetric about the origin in the b-basis, and the state of the wave packet
is the coherent state |−ξ0/

√
2⟩b2 . This is shown in the lower part of �gure 4.2 b).

In agreement with the discussion in section 2.1.2 in chapter 2, the coherent state
evolved by the Hamiltonian (2.13), should transform into an interaction picture
cat state in the b-basis

|ψ(T1)⟩ =
1√
2

[
e−iπ/4| − ξ0/

√
2⟩b2 + eiπ/4|ξ0/

√
2⟩b2

]
, (4.1)

=
1√
2

[
|0⟩a2 + i |

√
2ξ0⟩a2

]
. (4.2)

at time T1 = π/2µ, where µ is the Du�ng constant. Or equivalently, to an
overall phase, the state in (4.1) can be transformed to the interaction picture cat
state in the a-basis (4.2). The state superposition obtained in (4.1) and (4.2) can
be interpreted as the mode having two equally probable amplitudes, with their
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Gaussian distributions centred at coordinates 0 and 2ξ0 in the a-basis. The b-
basis represents the same properties, only in a shifted coordinate system, where
the wave packets are centred at the distance |ξ0| on both sides of the origin.
This is displayed in �gure 4.2 c). The arrows indicate the movement of the wave
packets and the dashed wave packet is included for comparison with �gure 4.2 b).

In �gure 4.3 a) the numerical time evolution of the position probability density

Figure 4.3: a) Snapshots of numerical time evolution of the position probability
distribution of mode 2. The snapshots are taken at the turning points of the
corresponding classical trajectory of the system. The the positions (y-axis) are
scaled to the quantum zero point �uctuations. b) Corresponding time evolution
of the envelopes of ⟨ξ̂2⟩ and its associated quantum �uctuations ⟨∆ξ̂22⟩ ∼ A(t) +
B(t) cos(2ωt); The appearance of a cat state is signalled by a decrease in ⟨ξ̂2⟩
along with an increased ⟨∆ξ̂22⟩ in the noise of ⟨ξ̂2⟩. Vertical dashed lines indicate
the agreement with (a).

of mode 2 is shown. The dashed lines indicate the emerging cat states. A signa-
ture of the cat state is a reduction of the average position expectation value ⟨ξ̂2⟩
together with an increase of its quantum �uctuations ⟨∆ξ̂22⟩. This is shown in
�gure 4.3 b) where the envelopes of ⟨ξ̂2⟩ and ⟨∆ξ̂22⟩ corresponding to �gure 4.3
a), respectively decrease and increase, as the cat state emerges.

By applying voltage on one gate, even more intricate states, non-product su-
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Figure 4.4: a) Top view of the reduced Wigner distribution of mode 1 in phase
space of position and momentum (ξ1, π1), of the numerically evolved initial state
|0, 0⟩a, sampled at T̃1. The reduced Wigner distributions are identical for both
modes, both having a bimodal structure. b) Wigner distribution of a), where
α|χ⟩ is removed. c) Wigner distribution of |0, 0⟩a+ i

∣∣−√
2η0,−

√
2η0

⟩
a
. d) Time

evolution of conditional probabilities of mode 1 being in the d-basis' ground,
second or all other eigenstates.

perposition states, can be generated. The system Hamiltonian of the two modes
with one active gate describes the dynamics of two coupled, non-degenerate and
displaced Du�ng oscillators. When performing a basis transformation which
diagonalizes the linearly coupled modes. The Hamiltonian in the new d-basis
describes two Du�ng oscillators, one of them displaced, and coupled together by
a quartic coupling which is stronger than the quartic coupling in the two-gate
con�guration. The initial ground state |0, 0⟩a corresponds in the d-basis to

|0, 0⟩a = |0, η0⟩d.
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After evolution with the Du�ng-like Hamiltonian in equation (11) in paper I,
this state should enter a cat-like non-product state

|ψ(T̃1)⟩ ∝ |0, η0⟩d + i |0,−η0⟩d + α |χ⟩ . (4.3)

The remainder α |χ⟩ = α
∑

n=1 |n⟩d1 |Ψn⟩d2 is present due to the quartic coupling
term in equation (11) in paper I. The numerically obtained Wigner distribution of
the reduced density matrix ρ̂1, of mode 1 in a-basis at time T̃1 is shown in �gure
4.4 a). The distribution has a bimodal structure. The state component |0, η0⟩d+
i |0,−η0⟩d corresponds to a cat-like non-product state |0, 0⟩a+i

∣∣−√
2η0,−

√
2η0

⟩
a

in a-basis. Figure 4.4 b) shows the Wigner distribution in a) after the component
α|χ⟩ is removed by projection. The reduced Wigner distribution of the state
|0, 0⟩a + i

∣∣−√
2η0,−

√
2η0

⟩
a
is included for reference in �gure 4.4 (c). To ensure

that the α|χ⟩ component is not of major signi�cance, the time evolution of the
the conditional probabilities of mode 1 being in either its d-basis ground, second
eigenstate, or all other but these two eigenstates, is shown in �gure 4.4 d).
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4.2 Paper II

Multi-Phonon Relaxation and Generation of Quantum States
in a Nonlinear Mechanical Oscillator

Figure 4.5: a) Nonlinear relaxation of a coherent state |α = 1⟩ of a Du�ng
oscillator via a Yurke-Stoler cat state to a non-classical steady state at T = 0
for three NLD rates γ2−. b) Wigner distribution of the most prominent cat-
like state sampled at τ = 1/2. c) Wigner distribution of the non-classical steady
state. The distributions in both b) and c) display negative non-classical domains.
The dashed line indicates the variance of the ground state.

The study in this paper considers quantum evolution of coherent states of a
Du�ng oscillator mode, with the system Hamiltonian given by (3.13), subject
to nonlinear dissipation (NLD). The two-quanta energy exchange with the bath
is considered. Quantum features in the mode's position variance are analysed
at zero and �nite temperatures, opening for the possibility of state veri�cation
in a ring-down setup. The intricate interplay of LD and NLD is also investigated.

