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In this paper, we present a study of anomalous diffusion using a Fokker-Planck description with

fractional velocity derivatives. The distribution functions are found using numerical means for

varying degree of fractionality of the stable L�evy distribution. The statistical properties of the

distribution functions are assessed by a generalized normalized expectation measure and entropy

in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and

expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive

domain, indicating a self-organising behavior. [http://dx.doi.org/10.1063/1.4904201]

I. INTRODUCTION

In the early 20th century, Einstein studied classical diffu-

sion in terms of Brownian motion. In this process, the mean

value of the process vanishes, whereas the second moment or

variance grows linearly with time hdx2i ¼ 2Dt. Anomalous

diffusion, however, is in contrast to classical diffusion in

terms of the variance that exhibit a non-linear increase with

time hdx2i ¼ 2Dta. There is no mechanism that inherently

constrains limdx;dt!0
dx2

dt to be finite or non-zero. In more gen-

eral terms, there are two limits of interest where the first is

super-diffusion a> 1 and the second is sub-diffusion with

a< 1. Such strange kinetics1–6 may be generated by acceler-

ated or sticky motions along the trajectory of the random

walk.7 The main cause of anomalous super-diffusion is the ex-

istence of long-range correlations in the dynamics generated

by the presence of anomalously large particle displacements.

Anomalous sub-diffusive properties have been studied

in many different contexts, among them are that of holes in

amorphous semiconductors where a waiting time distribution

with long tails was introduced8 and the sub-diffusive proc-

esses within a single protein molecule described by general-

ized Langevin equation with fractional Gaussian noise.9

Moreover, it has been recognized that the nature of the trans-

port processes common to plasma physics is dominated by

turbulence with a significant ballistic or non-local compo-

nent, where a diffusive description is improper. The basic

mechanism underlying plasma transport is a very complex

process and not very well understood. Furthermore, in

plasma physics, super-diffusive properties are often found

with a > 1 such as the thermal and particle flux in magneti-

cally confined plasmas or transport in Scrape-Off Layer

(SOL) dominated by coherent structures.10–14 In this paper,

we will mainly concern ourselves with super-diffusion mod-

eled by a Fractional Fokker-Planck equation (FFPE).

A salient component describing the suggestive non-local

features of plasma turbulence is the inclusion of a fractional

velocity derivative in the Fokker-Planck (FP) equation lead-

ing to an inherently non-local description as well as giving

rise to non-Gaussian probability density functions (PDFs) of,

e.g., densities and heat flux. Note that the non-Gaussian

features of the PDFs heat or particle flux generated by non-

linear dynamics in plasmas may be reproduced by a linear,

though, fractional model. The non-locality is introduced

through the integral description of the fractional derivative,

and the non-Maxwellian distribution function drives the

observed PDFs of densities and heat flux far from Gaussian15

as well as shear flow dynamics.16 Some of the previous

papers on plasma transport have used models including a

fractional derivative where the fractional derivative is intro-

duced on phenomenological premises.17 In the present work,

we introduce the L�evy statistics into the Langevin equation

thus yielding a fractional FP description. This approach is

similar to that of Refs. 17–19 resulting in a phenomenologi-

cal description of the non-local effects in plasma turbulence.

Using fractional generalizations of the Liouville equation,

kinetic descriptions have been developed previously.20–23

In investigations of the anomalous character of trans-

port, a useful tool is the non-extensive statistical mechanics

which provides distribution functions intermediate to that of

Gaussians and L�evy distributions adjustable by a continuous

real parameter q.25–27 The parameter q describes the degree

of non-extensivity in the system. Non-extensive statistical

mechanics has a solid theoretical basis for analysing com-

plex systems out of equilibrium where the total entropy is

not equal to the sum of the entropies from each subsystem.

