
Thesis for the Degree of Doctor of Philosophy

Modelling and Retrieval of Forest
Parameters from Synthetic Aperture

Radar Data

Maciej Jerzy Soja

Department of Earth and Space Sciences
Chalmers University of Technology

Gothenburg, Sweden 2014



Modelling and Retrieval of Forest Parameters from Synthetic Aperture
Radar Data
Maciej Jerzy Soja
ISBN 978-91-7597-076-9

c© Maciej Jerzy Soja, 2014.

Doktorsavhandlingar vid Chalmers Tekniska Högskola
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Modelling and Retrieval of Forest Parameters from Synthetic Aperture
Radar Data
Maciej Jerzy Soja
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Abstract: Frequent, high-resolution mapping of national and global forest resources
is needed for improved climate modelling, degradation and deforestation detection,
natural disaster management, as well as commercial forestry. Synthetic aperture radar
(SAR) is an active radio- or microwave-frequency imaging sensor, which can be opti-
mised to fit specific needs through the choice of the centre frequency. In particular,
P-band SAR, with wavelengths around 70 cm, is a promising tool for biomass mapping
due to the high sensitivity to tree trunks, whereas X-band SAR, with wavelengths
around 3 cm and larger available bandwidths, is a promising tool for high-resolution
mapping of forest canopies.

Papers A and B summarise the results obtained within the feasibility study for
the European satellite BIOMASS, which is planned to become the first spaceborne
P-band SAR system. In Paper A, a forward model relating relevant forest and system
parameters to SAR observables is presented and evaluated. In Paper B, a new model
for biomass estimation is proposed, in which the significant influence of topographic
and moisture variations is treated using empirical corrections. The new model can be
used with the same model parameters in two boreal test sites in Sweden, separated
by 720 km, with a root-mean-square error (RMSE) of 22–33% of the mean biomass.

In Papers C, D, and E, X-band SAR data acquired with the twin-satellite, single-
pass interferometric system TanDEM-X are studied. Using the principles of across-
track interferometry, the position of the scattering centre is estimated from the phase
difference between two SAR images. With a high-resolution digital terrain model, the
interferometric data are ground-corrected, and the elevation of the scattering centre
above ground is determined. In Paper C, boreal forest biomass is estimated for one
test site in Sweden from ground-corrected TanDEM-X data using three models with
tree canopies represented by a random volume, but with different assumptions of the
ground component. The best results, with an averaged RMSE of 16%, are obtained
with a model accounting for canopy gaps. Based on this observation, a two-level
model (TLM) is introduced, in which forest is modelled as two discrete scattering
levels: ground and vegetation, the latter with gaps. In Paper D, it is shown that
TLM inversion of single-polarised, ground-corrected TanDEM-X data can provide
forest height and canopy density estimates, with RMSE values below 10% for a bo-
real test site in Sweden. In Paper E, biomass is estimated from the inverted TLM
parameters, with an RMSE in the interval 12–19% for eighteen acquisitions from two
boreal test sites in Sweden.

Keywords: synthetic aperture radar (SAR), forestry, above-ground biomass, for-
est height, canopy density, P-band, X-band, BIOMASS, TanDEM-X
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Preface & Acknowledgements

The story of Rapa Nui, or the Easter Island, is probably as interesting as it is tragic.
Once an idyllic island in the Pacific, unknown to humanity and almost entirely covered
by a palm forest inhabited by several endemic bird species, the arrival of the first
Polynesian settlers around 1200 AD1 drastically changed its landscape. Trees were
felled, to be used as fuel, construction material for shelters and boats, and to give
land for agriculture. The population of the island grew rapidly, perhaps even beyond
ten thousand inhabitants. 887 monolithic statues, called moai and weighing up to 90
tonnes each, were raised. Soon, the lack of forests caused soil erosion and the leaching
of agricultural fields, and almost all animals disappeared from the island. The lack
of wood made it impossible to build boats for fishing or for fleeing. Hunger struck
the islanders; the misery drew them to wars, and possibly also cannibalism2. By the
arrival of James Cook in 1774, the population of the now barren island was below a
thousand people, surrounded by almost equally many gigantic stone sculptures raised
by their ancestors.

Although the understanding of our ecosystems has increased significantly since the
arrival of the first Polynesians on Rapa Nui, deforestation and degradation of forests
are still a clear and present danger to the entire global ecosystem. Moreover, due
to the vastness and diversity of the global forests, many forests remain unexplored,
making it difficult to study the terrestrial ecosystems.

This doctoral thesis is focussed on synthetic aperture radar (SAR) remote sensing
of forests. SAR is a promising tool for frequent, global, high-resolution mapping of
forest resources, and it can be used both to improve the knowledge of the global forest

1T. L. Hunt and C. P. Lipo, “Late colonization of Easter Island,” Science, vol. 311, no. 5767,
pp. 1603–1606, 2006

2P. Rainbird, “A message for our future? The Rapa Nui (Easter Island) ecodisaster and Pacific
island environments,” World Archaeology, vol. 33, no. 3, pp. 436–451, 2002
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resources and to enforce international anti-deforestation agreements. It is my goal for
this thesis to bring new knowledge to the field of SAR remote sensing of forests and,
in the long run, help to better understand and protect our precious forests.
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Donal Murtagh, the administrative staff, as well as Jo Urban, whose sudden passing
struck us all with great sorrow.

Special thanks to Swedish National Space Board (SNSB), European Space Agency
(ESA), and European Union (EU) for the funding of my work. I would also like to
thank my colleagues from the BIOMASS feasibility study group, other colleagues
from SLU, FOI, DLR, as well as anonymous reviewers and committees whose work
contributed to this thesis.

I would like to express my gratitude to all the good teachers at Chalmers, for
actually teaching me something, and all the other teachers, for helping me to choose
what not to study. Many thanks to Conny Modig, my high school physics and
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List of Abbreviations

ALS airborne lidar scanning
ASI Italian Space Agency

(Italian: Agenzia Spaziale Italiana)
ATI along-track interferometry
BEES BIOMASS End-to-End Simulator
CARABAS Coherent All RAdio BAnd Sensing
CAST Chinese Academy of Science and Technology
CDTI Centre for the Development of Industrial Technology

(Spanish: Centro para el Desarrollo Tecnologico Industrial)
CONAE National Commision for Space Activities

(Spanish: COmisión Nacional de Actividades Espaciales)
COSMO-SkyMed COnstellation of Small satellites for the Mediterranean basin Ob-

servation
CSA Canadian Space Agency
dbh diameter at breast height
DCM digital canopy model
DEM digital elevation model
DLR German Aerospace Center

(German: Deutsches Zentrum für Luft- und Raumfahrt)
DSM digital surface model
DTM digital terrain model
EM electromagnetic
ERS European Remote Sensing satellite
ESA European Space Agency
E-SAR Experimental-SAR
FM forward model
FOI Swedish Defense Research Agency

(Swedish: Totalförsvarets Forskningsinstitut)
GOM geometrical optics model
HH horizontal (receive), horizontal (transmit)
HOA height-of-ambiguity
HV horizontal (receive), vertical (transmit)
IEEE Institute of Electrical and Electronics Engineers
InSAR interferometric SAR

3



4

ISRO Indian Space Research Organisation
ITU International Telecommunication Union
IWCM interferometric water cloud model
JAXA Japan Aerospace Exploration Agency
lidar light detection and ranging
NASA National Aeronautics and Space Administration
PD penetration depth
pdf probability distribution function
PolInSAR polarimetric-interferometric SAR
PolSAR polarimetric SAR
radar radio detection and ranging
RCS radar cross section
RISAT Radar Imaging Satellite
RMSD root-mean-square difference
RMSE root-mean-square error
RVoG random volume over ground
SAR synthetic aperture radar
SLU Swedish University of Agricultural Sciences

(Swedish: Sveriges lantbruksuniversitet)
SMHI Swedish Meteorological and Hydrological Institute

(Swedish: Sveriges Meteorologiska och Hydrologiska Institut)
SNR signal-to-noise ratio
SPM small perturbation model
SRTM Shuttle Radar Tomography Mission
TanDEM-X TerraSAR-X Add-oN for Digital Elevation Measurements
TBM TLM biomass model
TDM TanDEM-X (interferometer system)
TDX TanDEM-X (satellite)
TLM two-level model
TOPS terrain observation by progressive scans
TSX TerraSAR-X (satellite)
UHF ultra high frequency
VH vertical (receive), horizontal (transmit)
VHF very high frequency
VV vertical (receive), vertical (transmit)
XTI across-track interferometry



Chapter 1

Forests

1.1 Multiple Roles of Forests

Forests play a vital role in the terrestrial ecosystems. Through the process of photo-
synthesis, trees and plants bind CO2 from the atmosphere, part of which is trans-
formed into carbon stock. Forests provide shelter to countless animal and vegetation
species, housing around 80% of the terrestrial biodiversity [1]. They also take part in
the water cycle, prevent soil from erosion, and clean water and air from pollutants.
At the same time, forests are one of our greatest natural resources. Timber is used as
a construction material, for paper production, and as a fuel. Animals and vegetation
provide food. Also, forests have great recreational values.

For a long time, the global effects of human exploitation of forests were negligible
due to the relatively small population and ineffective harvesting methods. However,
during the last few centuries, the rapid growth of the human population caused an
increased demand on forest products, which together with the excessive use of fossil
fuels started to more significantly affect the global environment. In the second half
of the 20th century, the signs of human influence on the global ecosystem could
be observed, for example in the form of acid rains, ozone depletion, and probably
also global warming. Although the public awareness of the environmental issues has
increased during the last few decades and the first measures have been taken, there
is still much to be learnt, and a lot of research is focussed on Earth system science
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6 Forests

and climate change.
One of the greatest concerns is the influence of deforestation on global CO2 emis-

sions. Some sources state, that as much as 20% of the global CO2 emissions come from
deforestation [2], but the exact numbers are unknown. One of the largest uncertain-
ties in the current carbon cycle models is introduced by the inaccurate estimates of
the terrestrial carbon stocks and fluxes, mainly associated with forests. The most rel-
evant, measurable quantity directly related to the carbon distribution in the biosphere
is biomass, which is the total dry mass of all organic tissue. Since roughly 50% of
biomass is carbon, and forests account for around 80% of the terrestrial above-ground
biomass [3], frequent and global mapping of forest biomass is needed for improved
carbon cycle modelling and climate change prediction. High-resolution mapping of
biomass and other forest parameters, e.g., forest height and canopy density, will also
aid the detection of deforestation and forest degradation, improve natural disaster
handling, and enable efficient and sustainable management in commercial forestry.

1.2 Synthetic Aperture Radar in Forestry

Forests cover more than 31% of the total land surface of the Earth [1], and spaceborne
remote sensing is the only feasible method for frequent and global mapping of forests
[3]. There are several different spaceborne remote sensing techniques which can be
used for forest mapping. Optical methods have long been used for this task. However,
these methods are sensitive to atmospheric conditions, which is especially problematic
for the high-biomass tropical rainforests around the equator, where the cloud cover
is the most persistent [3]. Airborne lidar scanning (ALS) is currently considered the
most accurate remote sensing method for forest mapping [4]. However, spaceborne
application of this technique is difficult, due to yet unresolved resolution, coverage,
and technology limitations [3].

Synthetic aperture radar (SAR) does not suffer from the same disadvantages as
the optical and lidar sensors. As an active radio- or microwave-frequency sensor,
it provides its own illumination and it is generally less sensitive to clouds than the
optical methods. Thanks to the synthetic aperture technique, the image resolution
of a spaceborne SAR system can be of the order of metres. SAR is one of the
most promising tools for forest remote sensing and many past and ongoing studies
are dedicated to forest parameter estimation from SAR data [5]. A comprehensible
introduction to SAR can be found in [6].

As the electromagnetic waves scatter more strongly from objects of sizes compa-
rable to, or larger than the wavelength, SAR systems can be optimised to fit specific
needs through the choice of the centre frequency [7], and they are commonly classified
by the used frequency band. Two frequency bands often used for spaceborne SAR
imaging of forests are the P- and X-bands. At P-band, the wavelength is around 70
centimetres and the strongest scatterers are large branches and tree trunks, which
also contain most of the biomass. This causes the scattering centre to be located in
the lower part of the canopy. At X-band, the wavelength is around 3 centimetres and
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scattering occurs even from the smaller branches, leaves, and needles in tree canopies.
Therefore, the penetration capabilities are significantly lower than at P-band, and the
scattering centre is located closer to the canopy top.

1.2.1 P-band

Many studies of VHF-band (30–300 MHz) data acquired with the Swedish SAR sys-
tems CARABAS-I and -II (20–90 MHz) have shown the excellent potential of VHF-
band SAR for stem volume mapping [8–22], and, since stem volume is highly cor-
related with biomass, these conclusions also apply to biomass mapping. However,
VHF-band SAR is not available for spaceborne use, primarily due to the large iono-
spheric distortions and lack of suitable frequency allocations [23].

A somewhat higher frequency band is the P-band (typically 420–450 MHz), for
which numerous studies have shown good correlation between the backscattered sig-
nal strength and biomass over a wide biomass range [24–40]. It has also been shown
that the temporal stability is high at P-band [41–43], making it possible to perform
repeat-pass interferometry and tomography with a single satellite [41, 44–48]. This
is an important result, as the interferometric and tomographic data may enable the
estimation of forest height and the horizontal and vertical forest structure, which
may both improve biomass estimation and provide other important forest parame-
ters. Moreover, spaceborne signal transmission at P-band is since 2003 allowed for
secondary use within a 6-MHz sub-band with a centre frequency of 435 MHz, and the
ionospheric disturbances have been shown to be manageable [3, 49,50].