Figure 4.5 a) shows the nonlinear relaxation of the position variance of an initial
coherent state of a Du�ng oscillator at zero temperature for three NLD rates
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γ2−. For short times the Du�ng part of the oscillator's Hamiltonian brings the
system into a cat-like state, indicated by the signi�cant variance increase. This
is most prominent in the graph with γ2−/µ = 1/10 at τ = 1/2. The Wigner
distribution of this state is shown in �gure 4.5 b). By letting the mode emit
two energy quanta to the bath at a time, due to parity conservation, the state
evolves into a non-classical steady state with a structure of the state in equation
(3.15), with weights ρij completely determined by the initial state. The Wigner
distribution of the non-classical steady state is displayed in �gure 4.5 c), and the
state's non-zero, complex o�-diagonal elements ρ01 and ρ10 cause oscillations in
the position variance.

The variance of the steady state obtained by NLD depends on the oscilla-

Figure 4.6: Numerical (symbols) and analytical (lines) zero temperature position
variance of the NLD steady state versus initial displacement amplitude α. The
variance is averaged over one period 2π/µ and displayed for three values of NLD
rate. The straight line shows the variance of the LD steady state, the ground
state.

tor's initial displacement amplitude, and the ratio between the damping rate γ2−
and the Du�ng constant µ. This is demonstrated numerically and analytically in
�gure 4.6. This behaviour is di�erent from the linear decay, which always brings
the system to the ground state. The variance of the ground state (straight line)
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is included in �gure 4.6 for comparison.

For low �nite temperatures the relaxation is sequential. During the �rst short

c

d

Figure 4.7: a) Nonlinear, sequential relaxation of the position variance at T > 0.
b) Asymptotic decay of the o�-diagonal density matrix elements due to bath
excitations. c) Wigner distribution of the thermal steady state with γ2− = µ,
α = 1 and kBT/Ω = 1. A sector is cut out for better visualization. d) Boltzmann
distribution of the even and odd parity sectors of the steady state in c). The
insets show the Wigner distributions of the even and odd sectors.

time sequence of ∼ 1/γ2− the NLD brings the system to the non-classical state
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(3.15) with preserved coherence. During the second long sequence, the thermal
two-quanta excitations contribute to destruction of the coherence. Figure 4.7 a)
shows the NLD relaxation of the position variance of an initial coherent state for
several �nite temperatures. The variance saturates to larger values due to ther-
mal excitations of higher energy levels. Figure 4.7 b) shows the analytical (lines)
and numerical (symbols) asymptotic thermal decay of the o�-diagonal density
matrix elements. The thermal steady state has only diagonal density matrix
elements where the even and the odd parities each are distributed according to
the Boltzmann distribution. This is illustrated in �gure 4.7 c) and d), where in
c) the Wigner distribution of the thermal steady state is shown. The probability
distribution of the even and odd number state parity sectors together with the
Boltzmann distribution are displayed in �gure 4.7 d).

For the interplay of the linear and nonlinear damping mechanisms the evolu-
tion is intricate. The sequential relaxation is still present. An investigation of
the state decay in the second, long relaxation sequence, allows for a reconstruc-
tion of the non-classical properties of the NLD-created state during the short
initial relaxation sequence.
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4.3 Paper III

Nonlinear-Dissipation-Induced Entanglement of Coupled Non-
linear Oscillators

Figure 4.8: Evolution of the probability amplitudes P00 = ρ00,00, P01 = ρ01,01 and
P10 = ρ10,10 of the initial state |α1 = 1⟩⊗|0⟩, evolved by the total Hamiltonian of
two linearly coupled Du�ng oscillators, nonlinearly interacting with individual
reservoirs. a) Short time dynamics displaying quick saturation of the lowest state
populations and oscillations between the states |0, 1⟩ and |1, 0⟩ due to oscillator
coupling. b) Long time evolution of the envelopes of the states in a). The
coupling between the oscillators contributes to a slow dephasing and decrease of
oscillation amplitude of P01 and P10. The symbols and lines represent numerical
and analytic state evaluation.

The system discussed in previous paper is extended to two weakly coupled
quantum Du�ng oscillators, each nonlinearly coupled to an individual dissipa-
tive environment. Similarly to paper II, during the evolution the total parity
is conserved. At zero temperature in the short time limit the NLD facilitates
creation of a non-classical state, weights of which are determined by the initial
state. In the long time limit the presence of the oscillator coupling leads to de-
phasing of certain density matrix elements, but also contributes to asymptotic
entanglement saturation.

The initial separable state of single oscillator displacement |α1 = 1⟩ ⊗ |0⟩ is
investigated. Figure 4.8 shows the evolution of ρ00,00 = Peven, ρ10,10 = P10 and
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ρ01,01 = P01. In �gure 4.8 a) the oscillating behaviour of P10 and P01 is visible in
addition to the quick saturation of Peven due to NLD. The sum P10 +P01 = Podd

initially saturates at a constant value. Figure 4.8 b) shows the envelopes of Peven,
P10 and P01 in the long time limit. Due to the presence of the oscillator coupling,
the amplitudes of P10 and P01 undergo a slow dephasing and gradually saturate
to the same value.

The oscillator coupling creates entanglement which is quanti�ed by the measure

Figure 4.9: Negativity quantifying the evolving entanglement of the initial state
|α1 = 1⟩ ⊗ |α2 = 0⟩. a) Short time negativity dynamics. b) Asymptotic nega-
tivity dynamics. The negativity is governed by |ρ01,10|2. The symbols and lines
represent two di�erent numerical algorithms.

of negativity, discussed in section 2.2.2. By comparing �gures 4.8 a) and 4.9 a),
the negativity attains maximal amplitudes when P01 = P10, corresponding to
maximum oscillator coherence. Minimum negativity values also appear periodi-
cally and coincide with maximum amplitudes of either P01 or P10, corresponding
to minimum oscillator coherence. It is shown that the negativity is mainly gov-
erned by the evolution of the preserved coherence matrix elements ρ01,10 and
ρ10,01, which asymptotically saturate to a constant value. The saturation of the
negativity is shown in �gure 4.9 b).

The relaxation analysis is also performed for the initial state |α1 = 1⟩⊗|α2 = 1⟩.
The state's dynamics displays similar short term and asymptotic features as for
single oscillator displacement. At �nite temperatures signs of the entanglement
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sudden disappearance and revival is seen in the negativity's evolution.