For systems comprised independent or parts interacting

through short-range forces, the Boltzmann-Gibb statistical

mechanics is sufficient; however, for systems exhibiting

fractal structure or long range correlations, this approach

becomes unwarranted. Tsallis statistics is now widely

applied, e.g., to solar and space plasmas such as the helio-

sphere magnetic field and the solar wind.28–30

Note that due to the obtained L�evy type distribution

functions, higher moments will diverge thus it is of interest

to define convergent statistical measures of the underlying

process. We will employ the generalized q-moments or

q-expectations as hvpiq ¼
Ð

dvFðvÞqvp=
Ð

dvFðvÞq. The

q-expectation can be a convergent moment of the distribu-

tion function although the regular moments diverge. Thisa)Electronic mail: anderson.johan@gmail.com
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also gives us the opportunity to have a convergent pseudo-

energy that is always convergent.

The aim of this study is to elucidate on the non-

extensive properties of the velocity space statistics and

characterization of the fractal process in terms of Tsallis sta-

tistics. In Refs. 18 and 19, two limiting cases of the forced

FFPE were studied using an expansion in the fractionality

parameter a close to two. However, due to the intractability

of these models, a minimal model for the FFPE is thus con-

structed retaining mainly the effects of the fractional opera-

tor in order to understand the properties of the FFPE.

Furthermore, in order to establish an effective connection

to the extended statistical mechanics, we obtain numerical

solutions of the PDFs derived from the Tsallis statistic

which is in good agreement with those found using the

FFPE.32 Furthermore, we consider numerical solutions to the

Langevin system with L�evy distributed noise and show

qualitatively similar results as the analytical work.

Moreover, we find that self-organising behavior is present in

the system where the ratio of the entropy and energy expec-

tation is decreasing with decreasing fractionality.

The remainder of the paper is organized as in Sec. II the

fractional Fokker-Planck equation is introduced, whereas in

Sec. III a numerical study of the probability distribution

functions obtained is presented. In Sec. IV, the resulting nu-

merical entropies are discussed, while the paper is concluded

by results and discussions in Sec. V.

II. FRACTIONAL FOKKER-PLANCK EQUATION

The motion of a colloidal particle, i.e., Brownian

motion, is described by a stochastic differential equation also

known as the Langevin equation.33 It is assumed that the

influence of the background medium can be split into a

dynamical friction and a fluctuating part, A(t), represented

by Gaussian white noise. The Gaussian white noise assump-

tion is usually imposed in order to obtain a Maxwellian

velocity distribution describing the equilibrium of the

Brownian particle. This connection is due to the relation

between the Gaussian central limit theorem and classical

Boltzmann-Gibbs statistics.34 However, the Gaussian central

limit theorem is not unique and a generalization was done by

L�evy,35 Khintchine,34 and Seshadri,36 by using long tailed

distributions.

The underlying physical reasoning is to allow for the

non-negligible probability of preferred direction and long

jumps, i.e., L�evy flights, which therefore allows for asymme-

tries and long tails in the equilibrium PDFs, respectively. In

the present work, we introduce the L�evy statistics into the

Langevin equation thus yielding a fractional FP description.

Following the approach used by Barkai37 and Moradi,18,19 a

FFPE with a fractional velocity derivative in the presence of

a constant external force is obtained as:

@F

@t
þ v

@F

@r
þ F

m

@F

@v
¼ � @

@v
vFð Þ þ D

@aF

@jvja ; (1)

where 0� a� 2. Here, the term @aF
@jvja is the fractional Riesz

derivative. The diffusion coefficient, D, is related to the

damping term �, according to a generalized Einstein

relation37,39

D ¼ 2a�1Ta�

C 1þ að Þma�1
: (2)

Here, Ta is a generalized temperature, and taking force F to

represent the Lorentz force acting on the particles with mass

m and C(1þ a) is the Euler gamma function.