In 2013, the European Space Agency (ESA) selected BIOMASS for the 7th Earth
Explorer mission [51]. BIOMASS will be the first spaceborne P-band SAR system,
designed to provide global biomass, biomass change, and forest height maps. The
launch of BIOMASS is currently scheduled for 2020.

To be able to assess the error budget of the future BIOMASS mission, an end-
to-end simulator has been implemented [52]. In the simulator, the processing chain
of the satellite is modelled, including explicit error sources. Retrieval algorithms are
applied to the modelled SAR data, and biomass estimation errors are studied against
system parameters. An essential part of the entire simulator is the forward model,
which generates the raw reflectivity data.

w In Paper A, a polarimetric-interferometric forward model used within the BIO-
MASS end-to-end simulator (BEES) is developed and evaluated for SAR image
generation in boreal forest. The model predicts the extended covariance matrix
from relevant forest and system parameters. It is a hybrid model, in which the po-
larimetric matrix is modelled with empirical relations, whereas the interferometric
matrix is modelled using a theoretical model.

One of the difficulties at P-band is the significant influence of topographic and
moisture variations on the backscattered signal. There is a need for a biomass retrieval
model which accounts for the influence of these effects, and which can be used on large
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scales without requiring excessive training data. In the past studies, the proposed
models have often been developed and evaluated using small amounts of experimental
data, usually limited to acquisitions made in similar conditions over one single test
site.

w In Paper B, a new biomass retrieval model is proposed. The model features em-
pirical correction terms, which compensate for the influence of topographic and
moisture variations. The model is compared to five other models, and evaluated
using airborne SAR data acquired in different seasons and at different flight head-
ings over two boreal test sites in Sweden separated by 720 km. It is concluded
that the proposed model performs significantly better than the other models, and
it can be successfully used in both test sites with the same model parameters.

1.2.2 X-band

Currently, the highest frequency allocations used for spaceborne SAR imaging of
the Earth are located within the X-band (8–12 GHz). As mentioned earlier, the
scattering centre is located in the upper part of the canopy, and the principles of
SAR interferometry (InSAR) can be used to map the canopy height from small phase
differences between two SAR images acquired at slightly different incidence angles
[53,54].

The TanDEM-X system, developed and operated by the German Aerospace Center
(DLR), is an X-band SAR interferometer consisting of two almost identical satellites
in a tight tandem formation [55]. Its primary goal is to provide the first global, high-
resolution digital elevation model (DEM), which will replace the older DEM produced
from the data acquired in February 2000 during the Shuttle Radar Topography Mis-
sion (SRTM) [56]. With the tight tandem formation, the temporal decorrelation is
negligible for most land surfaces [55], and precise DEM estimation can be done even
for the dynamic tree canopies.

One of the first models developed for forest parameter estimation from InSAR
data is the interferometric water cloud model (IWCM), originally designed for stem
volume estimation from multi-temporal, repeat-pass InSAR data acquired with the C-
band systems ERS-1/2 [57,58]. In the IWCM, forest canopy is modelled as a random
volume with canopy gaps. To account for the temporal changes occurring between
the two interferometric acquisitions, temporal decorrelation is modelled, separately
for the ground and volume contributions. Model agreement with observations is
achieved through the inclusion of empirical relations between stem volume and forest
height, and between stem volume and backscatter intensity.

In the traditional use of the IWCM with single-polarised, single-baseline data,
the number of model parameters is larger than the number of available observables.
Therefore, model parameters are treated as constants for each acquisition, and esti-
mated from training data. Using multi-temporal data, the influence of the acquisition
geometry and environmental variables on model parameters can be studied, and bio-
mass estimation algorithms can be developed.
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w In Paper C, biomass is estimated from multi-temporal TanDEM-X acquisitions
using the IWCM and two simpler models, one neglecting canopy gaps and one
neglecting both canopy gaps and ground contribution. Model training and val-
idation are conducted on two separate data sets. It is concluded that the most
accurate biomass prediction can be achieved with the IWCM, i.e., when both
canopy gaps and the ground contribution are modelled, and for InSAR data with
large interferometric baselines.

The acquisition of training data is generally laborious and expensive, and, from
the operational point of view, it is beneficial to decrease the requirements on field
inventories. The random volume over ground (RVoG) model can be seen as a simpli-
fied version of the IWCM, with neglected canopy gaps and no temporal decorrelation
modelling [59,60]. Direct inversion of the RVoG model has been shown useful for the
estimation of forest height and ground topography from interferometric and fully po-
larimetric, L- and P-band SAR data, without the need for model training [45,60,61].
For the standard, single-polarised TanDEM-X image pairs acquired within the global
mapping campaign, direct inversion of the RVoG model requires further simplifica-
tions, to balance the number of parameters with the number of observables [62,63].

By using an external, high-resolution digital terrain model (DTM), the number of
model parameters can be reduced. With the general stability of the ground surface
in forested areas, the increasing availability of DTMs acquired within national lidar
scanning campaigns, as well as the future P- and L-band (1–2 GHz) InSAR missions
(BIOMASS, and possibly also SAOCOM-CS [64] and TanDEM-L [65]), the availabil-
ity of high-resolution DTMs will increase in time, making this approach useful from
an operational point of view.

At X-band, canopy openings are often large in comparison to the wavelength,
and the effective attenuation in the canopies is significant. It is therefore motivated
to allow penetration to occur only through canopy gaps. This results in a two-level
model, in which forest is represented by two discrete scattering levels, with their rel-
ative contributions to the total backscattered field determined by the canopy closure.
With an external DTM, direct inversion of this two-level model is feasible even for
the single-polarised case, and estimates of both forest height and canopy density may
be obtained. This may also lead to improved biomass estimation performance.

w In Paper D, it is observed that the ground-level contribution is significant in boreal
forests at X-band. Based on that observation, an interferometric two-level model
(TLM) is introduced, in which penetration through forest canopy can occur only
through canopy gaps. The model has a simple form and can be inverted if a high-
resolution DTM is available, without the need for multiple SAR acquisitions. It
is shown that TLM inversion provides accurate estimates of both forest height
and canopy density.

w In Paper E, estimates of forest height and canopy density obtained from the TLM
inversion described in Paper D are used as biomass predictors. The new model
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is evaluated on experimental data from two boreal test sites in Sweden. It is
concluded that the model performance is excellent within each test site (in fact,
close to that achievable with ALS data). However, similarly to the case of ALS-
based mapping, the same model parameters cannot be used in both test sites,
due to the significant differences in the structure of forest canopies in the two test
sites.

1.3 Thesis Scope and Structure

The main scope of this thesis is to develop methods for forest parameter estimation
from SAR. At P-band, focus is put on the influence of topographic and moisture vari-
ations on biomass retrieval from SAR intensity data, in view of the future BIOMASS
mission. At X-band, focus is put on the influence of the canopy gaps on scattering
and the potential of X-band InSAR for large-scale mapping of forest height, canopy
density, and biomass, for example with the existing global TanDEM-X data.

This thesis consists of two main parts: Part I, in which the motivation for this
thesis has been given in this chapter, the basics of SAR are presented in the next
chapter (Chapter 2), scattering from forests is studied in Chapter 3, the appended
papers are summarised in Chapter 4, and some final conclusions and future prospects
are presented in Chapter 5, and Part II, containing the appended papers, which are
the main scientific outcome of this thesis.



Chapter 2

Synthetic Aperture Radar

In this chapter, synthetic aperture radar is introduced. First, the principles of the
basic, one-dimensional radar measurements are presented. Thereafter, a second di-
mension is added, and high-resolution radar imaging is introduced. Lastly, more
advanced techniques, expanding radar imaging capabilities beyond two dimensions,
are presented.

2.1 1D: Radar Basics

Radar is an active remote sensing technique in which electromagnetic (EM) signals are
transmitted, and the reflected echoes are detected, processed, and analysed [67–69].
The principles of radar are similar to the principles of echolocation, which is an ul-
trasonic navigation technique used by bats and toothed whales. Since radar is an
active system, no external illumination is needed. Also, the terrestrial atmosphere is
almost transparent to EM waves with frequencies up to approximately 10 GHz, mean-
ing that radar systems can see through clouds [68, 70, 71]. Note, however, that the
influence of the ionosphere increases with decreasing frequency, thus effectively reduc-
ing the potential usefulness of frequencies below a few hundred MHz for spaceborne
radar [3, 71].

Although the development of radar-like systems started already in the beginning
of the 20th century, it was first in 1940 that the term “radar” was introduced by

11
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Figure 2.1: Radar frequency bands according to the IEEE and ITU standards. Log-
arithmic scales are used for frequency f and wavelength λ. Commonly, P-band is
defined as the interval 420–450 MHz, but the broader interval 216–450 MHz can also
be encountered in the literature. Frequency bands used by some selected SAR sys-
tems are also shown. CARABAS-II was an airborne system from the Swedish Defence
Research Agency (FOI) [66]. The European BIOMASS satellite is planned to be the
first P-band SAR in space, whereas the Japanese ALOS-2 PALSAR-2 (PS-2), Chinese
HJ-1C, European Sentinel-1 (S-1), and German TerraSAR-X (TS-X) are examples of
current spaceborne L-, S-, C-, and X-band SAR systems, respectively, see Section 2.4.

Transmission unit

Reception unit

Duplexer

Signal processing unit

ObjectAntenna

Figure 2.2: Typical setup for a monostatic radar system.

the US Navy, as an abbreviation for “radio detection and ranging” [72, 73]. Mod-
ern radar systems are capable of not only detection and ranging, but also velocity
measurements, shape and size determination of objects, angular measurements, and
multi-dimensional mapping, and their applications include parking assistance in cars,
traffic speed monitoring, airport surveillance, rain rate and wind mapping for weather
forecasting, aircraft guidance and detection, planetary mapping from satellites, and
space object monitoring from the ground [67,68].

Since the scattering properties of objects are dependent on the frequency of the
transmitted EM waves, the choice of the centre frequency determines the area of ap-
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plication of a radar system. To simplify the classification of radar systems, frequency
bands have been introduced [67]. There are two main standards, one defined by the
Institute of Electrical and Electronics Engineers (IEEE) and one by the International
Telecommunication Union (ITU), and both nomenclatures are summarised in Fig-
ure 2.1. Although still used by the radar community, the P-band is an old band
designation and it has been replaced by the UHF-band. P-band is commonly defined
as the interval 420–450 MHz, although the broader interval 216–450 MHz can also be
encountered in the literature [74,75].

A radar system in which both transmission and reception are done from the same
position is called monostatic. In case of multiple positions, the system is called
multistatic (or bistatic in the case of two positions). The typical setup for a monostatic
radar system is schematically depicted in Figure 2.2. In the transmission unit, an EM
signal with the desired waveform and power is generated. The signal is then directed
towards the antenna via a duplexer, which often is a switching device, alternating
the functions of the radar unit between transmission and reception. The antenna
transmits a wave into a medium (usually air), the wave is scattered from an object,
and an echo is registered back at the antenna. The received signal passes again
through the duplexer, which now guides it towards the reception unit. In the reception
unit, the received signal is processed, sampled, and transmitted to a digital signal
processing unit.

2.1.1 Range Measurements

The distance between the target and the antenna is called range and it can be esti-
mated from the time delay between the signal transmission and the reception of the
echo. If this time delay is denoted T , then the corresponding range is [76]:

R =
cT

2
, (2.1)

where a factor of 2 accounts for the two-way propagation and c is the propagation
velocity of the EM waves in the medium. In most radar applications, the latter is air
and c = c0 is often assumed, where c0 is the speed of light in vacuum.

In the simplest radar systems, bursts of monochromatic EM waves are transmitted,
and the best achievable range resolution is proportional to the pulse length [68]:

δR =
cτ

2
. (2.2)

Thus, fine resolution can be achieved with short pulses, which decreases the signal-
to-noise ratio (SNR) and aggravates signal detection. To avoid this problem, most
modern radar systems use coded pulses with bandwidth B. For such systems, the
best achievable range resolution is [68]:

δR =
c

2B
. (2.3)

The resolution is now inversely proportional to the signal bandwidth, and both fine
resolution and high SNR can be achieved simultaneously.
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2.1.2 Power Measurements

The signal-to-noise ratio (SNR) is a useful benchmark for system quality. The SNR
is the ratio between the received signal energy and the noise power density, and for
a monostatic system using coherent integration of multiple pulses, it is determined
by [68]:

SNR =
Pavgλ

2G2tdwellσ

(4π)3R4LCBkBTs
, (2.4)

where Pavg is the average power transmitted by the system during the dwell time
(integration time) tdwell, λ is the wavelength, G is the antenna gain, R is the range, L
is a factor representing losses, CB is the filter mismatch factor (CB = 1 for a perfectly
matched filter), kB is Boltzmann’s constant, Ts is the system noise temperature, and
σ is the radar cross section (RCS). The RCS is the main observable in a radar system
and it is the effective cross-section area of the target, measured in square metres. The
RCS depends not only on the EM properties and the shape of the target, but also on
system parameters such as polarisation, angle of incidence, and frequency.

