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The turbulence observed in the scrape-off-layer of a tokamak is often characterized by intermittent

events of bursty nature, a feature which raises concerns about the prediction of heat loads on the

physical boundaries of the device. It appears thus necessary to delve into the statistical properties

of turbulent physical fields such as density, electrostatic potential, and temperature, focusing on the

mathematical expression of tails of the probability distribution functions. The method followed

here is to generate statistical information from time-traces of the plasma density stemming from

Braginskii-type fluid simulations and check this against a first-principles theoretical model. The

analysis of the numerical simulations indicates that the probability distribution function of the

intermittent process contains strong exponential tails, as predicted by the analytical theory.

[http://dx.doi.org/10.1063/1.4904202]

I. INTRODUCTION

Turbulence is a fascinating open problem cutting across

scientific boundaries. In magnetic fusion research, understand-

ing turbulence is a key element for the theoretical explanation

of the heat and particle transport in tokamak devices both in

the core and edge regions, including the much-debated forma-

tion of the plasma pedestal in the high-confinement regime. In

particular, understanding the turbulent behavior of the plasma

in the most external region of a tokamak, the scrape-off-layer

(SOL), has important implication for the operation of present

and future devices, such as ITER.1,2

The plasma profiles in the SOL region form from the

balance between the plasma outflowing from the tokamak

core, turbulence transport, and end losses at the physical

boundary (limiter or divertor) of the device. This turbulent

dynamics in the SOL is characterized by large fluctuations

with amplitudes comparable to the background plasma and

can manifest itself in radially propagating, coherent meso-

scale modes called “blobs,” which have been suggested to

carry (together with streamers) a significant fraction of the

heat transport through rare avalanche-like events.3–7 Blobs

are typically intermittent events with a patchy spatial and

bursty temporal structure and are responsible for deviations

of the probability distribution function (PDF)—in the form

of exponential tails—from the Gaussian prediction based on

the traditional mean-field theory.8 Controlling the edge heat

flux loads, which depend on the instant amplitude of fluctua-

tions, as opposed to the mean load, calls for a thorough

understanding of intermittency, both in terms of analytical

modelling and numerical investigations.

A pivotal idea to study intermittency has been to associ-

ate the bursty event with the creation of a coherent structure.

A candidate that could describe the creation process of the

structure is the instanton, which is localized in time and lives

during the formation of the coherent structure. The instanton

method is a non-perturbative way of calculating PDF tails,

which was adopted from quantum field theory and then

modified to classical statistical physics for Burgers turbu-

lence and a passive scalar model.9,10 For instance, using the

instanton method, it has been shown in Ref. 11 that the PDF

tails of momentum flux Q are significantly enhanced over

the Gaussian prediction. More specifically, the tail exhibits a

ubiquitous scaling of the form expð�nQ3=2Þ, where the coef-

ficient n contains all the model-dependent information.11

In this work, we investigate the statistics governing SOL

turbulence by employing first-principles numerical simula-

tions and theoretical analysis alike. The starting point for

both approaches is a drift-reduced set of the Braginskii fluid

equations,12,13 which describes interchange driven turbu-

lence. Our scope is to confirm theoretical predictions about

the behavior of the PDF for the density through numerical

results stemming from the simulations. By modeling the

plasma outflowing from the core as a time-independent

source, we further exclude from our model the coupling of

SOL turbulence with the plasma dynamics inside the last

closed flux surface (LCFS). For instance, it has been shown

that far-SOL simulations of typical L-mode turbulence in the

inner-wall-limited Alcator C-Mod configuration manifest

similar statistical properties when compared with experimen-

tal observations using gas-puff imaging.14 This points to the

possibility that turbulent structures traveling through the

SOL are generated near the LCFS.

The layout of the paper is as follows: In Sec. II, we pres-

ent the drift-reduced Braginskii equations, followed by the

analytical modeling in Sec. III, where a generalized system

of stochastic partial differential equations is presented, as an

extension of the Braginskii system. In the same section, wea)Electronic mail: anderson.johan@gmail.com.
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derive the properties of the PDF for the density. Section IV

deals with the numerical simulations and the mathematical

processing of the output data, in order to reconcile these with

the theoretical results. Finally, we provide a short summary

of the work in Sec. V.