In order to analytically investigate the effects of the

fractional derivative on the diffusion, we consider the force-

less homogeneous one dimensional Fokker-Planck equation

of the form

@F

@t
¼ � @

@v
vFð Þ þ D

@a

@jvja F: (3)

The solution is found by Fourier transforming and treating

the fractional derivative in the same manner as in Ref. 38 we

find

@F̂

@t
¼ ��k

@

@k
F̂ � DjkjaF̂: (4)

The stationary PDF is now readily obtained by integration

and an inverse Fourier transform

F̂ kð Þ ¼ F0 exp � D

�a
jkja

� �
; (5)

F vð Þ ¼ F0

2p

ð1
�1

dk exp � D

�a
jkja þ ikv

� �
: (6)

Due to the fractal form of the inverse Fourier transform,

analytical solutions of the PDF for the general case are diffi-

cult to obtain, except in particular, cases of a¼ 1.0 and a¼ 2

yielding a Lorentz distribution and a Gaussian distribution,

respectively. Note that Eq. (6) is equivalent to what was

found in Ref. 23. From a different perspective, for a PDF of

a single variable, the Tsallis statistics may be generated by

an appropriately constructed Langevin equation of the form

dv

dt
¼ K vð Þ þ dD vð Þ

dv
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
2D vð Þ

p
w tð Þ: (7)

This result was obtained in Ref. 40, where K(v), D(v), and

dD(v)/dv are non-stochastic functions of v and w(t) is white-

in-time Gaussian noise. The PDF generated by Eq. (7) is

F vð Þ ¼ N

1þ b q� 1ð Þv2
� �1= q�1ð Þ : (8)

Note that q> 1 and b are found from the analytical forms of

D(v) and K(v) as well as the v2 dependence. Here, N is nor-

malization factor. Furthermore, it is found that b is not repre-

sentative of an inverse temperature of the system due to its

non-equilibrium nature. It has been recognized that multi-

fractal models stemming from the Tsallis statistical mechanics

may well describe isotropic fluid turbulence at high but finite

Reynolds number.24 In Sec. III, we will study the solutions to

Eq. (6) in more detail.
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III. NUMERICAL SOLUTIONS TO THE FRACTIONAL
FOKKER-PLANCK EQUATION

The main topic of this paper is to evaluate the statistical

properties in terms of Tsallis statistics dependent of the

fractional index (a) in Eq. (6). We will start by numerically

computing the PDFs with a as our free parameter, and next

we will fit the computed PDFs to the proposed generalized

analytical Cauchy-Lorentz PDFs found from Tsallis statisti-

cal mechanics. Subsequently, in order to statistically evalu-

ate the numerically found PDFs in the fractal model, we will

determine the q-expectation and the Tsallis non-extensive

entropy. Note that the regular statistical moments of the

PDFs will not converge unless the PDFs are considered to

have a finite compact support. Although the PDFs have been

studied before in Refs. 31 and 32, we show the PDFs and fits

to the analytically found PDFs for completeness and for

reference during the q-entropy study. Thus, we will now

focus on solving Eq. (6) numerically by computing the

inverse Fourier transform and compare the found PDFs to

previously derived analytical solutions.

In Figure 1, the numerically found PDFs are shown

(log-linearly) for a¼ 0.25 (black dashed line), a¼ 0.50

(cyan line), a¼ 0.75 (yellow line), a¼ 1.00 (magenta line),

a¼ 1.25 (green line), a¼ 1.50 (red line), a¼ 1.75 (blue

line), and a¼ 2.00 (black line). Here, in this study, the

diffusion coefficient over the dissipation is kept constant

D/�¼ 1.0.

We note that as the parameter a decreases, the normal-

ized fourth moment (Kurtosis¼m4=m2
2¼ the ratio of the

fourth moment divided by the square of the standard devia-

tion) of the symmetric PDF increases rapidly where PDFs

become more and more peaked with elevated tails. Note that

the distribution varies smoothly as parameter a is decreased

from a Gaussian distribution with a¼ 2.0 passing through

the Lorentz distribution with a¼ 1.0.