2.1.3 Velocity Measurements

If a scatterer positioned within the antenna beam is moving radially relative the
antenna, a frequency shift known as the Doppler shift will occur. The Doppler shift
fD can be computed using [68]:

fD = −2Ṙ(t)

λ
, (2.5)

where

Ṙ =
dR(t)

dt
(2.6)

is the radial velocity of the scatterer.

2.2 2D: Synthetic Aperture Radar (SAR)

Radar imaging can be achieved by sweeping the radar antenna, for example by mount-
ing it in a side-looking configuration on an airborne- or spaceborne-platform. The
target position is then determined by its range and by the along-track position of the
antenna. Commonly, these two dimensions are referred to as slant range and azimuth,
whereas the projected ground distance to the scatterer is called ground range. These
concepts are illustrated in Figure 2.3.

For a radar antenna with along-track aperture size Dx such that:

Dx � λ, (2.7)

the beamwidth is approximately [68]:

∆φ ≈ λ

Dx

, (2.8)
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Figure 2.3: Basic imaging radar geometry under flat-earth approximation.

and the azimuth resolution at range R can be approximated by [68]:

δx ≈ ∆φR ≈ λR

Dx

. (2.9)

As it can be observed in (2.9), the azimuth resolution is proportional to range and
inversely proportional to the antenna aperture. Fine azimuth resolution therefore
requires large antennas, which is both impractical and expensive, especially in the
spaceborne case, for which a moderate resolution of 100 m at X-band would require
an antenna with an aperture size of a few hundred metres.

Synthetic aperture radar (SAR) presents a solution to the aforementioned resolu-
tion problem. Through coherent signal processing, a larger, synthetic aperture can
be created using the phase information from several consecutive pulse echoes.

This technique was first proposed in the early 50’s, and further developed during
the decades that followed [67]. In 1978, the first civilian, spaceborne SAR system
called Seasat was launched by NASA [77], and in the early 90s, Europe (ESA), Russia,
Japan, and Canada followed with their own systems. In the early 2000s, additional
SAR satellites were launched by countries such as Germany, Italy, India, China, and
South Korea, and both Spain and Argentina are planning to launch their first systems
within a few years. Presently, more than 15 civilian SAR satellites are operating and
around 10 are planned to be launched within the forthcoming five years [6, 78].

2.2.1 SAR Image Formation

The main concept of SAR is to synthesise a large antenna using multiple pulse echoes
received by a smaller antenna moving along a known path [76,79]. From (2.9), a small



16 Synthetic Aperture Radar

R0

VSAR

slant range

azimuth

synthetic aperture

0 xtdwellVSAR/2

Δϕ

-tdwellVSAR/2

Figure 2.4: Basic slant range plane geometry of SAR.

radar antenna has a large footprint. An arbitrary scatterer on the ground is then cov-
ered by several consecutive pulse echoes received at different azimuth positions, and
the relative radial velocity Ṙ of that scatterer is different at each azimuth position.
Therefore, the Doppler shift induced by the relative motion of the scatterer changes
with azimuth, creating a Doppler bandwidth. With coherent signal processing, az-
imuth resolution can be improved in the same way as range resolution is improved
using coded pulses.

Assume that a radar antenna is travelling along the x-axis on a straight path with
velocity VSAR, according to the simplified geometry shown in Figure 2.4. Let R0 be
the range of closest approach to an arbitrary scatterer, and let t be the azimuth time
such that t = t0 = 0 is the time of closest approach. The instantaneous distance
between the radar antenna and the scatterer can be computed using the Pythagorean
theorem:

R(t) =
√
R2

0 + (VSARt)2 ≈ R0

(
1 +

(VSARt)
2

2R2
0

)
, (2.10)

where a Taylor expansion has been used under the assumption that VSARt� R0.

The radial velocity of the scatterer relative the antenna can be computed from
(2.10):

Ṙ(t) =
dR(t)

dt
≈ V 2

SARt

R0

(2.11)
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and the corresponding Doppler frequency can be computed using (2.5) and (2.11):

fD(t) = −2Ṙ(t)

λ
≈ −2V 2

SARt

λR0

. (2.12)

For the simplified slant range geometry depicted in Figure 2.4, the integration
time can be computed from the antenna footprint in (2.9) and the antenna velocity
VSAR:

tdwell ≈
λR0

VSARDx

. (2.13)

The Doppler bandwidth is the difference between the maximal and minimal Doppler
frequencies. It can be computed using (2.12) and (2.13) as:

BD = fD (tdwell/2)− fD (−tdwell/2) ≈ 2VSAR

Dx

. (2.14)

Similar to the range resolution for a coded pulse with bandwidth B, see (2.3), SAR
azimuth resolution can be computed from the ratio of the antenna velocity VSAR and
the Doppler bandwidth BD [68]:

δx =
VSAR

BD

=
Dx

2
, (2.15)

which means that the azimuth resolution of a SAR image can be as good as half the
aperture length of the antenna.

The SAR mode presented above, with fixed antenna direction, is called stripmap
SAR [68, 80]. Better resolutions, but lower coverage, can be achieved by focussing
the antenna at the same point along the whole synthetic aperture, in a mode called
spotlight SAR [68, 79]. A better coverage, but lower resolution, can be achieved
by sweeping the antenna in different directions, in modes such as scan SAR and
TOPS [68,81].

Note that there is an essential difference in the way SAR images are resolved as
compared to optical imagery. Optical imagery features constant resolution angle in
both range and azimuth direction [68]. Far-range pixels are therefore resolved with
lower resolution than the near-range pixels. In SAR, pixels are resolved at constant
slant-range resolution. When projected to the ground, far-range pixels have better
resolution than near-range pixels (assuming flat earth). For spotlight SAR, azimuth
resolution is range-dependent, with better resolution achieved in near-range.

2.2.2 SAR Image Processing

The processing of the raw data acquired by a SAR platform can be summarised in
three main steps: focussing, radiometric calibration, and geocoding. In the first step,
high-resolution images are created. In the second step, pixel values are corrected so
that they carry meaningful information. In the third step, the image is re-sampled
to a cartographic projection so that it can be easily compared with other types of
geographic information.
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2.2.2.1 Focussing

Essentially, SAR image focussing consists of a 2D matched filtering, which removes
the range and azimuth coding. Using the fast Fourier transform, matched filtering
can be performed in the frequency domain at low computational costs. However, one
of the main difficulties in frequency-domain processing is range cell migration (RCM),
which is the movement of scatterers through resolution cells as the antenna moves
along the synthetic aperture [79, 82]. Unless compensated for, the RCM will cause
azimuth de-focussing.

In the beginning of digital SAR processing, computational costs were of great
concern and many different frequency-domain algorithms have been developed [79,82].
The algorithms differ in the way they deal with the RCM, computational costs, and
accuracy.

SAR focussing can also be achieved in the time domain, using back-projection al-
gorithms [83–86]. Time-domain algorithms are generally easier to implement and the
errors introduced by the uncertainties in the recorded flight path can often be treated
using autofocus techniques. Traditionally, the large computational costs have been a
major disadvantage of the time-domain algorithms, but the modern back-projection
algorithms, such as the fast-factorised back-projection [86], are both accurate and
computationally efficient.

2.2.2.2 Radiometric Calibration

To ensure that the focussed SAR image carries meaningful information, radiometric
calibration needs to be performed [76, 87]. In this step, the effects of the range-
dependent spreading loss, systematic variation in range due to residual effects of
antenna pattern, as well as platform roll and yaw movements (around the veloc-
ity vector and the vertical axis, respectively) are treated. Moreover, the influence
of system noise and SAR focussing also need to be considered during radiometric
calibration.

There are two main approaches to radiometric calibration: internal and exter-
nal [88, 89]. The internal calibration process is done using pre-flight and in-flight
measurements of the effects of each element of the radar system. The external cal-
ibration process uses targets with known RCS positioned within the imaged scene,
preferably at many different positions [88, 90]. The targets may be active (transmit-
ters) or passive, discrete or distributed. Commonly used passive calibration targets
are di- and trihedral corner reflectors, and dense forests.

For the imaging of distributed and dynamic targets, it is useful to average and
normalise the measured reflectivity in order to reduce the stochastic variations and
to remove the residual range dependence. Scattering coefficient sigma nought is often
used for surface imaging, as it removes range-dependence caused by the fact that the
resolution cell covers a larger ground area in near-range [91]:

σ0 =
〈σ〉
AGR

, (2.16)
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where AGR is ground area covered by the resolution cell and 〈•〉 denotes spatial
average. The area AGR can be computed from the slant range area ASR using [92,93]:

AGR =
ASR

cosψi
, (2.17)

where ψi is the angle between the image plane normal and the ground surface normal.
Scattering coefficient gamma nought is often used for the imaging of volumet-

ric scatterers, as it compensates for the residual range-dependence in σ0 caused by
different penetration depths [94,95]:

γ0 =
σ0

cos θi
, (2.18)

where θi is the local angle of incidence.

2.2.2.3 Geocoding

In this step, the focussed SAR image is interpolated from radar geometry to a carto-
graphic projection [70]. A geocoded reference height map is needed, e.g., in the form
of a DEM, a geoid model, or an ellipsoid model. From the information about the
antenna track, the range and azimuth positions of each pixel in the reference height
model can be computed, yielding a geocoding look-up table, which can be used for the
interpolation of the focussed image. The look-up table can be fine-tuned using image
processing techniques, for example by cross-correlating the focussed intensity image
with a synthetic intensity image simulated from a DEM with a simple scattering
model.

2.2.3 SAR Image Properties

There are a few effects visible in SAR imagery which need to be considered during
image analysis.

2.2.3.1 Geometric Distortions in SAR Images

SAR images are created in a side-looking geometry and they are projections of the
three-dimensional world on the two-dimensional range-azimuth plane. Therefore, geo-
metrical distortions and ambiguities are unavoidable. These distortions are especially
visible in hilly and mountainous regions, as well as urban areas.

The effect of foreshortening occurs on sloping grounds, where two points, which
may be significantly separated in the horizontal direction, appear closer on the radar
due to the slope effect, see points A and B in Figure 2.5(a).

In the case of even steeper slopes, or steep incidence angle, the effect of layover may
occur and cause the two points to appear in reversed order, as shown in Figure 2.5(b).
This means that a mountain peak may sometimes appear closer than a mountain foot.
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Figure 2.5: Three geometrical distortions visible in SAR images are here shown
schematically. Foreshortening and layover are illustrated by points A and B in (a)
and (b), respectively. Shadowing can be seen in (a) between points B’ and C’ and in
(b) between points A’ and C’.

Figure 2.6: A single-look TerraSAR-X intensity image (in dB) over the Remningstorp
test site. Speckle is the cause of the grainy texture in the image. Pixel size is 0.9 m in
slant range (horizontal direction) and 6.6 m in azimuth (vertical direction), and the
image has a size of 1500× 500 pixels.

The effect of shadowing occurs when the radar signal is blocked by a large scat-
terer, e.g., a mountain, and a dark area is visible behind it, like between points B and
C in Figure 2.5(a) and Figure 2.5(b).

2.2.3.2 Speckle and SAR Image Statistics

In SAR systems, coherent waves are used for imaging. If there are many scatterers
within a resolution cell, interference between the scattered fields may cause an effect
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Figure 2.7: Pdf for the N -look RCS estimate σ̂N (σ = 0.5).

called speckle. Speckle introduces a graininess in SAR images, which deteriorates
image quality, see Figure 2.6

Speckle statistics can be studied in the case of fully developed speckle [76, 96],
i.e., under the assumption that a resolution cell contains a large number of similar
scatterers randomly distributed in range over an extent much larger than the wave-
length. The central limit theorem implies that the real and imaginary parts I and Q
of the total backscattered field, which is the sum of the individual signals backscat-
tered by each scatterer, are independent, normally distributed random variables with
zero mean and variance σ/2 (where σ is the RCS and the factor of 2 has been chosen
to make the total variance equal to σ) [76, 96]. From this follows that the phase is
uniformly distributed between −π and π, the amplitude

√
I2 +Q2 has a Rayleigh

probability distribution, and the intensity σ̂1 = I2 + Q2 has a negative exponential
distribution with the following pdf:

p(σ̂1|σ) =

{
1
σ
e−

σ̂1
σ σ̂1 ≥ 0

0 otherwise
. (2.19)

As mentioned earlier, speckle appears in SAR imagery as a noise-like pattern, and
it is most often an unwanted nuisance, aggravating the performance of segmentation
algorithms and general image interpretation. One way to reduce speckle in intensity
images is by non-coherent averaging, i.e., multilooking. There are several ways to
achieve this: by splitting the range or Doppler spectrum into several parts, processing
each part separately, and then averaging the final images; by spatial averaging of
intensity (or amplitude, although intensity averaging has been shown superior [88]); or
by averaging of several SAR images over the same scene (assuming stable scatterers).
With non-coherent averaging, the variance in the image is decreased, but at the cost
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of resolution or additional acquisitions. Many studies have been devoted to speckle
filtering and there are many different filtering algorithms available [96].

The N -look intensity σ̂N = 1
N

∑N
i=1(I2

i +Q2
i ), where Ii and Qi are assumed to be

independent, normally distributed random variables, is a gamma distributed random
variable with the following pdf [76,96]:

p(σ̂N |σ,N) =

{
NN σ̂N−1

N

(N−1)!σN
e−

Nσ̂N
σ σ̂N ≥ 0

0 otherwise
. (2.20)

In Figure 2.7, the pdf for the N -look intensity estimate σ̂N is plotted for σ = 0.5.
It can be observed that with an increasing number of looks, the distribution becomes
more symmetric around the mean, and the variance decreases.