4.4 Paper IV

Entanglement Dynamics of Squeezed Vacuum States Non-
linearly Coupled to Thermal Environments

b
(a)

Figure 4.10: a) Main �gure: disentanglement time (colourbar) of nonlinearly
damped two-mode squeezed vacuum states as function of temperature and
squeezing parameter for two individual baths. Inset: disentanglement time (in-
set colourbar scale) of linearly damped two-mode squeezed vacuum states for
two individual baths, with axes and simulation parameters as in the main �g-
ure. The dashed lines are the contours of theoretically predicted disentanglement
times. b) Main �gure: Time evolution of the negativity of a nonlinearly damped
squeezed two-mode vacuum with squeezing parameter r = 1/20, individual bath
con�guration, for several temperatures and damping rates. Inset: Slope of the
negativity, |γN |, extracted from the second half of the points in the main �gure,
as function of temperature. The dashed line is a slope �t of 2N(2ω0).

The asymptotic entanglement of two quantum harmonic oscillators nonlin-
early coupled to an environment is investigated. The analysis considers con�g-
urations of one common and two individual reservoirs. The study is limited to
harmonic oscillators, as in paper III it was found that the presence of a weak
Du�ng nonlinearity does not a�ect the asymptotic entanglement. In this way
the isolated e�ect of the nonlinear system-bath coupling can be investigated. The
systems are initialized with two-mode squeezed vacuum states, entanglement of
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which is quanti�ed by the negativity. The evolution of negativity is studied
as function of temperature, initial squeezing and system-bath coupling strength.
The results are compared with those of systems with a linear reservoir interaction.

It is known that in the case of a linear reservoir coupling the asymptotic entan-
glement of two-mode squeezed vacuum states depends on the bath con�guration.
In the case of two individual baths and uncoupled oscillators, all initial states
will disentangle. This is shown in the inset of �gure 4.10 a), where the disen-
tanglement time is given as function of the squeezing parameter and temperature.

In the case of the individual bath con�guration but with a nonlinear reservoir
coupling, the state disentanglement is considerably slower. The disentanglement
time as function of squeezing and temperature is displayed in the main �gure
4.10 a). For the chosen evolution time the white region in the �gure indicates
that a part of the NLD states remain entangled. After a longer evolution all
states will eventually disentangle. The parity conservation of NLD a�ects the
asymptotic disentanglement. At zero temperature the initial state is evolved
into a steady state with a �nite negativity. For �nite temperatures this state
will slowly disentangle by thermal dephasing. This process is slow, as for the
nonlinear coupling the thermal dephasing requires simultaneous excitation of
both oscillators. Figure 4.10 b) shows the evolution of the negativity for a �xed
value of r and several temperatures and dissipation strengths Γ0. The slope of
the graphs |γN | increases with increasing temperature. The colour coded graphs
with the same temperature and di�erent Γ0 overlap. This indicates that the
decay is solely temperature dependent. The inset of �gure 4.10 b) shows the ex-
tracted negativity slope as function of temperature. The �t of the slope (dashed
line) is a function of the Bose-Einstein distribution, |γN | = 2N(2ω0), verifying
the temperature dependence of the negativity decay.

For individual oscillators linearly coupled to a common bath there is a sharp
transition between steady state entanglement and disentanglement in the phase
space of squeezing and temperature. The persistent entanglement is connected
to the relative oscillator motion degree of freedom being decoupled from the
bath. For the oscillator system nonlinearly coupled to a common bath no such
mode decoupling occurs, and all states disentangle in a manner very similar to
the individual bath con�guration shown in main �gure 4.10 a) and b). The os-
cillators should in principle be able to exchange information via the bath, as the
Lindblad superoperator does contain an information exchange term. However,
for zero and low temperatures this term's e�ect is suppressed.

Finally, for weakly coupled oscillators, parity protection in combination with
coherent oscillations in the oscillator populations, leads to disappearance and
reappearance of entanglement reminiscent of ESDR behaviour.



CHAPTER 5

Conclusion

The work presented in this thesis has evolved from analysis of a quantum system
isolated from the environment to an open quantum system, where the e�ects of
nonlinear dissipation have been investigated. Also, the system itself was extended
from an individual to a bipartite system. This opened up for a study of how the
system's entanglement is a�ected by a nonlinear interaction with a common and
individual reservoirs. A general outcome is the generation of nonclassical states
by the means of the Du�ng nonlinearity and the nonlinear system-bath interac-
tion.

It has been shown that the two lowest degenerate modes of a graphene membrane
in quantum regime behave as weakly coupled Du�ng oscillators, and can be ex-
ternally manipulated by voltage pulses. By this, the modes can either be coupled
or the motion of one mode can be isolated from the other. When considering
the isolated one-mode case, an initial coherent state, corresponding to mode dis-
placement, will by a free evolution transform into a Schrödinger cat state. By
coupling the modes, cat-like non-product states in both modes are generated.
This is possible due to graphene's onset of nonlinear response at small de�ection
amplitudes.

By focusing on one Du�ng oscillator mode with a nonlinear coupling to the
environment, displacing it and letting it evolve, the mode does not equilibrate to
the ground state. Instead, due to the parity protection mechanism of the non-
linear coupling, it settles in a nonclassical steady state both at zero and �nite
temperatures. When considering an interplay of both linear and nonlinear decay,
if the latter dominates, a sequential relaxation is observed. In the �rst sequence
the initial state relaxes into a nonclassical state, followed by an exponential decay.

The sequential relaxation is also seen in a bipartite system of coupled Du�ng
oscillators, nonlinearly interacting with individual environments. The nonlin-
ear system-bath coupling contributes to the protection of total parity, and the
system settles in a nonclassical steady state. The oscillator coupling entangles
initially separable states and the entanglement is preserved due to the parity
conservation. Even if the coupling could be turned o� at some later time, the

49



CHAPTER 5. CONCLUSION 50

nonlinear damping would preserve the entanglement.

It was also found that the asymptotic entanglement of the bipartite system is not
in�uenced by a weak Du�ng nonlinearity. Therefore, when studying the asymp-
totic features of initially entangled states, a system of two uncoupled harmonic
oscillators, nonlinearly coupled to an environment, was chosen. The environ-
ment was either a common bath or two individual baths. When comparing to
a system with a linear bath interaction, the parity conservation of the nonlinear
coupling reduces the disentanglement rate. There is no qualitative di�erence
between nonlinear exchange with two individual baths or a common bath. This
is in contrast to a situation with the linear coupling. When the oscillators are
weakly coupled, protection of total parity in combination with single quantum
exchange between the oscillators, leads to appearing and disappearing entangle-
ment. Similar behaviour has been reported for linearly damped bipartite systems.