In line with the stochastic non-linear analysis presented

in Eqs. (7)–(11), it has been shown, in Ref. 31, that using

generalized statistical mechanics yielded PDFs that are of

Cauchy-Lorentz form

F vð Þ ¼ a

1þ b q� 1ð Þv2
� �1= q�1ð Þ : (9)

We note that this type of PDF exhibits power law tails that

are significantly elevated compared to Gaussian or exponen-

tial tails, cf. Eq. (7). It is worthy noting that the precise

analytical relation between the fractality index a and the

non-extensivity parameter q is not entirely clear. One possi-

bility is the formal relation between the fractality index a
and the non-extensivity q proposed by Tsallis et al.31 as

a ¼ 3� q

q� 1
: (10)

A second possibility is the following simple relation in

Ref. 31:

a ¼ 1

q� 1
: (11)

Taking Gaussian limit in Eq. (11) requires a caution as it

cannot reproduce the limit of a¼ 2.0 where q¼ 1.

Interestingly, comparing Eq. (11) there is a direct connection

between non-linear dynamics and the fractional FP model.

However, Eq. (11) yields a seemingly erroneous scaling of

the tail of the PDF. It can easily be shown that FðvÞ /
v�ðaþ1Þ as v ! 1 which is only fulfilled by Eq. (10),

whereas (11) yields a steeper slope for the tails with a. On

the other hand, in the limit of small v, the exponential factor

can be approximated as follows eikv ¼ 1þ ikv� 1
2

k2v2 þ � � �,
keeping only the even powers in the integral due to the sym-

metry, we find

F vð Þ � F0

p
1

a
D

a�

� ��1=a

C
1

a

� �
� D

a�

� ��3=a

C
3

a

� �
v2

2!
þ � � �

" #
:

(12)

Here, C is the gamma function. Note that for large a, the

relations from Eqs. (10) and (11) yield similar values and

asymptotically approaches 1. Moreover, the last expansion

in Eq. (12) approximates a Gaussian distribution function for

small v for both Eqs. (10) and (11).

To further investigate the suitability of Eqs. (10) and

(11), in Figure 2, the PDFs are fitted using Eq. (11) with

q¼ 5/3 and utilizing (10) with q¼ 9/5 for a¼ 3/2. We find

good agreement over several orders of magnitude between

the proposed analytically derived PDFs based on Eqs. (11)

and (10) and the numerically computed PDFs for the values

used. Note that similar agreement is found for all values of

0.25< a< 1.5. We find that using q¼ 5/3 gives a slightly

better fit for small v compared to the higher q¼ 9/5 value

whereas, the tails seem to be off using Eq. (11). Since the

tail parts are of great importance, we will thus use the rela-

tion in Eq. (10) throughout the rest of the paper.

While we follow the definition that any diffusive process

that diverges from the form hx2iðtÞ / t is called anomalous,

in most cases we will deal with super-diffusion where hx2iðtÞ
may be divergent. In order to find a useful statistical measure

of the super-diffusive or fractal process, we introduce

FIG. 1. The F(v) as a function of the velocity v for a¼ 2.00 (black line),

a¼ 1.75 (blue line), a¼ 1.50 (red line), a¼ 1.25 (green line), a¼ 1.00 (ma-

genta line), a¼ 0.75 (yellow line), a¼ 0.50 (cyan line), and a¼ 0.25 (black

dashed line).
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hv2iq ¼
Ð1
�1 dv F vð Þð Þqv2Ð1
�1 dv F vð Þð Þq

; (13)

which we will call the q-expectation according to Ref. 32.

Note that, e.g., the exactly solvable case with a¼ 1.0, we

find that the ordinary expectation diverges; however, as q
increases a finite measure is found. Moreover, this gives also

the opportunity to define a pseudo-energy in the system as

the smallest possible value q, where the q-expectation con-

verges. Naturally, this reduces to the classical energy for

a¼ 2.

In principle, all values of v F(jvj<1) should be used

for the q-expectation of F(v). However, for numerical tract-

ability, we have used a PDF with finite support

F(v)num¼F(v) for jvj< 10 and zero everywhere else.