In Figure 2.8, the effect of multilooking is visualised in a simulated SAR im-
age. In Figure 2.8(a) and Figure 2.8(b), the real and imaginary parts are shown. The
central part of the image has slightly larger variance, but it can barely be seen. In Fig-
ure 2.8(c), the complex phase is shown, and it is completely random. In Figure 2.8(d),
the amplitude is shown, and a feature can be observed. In Figures 2.8(e)–2.8(i), the
effect of number of looks on the variance is shown. The reference RCS is shown in
Figure 2.8(j).

It can be shown that the expectation value and the variance of an N -look intensity
estimate are [76,96]:

E [σ̂N ] = σ, (2.21)

Var [σ̂N ] =
σ2

N
. (2.22)

The N -look intensity is therefore an unbiased estimate of the RCS, with variance
decreasing as 1

N
.

2.3 3D: Advanced SAR Techniques

This far, the acquisition, processing, and properties of a single SAR image have been
studied. However, if multiple acquisitions are available, additional information can be
extracted from the data. Two advanced SAR techniques that will be discussed here
are: SAR polarimetry (PolSAR) [96, 97], in which multiple polarisations are used
to differentiate between different scattering mechanisms, and SAR interferometry
(InSAR) [53], in which multiple SAR acquisitions made at slightly different incidence
angles or at different occasions are used to study the position or the movement of the
scattering phase centre.

PolSAR and InSAR form the basis for additional advanced SAR techniques: po-
larimetric SAR interferometry (PolInSAR) [59, 97], in which the principles of po-
larimetry and interferometry are combined; SAR tomography [98–100], in which a
synthetic aperture is created in the vertical direction, and vertical scattering profiles
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Figure 2.8: Simulation showing the effect of number of looks on the intensity estimate.
Figures (a)–(d) show the real and imaginary parts, phase, and amplitude of a one-
look, complex Gaussian-distributed image. Figures (e)–(i) show the N -look intensity
estimates in decibels, and Figure (j) shows the reference RCS, which is -3.0 dB for
the central part and -6.7 dB for the outer part. Grayscale intervals are, from black to
white: (a,b) [−1, 1], (c) [−π, π], (d) [0, 1], and (e–j) [−8 dB, 0 dB].

are estimated; polarimetric SAR tomography [47], in which the principles of polarime-
try and tomography are combined; and SAR holography [101,102], in which circular,
tomographic acquisitions are used to create three-dimensional images of the scene.
These techniques will not be discussed here, but a good overview can be found in [6].

2.3.1 SAR Polarimetry

One of the basic properties of an EM wave is its polarisation, that is the direction of
the electric field oscillations. In the far field from the scatterer, the oscillations of the
EM wave are perpendicular to the direction of propagation, and if two perpendicular
polarisations are used in a radar system both at transmission and reception, then
the full scattering properties of the target at that particular frequency and incidence
angle can be measured [96].

One of the most common polarisation bases used in SAR imaging is the horizontal-
vertical basis. If the transmission is done with a horizontally polarised antenna (H),
and the reception is done with a vertically polarised antenna (V), the polarisation
mode is then called VH. Similarly, HH means that horizontal polarisation is used
both at transmission and reception. If a system is capable of measuring all four
combinations (HH, HV, VV, and VH) at the same time, together with their phase
information, it is called fully polarimetric.
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ψi

θi

θ0

Figure 2.9: Basic scattering geometry. The incident wave is propagating in the
direction of k̂i, and oscillating in the plane defined by the horizontal and vertical
vectors ĥ and v̂. The ground surface normal is n̂, θ0 is the global incidence angle,
θi is the local incidence angle, and ψi is the angle between the surface normal and
image plane normal.

The electric field of an incident plane wave propagating in the direction of k̂i,
see Figure 2.9, can be expressed as a sum of two components, one in the horizontal
direction and one in the vertical direction [96]:

Ei = Ei
Hĥ + Ei

Vv̂, (2.23)

where

ĥ =
ẑ× k̂i

|ẑ× k̂i|
(2.24)

is the horizontal unit vector, perpendicular both to the vertical axis and to the direc-
tion of propagation, and

v̂ = ĥ× k̂i (2.25)

is the vertical unit vector, perpendicular both to the horizontal unit vector and the
direction of propagation. Equivalently, the incident electric field can be written as a
Jones vector [96]:

Ei =

[
Ei

H

Ei
V

]
. (2.26)

Assuming plane waves, the Jones vector for the scattered field can be computed
from the Jones vector for the incident field using [96]:

Es =
eikR

R
[S]Ei, (2.27)



2.3. 3D: Advanced SAR Techniques 25

whereR is the distance between the target and the antenna, k = 2π/λ is the wavenum-
ber, and

[S] =

[
SHH SHV

SVH SVV

]
(2.28)

is the complex 2×2 scattering matrix. The scattering matrix fully describes scattering
from the target at the current frequency and incidence angle.

The relation between the RCS and the scattering matrix elements can be obtained
from the formal definition of the RCS [68]:

σ = lim
R→∞

4πR2 |Es|2
|Ei|2 , (2.29)

which for polarisation PQ can be computed using (2.27):

σPQ = 4π|SPQ|2. (2.30)

In remote sensing, most scatterers are not stable, fixed point targets, but they
are distributed, dynamic targets stochastically changing in time and space. Such
targets are best described using second order moments. The polarimetric covariance
matrix contains all possible covariance combinations of the scattering matrix elements
[96]. For a monostatic radar in a reciprocal medium, the cross-polarised terms of the
scattering matrix are equal SHV = SVH [103], and one of them is usually dropped
or they are averaged to improve the SNR. To keep the total power invariant after
dropping one element, the remaining cross-polarised term is usually scaled with

√
2

[96]. The polarimetric covariance matrix becomes:

[C] =




〈
|SHH|2

〉 √
2 〈SHHS

∗
HV〉 〈SHHS

∗
VV〉√

2 〈SHVS
∗
HH〉 2

〈
|SHV|2

〉 √
2 〈SHVS

∗
VV〉

〈SVVS
∗
HH〉

√
2 〈SVVS

∗
HV〉

〈
|SVV|2

〉


 , (2.31)

where ∗ is the complex conjugate operator.
Scattering coefficient sigma nought for polarisation mode PQ can be expressed in

terms of the diagonal elements in (2.31) using (2.30) and (2.16):

σ0
PQ =

〈σPQ〉
AGR

=
4π
〈
|SPQ|2

〉

AGR

=
4π cosψi

〈
|SPQ|2

〉

ASR

, (2.32)

where ASR and AGR are the areas of the resolution cells in slant range and ground
range planes, respectively, and ψi is the angle between the image plane normal and
ground surface normal, see Figure 2.9.

Scattering coefficient gamma nought can be computed from (2.32) using (2.18):

γ0
PQ =

4π cosψi
〈
|SPQ|2

〉

ASR cos θi
, (2.33)

where θi is the local incidence angle, see Figure 2.9.
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PolSAR data can be used to determine the dominant scattering mechanisms
present within each pixel of the imaged scene using polarimetric decomposition theo-
rems. There are several different types of decomposition theorems: coherent decompo-
sitions of the scattering matrix [S] (e.g., the Pauli decomposition [96]), eigenvector and
eigenvalue-based decompositions of the coherency matrix [T ] (e.g., the Cloude-Pottier
or H/A/α decomposition [104]), and model-based decompositions of the covariance
matrix [C] or the coherency matrix [T ] (e.g., the Freeman-Durden three-component
decomposition [105]). Polarimetric decomposition theorems are frequently used for
land use classification, see [96].

2.3.2 SAR Interferometry

In SAR interferometry, the phase difference between two SAR images acquired over
the same scene is used [53]. Two types of interferometry are common: across-track
interferometry (XTI), in which the two images are acquired at slightly different inci-
dence angles, and where the phase difference is used to estimate the scattering phase
centre elevation, and along-track interferometry (ATI), in which the two images are
acquired on different occasions, and where the phase difference is used to estimate
the change in position of the scattering centre between the acquisitions. The most
common application of the XTI technique is digital elevation model (DEM) creation,
whereas the ATI technique can be used to estimate the radial velocity of, e.g., cars,
ships, glaciers, ocean currents and waves, as well as ground surface deformations
caused by earthquakes, volcanoes, landslides, etc.

The complex correlation coefficient (sometimes also called complex coherence) is
the main interferometric observable. For two co-registered, complex SAR images S1

PQ

and S2
PQ, it is defined as [53,97]:

γ̃=γei∆φ =
E
[
S1

PQS
2∗
PQ

]
√

E
[∣∣S1

PQ

∣∣2
]

E
[∣∣S2

PQ

∣∣2
] , (2.34)

where γ = |γ̃| is called coherence and ∆φ is the interferometric phase, i.e., the phase
difference between the two images. Coherence is a real valued quantity between 0
and 1 and it is a measure of the degree of similarity between the two images. The
phase difference is related to the difference in range to the scattering centre between
the two images.

The complex correlation coefficient can be described as a product of four separate
decorrelation effects [87, 106,107]:

γ̃ = γSNRγ̃sysγ̃spγ̃temp, (2.35)

where the terms marked with the tilde sign may attain complex values.
SNR decorrelation γSNR is caused by thermal noise in the images and it can be

determined from the SNR using [6, 106]:

γSNR =
1

1 + SNR−1 , (2.36)
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where it has been assumed that both images have the same SNR value.
System decorrelation γ̃sys is introduced by system imperfections, and it includes

the effects of dynamic range, quantisation, misregistration, and ambiguities, as well as
other errors introduced during SAR and InSAR processing [6,55]. Phase offsets may
also be introduced in radar hardware and during processing. System decorrelation
can be minimised with optimised electronics, signal processing, and calibration.

Spatial decorrelation γ̃sp is due to geometric differences between the two images.
It can be re-stated as a product of three decorrelation terms [55]:

γ̃sp = γ̃rgγ̃azγ̃vol, (2.37)

where the first and second terms are decorrelation effects caused by differences in
the sampled range and Doppler frequency spectra, respectively, and the last term is
volume decorrelation. The first two decorrelation effects can be minimised through
common-band filtering of both images [53,108,109]. The last term is a very important
factor in XTI, as it carries information about the vertical distribution of the scatterers.

Temporal decorrelation γ̃temp is due to the temporal changes in the imaged scene
between the two acquisitions [87,106,110]. In the case of single-pass XTI the temporal
decorrelation is most often negligible. In the case of repeat-pass XTI, this term is
usually a nuisance that causes a loss of quality in the estimated DEM. In repeat-pass
ATI, this term carries the information about the phase difference between the two
acquisitions.

In the absence of decorrelation effects other than the volume decorrelation γ̃vol, the
phase difference ∆φ is determined by the difference in range to the scattering phase
centre, called ∆R in Figure 2.10, but it is also affected by a 2π-phase ambiguity.
The phase difference can be re-stated in terms of three phase components: the phase
introduced by the difference in range to a reference height model (∆R0), the phase
introduced by the elevation of the scattering phase centre above the reference height
model (∆h), and a 2π-phase ambiguity [68,97]:

∆φ = mk∆R + 2πn ≈ kz (∆R0 cos θ0 + ∆h) + 2πn, (2.38)

where m is equal to 2 for a monostatic system and 1 for a bistatic system, and where
the vertical wavenumber is defined as [55,111]:

kz =
mkB⊥
R sin θ0

, (2.39)

where B⊥ is the perpendicular baseline, θ0 is the average incidence angle, and R is the
average range to the scattering phase centre, as defined in Figure 2.10. The vertical
wavenumber is the number of 2π-cycles corresponding to a vertical height shift of one
metre.

In order to estimate ∆h from ∆φ, it is necessary to remove the first and last
phase components on the right hand side of (2.38). The removal of the phase caused
by the differences in range to the reference height model, i.e., the first term in the
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Figure 2.10: Simplified and exaggerated geometry for InSAR measurements. The
reference height model may be flat earth, reference ellipsoid or geoid, or a DTM.

parenthesis in (2.38), is called flattening. Depending on application, different height
models may be used: flat earth, geoid, ellipsoid, or a DTM. The removal of the 2π-
phase ambiguity is called phase unwrapping. Phase unwrapping is often a non-trivial
task and many different unwrapping algorithms have been developed [53].

Once both flattening and unwrapping have been performed, the elevation of the
scattering centre above the reference height model can be estimated from the flattened
and unwrapped phase difference ∆φ′ through a simple scaling:

∆h =
1

kz
∆φ′. (2.40)

Instead of kz, the more intuitive interferometric parameter height-of-ambiguity (HOA)
is often used. It describes the vertical height shift equivalent to a 2π-phase shift
and it is the maximal height difference that can be unambiguously resolved by an
interferometric system. HOA is defined as:

HOA =
2π

kz
=

2πR sin θ0

mkB⊥
. (2.41)
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(a) Pdf (γ = 0.7) (b) Standard deviation

Figure 2.11: Statistics for the N -look phase difference estimate ∆̂φN .