When reviewing the current experimental status of NEMS in quantum regime,
more and more research groups are able to reach the system's lowest quantum
level. Regarding the carbon based NEMS like graphene resonators, the quantum
regime should be attainable. The current challenge lies within graphene's weak
coupling to the readout mechanism, but the prognosis of reaching the ground
state is positive. Observations of nonlinear damping have been reported in sev-
eral NEMS systems in classical regime, but a scenario where the nonlinear damp-
ing rate exceeds the the linear damping rate has not yet been shown possible.
Schemes on how to reach this kind of dissipative behaviour have been proposed.
Two-mode squeezed states entangling a NEMS and a propagating microwave �eld
have been realized and pave a promising route for further exploration of quantum
theory in macroscopic objects and might serve as a possible future application
in information processing.
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APPENDIX A

The Wigner Function

The Wigner function can be interpreted in a following way. Consider a system
with a single degree of freedom, like a particle moving in one dimension. The
quantum state of the particle is described by the wave function |ψ⟩, or equiva-
lently by the operator ρ̂ = |ψ⟩⟨ψ|. Assume the particle performs a jump from
the position eigenstate |x′⟩ to another position eigenstate |x′′⟩. The jump length
is ξ and the center of the jump is denoted by x = (x

′′
+ x

′
)/2. The probability

of the jump is ⟨x′′ |ρ̂|x′⟩. By expressing x
′
and x

′′
in terms of the jump length

and the center point, x
′
= x − ξ/2 and x

′′
= x + ξ/2, the jump probability can

be rewritten as ⟨x + ξ/2|ρ̂|x − ξ/2⟩. A distribution of the momentum p can be
found by performing a Fourier transform of the ⟨x′′ |ρ̂|x′⟩. From this one arrives
at the de�nition of the Wigner Distribution

W(x, p) =
1

2πh̄

∫ ∞

−∞
dξe−ipξ/h̄⟨x+ ξ

2
|ρ̂|x− ξ

2
⟩, (A.1)

where (2πh̄)−1 is the normalization factor, ensuring that
∫ ∫

W(x, p)dxdp = 1.
The Wigner distribution is a Fourier transform of the density operator, which in
position representation depends on two variables x and ξ. Transforming one of
the position variables, leaves two variables in the distribution: the center of the
jump, x, and the Fourier variable of the jump, p.

From the Wigner distribution the position probability distribution W(x) or the
momentum probability distribution W(p) can be obtained by integration. The
position distribution is found by∫ ∞

−∞
dpW(x, p) =

∫ ∞

−∞
dξ⟨x+ ξ

2
|ρ̂|x− ξ

2
⟩δ(ξ) = ⟨x|ρ̂|x⟩ = W(x)

where δ(ξ) = 1
2πh̄

∫∞
−∞ dp e−ipξ/h̄ is the Dirac-delta function. The momentum

distribution can be found in a similar manner by integrating W(x, p) over x.
The integration technique can also be used to extract the necessary informa-
tion from the Wigner distribution involving several objects W (x,p), where x =
[x1, x2, . . . xi], p = [p1, p2, . . . , pi] and for a product state

W (x,p) =
∏
i

W(xi, pi). (A.2)
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A.1 The Moyal Function

When the Wigner function is expressed in terms of the energy eigenstates of a
harmonic oscillator, it is referred to as the Moyal function. The wave function can
be represented in the energy occupation basis as |ψ⟩ =

∑
n αn|n⟩. The density

matrix is then ρ̂ = |ψ⟩⟨ψ| =
∑

n,m αnα
∗
m|n⟩⟨m|, and the Wigner distribution is

given by

W (x, p) =
∑
n,m

αnα
∗
mWnm(x, p),

where

Wnm(x, p) =
1

2πh̄

∫ ∞

−∞
dξe−ipξ/h̄⟨x+ ξ

2
|n⟩⟨m|x− ξ

2
⟩. (A.3)

Rewriting ⟨x + ξ
2
|n⟩ = ψn(x + ξ

2
) and ⟨m|x − ξ

2
⟩ = ψ∗

m(x − ξ
2
) in terms of the

position wave functions of a harmonic oscillator ψn(x) given in (A.7), equation
(A.3) is a Fourier transform of the shifted position wave functions

Wnm(x, p) =
1

2πh̄

∫ ∞

−∞
dξe−ipξ/h̄ψ∗

m(x− ξ/2) ψn(x+ ξ/2).

It can be shown that for n ≤ m (A.3) attains the form

Wnm(x, p) =
(−1)n

2π

√
2nn!

2mm!
e−|X|2(2X)m−nLm−n

n (2|X|2), (A.4)

expressed in terms of the generalized Laguerre polynomial Lm−n
n (2|X|2) and the

phase space coordinate X = x+ip, where x is normalized by the spatial quantum
�uctuation x0 and p is normalized by the quantum �uctuation of momentum
p0. For m ≤ n, n and m interchange. Appendix A covers the calculation of
Wnm(x, p).

For the n'th energy eigenstate, n = m, (A.4) reduces to

Wn(x, p) =
(−1)n

2π
e−|X|2Ln(2|X|2), (A.5)

elucidating the negative values in the Wigner distribution. The Laguerre poly-
nomial of m'th order has m zeros as function of |X|2 = x2 + p2, hence W(x, p)
oscillates between positive and negative values, as shown in �gure 2.2 b). These
oscillations are quantum mechanical e�ects, to which classical parallels cannot
be drawn.