Different support ranges have been tested where extending

the range jvj< 15 makes only minor changes.

Figure 3 shows the q-expectation as a function of q,

treating q as a free parameter for a¼ 0.5 (magenta line),

a¼ 1.0 (blue line), a¼ 1.5 (red line), and a¼ 2.0 (black

line). We find that just as expected, the q-expectation falls

off with q; however, results corresponding to smaller a
(more intermittent) fall off faster than the q-expectation of

the Gaussian process. In general, there exists a smallest value

for q, where the q-expectation is finite. In the case of a¼ 2.0,

it converges for all q and we find that the PDF is a Gaussian

with a variance r2¼ 1.0.

In Figure 4, we have used the relation in Eq. (10) to

determine the appropriate values for the different a-stable

processes of the PDFs determined in Figure 1, showing a

scan from q � (1.5,2.6) with a vertical line at q¼ 5/3. We

find that the q-expectation has a minimum at q¼ 5/3, which

is equivalent to value of a¼ 2.0. This further confirms that

Eq. (10) is a suitable choice and also that the q-expectation

is a useful measure.

Furthermore, in Figure 5, the 1-expectation or energy is

shown as a function (numerical result in black dots and a fit

in red diamonds) of a utilizing the finite support of the PDFs

shown in Figure 1. It is found that the 1-expectation

decreases exponentially with increasing a. Here, we also

note that the energy is convergent for all a due to the finite

support of the PDFs. The main motivation for defining the

q-expectation or tempered pseudo-energy is the sharp

FIG. 2. The PDF as a function of the velocity v for a¼ 1.5 (blue line) fitted

with q¼ 5/3 (red line) and q¼ 9/5 (black line).

FIG. 3. The normalized q-expectation as a function of q for a¼ 0.5 (ma-

genta line), a¼ 1.0 (blue line), a¼ 1.5 (red line), and a¼ 2.0 (black line).

FIG. 4. The normalized q-expectation (blue stars) as a function of q using

Eq. (10) as a relation between the non-extensivity and the fractality with a

vertical line at q¼ 5/3.

FIG. 5. The 1-expectation as a function of a for the numerically bounded

PDFs with the numerical result in black dots and a fit in red diamonds.
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increase in the second moment for small a, where the expec-

tation value is diverging due to the long tails of the PDFs.

IV. ENTROPY

In thermodynamics, a measure on the number of ways a

system can be arranged is denoted entropy. In terms of gen-

eralized statistical mechanics, q-entropy or Tsallis entropy

can be introduced as

Sq ¼
1�

ð
dv F vð Þð Þq

q� 1
: (14)

Note that for Gaussian statistics, the q-entropy is reduced (by

L’Hospital’s rule) to the conventional Boltzmann-Gibbs

entropy S ¼ �
Ð

dv logðFðvÞÞFðvÞ. Moreover, an important

distinct property of the Tsallis generalized entropy is its non-

extensivity, i.e., for two systems A and B, the total entropy is

not the sum of the entropies of the individual systems,

SqðAþ BÞ 6¼ SqðAÞ þ SqðBÞ. We will now use the Tsallis

entropy to investigate the importance of fractal structure in

velocity space and we will contrast the resulting generalized

entropies to the standard Boltzmann-Gibbs entropy.

In Figure 6, the dependence of the q-entropy as a func-

tion of q for a¼ 0.5 (magenta line), a¼ 1.0 (blue line),

a¼ 1.5 (red line), and a¼ 2.0 (black line) with q as a free pa-

rameter is displayed. The q-entropy is rapidly decreasing

with increasing q, mainly due to the fact that the entropy is

dependent on the q-th power of the PDF. The scaling of the

q-entropy of q using relation (10) is displayed in Figure 7

with a vertical line at q¼ 5/3. Using the appropriate relation

between a and q shows that a maximum in the entropy

is found for Gaussian statistics. For comparison, the

Boltzmann-Gibbs entropy is shown in Figure 8 as a function

of q using the relation between a and q as in Eq. (10). We

find that the entropy is monotonously increasing with

increasing q. This is an indication that the Tsallis entropy is

viable measure identifying the process with highest entropy

as the Gaussian process. As an interesting measure of the dy-

namics and the importance of fractionality in the dynamics

are to normalize the entropy with the energy, we will now

discuss this quantity.