2.3.2.1 InSAR Image Processing

The processing of InSAR imagery is a multi-step process. The first step consists
of image co-registration [112, 113], in which one of the images is usually re-sampled
to the range-azimuth grid of the second image. This includes both range and az-
imuth interpolation, as well as spectral filtering of the two images so that they cover
the same 2D-frequency spectrum. This filtering procedure minimises the range and
azimuth decorrelation effects [53, 108, 109]. The next step consists of interferogram
creation, in which the first image is multiplied with the complex conjugate of the
second image. Thereafter, flattening is conducted, in which a reference phase is re-
moved (corresponding to flat earth, ellipsoid, geoid, or a DTM). Next, the flattened
interferogram is multilooked, and the phase is computed and unwrapped. Finally,
the unwrapped phase is scaled to height using a kz or HOA map computed for the
current acquisition geometry. A height calibration may be conducted here, e.g., using
ground reference points. After this step, geocoding can be performed, to obtain the
final DEM in a cartographic projection.

2.3.2.2 InSAR Image Statistics

In applications, the complex correlation coefficient is estimated using spatial averaging
of N samples [53]:

˜̂γN = γ̂Ne
i∆̂φN =

1
N

∑N
i

(
S1
i,PQS

2∗
i,PQ

)
√(

1
N

∑N
i

∣∣S1
i,PQ

∣∣2
)(

1
N

∑N
i

∣∣S2
i,PQ

∣∣2
) , (2.42)
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(a) Pdf (γ = 0.7)

(b) Expectation value (c) Standard deviation

Figure 2.12: Statistics for the N -look coherence estimate γ̂N . In (c), the dashed line
shows the approximative standard deviation obtained with the Cramér-Rao (CR)
bound.

where i is the sample index, and γ̂N and ∆̂φN are N -look coherence and phase dif-
ference estimates.

The N -look phase difference estimate ∆̂φN has the following pdf [53,96]:

p(∆̂φN |∆φ,N, γ) =

{
Γ(N+ 1

2
)(1−γ2)ND

2
√
πΓ(N)(1−D2)N+1

2
+ (1−γ2)N

2π 2F1(N, 1; 1
2
;D2) |∆̂φN | < π

0 otherwise
,

(2.43)
where Γ(•) is the gamma function, 2F1(•) is the Gauss hypergeometric function, and

D = γ cos(∆̂φN −∆φ). (2.44)
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(a) ∆̂φ1 (b) ∆̂φ2 (c) ∆̂φ4 (d) ∆̂φ8 (e) ∆̂φ16 (f) ∆φ

(g) γ̂1 (h) γ̂2 (i) γ̂4 (j) γ̂8 (k) γ̂16 (l) γ

Figure 2.13: Simulation showing the effect of number of looks on the phase differ-
ence and coherence estimates. Figures (a)–(e) and (g)–(k) show the N -look phase
difference and coherence estimates. Figure (f) shows the reference phase difference,
which is zero for the entire image. Figure (l) shows the reference coherence, which is
zero in the outer part and 0.7 in the central part. Grayscale intervals are, from black
to white: (a–f) [−π, π] and (g–l) [0, 1]. Note that the one-look coherence estimate
is always equal to unity, which, for the chosen colour scale, results in a completely
white image.

In Figure 2.11(a), the pdf for the N -look phase difference estimate ∆̂φN is plotted

for γ = 0.7 and ∆φ = 0. It can be observed that ∆̂φN is an unbiased estimate of
∆φ, with standard deviation decreasing with increasing N . In Figure 2.11(b), the
standard deviation is plotted against coherence for different numbers of looks N . The
standard deviation decreases with increasing coherence and with increasing number
of looks.

The N -look coherence estimate γ̂N has the following pdf [53]:

p(γ̂N |γ,N) =

{
2(N − 1)(1− γ2)N γ̂N(1− γ̂2

N)N−2
2F1(N,N ; 1; γ̂2

Nγ
2) 0 ≤ γ̂N ≤ 1

0 otherwise
.

(2.45)
In Figure 2.12(a), the pdf for the N -look coherence estimate γ̂N is plotted for

γ = 0.7. It can be observed that for low N , coherence is overestimated and the
standard deviation is high, but both the bias and standard deviation decrease with
increasing N . In Figure 2.12(b), the expectation value for γ̂N is plotted against
coherence for different numbers of looks N . The observed overestimation for low N
is confirmed, and the bias is coherence-dependent. In Figure 2.12(c), the standard
deviation of γ̂N is plotted against coherence for differentN , together with the standard
deviation given by the Cramér-Rao bound. As this is an approximation valid for
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unbiased estimates, it can only be used when both N and γ are high [53]:

Var[γ̂] =
(1− γ2)2

2N
. (2.46)

Simulation results for the N -look phase difference and coherence estimates are
shown in Figure 2.13. In Figures 2.13(a)–2.13(e), the N -look phase difference esti-
mates are shown. It can be observed that in the central region, the variance of the
phase difference decreases with an increasing number of looks. However, for the outer
part of the images, the phase difference is equally noisy for any number of looks. This
is due to the fact that coherence in that region is zero. The reference phase difference
is zero for the entire image, see Figure 2.13(f).

In Figure 2.13(g), the one-look coherence estimate is shown, and it is equal to
unity for the entire image. For an increasing number of looks, the coherence overes-
timation decreases, see Figures 2.13(h)–2.13(k). The reference coherence is shown in
Figure 2.13(l). In the central part, the coherence is 0.7, whereas in the outer part, it
is zero.

2.4 Past, Present, and Future SAR Systems

As mentioned earlier, more than 15 civilian, spaceborne SAR systems are currently
operational and around 10 are planned to be launched within the next five years [6,78].
Due to the major advantages of polarimetry and interferometry, most modern SAR
systems are designed to be able to provide PolSAR and/or InSAR data.

Airborne systems are used to acquire SAR data in cases when satellite SAR data
are unavailable or insufficient, e.g., in campaigns associated with preparatory studies
for new satellite systems. Airborne SAR systems have the advantage of being easy
to deploy and affordable on lower scales.

2.4.1 PolSAR Systems

Presently, two civilian, fully polarimetric SAR systems are operational: the C-band
RADARSAT-2 system from the Canadian Space Agency (CSA) [114] and the L-
band ALOS-2 PALSAR-2 system from the Japan Aerospace Exploration Agency
(JAXA) [115]. Moreover, the X-band TerraSAR-X and TanDEM-X systems from
the German Aerospace Center (DLR) are able to provide fully-polarimetric data in
the experimental mode [55], whereas the C-band RISAT-1 system from the Indian
Space Research Organisation (ISRO) is able to provide hybrid-polarimetric SAR data
(circular polarisation on transmission, linear polarisations on reception) [116].

In May 2013, ESA selected BIOMASS for the 7th Earth Explorer mission [51].
BIOMASS will feature a fully-polarimetric SAR sensor operating at the centre fre-
quency of 435 MHz with a bandwidth of 6 MHz, giving a nominal slant range resolu-
tion of 25 m [3]. It will be the first P-band SAR sensor in space, with the main goal
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to provide global biomass, forest height, and deforestation maps. Due to the low fre-
quency, repeat-pass interferometry and tomography over forests will be feasible with
BIOMASS. The launch of BIOMASS is currently scheduled for 2020.

Papers A and B appended to this thesis summarise the results obtained within
the BIOMASS feasibility study. In these papers, P-band SAR data acquired with
the airborne Experimental-SAR (E-SAR) system [117–119] from the DLR are used,
acquired within the BioSAR 2007 and 2008 campaigns [41,120]. The centre frequency
of this system was 360 MHz, which is lower than for BIOMASS, with a bandwidth of
up to 100 MHz. The E-SAR system was decommissioned in 2008 and replaced by the
F-SAR system [121].

2.4.2 InSAR Systems and Satellite Constellations

All modern SAR systems are coherent and repeat-pass interferometry can, in theory,
be conducted using any satellite system, but the temporal decorrelation often limits
the applications. Temporal decorrelation can be decreased either by using the lower
frequency bands (as in the case of the P-band SAR system BIOMASS), or by using
multiple sensors. Moreover, the use of multiple sensors in a constellation significantly
increases both the coverage and acquisition frequency, which is beneficial for large-
scale monitoring and reconnaissance purposes.

Two current SAR constellation missions capable of providing global imagery at
daily rates are: the dual-purpose (civil and military) COSMO-SkyMed system of four
X-band satellites from the Italian Space Agency (ASI) [122], and the military SAR-
Lupe system of five X-band satellites from the DLR [123]. The civilian Sentinel-1a
satellite, launched by ESA in 2014, is the first of two C-band SAR systems, which
together will be able to provide SAR imagery of the entire Europe every third day
[124]. Moreover, the S-band system HJ-1C, launched in 2012, is the first of four SAR
satellites planned for a constellation mission from the Chinese Academy of Science
and Technology (CAST) [125].

The X-band PAZ system, funded by the Spanish Center for Development of In-
dustrial Technology (CDTI) and scheduled to be launched in 2014, is planned to op-
erate in constellation with the almost identical satellites TerraSAR-X and TanDEM-
X [126, 127]. The SAOCOM-1A/B mission from the Argentine National Commis-
sion for Space Activities (CONAE) will consist of two fully-polarimetric, L-band
SAR satellites [128], planned to be launched in 2015 and 2016, respectively. The
RADARSAT Constellation Mission of three C-band satellites from the CSA is planned
to be launched in 2018, with the main task to provide daily imagery of the Canadian
lands and oceans [129].

Single-pass interferometric SAR systems have the advantage of low temporal
decorrelation, but they require multiple SAR sensors in a close formation. Currently,
spaceborne single-pass InSAR data can be acquired only with the TanDEM-X sys-
tem, consisting of the previously mentioned satellites TerraSAR-X and TanDEM-X
in a tight helix formation [55]. The main goal of the TanDEM-X mission is to acquire
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the first, fully global DEM with a spatial resolution of 12 m× 12 m and an absolute
vertical accuracy better than 10 m [130], which will replace the older DEM acquired
within the Shuttle Radar Topography Mission (SRTM) from the space shuttle En-
deavour in February 2000. Papers C, D, and E appended to this thesis are focussed
on forest parameter estimation from TanDEM-X data.

The proposed ESA SAOCOM-CS mission will feature a passive SAR sensor in a
formation flight with the SAOCOM-1B satellite [64]. Also, a TanDEM-L mission has
been proposed, consisting of two L-band satellites in a tight tandem formation and
providing fully-polarimetric, high-resolution data in a wide-swath mode [65].
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Figure 3.1: Some of the most significant scattering mechanisms in forest: direct
backscatter from (1) tree canopies, (2) tree trunks, and (3) ground surface, and
double-bounce interactions between (4) ground surface and tree canopies, as well
as between (5) ground surface and tree trunks.

Chapter 3

Microwave Scattering from Forests

When studying forests with SAR imagery, it is important to be able to separate the
influence of system parameters from the influence of geo- and biophysical forest pa-
rameters. Scattering models are important tools which can improve the understanding
of the electromagnetic interactions.

Accurate modelling of electromagnetic scattering from forests can be achieved by
means of computational electromagnetics, in which Maxwell’s equations are solved
numerically for a discretised forest model. However, the computational costs of this
approach can be enormous, especially if multiple evaluations are required, e.g., in
case when the influence of a system parameter on the scattering coefficient needs to
be examined.

In many cases, the usefulness of a simplified model is of higher priority than ex-
treme accuracy, e.g., when the model is to be used to explain the cause of a particular
effect observed in the experimental data. In such cases, simplifications can be made
by replacing complicated forest elements with simple objects, for which fast analyt-
ical solutions are available, and by reducing the number of modelled interactions.

35
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The accuracy of such simplified models depends primarily on two factors: if all the
most important scattering mechanisms are modelled, and how well each scattering
mechanism is modelled.

3.1 Basic Scattering Mechanisms

In some of the most common models [132–136], forest is composed of three types
of elements: ground surface, tree trunks, and tree canopies. Each of these elements
contributes both on its own and in combination with the other elements to the total
backscattered field. The most significant, low-order scattering mechanisms shown in
Figure 3.1 are:

(1) direct backscatter from tree canopies,

(2) direct backscatter from tree trunks,

(3) direct backscatter from the ground surface,

(4) double-bounce interactions between the ground surface and tree canopies,

(5) double-bounce interactions between the ground surface and tree trunks.

Higher-order mechanisms and near-field interactions can often be neglected. Due to
reciprocity, the two double-bounce interactions between the same elements, but in
reversed order (e.g., ground-trunk and trunk-ground), are equivalent and they add
up in phase, acting as one single scattering mechanism [137]. In the following, oblique
incidence angles and vertical or near-vertical tree trunks will be assumed.

3.1.1 Direct Backscatter

Direct backscatter is primarily caused by reflections from surfaces facing the radar
antenna. Therefore, most of the direct backscatter occurs in the canopy, from rough
surfaces, and from occasional slopes facing the radar antenna.

Canopies consist of more or less randomly oriented branches of different sizes,
as well as needles or leaves. Canopy backscatter is generally stronger at high fre-
quencies, when the scatterers are comparable to, or larger than the wavelength [95].
Consequently, penetration through the canopy is expected to decrease with increasing
frequency. If the scatterers in the canopy have a preferred orientation, the backscat-
tered field will show polarisation dependence.