Calculation of the Moyal Function

In previous section the Moyal function of a harmonic oscillator was given by
W (x, p) =

∑
n,m αnα

∗
mW(x, p). This section is dedicated to a detailed calculation



A.1. THE MOYAL FUNCTION 55

of

Wnm(x, p) =
1

2πh̄

∫ ∞

−∞
dξe−ipξ/h̄ψ∗

m(x− ξ/2) ψn(x+ ξ/2). (A.6)

The position wave functions ψ(x) of a harmonic oscillator are given by

ψn(x) = (2nn!)−1/2(πx20)
−1/4 exp[− (x/x0)

2 /2]Hn(x/x0). (A.7)

Here Hn(x) is a Hermite polynomial of n'th order and x0 is the spatial quantum
�uctuation of the oscillator. Inserting (A.7) into (A.6) one obtains

Wnm(x, p) = Nnm

∫ ∞

−∞
dξe−ipξ/h̄e−

1
2
(x+ξ/2)2e−

1
2
(x−ξ/2)2Hn(x+ ξ/2)Hm(x− ξ/2),

where Nnm = (2(n+m)n!m!πx20)
−1/2/2πh̄ is the normalization factor. For conve-

nience, let x/x0 → x, p/p0 → p and set h̄ = 1. By the variable change ξ̃ = ξ/2+ip
and Y = x− ip and X = −Y ∗, the expression becomes

Wnm(x, p) = Nnme
−(x2+p2)

∫ ∞

−∞
dξ̃e−ξ̃2Hn(ξ̃ + Y )H∗

m(−(ξ̃ +X)).

Rewriting Hm(−(ξ̃ +X)) = (−1)mHm(ξ̃ +X) gives

Wnm(x, p) = (−1)mNnme
−(x2+p2)

∫ ∞

−∞
dξ̃e−ξ̃2Hn(ξ̃ + Y )Hm(ξ̃ +X).

Further use the identities Hn(a+ b) =
∑n

k

(
n
k

)
Hk(a)(2b)

n−k and∫∞
−∞ dxe−x2

Hl(x)Hk(x) = δkl2
kk!

√
π to subsequently obtain

Wnm = (−1)mNnme
−(x2+p2)

n∑
k=0

m∑
l=0

(
n

k

)(
m

l

)
(2Y )n−k(2X)m−l

∫ ∞

−∞
dξ̃e−ξ̃2Hk(ξ̃)Hl(ξ̃)

=
(−1)m

2π

e−(x2+p2)

√
2(n+m)n!m!

min(n,m)∑
k=0

(
n

k

)(
m

k

)
(2X)m−k(−2X∗)n−k2kk! .

The expression above can now be rewritten in terms of the Laguerre polynomials.
By rewriting the index one gets for n ≤ m

Wnm =
(−1)m

2π

e−(x2+p2)

√
2(n+m)n!m!

(
2n

2n

) n∑
k=0

(
n

k

)(
m

k

)
(2X)m−k+n−n(−2X∗)n−k

(1
2

)−k

k!

Wnm =
(−1)m

2π

e−(x2+p2)

√
2(n+m)n!m!

2n(2X)m−n

n∑
k=0

(
n

k

)(
m

k

)
(2X)n−k(−2X∗)n−k

(1
2

)n−k

k!

It can be shown that
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n∑
k=0

(
n

k

)(
m

k

)
(2X)n−k(−2X∗)n−k

(1
2

)n−k

k! = (A.8)

n∑
k=0

(
n

k

)(
m

k

)
(−4|X|2)n−k

(1
2

)n−k

k! = n!Lm−n
n (2|X|2)

And the �nal expression reads

Wnm =
(−1)n

2π

√
2nn!

2mm!
e−|X|2(2X)m−nLm−n

n (2|X|2). (A.9)

Here Lm−n
n (2|X|2) is the generalized Laguerre polynomial. For m ≤ n the index

n and m is interchanged.

Validation of (A.8)

S =
n∑

k=0

(
n

k

)(
m

k

)
(−4|X|2)n−k

(1
2

)n−k

k! = n!Lm−n
n (2|X|2) (A.10)

S =
n∑

k=0

n!

(n− k)!

(
m

k

)
(−2|X|2)n−k (A.11)

By de�nition the generalised Laguerre polynomial is given by:

Lk′

n (x) =
1

n!

n∑
i=0

n!

i!

(
n+ k′

n− i

)
(−x)i ⇔ 1

n!

0∑
i=n

n!

(n− i)!

(
n+ k′

i

)
(−x)n−i (A.12)

Where on the right hand side of (A.12) the sum is in reversed order.

Lk′

n (x) =
1

n!

n∑
i=0

n!

(n− i)!

(
n+ k′

i

)
(−x)n−i (A.13)

S in (A.11) is equivalent to (A.13). Integer m in (A.11) corresponds to n+ k′ in
(A.13), integer k in (A.11) corresponds to i in (A.13) and n is the same index in
both expressions. Hence the equality in (A.10) is shown to be true.

A.2 Wigner Function for two Harmonic Oscilla-

tors

Using the results above one can calculate the Wigner Distribution for, e.g, two
harmonic oscillators

W (x1, p1, x2, p2) = W (x1, p1)W (x2, p2).
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The wave function in the number basis for this system is |ψ⟩ =
∑

n1n2
αn1n2 |n1n2⟩.

From (A.2) the expression for the Wigner function becomes

W (x1, p1, x2, p2) =
∑
n1,m1

∑
n2,m2

αn1n2α
∗
m1m2

Wn1m1(x1, p1)Wn2m2(x2, p2),

where Wn1m1(x1, p1) and Wn2m2(x2, p2) are the Moyal functions given by (A.4).
As mentioned earlier, by performing integration over certain variables, one ob-
tains the Wigner distribution for the remaining ones. Hence the reduced Wigner
distributions for oscillator 1 and 2 are obtained by the integrations

W (x1, p1) =

∫ ∞

−∞

∫ ∞

−∞
W (x1, p1, x2, p2)dx2dp2, (A.14)

W (x2, p2) =

∫ ∞

−∞

∫ ∞

−∞
W (x1, p1, x2, p2)dx1dp1.



APPENDIX B

Rotating Wave Approximation

The purpose of the rotating wave approximation (RWA) is to simplify the sys-
tem Hamiltonian by removing the rapidly oscillating terms from its interaction
picture representation. The interaction picture is a frame where only the inter-
action part of the Hamiltonian is taken into account. This is often convenient
for analysis.