The q-entropy normalized with the q-expectation as a

function of q is displayed in Figure 9 for a¼ 1/2 (magenta

rings), a¼ 1.0 (blue diamonds), a¼ 3/2 (red triangles), and

a¼ 2.0 (black stars). The normalized q-entropy is rapidly

increasing with increasing q mainly due to the rapid decrease

of the q-expectation ðhv2iqÞ with increasing q. This indicates

that in a statistical mechanics sense, the normalized general-

ized entropy is increasing with increasing q as a process in

velocity space in the sub-diffusive domain, whereas in the

range of small a the high-velocity, small likelihood events

are more dominant. In the sub-diffusive regime, the small

amplitude events are dominant. In Figure 10, the q-entropy

normalized to the q as a function of q determined by the rela-

tion 10 is displayed. We find that the maximum is found at

the same q¼ 5/3 values as the vertical line. Furthermore, in

contrast in Figure 11, the Boltzmann-Gibbs entropy normal-

ized to the energy (black dots) and the q-expectation (blue

stars) as a function of q with a vertical line at q¼ 5/3 is

shown. Here, the q values are determined by Eq. (10). The

normalized Boltzmann-Gibb entropy increases as a function

of q when normalized to the regular energy due to the

FIG. 6. The q-entropy as a function of q for PDFs with a¼ 0.5 (magenta

line), a¼ 1.0 (blue line), a¼ 1.5 (red line), and a¼ 2.0 (black line).

FIG. 7. The q-entropy as a function of q using Eq. (10) as a relation between

the non-extensivity and the fractality.

FIG. 8. The Boltzmann-Gibb entropy as a function of q with a vertical line

q¼ 5/3.
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influence of the strong tails. Also in the normalized descrip-

tion, the q-entropy can identify the Gaussian process as the

process with highest normalized entropy. However, the en-

tropy normalized to the q-expectation is first increasing for

small q in the sub-diffusive region and then decreases for

larger q in the super-diffusive region. The dynamics of the

FFPE system is dependent on the level of diffusion in com-

parison to the collisional damping in terms of the ratio of the

two free parameters D/�, cf. Eq. (6). Allowing for a con-

trolled variation of the free parameter D/� is an important as-

pect on elucidating on the complex fractional dynamics.

Note that the width of the PDFs is significantly dependent on

this factor, making the normalization with hv2i and hv2iq
impossible. In Figures 12 and 13, the q-entropy and

Boltzmann-Gibbs entropy are shown with D/� as a parame-

ter, respectively. In this study, the discrete values of D/� are

chosen to be in the range of f10�2; 10�1; 1; 101; 102g. In

Figure 12, it is found that the q-entropy is decreasing with q
for small D/� (collision dominated), whereas the opposite or

a flat profile is found for large D/� (diffusion dominated).

Furthermore, in Figure 13, the Boltzmann-Gibbs entropy is

presented where the entropy is increasing with increasing q,

in particular, in the diffusion dominated regime. In the

above, it is indicated that as the fractality index increases

(smaller q), the entropy decreases indicating a self-

organising behavior in velocity space with long-range corre-

lations. The number of possible microscopical realizations

decreases fast.