Surface roughness is characterised in relation to the wavelength, and a surface
which is rough at high frequencies may be smooth at low frequencies [91, 138]. At
oblique incidence, backscattering from a randomly rough surface is stronger than
from a smooth surface. Many realistic surfaces, such as forest soil and bark, may be
treated as slightly rough surfaces when the wavelength is much longer than the surface
irregularities (e.g., at P-band) and very rough surfaces when the surface irregularities
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(a) Scattering geometry

(b) Backward direction (slightly rough surface at
P-band)

(c) Backward direction (very rough surface at X-
band)
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Figure 3.2: Scattering from a slightly rough surface (P-band) and a very rough surface
(X-band), corresponding to low- and high-frequency regimes, respectively. In all cases,
the incidence angle θi is 30◦ and only scattering in the incidence plane is studied. Non-
coherent rough surface scattering has been modelled using the geometrical optics
model (GOM) in the high-frequency regime and the small perturbation model (SPM)
in the low-frequency regime, using the expressions found in [103]. Coherent scattering
is only significant for the slightly rough surface in the forward direction, where it has
been modelled using the expression presented in [91] and assuming a circular surface
with a radius of 100 m. Parameters s and L are the standard deviation of the vertical
variations and the correlation length of the rough surface, and together with the
relative dielectric constant εr, their values have been chosen based on [131].
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Figure 3.3: Scattering from a smooth vertical cylinder modelled using the infinite
cylinder approximation [103]. In all cases, the incidence angle θi is 30◦ and only
scattering in the incidence plane is studied. The cylinder has a length of 20 m, radius
of 13 cm, and the relative dielectric constant εr chosen according to [17]. Note the
significant difference in the scales of the x-axes.
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are comparable to, or larger than the wavelength (e.g., at X-band). Therefore, direct
backscatter from such surfaces is expected to be stronger at high frequencies.

In Figure 3.2(b) and Figure 3.2(c), rough surface scattering in the backward di-
rection is modelled at P- and X-bands using the small perturbation model (SPM)
and the geometrical optics model (GOM), respectively. The SPM is a low-frequency
approximation, valid when surface roughness is small in comparison to the wave-
length, whereas the GOM is a high-frequency approximation, valid for very rough
surfaces [103]. At P-band, with a centre frequency of 435 MHz and a wavelength
of 69 cm, the chosen roughness parameters (standard deviation of vertical variations
equal to 1.1 cm and the surface correlation length equal to 16.5 cm) correspond to
a slightly rough surface. Backscattering is thus very weak, see Figure 3.2(b). At
X-band, with a centre frequency of 9.65 GHz and a wavelength of 3.1 cm, the cho-
sen roughness parameters (standard deviation equal to 1.4 cm and correlation length
equal to 3.7 cm) correspond to a very rough surface. Backscattering is therefore much
stronger, see Figure 3.2(c). Note that roughness parameters have been chosen accord-
ing to [131], for optimal validity of the asymptotic models. The surfaces are therefore
slightly different for the two studied cases (P- and X-band).

In Figure 3.3(b) and Figure 3.3(c), scattering in the backward direction from
a smooth, vertical cylinder is modelled at both P- and X-bands using the infinite
cylinder approximation [103]. As it can be observed, the backscattering coefficient
is low in both cases. Note, however, that in more realistic scenarios, trunks are not
smooth vertical cylinders, but they attain a rougher and possibly also curved form.
Therefore, backscattering from a tree trunk will be stronger in reality.

3.1.2 Double-Bounce Interactions

Double-bounce interactions require a strong specular reflection from the ground as
well as from the trunks and/or canopies. A smooth surface will generally have a
stronger specular component than a rough surface [91, 138], and for many natural
rough surfaces, double-bounce interactions will be more common for the lower fre-
quencies. The strength of the double-bounce interactions between the ground surface
and vertical trunks will be affected by the ground slope and by the relative length of
the trunks. At lower frequencies, the trunks will be shorter relative the wavelength,
resulting in a wider forward scattering lobe [139], and the double-bounce interaction
will be less sensitive to ground slope. For a ground surface tilted in the azimuth
direction, double-bounce interaction will be present also in the cross-polarised chan-
nel [17].

In Figure 3.2(d) and Figure 3.2(e), rough surface scattering in the forward direc-
tion is modelled at P- and X-bands using the SPM (with a coherent term) and the
GOM, respectively, at an incidence angle of 30◦. For P-band and the slightly rough
surface, forward scattering is weak in all cases except when the scattering angle is
around 30◦, i.e., in the specular direction, when the coherent term becomes significant.
The width of the coherent scattering lobe depends on the size of the surface; a larger
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(a) Rough surface (b) Smooth cylinder

Figure 3.4: Simplified visualisations of rough surface scattering and reflection from a
smooth cylinder in high- and low-frequency regimes (in blue and red, respectively).

surface results in a narrower lobe and a stronger specular reflection. For X-band and
the very rough surface, forward scattering in non-specular directions is stronger than
for a slightly rough surface, whereas the coherent component is negligible.

In Figure 3.3(d) and Figure 3.3(e), scattering in the forward direction from a
smooth, vertical cylinder is modelled at both P- and X-bands using the infinite cylin-
der approximation. The forward scattering lobe is wider for P-band, although the
scattering coefficient in the specular direction is lower.

Double-bounce interactions between the ground surface and tree canopies are often
weak, due to the high penetration capabilities at low frequencies, when the specular
reflection from the ground is the strongest.

3.1.3 Dominant Mechanisms at P- and X-bands

At P-band, direct backscatter from larger branches in the canopies and ground slopes
facing the antenna, as well as the double-bounce interactions between ground and
trunks are expected to be the strongest contributions, the latter due to the strong
specular reflection from relatively smooth surfaces and wide forward scattering lobe
from the trunks, see Figure 3.4. The strength of these contributions is related to the
volume of the trunk, but it also depends on the dielectric properties of the elements,
roughness of both ground and trunk surfaces, and the ground topography. Several
models of dielectric cylinders over ground have been developed for lower frequencies
[17,140–143].

At X-band, direct backscatter is expected to be the main contribution, due to
the random orientation of the canopy scatterers, and the relatively rough trunk and
ground surfaces, see Figure 3.4. Direct backscatter from the rough trunk and ground
surfaces is expected to be strong only in the case of sparse canopies, i.e., when pen-
etration through canopy gaps is significant. In general, low sensitivity to biomass
is expected for the backscattered signal at X-band due to the strong dependence on
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Figure 3.5: A power law function relating backscatter coefficient gamma nought to
biomass is here plotted with the green, solid line, together with backscatter data from
six airborne SAR campaigns. The referenced studies can be found in [26, 28, 32, 36,
37,144]. The figure has been adapted from [38]. Note that the original data from La
Selva and Remningstorp have been corrected with +5 dB and -3 dB, respectively, to
compensate for the observed offset from the other four data sets.

surface roughness and the weak dependence on the trunk volume.
Polarisation and incidence angle dependence is expected to be stronger at P-band,

due to the stronger contribution of the ground surface and tree trunks, which are often
less randomly oriented than the canopy scatterers.

3.2 Models for Forest Scattering

Scattering models serve as a link between theory and empirical observations. There-
fore, the development of models can be approached from both ends, and two general
model types can be distinguished: empirical and theoretical.

3.2.1 Empirical Models

Empirical models are derived from observations in the experimental data. Using re-
gression analysis, functions can be fitted to the data and used to explain the observed
behaviour. As both the experimental data and model selection strategies may vary
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(a) IWCM (b) RVoG

Figure 3.6: Two vertical backscatter profiles used by the IWCM and RVoG models.

significantly between different studies, the number of empirical models available in
the literature is very large.

The power law is one of the more popular models, which can be used to explain
many phenomena observed in nature [145,146]. In SAR remote sensing of forests, this
function is often used to describe the relation between the backscattering coefficient
and biomass, especially for HV-polarised, P-band data. In [38], the following power
law function has been fitted to HV-polarised data from six airborne P-band SAR
campaigns conducted in different biomes on three different continents:

γ0
HV = aBb, (3.1)

where B is biomass in tons per hectare and a and b are model parameters. After
correction of an observed offset in γ0

HV in two of the six data sets, the same parameters
a and b can be used for all six data sets, see Figure 3.5.

3.2.2 Theoretical Models

Theoretical models are created using simple objects for which approximative analyt-
ical solutions exist (cylinders, rough surfaces, discs, needles, dipoles, etc.). There are
two main types of theoretical models: coherent and non-coherent.

Coherent models are based on wave propagation and Maxwell’s equations, and the
contributions from the different scattering mechanisms are added in phase. Common
coherent models include models based on the cylinder-over-ground approximation,
which are primarily used to model the trunk-ground interactions at lower frequencies
[17, 140, 141, 143, 147–149], as well as more complex models with more elements and
higher-order interactions [136,150–152].

Non-coherent models are based on energy propagation and radiative transfer equa-
tions. Therefore, no correlation between the fields scattered by the different elements
is assumed, and the contributions of the different scattering mechanisms are added in
terms of power. The analytical treatment of these models is generally simpler. Many
non-coherent models have been developed in the past [132,133,153–157].
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3.2.2.1 Interferometric Models

In across-track interferometry, modelling of volume decorrelation can be done from
the vertical backscattering profile σv(z) using [106,110]:

γ̃vol =

∫∞
−∞ σv(z)eikzzdz∫∞
−∞ σv(z)dz

. (3.2)

Two simple models have been frequently used since the late 90’s for forest param-
eter estimation from InSAR data. In both models, vegetation canopy is modelled as a
water cloud, as proposed in [94], and ground is modelled as an impenetrable surface.
As the scattering centres of the double-bounce interactions are located at the ground
level, the double-bounce interactions do not have to be modelled separately.

In the interferometric water cloud model (IWCM) [57,58], vegetation is modelled
as a homogeneous volume of randomly oriented scatterers located above a ground
plane and covering a certain fraction of the total area, called the area-fill factor, see
Figure 3.6(a). It has been shown in [94], that the effective attenuation of the random
volume can be described by an exponential backscatter profile function. The vertical
backscattering profile σv(z) can then be formulated as:

σv(z) = η
[
σ0

vegαe
−α(z0+h−z)Θ(z0 + h− z)Θ(z − z0)

+ σ0
grδ(z − z0)e−αh

]
+ (1− η)δ(z − z0)σ0

gr, (3.3)

where η is the area-fill factor, σ0
gr and σ0

veg are the effective ground and vegetation
backscattering coefficients, α is the extinction coefficient, z0 is the ground elevation,
h is the volume height, δ(•) is the Dirac delta function, and Θ(•) is the Heaviside
step function. By inserting (3.3) into (3.2), the total volume decorrelation can be
obtained.

The IWCM was originally developed for stem volume estimation from repeat-pass
interferometric, C-band ERS-1/2 data [57, 58], where it was fitted to coherence and
backscatter data, which were found stable in winter conditions in various forests [158–
161] (the phase information was not used due to high temporal decorrelation [162]).
Therefore, the full formulation of the IWCM also includes two temporal decorrelation
terms (one for the ground and one for the volume parts) and an allometric relation
between height and stem volume. Additionally, an empirical model relating stem
volume to backscattering coefficient and first published in [163] is also included, to
make backscatter modelling agree with the empirical observations. IWCM fitting is
usually done collectively for all data points using training data, effectively making
the model parameters into site-dependent constants.

In the random volume over ground (RVoG) model [59–61,164], the profile used in
the IWCM is simplified by neglecting the canopy gaps, see Figure 3.6(b):

σv(z) = σ0
vegαe

−α(z0+h−z)Θ(z0 + h− z)Θ(z − z0) + σ0
grδ(z − z0)e−αh. (3.4)

The traditional use of the RVoG model includes forest height and ground elevation
estimation from PolInSAR data [44,45,59–61,164,165]. Model fitting is generally done



44 Microwave Scattering from Forests

on a pixel-by-pixel basis, by balancing the number of observables with the number
of parameters. In recent years, the RVoG model was further developed, and the
estimation of vertical scattering profiles [99, 166] as well as temporal decorrelation
[167] from PolInSAR data were introduced.



Chapter 4

Summary of the Appended Papers

This chapter begins with a short presentation of the reference data used in the ap-
pended papers. Thereafter, the appended papers are presented, first the two P-band
papers and then the three X-band papers.

4.1 Experimental Data

Two test sites located in Sweden are used in the appended papers: Remningstorp
and Krycklan, see Figure 4.1. The distance between these test sites is approximately
720 km.

Remningstorp (58◦ 28’ N, 13◦ 38’ E) is a hemi-boreal forest site situated in southern
Sweden, approximately 150 km north-east of Gothenburg (Göteborg). The test site
is fairly flat, with ground slopes at stand level lower than 5◦ (computed from a
50 m× 50 m DTM). Remningstorp covers approximately 1200 ha of productive forest
land, and the forest consists primarily of Norway spruce (Picea abies (L.) Karst.),
Scots pine (Pinus sylvestris L.), and birch (Betula spp.). Remningstorp has been
used in the two ESA-funded campaigns BioSAR 2007 and 2010 [41,42], conducted in
support to the BIOMASS feasibility study [3].

Krycklan (64◦ 14’ N, 19◦ 46’ E) is a boreal forest site located in northern Sweden,
approximately 50 km north-west of Ume̊a. Compared to Remningstorp, Krycklan has
a more strongly undulating topography, with ground slopes on stand level reaching

45
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Figure 4.1: The two test sites used in the appended papers, Remningstorp and Kryck-
lan, separated by 720 km.