As an example assume a system Hamiltonian of two interacting oscillators Ĥ =
Ĥ0 + ĤI. The Hamiltonian is time independent, Ĥ0 is the diagonal part in a
certain basis and ĤI represents the interaction between the oscillators. The ini-
tial state in the Shrödinger picture is |ψ(t = 0)⟩S = |ψ0⟩. The time evolution
obtained by solving the Schrödinger equation, ih̄∂t|ψ⟩ = Ĥ|ψ⟩, is given by

|ψ(t)⟩S = e−iĤt/h̄|ψ0⟩.

By de�nition the transformation between the Schrödinger and the interaction
picture is

|ψ⟩S = e−iĤ0t/h̄|ψ⟩I, (B.1)

where for t = 0 the initial states are equal in both representations, |ψ(t = 0)⟩S =
|ψ(t = 0)⟩I = |ψ0⟩.

The time evolution in the interaction picture is obtained by solving the Schrödinger
equation

ih̄∂t

[
e−iĤ0t/h̄|ψ⟩I

]
= (Ĥ0 + ĤI)e

−iĤ0t/h̄|ψ⟩I,

which can be shown is equivalent to

ih̄∂t|ψ⟩I = eiĤ0t/h̄ĤIe
−iĤ0t/h̄|ψ⟩I = ĤI(t)|ψ⟩I. (B.2)

This is the equation of time evolution in the interaction picture and ĤI(t) is the
time dependent interaction picture operator. Due to this dependence the exact
solution of (B.2) is given by

|ψ(t)⟩I = T̂ e−i/h̄
∫ t
0 dt′ĤI(t

′)|ψ0⟩. (B.3)

Here T̂ is the time order product operator, and the formal solution of T̂ e−i
∫ t
0 dt′ĤI(t

′)

is given in terms of the Dyson series [69].
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Instead of solving complicated integrals one can approximate the solution by
performing the Rotating Wave Approximation. The rapidly oscillating terms
with unequal numbers of creation and annihilation operators are omitted from
the interaction picture Hamiltonian, so that it is constant in time, ĤI(t) ≈ ĤIRWA

.
The solution of (B.3) is then approximated by

|ψ(t)⟩I ≈ e−(iĤIRWA
t)/h̄|ψ0⟩.

To illustrate the approximation, assume the Hamiltonian is

Ĥ = h̄ω(â†1â1 + â†2â2) + χ(â†1 + â1)
2(â†2 + â2)

2,

where the �rst bracket represents Ĥ0 and the second represents ĤI. Here ω is
the oscillation frequency of both oscillators and χ is the nonlinearity. The ladder
operators evolve as â†1,2(t) = â†1,2e

iωt, â1,2(t) = â1,2e
−iωt, where e∓iωt are rapidly

oscillating factors. In even terms of ĤI the rapid oscillations of â1,2(t) and â
†
1,2(t)

cancel eachother. Hence the RWA interaction Hamiltonian is

ĤIRWA
= χ(â†1â1â2â

†
2 + â†1â1â

†
2â2 + â1â

†
1â2â

†
2 + â1â

†
1â

†
2â2),

and the approximated evolution of the system's state vector is given by |ψ(t)⟩I ≈
e−iĤIRWA

t/h̄|ψ0⟩.

The di�erence between the Schrödinger representation and the interaction pic-
ture RWA is noticeable when performing a Wigner function analysis. During a
time evolution by the complete Hamiltonian, the Wigner function will rapidly
rotate in its phase space in addition to changing its shape due to the nonlinear
terms. In interaction picture RWA the Wigner function will stand still in phase
space, while its shape slowly changes.



APPENDIX C

Evolution of a Coherent State in a Du�ng Potential

Here it is shown how an initial coherent state |α⟩ transforms into a Yurke-Stoler
cat state, when evolving freely in a Du�ng potential.

The time evolution of |α⟩ in a harmonic potential is well known, |α(t)⟩ = |αe−iωt⟩
so a study of anharmonic e�ects su�ces to treating the Yurke-Stoler Hamilto-
nian (2.13) in the interaction picture. From now, all the operators and states are
hence in the interaction picture.

The Du�ng Hamiltonian

Ĥ = h̄µn̂2 (C.1)

is diagonal in the number basis, so |α⟩ can also be expressed in the number basis.
The time evolution under (C.1) is

|α(t)⟩ = e−iĤt/h̄|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!
e−iµn2t|n⟩. (C.2)

In contrast to the case of coherent evolution in a harmonic potential, it is not
possible to reformulate the sum in (C.2) in terms of |α⟩ for a general time t.
However, there exist special times t ∈ [T

4
, T
2
, 3T

4
, T ], where T = 2π/µ, for which

(C.2) simpli�es.

First the simplest cases will be treated. For time t = T = 2π/µ one has that

|α(t = 2π/µ)⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!
e−i2πn2 |n⟩, (C.3)

e−i2πn2

= cos(2πn2)− i sin(2πn2) = 1, n = 0, 1, 2, 3..., (C.4)

so that |α(t = 2π/µ)⟩ = |α(t = 0)⟩. After one period the state is the initial
coherent state.

For time t = T/2 = π/µ one has that

|α(t = 2π/µ)⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!
e−iπn2 |n⟩, (C.5)
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e−iπn2

= cos(πn2)− i sin(πn2) = (−1)n, n = 0, 1, 2, 3..., (C.6)

so that |α(t = π/µ)⟩ = | − α(t = 0)⟩. After half a period the state is the initial
coherent state, but with a negative amplitude.

For time t = T/4 = π/2µ one has

|α(t = π/2µ)⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!
e−iπ

2
n2 |n⟩, (C.7)

e−iπ
2
n2

= cos(
πn2

2
)− i sin(

πn2

2
) =

{
1 n = even,
−i n = odd.

The sum in (C.7) can be split into sums over even (real) and odd (imaginary)
entries

|α(t = π/2µ)⟩ = e−α2/2
[ ∑
n=even

αn

√
n!
|n⟩+ i

∑
n=odd

(−α)n√
n!

|n⟩
]
. (C.8)

The sum in (C.8) can be rewritten in terms of coherent states by letting the
summation index run over all n, and accordingly including phase factors1 e±iπ/4.
The state in (C.8) is equivalent to the Yurke-Stoler cat state

|α(t = π/2µ)⟩ = e−α2/2
[ ∞∑

n=0

e−iπ/4 α
n

√
n!
|n⟩+eiπ/4 (−α)

n

√
n!

|n⟩
]
=
e−iπ/4

√
2

[|α⟩+i|−α⟩].