II. DRIFT-REDUCED MODEL FOR TOKAMAK SOL
TURBULENCE

For the present study, we use a cold-ion drift-reduced

model, which can be derived from the Braginskii two-fluid

equations12 by imposing the orderings d=dt� xci; k? � kk
and Ti � Te. Particle trapping is negligible since �? � 1 in

the SOL of limited plasmas, while finite Larmor radius

effects are small since khqs � 0:1 for the dominant modes in

the non-linear stage. Since the plasma is relatively cold, a

fluid model can capture the essential physical ingredients of

this system. The drift-reduced equations, in normalized units,

read as follows:13
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The equations are given in dimensionless form, with

the following normalizations being used: t ¼ ~t=ð ~R=�csÞ;
r? ¼ �qs

~r?; rk ¼ ~R ~rk; vk ¼ ~vk=�cs; n ¼ ~n=�n; Te ¼
~Te= �Te; / ¼ e~/= �Te; q� ¼ qs= ~R; B0 ¼ ~B= �B. Here, the tildes

denote quantities in MKS physical units, and the bars denote

reference quantities defined in terms of the normalized den-

sity �n, the normalized temperature �T e, and the reference

magnetic field �B. All variables are expressed in their dimen-

sionless form unless specified otherwise. The parallel current

is given by jk ¼ nðvki � vkeÞ, while � ¼ e2n ~R=ð ~mirk�csÞ is

the normalized Spitzer resistivity. The vorticity is defined as

x ¼ r2
?/, and Eq. (2) has been simplified using the

Boussinesq approximation r 	 ðndtr?/Þ 
 ndtr2
?/.

In the non-linear simulations, plasma outflow from the

closed flux surface region is mimicked using density and

temperature sources, Sn and STe
, respectively. The terms Ge

and Gi represent the gyroviscous part of the pressure tensor

(see Ref. 13). Small perpendicular diffusion terms of the

form Dfr2
?f are added in order to damp grid-scale modes

arising from numerical discretization. In addition, ½f ; g� ¼
b0 	 ðrf �rgÞ is the Poisson bracket, while Ĉðf Þ ¼ ðB0=2Þ
½r � ðb0=B0Þ� 	 rf is the curvature operator.

We consider a SOL model in circular geometry with a

toroidal limiter set at the high field side equatorial midplane.

The (right-handed) coordinate system used is ðy; x;uÞ, where

x is the radial coordinate (x¼ 0 at the LCFS), y¼ xh is the

poloidal distance, and u is the toroidal angle. Under these

assumptions, the curvature operator reduces to Ĉðf Þ ¼
ðsin hÞ@xf þ ðcos hþ ŝh sin hÞ@yf and the Poisson bracket is

defined as ½f ; g� ¼ a�1ð@yf@xg� @xf@ygÞ (ŝ ¼ ðaþ rÞq0=q is

the magnetic shear).

Finally, the plasma interfaces with the vacuum vessel

through a magnetized pre-sheath where the fluid drift approx-

imation breaks down. The validity of the drift-reduced model,

therefore, formally extends until the magnetic pre-sheath

entrance, where we apply the boundary conditions derived in

Ref. 15.

III. STATISTICAL MODEL OF INTERMITTENT EVENTS

Common features of the PDFs inferred from bursty and

intermittent processes are strongly non-Gaussian tails while

being unimodal in structure.16 There exist several ways to

derive such PDFs for a physical process, for instance,

employing the instanton method (see, e.g., Refs. 11, and

17–22) and using the Fokker-Planck method (see, e.g., Refs.

23–26). In order to model the intermittent transport events at

the edge, a generalized physical model is adapted from the

normalized 3D reduced Braginskii equations (1)–(5), pre-

sented in Sec. II, to be used in the Fokker-Planck method. To

derive the model equations, we have, for simplicity, replaced

the Ohm’s law Eq. (3) by rk/ ¼ �jk also have neglected the

parallel couplings in Eqs. (1) and (5), and the ion parallel ve-

locity, Eq. (4). Replacing the Ohm’s law by a simple resistive

response is the reason of the Ck term in Eq. (6). Furthermore,

the equation for the electron temperature perturbations, Eq.

(5), and the equation of electron density perturbations, Eq.