19◦ (computed from a 50 m× 50 m DTM). Krycklan covers approximately 6700 ha of
forested land, which is dominated by Norway spruce and Scots pine. Krycklan has
been used in the ESA-funded campaign BioSAR 2008 [120], conducted in support to
the BIOMASS feasibility study [3].

For each test site, several sets with reference data have been provided by the
Swedish University of Agricultural Sciences (SLU). The data can be divided in three
categories: plot-level data, stand-level data, and maps.

Stands are relatively homogenous forest regions with similar species composition,
biophysical characteristics (e.g., tree height and tree number density), and manage-
ment procedures. They can vary in size and shape, and they are the main unit used
for forest mapping and management [11]. Plots are usually smaller stand subsets of
regular shape, which are used as within-stand samples. Often, they are distributed
in a systematic grid covering the test site or a stand.
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Although the exact methodologies used during field inventories may vary between
the individual reference data sets, the general approach is similar. Commonly, the
relevant and easily accessible parameters such as stem diameter at breast height
(dbh) and tree species are sampled for all trees confined within plot borders and
fulfilling a minimum dbh criterium (dbh larger than 4 cm in Krycklan; dbh larger
than 5 cm in Remningstorp). For a subset of these trees, the more time-consuming
measurements of, e.g., tree height and age, are made. Plot- and stand-level estimates
are then computed from the sampled tree parameters, and biomass is estimated using
allometric equations, for example the Marklund or Petersson formulas [168, 169]. In
recent years, the forest management system Heureka [170] has been frequently used
for forest parameter estimation from in situ data.

Maps of forest parameters are usually derived from airborne lidar scanning (ALS)
data. In ALS, laser pulses transmitted downwards from an aircraft or a helicopter
are used to sample canopy height at high vertical and horizontal resolutions. From
the sampled pulses, different lidar-based estimates of forest parameters are obtained,
and biomass maps are created using regression analysis and plot-level reference data.

The accuracy of plot-, stand-, and map-level biomass estimates depends on many
factors: measurement error, the uncertainty in the allometric models, natural varia-
tion in the data, sampling density, etc. Moreover, correlation between error sources is
not uncommon and need to be considered. When evaluating the performance of SAR-
based biomass estimation algorithms, it is important to consider the uncertainties in
the reference data.

4.2 Paper A

In this paper, a P-band polarimetric-interferometric forward model (FM) is devel-
oped and used to model SAR imagery acquired with the airborne E-SAR system over
Remningstorp. The FM is used within the BIOMASS end-to-end simulator (BEES),
used by ESA to assess the error budget of the proposed (now selected) mission BIO-
MASS [3,52].

In accordance with the requirements from ESA, the FM predicts the extended
covariance matrix scaled to sigma nought on the diagonal from a small number of
geo- and biophysical forest and system parameters. The influence of scene moisture
and ground slopes is not modelled.

Four model scenarios have been developed for BEES, featuring two different
backscatter profiles (exponential and truncated Gaussian) for two different biomes
(tropical and boreal). However, only the boreal scenario with the exponential profile
is studied in Paper A. For a full description of the model and the different scenarios,
consult [171].

The extended covariance matrix is a matrix with all covariance combinations of
the unique elements of two scattering matrices, one for each interferometric acquisi-
tion. Assuming a monostatic system, reciprocal and reflection symmetric medium,
and identical polarimetric response at both ends of the baseline, the extended co-
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(a) Reference (HV) (b) Modelled (HV) (c) Reference (VV) (d) Modelled (VV)

Figure 4.2: In Paper A, the extended covariance matrix is modelled for P-band
from a few forest and system parameters. Here, backscatter coefficients sigma nought
modelled from biomass and incidence angle maps are compared to the reference data
acquired with the airborne E-SAR sensor. The test site is Remningstorp and the
black contours mark the area covered by the biomass map. Outside, biomass has
been set to zero.

variance matrix is a 6× 6 matrix, and it can be re-stated in terms of three basic
quantities: three real-valued backscatter coefficients sigma nought (one for each po-
larisation), three complex-valued interferometric correlation coefficients (one for each
polarisation), and one complex-valued polarimetric correlation coefficient (between
the two co-polarised channels).

Backscatter coefficients are for all polarisations modelled in decibels using a linear
function of biomass, based on (3.1), and an additive, zero-mean Gaussian noise term.
Model parameters and noise variance are estimated from the training data:

[γ0
HH]dB = −20.1 + 8.1 log10 B + N(0, 1.32), (4.1)

[γ0
HV]dB = −20.7 + 4.2 log10 B + N(0, 0.72), (4.2)

[γ0
VV]dB = −6.7 + 0.6 log10 B + N(0, 1.22), (4.3)

where B is the biomass in tons per hectare. As it can be observed, the highest
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sensitivity to biomass is obtained for the HH-channel, but with a larger variance.
For the HV-channel, the sensitivity is still high, and the variance is lower. For the
VV-channel, the sensitivity to biomass is very low.

Interferometric correlation coefficients are for all polarisations modelled from ca-
nopy height, ground elevation, incidence angle, and baseline information using the
RVoG model presented in (3.4). All model parameters have been chosen to be nor-
mally distributed random variables, with statistics either estimated from training data
or appropriately chosen based on the experience from earlier studies. Polarimetric
coherence is modelled as a normally distributed random variable. The polarimetric
phase difference has been found correlated with biomass and it is modelled using a
linear function with an additive, zero-mean Gaussian noise term.

The model performance is evaluated in a side-by-side comparison of the modelled
SAR images with the SAR images acquired by the E-SAR system. The same ac-
quisition as used for model training is used in this evaluation. It is concluded that
accurate modelling is achieved with the FM for the HH- and HV-polarised backscatter,
the interferometric phase differences, and the polarimetric phase difference. However,
modelling of the VV-polarised backscatter coefficient, the polarimetric coherence, and
the interferometric coherences need to be studied further, as not all structures can be
reproduced from the input data using the presented model.

In Figure 4.2, the results from backscatter modelling of the HV- and VV-channels
from biomass are shown. Good agreement with the reference E-SAR image is observed
for the HV-channel, where the correlation with biomass is high.

4.3 Paper B

In this paper, a new biomass retrieval model is presented. The model includes terms
which partially compensate for the influence of topographic and moisture variations.
The model is evaluated on E-SAR data acquired in both Remningstorp and Krycklan.
The model has been developed within the BIOMASS feasibility study and it has been
included in the proposed biomass estimation algorithm for boreal forests [3].

The model is based on the power law function shown in (3.1), together with
the backscatter ratio between the HH- and VV-channels, which has been found less
susceptible to topographic and moisture variations, due to the often similar influence
of these two effects on both co-polarised channels. A topographic correction is also
included in the model:

log10 B = a0 + a1[γ0
HV]dB + (a2 + a3θg)

[
γ0

HH

γ0
VV

]

dB

, (4.4)

where a0, a1, a2, and a3 are model parameters estimated from the training data and
θg is the ground slope.

The model is evaluated together with five other models in a set of tests using
the E-SAR data from the BioSAR 2007 and 2008 campaigns. The data have been
acquired in different test sites, at different flight headings, and in different moisture
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(a) Reference (lidar) (b) Estimated (E-SAR, Re) (c) Estimated (E-SAR, Kr)

Figure 4.3: In Paper B, biomass is estimated from P-band SAR backscatter using
a new model with topographic and moisture correction. Three biomass maps for
Remningstorp are here shown, estimated from: (a) lidar data, (b) SAR data, using
the new model with parameters estimated in Remningstorp, and (c) SAR data, using
the new model with parameters estimated in Krycklan, which is 720 km north-north-
east of Remningstorp. Regions A, B, and C mark some disagreements, which are
discussed in the text.

conditions. By using across-acquisition and across-site evaluation scenarios, it is
possible to evaluate model susceptibility to topographic and moisture variations, as
well as the potential of using the same parameter setup in different conditions.

It is concluded that the proposed model, with parameters estimated in Krycklan,
can be used to estimate biomass in Remningstorp with a root-mean-square error of
40–59 tons/ha, or 22–32% of the mean biomass, which is significantly better compared
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to the other models. Since the two test sites are separated by 720 km and they feature
quite different types of boreal forests, this is a very important conclusion for the future
global mission.

In Figure 4.3, biomass maps of Remningstorp, estimated using the proposed model
with two parameter sets, one for Remningstorp and one for Krycklan, and compared
to a reference biomass map estimated from lidar data. The performance is generally
good, although some disagreements with respect to the lidar-based map can be ob-
served. In region A, a significant understorey vegetation layer causes an increased
HV backscatter, without contributing significantly to the total biomass. The dis-
agreement in region B is caused both by an overestimation of biomass in the SAR
map due to a strong double-bounce effect present in the HV-channel, and by an un-
derestimation of biomass in the reference lidar data. The disagreement in region C is
caused by an unusually strong double-bounce effect occurring for a group of tall trees
surrounded by lower forest.

4.4 Paper C

In this paper, an approach based on the IWCM and developed for stem volume
retrieval from repeat-pass interferometric, C-band ERS-1/2 data is used for biomass
retrieval from single-pass interferometric, X-band TanDEM-X data, which have been
ground-corrected using a high-resolution DTM. Multi-temporal data are studied, and
the influence of both acquisition geometry and meteorological variables is assessed.

The development of an InSAR processing algorithm was an important part of the
work conducted for this paper. Due to the quasi-bistatic acquisition geometry with
one transmitting and two receiving satellites, and the helical orbit with dynamic base-
line, a dedicated InSAR processing algorithm was developed for the TanDEM-X data.
Using satellite state vectors, a geocoding look-up table was computed, and the high-
resolution DTM was interpolated to radar geometry. The raw interferograms were
then ground-corrected using the interpolated DTM and taking into consideration the
quasi-bistatic acquisition geometry and satellite displacement between transmission
and reception of the signals. A 5-metre buffer zone was added prior to plot- and
stand-level averaging. Phase estimation errors were minimised by complex averaging
of all relevant pixels within each plot/stand. Absolute phase calibration was done us-
ing ground reference points derived from a non-forest mask. Phase unwrapping was
found unnecessary due to the limited height variations in the flattened interferogram.
Conversion to height was done using a HOA map computed from the acquisition
geometry. Geocoding and height estimation accuracies were evaluated using two 5-
metre trihedral corner reflectors positioned within the Remningstorp test site. The
standard deviation of height variations was found lower than 10 cm and the horizontal
offset was found lower than 2 m.

In this study, the IWCM is compared to two other models, each being its simplified
version: the RVoG, in which canopy gaps are neglected, and a new penetration depth
(PD) model, in which both canopy gaps and ground contribution are neglected. The
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(a) Reference (lidar) (b) Estimated (TDM, IWCM)

(c) Estimated (TDM, RVoG) (d) Estimated (TDM, PD)

Figure 4.4: In Paper C, biomass is estimated using three models: IWCM, RVoG, and
a new penetration depth (PD) model. Above, the corresponding maps are compared
to a lidar-derived reference map. The test site is Remningstorp and non-forested
areas have been masked out. Note that there is one year time difference between
the TanDEM-X (TDM) and lidar acquisitions, and growth and forest management
have not been accounted for (e.g., in the cleared area slightly to the left from the
bottom right corner of the images). The original TDM data have been acquired on
2011-06-04, with a HOA of 49 m, and at an incidence angle of 41◦.

models are fitted to both intensity, coherence, and phase centre height data, and
biomass is estimated.

The new PD model is a simplification valid for dense forests, and it requires one
single parameter, the penetration depth, which is used to compensate the phase centre
height for penetration. The compensated height is then converted to biomass using
a height-to-biomass relation:

B = 0.21

(
hgc +

1

α

)2.17

, (4.5)

where the biomass B is measured in tons per hectare, hgc is the phase centre elevation
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above ground (in metres) and α is the effective extinction coefficient (in m−1).

The models are evaluated using eighteen VV-polarised TanDEM-X image pairs
acquired over Remningstorp between 2011-06-04 and 2012-08-24, at HOAs between
49 m and 358 m, incidence angles between 34◦ and 41◦, and in both ascending and
descending modes. High-resolution DTM acquired within a national lidar scanning
campaign is used as ground reference during InSAR processing. Meteorological data
provided by the Swedish Meteorological and Hydrological Institute (SMHI) are also
used in the study. The retrieval performance is assessed using 201 forest stands with
a minimum size of 1 ha, and biomass in the interval 6–267 t/ha (mean: 105 t/ha),
equally divided into two groups: one for training and one for validation. The root-
mean-square error (RMSE) for the IWCM-based retrieval is between 17% and 33%,
with the best results obtained for the low HOAs. For the RVoG and the PD models,
the stand-level RMSE values are slightly higher. Biomass is also estimated using
multi-temporal averaging from all eighteen acquisitions with a weighting factor in-
versely proportional to the square of HOA, with an RMSE of 16% and R2 = 0.93.

In Figure 4.4, biomass maps obtained with each of the three models for an image
from 2011-06-04 with a HOA of 49 m and an incidence angle of 41◦ are compared to
a reference map estimated from lidar data. Good results are obtained for all models,
except in the region that has been harvested between the lidar and SAR acquisitions.

4.5 Paper D

In this paper, the two-level model (TLM) is introduced and used for the estimation
of forest height and canopy density from single-polarised TanDEM-X acquisitions in
combination with a high-resolution DTM. With an access to the global TanDEM-X
data, the presented approach can be used for frequent, large-scale, high-resolution
mapping of forest height and canopy density in countries in which national lidar
scanning campaigns have been conducted.