(C.9)
The prefactor 1/

√
2 is due to renormalization.

1Coherent states have both odd and even entries. If the summation index is altered to be
over all n, terms with odd real entries and even imaginary entries are added to the sums in
(C.8). This changes the state. These additional terms are removed by inclusion of the phase
factors.



APPENDIX D

Quantum Master Equations

This appendix considers the derivation of the Born-Markov quantum master
equation within the quantum optical limit. First the derivation of the general
QME will be given, then in section D.1 the general equation will be applied to
a harmonic oscillator system linearly coupled to a bath. Further, a derivation
of a harmonic oscillator nonlinearly coupled to a bath will be given in section D.2.

Consider a system weakly coupled to an environment with a large number of
harmonic modes. The total Hamiltonian of the system and the bath is

H = HS +HB +HSB, (D.1)

where HS is the system Hamiltonian, HB is the Hamiltonian of the bosonic bath
and HSB is the interaction between the system and the bath. For simplicity the
operators do not have a "hat" in their notation.

The von Neumann equation of motion of the total density matrix ρ in the inter-
action picture is

ρ̇(t) = −i[HSB(t), ρ(t)], (D.2)

where
HSB(t) =

∑
α

Aα(t)⊗Bα(t) (D.3)

is the general interaction with the standard transformation between the interac-
tion and Schrödinger frames

Aα(t) = eiHStAαe
−iHSt, Bα(t) = eiHBtBαe

−iHBt. (D.4)

The solution of (D.2) is

ρ(t) = ρ(t0)− i

∫ t

t0

ds[HSB(s), ρ(s)]. (D.5)

By inserting (D.5) into (D.2), one obtains

ρ̇(t) = −i[HSB(t), ρ(t0)]− i
[
HSB(t),−i

∫ t

t0

ds[HSB(s), ρ(s)]
]
. (D.6)
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The �rst commutator term in (D.6) can be set to zero by the assumption that
at t0 the system is in thermal equilibrium in the vast past, and the interaction
between the system and the bath has not yet begun. By performing the Born
approximation the system-bath coupling is assumed to be weak, so that the bath
is not a�ected by any changes in the system. Additionally, the bath is assumed to
be in its equilibrium state, so that the total density matrix can be approximated
by

ρ(s) ≈ ρS(s)⊗ ρB. (D.7)

The bath degrees of freedom can be traced over and the QME becomes

ρ̇S(t) = −
∫ t

t0

dsTrB
[
HSB(t), [HSB(s), ρS(s)⊗ ρB]

]
. (D.8)

The Markov approximation means that the state of the system does not depend
on the past, i.e., the system has no memory of the past

ρS(s) → ρS(t). (D.9)

By assuming that the past happened a long time ago, the integral limits can be
adjusted by the variable change τ = t− s, dτ = −ds, and setting t0 = −∞. The
general interaction picture Markovian quantum master equation then obtains the
form

ρ̇S(t) = −
∫ ∞

0

dτTrB
[
HSB(t), [HSB(t− τ), ρS(t)⊗ ρB]

]
. (D.10)

Inserting (D.3) into (D.10) the QME is

ρ̇S(t) = −
∫ ∞

0

dτTrB
[∑

α

Aα(t)⊗Bα(t),
[∑

β

Aβ(t− τ)⊗Bβ(t− τ), ρS(t)ρB]
]
.

(D.11)
After rearranging the terms, extracting the possible factors from the trace and
performing cyclic permutation inside the trace brackets, the expression within
the outer brackets of (D.11) is

∑
α,β

[
Aα(t)Aβ(t− τ)ρS(t)− Aβ(t− τ)ρS(t)Aα(t)

]
TrB{Bα(t)Bβ(t− τ)ρB}

+
[
ρS(t)Aβ(t− τ)Aα(t)− Aα(t)ρS(t)Aβ(t− τ)

]
TrB{Bβ(t− τ)Bα(t)ρB},

where the traces

TrB{Bα(t)Bβ(t− τ)ρB} = ⟨Bα(t)Bβ(t− τ)⟩B = Cαβ(t, t− τ), (D.12)

TrB{Bβ(t− τ)Bα(t)ρB} = ⟨Bβ(t− τ)Bα(t)⟩B = Cβα(t− τ, t),



D.1. LINEAR COUPLING 64

are the bath correlation functions. Since the assumption of thermal equilibrium
was applied, by cyclic permutation the functions in (D.12) can be expressed as

Cαβ(t, t− τ) = ⟨Bα(τ)Bβ(0)⟩B,= Cαβ(τ) (D.13)

Cβα(t− τ, t) = ⟨Bβ(−τ)Bα(0)⟩B = Cβα(−τ).

Inserting (D.13) into (D.11), the general expression of the Born-Markov QME in
the interaction picture is

ρ̇S(t) = −
∑
α,β

∫ ∞

0

dτ
[
Aα(t)Aβ(t− τ)ρS(t)− Aβ(t− τ)ρS(t)Aα(t)

]
Cαβ(τ)

+
[
ρS(t)Aβ(t− τ)Aα(t)− Aα(t)ρS(t)Aβ(t− τ)

]
Cβα(−τ). (D.14)

D.1 Linear Coupling

The total Hamiltonian of the harmonic oscillator linearly coupled to a bath of
harmonic modes is

H = ω0a
†a+

∑
k

ωkb
†
kbk + (a† + a)

∑
k

gkb
†
k + g∗kbk,

where ω0 is the oscillator frequency and a(a†) are its annihilation and creation
operators. The operators bk(b

†
k) are annihilation and creation operators of the

k'th bath mode with the corresponding frequency ωk. The coupling strength of
the k'th bath mode to the oscillator is denoted by gk, and h̄ = 1. The interaction
operators are

A(t) = a†eiω0t + ae−iω0t, B(t) =
∑
k

gkb
†
ke

iωkt + g∗kbke
−iωkt. (D.15)

Introducing A(t) into (D.14) and discarding the rapidly oscillating terms with
factors of e±2iω0t, the QME is

ρ̇S(t) =

∫ ∞

0

dτC(τ)eiω0τ
(
a†aρS − aρSa

†) (D.16)

+

∫ ∞

0

dτC(−τ)e−iω0τ
(
ρSa

†a− aρSa
†)