(1), are merged into one equation for the electron pressure pe,

where pe ¼ log pe ¼ log Te þ log ne. In addition, we have

neglected the thermal force in Braginskii’s model. After these

modifications, we arrive at the system of equations

@r2/
@t
¼ � 1

B0q�
/;r2/
� �

� 2Ĉ peð Þ þ Ĉjj/þ f0; (6)
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¼ � 1
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3
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Here, f0 is a zero-mean Gaussian white-noise stochastic forc-

ing that has been added to the drift-reduced Braginskii

model, Ĉjj represents the parallel dynamics, and B0 is the

magnitude of the equilibrium magnetic field. The model con-

sists of two coupled non-linear equations with a stochastic

forcing in the vorticity equation, Eq. (6). In order to extract

the salient features leading to intermittent events, further

manipulations are needed. In particular, while we consider a

linearized pressure equation, yielding a linear coupling

between the pressure and the potential, a multiplicative sto-

chastic term is introduced to make up for the lack of nonlin-

ear coupling

/; pe½ � 
 � 1

B0q�
� @pe

@x

@/
@y

� �
¼ 1

B0q�

pe

Lp

@/
@y

: (11)

Here, the factor pe

Lp
will be represented by a zero-mean

Gaussian stochastic force f1. Notice that for the sake of gen-

erality, both Gaussian forces f0 and f1 are retained. The dy-

namics is now represented by one equation for the potential

with an additive and a multiplicative noise term. Since we

consider only the statistics of time-traces, we make use of

the coherent structures as traveling solutions of the form

/ðx; y; tÞ ¼ wðx; y� UtÞFðtÞ; (12)

peðx; y; tÞ ¼ aðv; f1Þ/ðx; y; tÞ; (13)

where the potential / and pressure pe follow each other with

a relation between the potential and the pressure as:

a v; f1ð Þ ¼ f1 þ 2=3

vþ 10=3
: (14)

The traveling solution propagates perpendicular to the density

gradient; however, the main transport direction is radial. This

enables us to reduce the problem to a time dependent prob-

lem, where we find the stochastic equation in F of the form
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@w
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Note that all spatial dependent terms will be treated as con-

stants in the time dependent stochastic equation, which once

rewritten, it becomes

@F

@t
¼ G0F� G1F2 þ G2Ff1 þ f0; (16)

NG0 ¼ vr2
?
@w
@y
þ 4=3
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N ¼ r2
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The spatial function w is approximately determined by the

modon solution of the form r2
?w ¼ �k2wþ Cx, where k is

the modon number and C ¼ 1
B0q�

v� 2
a

� 	
with a ¼ � 2=3

vþ10=3
.

However, the symmetry is broken by the parallel coupling and

is only exact for kjj ¼ 0. The coefficients can be determined

by an average over the coherent structure as hvi ¼
Ð

dxdyvw
¼ ~v (compare the results obtained in Refs. 18 and 21). In this

work, it is sufficient to tune the constant through statistical

analysis performed on the numerical solutions, remembering

that these will vary at different radial positions and structures.

Stochastic differential equations with multiplicative noise

have been studied earlier, and this particular class of dynami-

cal equations has a closed analytical solution presented in

Refs. 23–25. The solution depends on the cross-correlations

between the additive noise f0 and the multiplicative noise f1
with a rather complicated solution, however, assuming that

also the correlation is white in time gives the relation

hf0ðtÞf1ðt0Þi ¼ Ddðt� t0Þ: (21)

We will only present a short note on how to obtain the PDF,

following Ref. 23. In the Stratonovich interpretation, we

have the Fokker-Planck equation for PðF; tÞ ¼ hdðFðtÞ � FÞi

@P

@t
¼ � @

@F
~G0 Fð Þ þ ~G1 Fð Þ
� 	

þ @

@F
~G2 Fð Þ @

@F
~G2 Fð ÞP F; tð Þ:

(22)

The general stable PDF solution to the approximate Fokker-

Planck equation is then

P Fð Þ ¼ N0

jFj e
~G0

~G
2
2

lnjFj�
~G1

~G
2
2

jFj
; (23)

with the white noise assumption. Note that the PDF of the

electrostatic potential / and the pressure pe will be the same

by construction, and that we have predicted a single-moment

quantity, such as the potential in terms of the time dependent

term F, which implies that the statistics for the density fluc-

tuations is the same. [We note in passing that the statistics of

fluxes requires additional work, which is omitted here.] In

conclusion, the sought PDF for the intermittent and bursty

physics in the SOL will have the exponential form

P neð Þ ¼
N0

jnej
e

~G0

~G
2
2

lnjnej�
~G1

~G
2
2

jnej
; (24)

which heavily relies on the nonlinear terms in the model. If,

instead, such terms are neglected, the model only predicts a

Gaussian PDF for the physical quantities.