As a comparison to the analytical work, we numerically

study the influence of L�evy stable processes as a noise source

in the Langevin equation of motion

dx

dt
¼ v; (15)

d�

dt
¼ ��vþ f: (16)

Here, the variables are normalized in the numerical scheme

as s¼ �t and f is the L�evy stochastic forcing. In the simula-

tions,39 we follow 100 000 particles until the system comes

to a quasi-steady state. The numerical PDFs are determined

by using 200 bins and we consider variations of the fraction-

ality between a � {1.1, …, 2.0}. Note that also here the

PDFs are found to fall off as FðvÞ � v�a�1. The resulting

Boltzmann-Gibbs and Tsallis entropies are given in Figure

FIG. 9. The q-entropy normalized to the q-expectation hv2iq as a function of

q for PDFs with a¼ 0.5 (magenta line), a¼ 1.0 (blue line), a¼ 1.5 (red

line), and a¼ 2.0 (black line).

FIG. 10. The q-entropy normalized to the q-expectation hv2iq as a function

of q using Eq. (10) as a relation between the non-extensivity and the fractal-

ity with a vertical line at q¼ 5/3.

FIG. 11. The Boltzmann-Gibbs entropy normalized to the q-expectation

hv2iq and the normal variance as a function of q using Eq. (10) as a relation

between the non-extensivity and fractality with a vertical line at q¼ 5/3.

FIG. 12. The q-entropy as a function of q using Eq. (10) as a relation

between the non-extensivity.
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14. Contrasting the results with those shown in Figures 7 and

8, it is found that the Boltzmann-Gibb entropy is increasing

with q and that the Tsallis entropy is almost flat in the current

range and finally seems to decrease for larger q. This is in

good qualitative agreement with the analytical model; how-

ever, there are some quantitative differences. Note that the

range q is smaller compared to the analytical work.

V. RESULTS AND DISCUSSION

Non-linear processes with non-Gaussian character have

attracted significant attention during recent years calling for

an efficient model describing such dynamics. In this paper,

we have investigated one prominent candidate capturing the

main features in the dynamics, namely, the Fractional

extended Fokker-Planck Equation (FFPE). The FFPE is

obtained by modifying the velocity derivative to a fractional

differential operator allowing for non-local effects in veloc-

ity space. The underlying physical reasoning for using the

FFPE is to allow for the non-negligible probability of direc-

tion preference and long jumps, i.e., L�evy flights, which

therefore allows for asymmetries and long tails in the equi-

librium PDFs, respectively.

The aim of this study was to shed light on the non-

extensive properties of the velocity space statistics and char-

acterization of the fractal processes of the FFPE in terms of

Tsallis statistics. The non-extensive statistical mechanics of

Tsallis provides velocity space distribution functions inter-

mediate to that of Gaussians and L�evy distributions adjusta-

ble by a continuous real parameter q which seems to be

suitable for comparing with the distribution found in FFPE.

The parameter q describes the degree of non-extensivity in

the system. Non-extensive statistical mechanics has a solid

theoretical basis for analysing complex systems out of equi-

librium. For systems comprised independent or parts inter-

acting through short-range forces, the Boltzmann-Gibb

statistical mechanics is sufficient; however, for systems

exhibiting fractal structure or long range correlations, this

approach becomes unwarranted.

In this work, we have utilized generalized q-moments or

q-expectations as hvpiq ¼
Ð

dvFðvÞqvp=
Ð

dvFðvÞq due to the

obtained L�evy type character of the distributions, higher

moments may diverge. The q-expectation results in conver-

gent moment although the regular moments diverge. This

also permits us to define a pseudo-energy that is always con-

vergent. We show that the PDFs derived from the Tsallis sta-

tistic are in good agreement with those found using the

FFPE. Moreover, we find that self-organising behavior is

present in the system where the ratio of the entropy and

energy expectation is decreasing with decreasing fractional-

ity or increasing a.

Finally, it seems that a FFPE is a viable candidate for

explaining certain non-linear features ubiquitous to anoma-

lous plasma transport as well as for other physical processes.

Note that in Ref. 24, a relation between Tsallis statistical

mechanics and Navier-Stokes turbulence was established. A

direct numerical comparison between the Langevin approach

and the FFPE using Tsallis statistical mechanics is a possible

topic for the future work.
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