+

∫ ∞

0

dτC(τ)e−iω0τ
(
aa†ρS − aρSa

†)
+

∫ ∞

0

dτC(−τ)eiω0τ
(
ρSaa

† − a†ρSa
)
.
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By de�ning the one-sided Fourier transforms

Γ+(ω) =
∫∞
0
dτC(τ)eiωτ ,

Γ−(ω) =
∫∞
0
dτC(−τ)eiωτ =

∫ 0

−∞ dτC(τ)e−iωτ ,

Γ+(−ω) =
∫∞
0
dτC(τ)e−iωτ =

∫ 0

−∞ dτC(−τ)eiωτ ,
Γ−(−ω) =

∫∞
0
dτC(−τ)e−iωτ =

∫ 0

−∞ dτC(τ)eiωτ ,

(D.17)

and their linear combinations

γ(ω) = Γ+(ω) + Γ−(−ω) =
∫∞
−∞ dτC(τ)eiωτ ,

γ(−ω) = Γ+(−ω) + Γ−(ω) =
∫∞
−∞ dτC(τ)e−iωτ ,

2iS(ω) = Γ+(ω)− Γ−(−ω),
2iS(−ω) = Γ+(−ω)− Γ−(ω).

(D.18)

equation (D.16), when ω = ω0, is

ρ̇S = −i
[
S(ω0)[a

†a, ρS(t)] + S(−ω0)[aa
†, ρS(t)]

]
+

γ(ω0)[aρSa
† − 1

2
{a†a, ρS(t)}] + γ(−ω0)[a

†ρSa− 1
2
{aa†, ρS(t)}].

(D.19)

The �rst bracket is the Lamb shift, which is a shift of the oscillator's frequency
due to the system-bath interaction. The rest of the terms constitute the Lind-
blad superoperator in (3.9).

The dissipation rate can now be calculated. By the de�nition in (D.12) and
(D.13) the bath correlation functions are

C(±τ) =
∑
k

|gk|2
[
⟨b†kbk⟩e

±iωkτ + ⟨bkb†k⟩e
∓iωkτ

]
, (D.20)

where it has been assumed that the modes are non-interacting and the self-
correlation ⟨b†kb

†
k⟩ = ⟨bkbk⟩ = 0. The dissipation rate is then

γ(ω0) =
∑
k

|gk|2
[
⟨b†kbk⟩

∫ ∞

−∞
dτei(ωk+ω0)τ + ⟨bkb†k⟩

∫ ∞

−∞
dτei(−ωk+ω0)τ

]
=

∑
k

|gk|2
[
NB(ωk)δ(ωk + ω0) + [NB(ωk) + 1]δ(ω0 − ωk)

]
(D.21)

=
∑
k

|gk|2δ(ω0 − ωk)[NB(ωk) + 1] (D.22)

= Γ0[NB(ω0) + 1], (D.23)

where NB(ωk) is the Bose Einstein distribution, the spectral density of the bath is
assumed to be Ohmic

∑
k |gk|2δ(ω−ωk) = Γ0ω/ω0, and Γ0 is the linear dissipation

strength. It is also assumed that ωk ≥ 0. By similar approach, the excitation
rate is γ(−ω0) = Γ0NB(ω0).
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D.2 Nonlinear coupling

In the same manner as above one can derive the QME for a harmonic oscillator
nonlinearly coupled to the bosonic bath. The total Hamiltonian is as in (D.15),
only with a quadratic coupling between the oscillator and the bath

HSB = (a† + a)2
∑
k

ηkb
†
k + η∗kbk. (D.24)

The interaction picture operators are A(t) = (a†eiω0t+ae−iω0t)2 and B(t) is as in
(D.15), with the coupling strength ηk of the oscillator to the k'th bath mode. By
the same procedure as in the previous section, introducing A(t) into the general
QME (D.10), discarding the terms with rapidly oscillating factors of e±4iω0t, and
applying the de�nitions in (D.17) and (D.18), the QME is

ρ̇S = −2i
[
S(2ω0)[a

†2a2, ρS + S(−2ω0)[a
2a†2, ρS]

]
+ (D.25)

γ(2ω0)
[
a2ρSa

†2 − 1

2
{a†2a2, ρS

]
+ (D.26)

γ(−2ω0)
[
a†2ρSa

2 − 1

2
{a2a†2, ρS}

]
− (D.27)[

2iS(0)[(2a†a+ 1)2, ρS] + γ(0){(2a†a+ 1)2, ρS} − (D.28)

γ(0)(4a†aρSa
†a+ {a†a, ρS}+ ρS)

]
.

The �rst bracket in (D.25) is the Lamb shift, introducing a renormalization of
the oscillator's Du�ng constant due to the system-bath interaction. The second
and third brackets are the terms of the Lindblad superoperator in (3.14). The
remaining terms are non-physical and can be omitted.

The calculation of the dissipation rate follows the same procedure as in section
D.1. The correlation functions are

C(±τ) =
∑
k

|ηk|2
[
⟨b†kbk⟩e

±iωkτ + ⟨bkb†k⟩e
∓iωkτ

]
, (D.29)

where it has been assumed that the modes are non-interacting and the self-
correlation ⟨b†kb

†
k⟩ = ⟨bkbk⟩ = 0. The dissipation rate is then

γ(2ω0) =
∑
k

|ηk|2
[
⟨b†kbk⟩

∫ ∞

−∞
dτei(ωk+2ω0)τ + ⟨bkb†k⟩

∫ ∞

−∞
dτei(−ωk+2ω0)τ

]
=

∑
k

|ηk|2
[
NB(ωk)δ(ωk + 2ω0) + [NB(ωk) + 1]δ(2ω0 − ωk)

]
(D.30)

=
∑
k

|ηk|2δ(2ω0 − ωk)[NB(ωk) + 1] (D.31)

= Γ[NB(2ω0) + 1], (D.32)
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where NB(ωk) is the Bose Einstein distribution, the spectral density of the bath
is assumed to be Ohmic

∑
k |ηk|2δ(ω − ωk) = Γω/2ω0, and Γ is the nonlin-

ear dissipation strength. It is also assumed that ωk ≥ 0. The excitation rate
γ(−2ω0) = ΓNB(2ω0) can be obtained by the same approach.
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