IV. NUMERICAL SIMULATIONS OF TOKAMAK SOL
TRANSPORT

In this section, we present the outcome of nonlinear

simulations of SOL turbulence and the statistical analysis
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thereof. The simulations are performed using the GBS code,

a numerical implementation of Eqs. (1)–(5). Solving this sys-

tem of equations involves approximating the spatial deriva-

tives using standard second order accurate finite differences

in space. The Arakawa scheme28 has been employed for the

Poisson brackets, while the time advance is carried out using

a standard fourth order accurate Runge-Kutta method. The

code is fully 3D and flux-driven, which avoids the typical

flux-tube partial linearization of Eqs. (1)–(5). Therefore, the

turbulent structures are obtained in the context of a power

balance between plasma sources, sinks (a toroidal limiter),

and turbulent modes driven by the plasma gradients.

In recent years, GBS has been used to understand the

nonlinear turbulent dynamics of TORPEX29–32 (a simple

magnetized torus experiment) and the tokamak SOL in a lim-

iter configuration.27,33,34 In particular, for both configura-

tions, the turbulent regimes30,32,33 and the pressure decay

length27,31,34 have been investigated. In the present study,

our simulations focus on the statistical properties of the

turbulent fluctuations.

The following numerical parameters were used for the

SOL turbulence simulations: nx¼ 128, ny¼ 512, and nz¼ 64

(nx, ny, and nz are the number of radial, poloidal, and toroidal

grid points, respectively). This grid results in a maximum

poloidal wave number ky,max¼ 2, while the largest dealiased

toroidal mode number, applying the two-thirds rule, is

nmax ¼ 21. The physical parameters considered for the simu-

lations are q¼ 4, ŝ ¼ 0, Lx¼ 70, Ly¼ 800, R¼ 500,

�¼ 0.01, and mi=me¼ 200. The size of the simulation

domain is equivalent to the SOL of a small tokamak such as

COMPASS.34 The source terms Sn and STe
in Eqs. (1) and

(5) mimic the outflow of plasma from the closed flux surface

region. For simplicity, they are taken to be constant in the

y–direction and independent of n and Te.

The simulations are initialized using flat smooth profiles.

Then, particle and heat sources are injected, driving resistive

ballooning modes linearly unstable, which in turn induces

turbulent transport. As an outcome, a quasi-steady-state re-

gime is established as a balance between the plasma sources,

turbulent transport, and sheath losses. The pressure gradient

length Lp is not predetermined, as in linear calculations, but

is instead obtained self-consistently from the calculation. In

the case under study, the turbulent dynamics is dominated by

resistive ballooning modes, with the non-linear saturation

given by the pressure non-linearity.27

A typical poloidal cross section of the SOL is shown in

Fig. 1. As it will be shown, the physics involved defines two

distinct regions regarding the turbulence fluctuations in the

simulation domain: At the left boundary, the injected plasma

is driving flute-like, radially elongated turbulent eddies,

which define the near SOL. In this region, fluctuations have

an essentially Gaussian PDF, and intermittent events are

rare. However, as the turbulent structures propagate into the

far SOL, they are sheared apart and detached blobs appear,

forming the so-called “blobby region.” Here, intermittent

events become much more frequent and important as the ves-

sel wall is approached. In order to corroborate these state-

ments, we have to explore the statistical properties of

simulations in both the source and blobby regions and try to

differentiate between the two. This will be achieved by

means of singular spectrum analysis (SSA),35 a well-known

mathematical method for analysing the structural behavior of

FIG. 1. Poloidal cross-section of plasma density as shown during the non-

linear stage of GBS simulations.