The TLM models forest as two discrete scattering levels: ground and vegetation,
separated by a distance ∆h and with canopy gaps described by the area-fill factor η,
which is the fraction of the total area covered by the vegetation level. The two-level
approach with canopy gaps is motivated by an interference effect observed in the data
for sparse forest plots, for which the location of the scattering centre in the canopy
is found sensitive to the interferometric baseline.

The ground-corrected complex correlation coefficient is modelled by the TLM as:

γ̃gc =
µ+ eikz∆h

µ+ 1
, (4.6)

where µ the area-weighted backscatter ratio:

µ =
σ0

gr

σ0
veg

1− η
η

. (4.7)
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(a) Reference (lidar vegetation ratio) (b) Estimated (uncorrected area-fill factor η0)

(c) Reference (lidar height H50) (d) Estimated (level distance ∆h)

Figure 4.5: In Paper D, forest height and canopy density are estimated from the
inversion of the TLM. Above, the corresponding maps are compared to lidar-derived
reference maps. The test site is Remningstorp and non-forested areas have been
masked out. Note that there is one year time difference between the TDM and lidar
acquisitions, and growth and forest management have not been accounted for (e.g.,
in the cleared area slightly to the left from the bottom right corner of the images).
The original TDM data have been acquired on 2011-06-04, with a HOA of 49 m, and
at an incidence angle of 41◦.

As the TLM requires only two parameters (∆h and µ), model inversion can be done
individually for each ground-corrected complex correlation coefficient, without the
need for additional SAR acquisitions. Analytical expressions for the computation of
∆h and µ from a ground-corrected complex correlation coefficient are presented in
the paper.

The model is evaluated using eight VV-polarised TanDEM-X acquisitions made
at different baselines (HOAs between 32 and 63 metres) over Remningstorp in the
summers of 2011, 2012, and 2013, and thirty-two, 0.5 hectare circular forest plots
with different heights and canopy densities. The InSAR data have been processed
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using the same InSAR processing algorithm as described in Paper C.
It is concluded that level distance ∆h can be used as an estimate of H50 (50th

percentile of all lidar returns above 1 m or 10% of the maximal height) with a Pearson
correlation coefficient of about 95% and a root-mean-square difference (RMSD) lower
than 10% (or 1.8 m). It is also concluded that the uncorrected area-fill factor:

η0 =
1

1 + µ
(4.8)

can be used as an estimate of the vegetation ratio (the ratio between the number of
lidar returns from above 1 m or 10% of the maximal height and all lidar returns) with
a Pearson correlation coefficient better than 59% and RMSD around 10% (or 0.07).
A HOA-dependent offset is observed for ∆h, and it is most likely caused by residual
SNR and system decorrelation effects, which have not been compensated for.

In Figure 4.5, maps of ∆h and η0 obtained from TLM inversion of a TanDEM-X
acquisition from 2011-06-04 with a HOA of 49 metres and an incidence angle of 41◦

are compared to maps of H50 and VR, derived from lidar data acquired one year
earlier. Forest changes such as growth and forest management procedures have not
been accounted for.

4.6 Paper E

In this paper, biomass is estimated from forest height and canopy density estimates
obtained from the inversion of the TLM presented in Paper D. With an access to the
global TanDEM-X data, the presented approach can be used for frequent, large-scale,
high-resolution mapping of biomass in countries in which national lidar scanning
campaigns have been conducted.

The introduced TLM biomass model (TBM) is a power law function of the level
distance ∆h and the uncorrected area-fill factor η0 obtained from TLM inversion:

B = K∆hαηβ0 , (4.9)

where B is the biomass in tons per hectare, and K, α, and β are model parameters.
The power law form of the model is motivated by similar functions used in lidar-based
biomass mapping.

The model is evaluated using eighteen VV-polarised TanDEM-X acquisitions made
at different baselines (HOAs between 32 and 63 metres) over both Remningstorp and
Krycklan in the summers of 2011, 2012, and 2013. Eight of these images have been
used in the study summarised in Paper D. In Remningstorp, between 32 and 21 forest
plots are used, whereas in Krycklan, 29 forest stands are used. The TBM is compared
to a zero-intercept, linear scaling model (SM), in which biomass is estimated from
a direct scaling of the ground-corrected interferometric height, as proposed in [172].
The models are evaluated in across-acquisition and across-site scenarios, to assess
their operational values.
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(a) Reference (lidar)

(b) Estimated (TDM, TBM) (c) Estimated (TDM, SM)

Figure 4.6: In Paper E, biomass is estimated from forest height and canopy density
estimates obtained from TLM inversion using the TLM biomass model (TBM), and
compared to a scaling model (SM), which scales the ground-corrected interferometric
height to biomass, as proposed in [172]. Above, the corresponding maps are compared
to a lidar-derived reference map. The test site is Remningstorp and non-forested areas
have been masked out. Note that there is one year time difference between the TDM
and lidar acquisitions, and growth and forest management have not been accounted
for (e.g., in the cleared area slightly to the left from the bottom right corner of the
images). The original TDM data have been acquired on 2011-06-04, with a HOA of
49 m, and at an incidence angle of 41◦.

The TBM can explain between 65% and 89% of the AGB variance observed in the
data, with a residual root-mean-square error (RMSE) in the interval 12–19% (median:
15%). If model training and validation are carried out on different TanDEM-X acqui-
sitions or different test sites, the prediction RMSE increases (12–80%, median: 30%).
With α fixed and β a site-dependent constant, the prediction RMSE is lower (12–56%,
median: 17%), while the residual RMSE is similar (12-29%, median: 16%). The SM
shows similar performance when used on Krycklan data, whereas for Remningstorp
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data and across-site retrieval, the performance is poorer.
In general, the retrieval performance of the TBM with fixed α and β is good, with

an RMSE below 20% for all acquisitions in Krycklan and for almost all acquisitions
in Remningstorp with HOA above 40 m. In Remningstorp, where the forest is gen-
erally taller and with more complex horizontal structure (due to management), the
performance of the model is decreased at HOAs below 40 m, where the errors caused
by the insufficient modelling of the vertical structure have the strongest impact. It
is also observed that the HOA-dependent offset in ∆h, noted earlier in Paper D and
most likely caused by the lack of SNR and system decorrelation modelling, causes
reduced performance of the biomass model at low HOAs. A coherence calibration
step is therefore proposed for the future.

In Figure 4.6, a biomass map for Remningstorp, estimated with the TBM using
the forest height and canopy density estimates shown in Figure 4.5, is compared to a
reference biomass map estimated from lidar data, and a biomass map created using
the scaling model (SM), in which biomass is computed by scaling from the ground-
corrected interferometric height (hgc). The TBM-based estimate is better, as it is
able to reproduce the full biomass variance. Note that the time difference between
lidar and SAR acquisitions is one year, and forest changes such as growth and forest
management procedures have not been accounted for.
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Chapter 5

Conclusions

The main scope of the work conducted for this thesis has been to develop methods
for forest parameter estimation from SAR imagery. By using P- and X-band, i.e.,
the lowest and highest frequency bands available and useful for spaceborne imaging
of the Earth, this task has been studied in both the low- and high-frequency regimes.

Both empirical and theoretical models linking forest parameters to polarimetric
and interferometric SAR observables have been developed. Within the models, some
effects previously unaccounted for have been included. At P-band, an improved
biomass retrieval model has been developed by including empirical corrections for the
topographic and moisture variations. At X-band, the estimation of biomass has been
improved and the estimation of canopy density has been made possible by introducing
a model in which canopy gaps are used to explain volume decorrelation.

The models have been developed with their operational values in mind. At P-
band, the proposed biomass model requires one single polarimetric acquisition, which
is expected to be the standard acquisition mode for BIOMASS, and a ground slope
map, which most likely can be derived from a standard TanDEM-X DEM. It has
also been shown that the proposed model can be used in two geographically distant
test sites with the same parameter setup, which reduces the requirements on training
data.

At X-band, the proposed TLM inversion yields estimates of forest height and ca-
nopy density, and it can be performed using single-polarised TanDEM-X acquisitions,
e.g., from the existing global data set, provided that a high-resolution digital terrain
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model (DTM) is available. With the temporal stability of the ground in most forested
regions, the increasing popularity of national lidar scanning campaigns, and the up-
coming P- and L-band InSAR missions (BIOMASS, and possibly also SAOCOM-CS
and TanDEM-L), the availability of high-resolution DTMs will increase with time.
The proposed biomass model requires local estimation of only one parameter related
to canopy density, whereas the other parameters can be fixed for the two studied test
sites, which reduces the requirements on training data.

5.1 Thesis Highlights

At P-band, the following findings can be considered the highlights of this thesis:

å The HH/VV backscatter ratio has been found useful for the compensation of
topographic and moisture variations, which often have similar impact on the
two co-polarised channels, and their influence is decreased when the ratio is
formed.

å It has been shown that the same biomass model can be used with the same
parameter values in both Remningstorp and Krycklan, which are two test sites
separated by 720 km and featuring different types of boreal forest, due to the
large contribution of tree trunks to the total backscatter.

At X-band, the most interesting findings can be summarised in the following
highlights:

å For sparse plots with low canopy density, the location of the scattering phase
centre has been found sensitive to the baseline. This is explained by an interfer-
ence effect occurring when ground- and canopy-level contributions are of similar
strength.

å The contribution of canopy gaps has been found significant at X-band, as shown
in a comparative study of the three models: IWCM, RVoG, and a penetration
depth model. Moreover, direct inversion of a two-level model (TLM), in which
forest is modelled as two scattering levels and penetration can only occur through
canopy gaps, can provide estimates of both forest height and canopy density.

å Biomass can be accurately estimated from forest height and canopy density
estimates obtained from the inversion of the TLM using a power law model.
However, the same exponent for the canopy density estimate cannot be used in
both Remningstorp and Krycklan, due to the large difference in canopy structure.

5.2 Future Prospects

There are several topics that need to be studied in the future to further improve the
results presented in this thesis. For all studies, one of the most important extensions
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is to apply the presented approaches on other data sets (other biomes, acquisition
geometries, frequencies), in order to evaluate the generality of the findings and further
improve the understanding of the governing processes.

At P-band, one of the largest difficulties encountered during forest parameter es-
timation is the influence of topographic and moisture variations on the backscattered
signal, which is to a large degree still unknown. The forward model presented in Pa-
per A does not account for these effects, and the biomass retrieval model presented in
Paper B includes empirical correction terms, the HH/VV-ratio and the surface slope,
which only partially compensate for these effects. Theoretical modelling is needed
for better understanding of the scattering processes, for example using cylinder over
ground models. Moreover, as noted in Paper A, the modelling of the interferometric
coherence also needs to be improved, for example by using other vertical scattering
profiles, or by improved modelling of the RVoG parameters. The inclusion of canopy
gaps in P-band modelling should also be evaluated. Finally, the observed correlation
between the HH-VV phase difference and biomass needs to be studied further using
theoretical models. Also, its potential for biomass estimation needs to be evaluated.

At X-band, the TLM-based methods for forest height, canopy density, and bio-
mass estimation are currently based on the assumptions of known topography, and
negligible SNR and system decorrelation effects. Consequently, the first assumption
makes the current approach unfeasible in regions with unknown topography, and
the latter assumption introduces a HOA-dependent offset in regions with low vol-
ume decorrelation, as observed in Papers D and E. It would be interesting to extend
the current model to the multi-polarised case and evaluate the possibility of reduc-
ing these requirements. Also, the inclusion of a coherence calibration step in the
processing chain may improve TLM inversion performance in lower forests, and the
HOA-dependent offset may be reduced. Additionally, the TLM inversion may be ap-
plied on multi-temporal and/or multi-baseline data, making it possible to study forest
change and/or forest structure. The influence of meteorological conditions needs to
be studied.
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ing properties of boreal forests at the C- and X-band,” IEEE Transactions on
Geoscience and Remote Sensing , vol. 32, no. 8, pp. 1041–1050, 1994.

[164] R. N. Treuhaft, S. N. Madsen, M. Moghaddam, and J. J. van Zyl, “Vegeta-
tion characteristics and surface topography from interferometric radar,” Radio
Science, vol. 31, pp. 1449–1485, 1996.

[165] J. Praks, F. Kugler, K. P. Papathanassiou, I. Hajnsek, and M. T. Hallikainen,
“Height estimation of boreal forest: Interferometric model-based inversion at L-
and X-band versus HUTSCAT profiling scatterometer,” IEEE Geoscience and
Remote Sensing Letters , vol. 4, no. 3, pp. 466–470, 2007.

[166] S. R. Cloude, “Dual-baseline coherence tomography,” IEEE Geoscience and
Remote Sensing Letters , vol. 4, no. 1, pp. 127–131, 2007.

[167] M. Lavalle, M. Simard, and S. Hensley, “A temporal decorrelation model for
polarimetric radar interferometers,” IEEE Transactions on Geoscience and Re-
mote Sensing , vol. 50, no. 7, pp. 2880–2888, 2012.

[168] L. G. Marklund, “Biomassafunktioner för tall, gran och björk i Sverige,” Insti-
tutionen för skogstaxering, Sveriges lantbruksuniversitet, Ume̊a, Sweden, Rap-
port 45, 1988.

[169] H. Petersson, “Biomassafunktioner for trädfraktioner av tall, gran och björk
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