FIG. 2. SSA analysis of SOL simulation in the source region. (a) Raw data from SOL simulations produced by GBS in the source region and “filtered” data af-

ter the oscillatory components have been removed. Both sets of data are normalized for zero mean and standard deviation equal to unity. (b) Eigenvalue spec-

trum of the simulation data in the source region. The first eigenvalue, which is clearly the most dominant one, has been removed from the raw data to provide

the filtered time-trace.
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relatively small time-traces, by filtering out possibly existing

(deterministic) oscillatory components from a weakly sto-

chastic process (a typical picture is the superposition of noise

on a sinusoidal signal). Such oscillatory components pertain

to normal modes in the SOL simulations, which have to be

removed before we embark on the statistical analysis of the

GBS output data in each region of the domain. It is notewor-

thy that SSA has been successfully adopted by several scien-

tific fields, such as geology,36 economics,37 and medicine,38

but hardly so in plasma physics (however, see Ref. 39 for a

notable exception). We shall begin our numerical study with

a simulation in the source region. In Fig. 2(a), we show the

time-trace of the density at radial location x¼ 10 (see

Fig. 1). We apply SSA on this signal in order to track down

any oscillatory components present, which will manifest

themselves as the largest eigenvalues in the spectrum shown

in Fig. 2(b). It turns out that the first eigenvalue is the most

dominant one, and therefore the one to be removed from the

time-trace. Having done this, the remaining component of

the time-trace is also shown in Fig. 2(a). We will now show

that the filtered data actually follows a Gaussian distribution

appropriate for the weak nonlinear regime of the simplified

model. For this, we employ the quantile-quantile (QQ) plot

of the data against the normal quantiles (see Fig. 3). For fur-

ther ease of inspection, we superpose the Gaussian data with

the same mean and standard deviation as the filtered data. It

is clearly seen that these two sets of data almost coincide,

which speaks for the Gaussian nature of the GBS filtered

data. The situation radically changes, however, in the blobby

region. In Fig. 4(a), we present the GBS data from SOL sim-

ulations in the blobby region, both raw and filtered, in the

same fashion as before. Again, the dominant eigenvalue is

the first one, which has been removed to obtain the filtered

data (see Fig. 4(b)). The distinct spikes in the filtered data

are responsible for the emergence of a strong tail, as shown

in the QQ plot (Fig. 5(a)). In this case, the Gaussian data

with the same mean and standard deviation are clearly

unable to capture the simulation data. Nevertheless, it is pos-

sible to reproduce the tail by employing an exponential devi-

ation to the straight line joining the 1st and 3rd quantiles of

the filtered data (see Fig. 5(b)), where this assumption is jus-

tified by the form of the PDF in Eq. (24).

The analysis of the numerically generated data shows a

distinct deviation from Gaussianity in the blob region, as

seen in Fig. 5(b), which is a salient feature in the whole blob

region, whereas in the source region the filtered statistics

exhibits Gaussian PDFs. This corroborates the first principles

analytical modeling, suggesting that the tails of the PDFs are

manifestly exponential as a result of the non-linear dynamics

present in the SOL region.

V. SUMMARY AND CONCLUSIONS

Transport in the tokamak scrape-off layer is dominated

by intermittent and bursty processes, rendering mean-field-

theory models inadequate for its description. In this work,

we have employed the Braginskii fluid solver GBS to inves-

tigate the intermittent characteristics of the transport driven

by coherent structures, such as blobs. At the same time, we

derived from first principles a stochastic likelihood model of

the plasma density, which is able to predict the tails of the

PDF. The derivation of the model is based on the Fokker-

Planck approach, yielding a closed analytical expression

FIG. 3. Quantile-Quantile plot of the filtered data in the source region

against the Gaussian distribution.

FIG. 4. SSA analysis of SOL simulation in the blobby region. (a) Raw data from SOL simulations produced by GBS in the blobby region and “filtered” data af-

ter the oscillatory components have been removed. Both sets of data are normalized for zero mean and standard deviation equal to unity. (b) Eigenvalue spec-

trum of the simulation data in the blobby region. The first eigenvalue, which is clearly the most dominant one, has been removed from the raw data to provide

the filtered time-trace.
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suitable for comparison to both numerical and experimental

data. To enable such comparisons, we have processed the nu-

merical data using the singular spectrum analysis, which fil-

ters out possibly existing oscillatory (deterministic)

components from a weakly stochastic time-trace. We have

shown that the statistics of time-traces of the density can be

modeled with the PDF derived from the stochastic model.

Therefore, the presented numerical analysis might prove val-

uable for the detection of intermittent events, such as blobs,

in experimental signals or code simulations. As further work,

we envisage the study of higher moments, such as transport

coefficients, by extending the theoretical model as well as

the SSA methodology in order to handle cross-correlated

time-traces.
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