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We study the asymptotic entanglement of two quantum harmonic oscillators nonlinearly coupled
to an environment. Coupling to independent baths and a common bath are investigated. Numerical
results obtained using the Wangsness-Bloch-Redfield method are supplemented by analytical results
in the rotating wave approximation. The asymptotic negativity as function of temperature, initial
squeezing and coupling strength, is compared to results for systems with linear system-reservoir cou-
pling. We find that due to the parity conserving nature of the coupling, the asymptotic entanglement
is considerably more robust than for the linearly damped cases. In contrast to linearly damped sys-
tems, the asymptotic behavior of entanglement is similar for the two bath configurations in the
nonlinearly damped case. This is due to the two-phonon system-bath exchange causing a supression
of information exchange between the oscillators via the bath in the common bath configuration at
low temperatures.

PACS numbers: 03.67.Bg, 03.65.Yz, 85.85.+j

I. INTRODUCTION

Entanglement challenges our comprehension since the
1930’s [1, 2], and still remains a highly relevant topic.
Problems relating to entanglement creation and manip-
ulation are of importance for a broad range of questions
related to quantum information science[3], like quan-
tum cryptography[4], quantum dense coding[5], quantum
computation algorithms [6] and quantum state telepor-
tation [7–9]. In particular, recent experimental advances
[10–13] pave the way for entanglement-based technology.

In this paper, asymptotic effects of nonlinear dissi-
pation on the entanglement of harmonic oscillators are
investigated and compared to the widely studied situ-
ation of linearly damped (LD) systems. In the latter
the oscillators are linearly coupled to bosonic reservoirs.
Such system-reservoir interactions have for instance been
investigated within both Markovian [14, 15] and non-
Markovian dissipation models [16–19]. For systems ini-
tially in squeezed states, high temperature entanglement
[20], and the exotic behavior of entanglement sudden dis-
appearance and revival (ESDR) [14, 16, 18, 21, 22] have
been found.

Typically dissipation destroys quantum entanglement.
However, it is known that by engineering the system-
reservoir coupling, entanglement can be generated [23–
25]. For example, one possibility to entangle initially sep-
arable states is through the introduction of multi-quanta
dissipation, or nonlinear damping (NLD). Naturally oc-
curring NLD has been reported in systems which pos-
sess strong intrinsic nonlinearities [26]. Among these are
carbon-based nanomechanical systems like graphene and
carbon nanotubes [25, 27, 28]. Additionally, there have
been reports of inducing nonlinear dissipation in optome-
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chanical systems [29, 30], and suggestions for possible
emergence of NLD in solid state quantum devices [31].

In Ref. [32] we demonstrated the possibility of entan-
glement generation from initially separable states. Here,
in the light of previous studies on linearly damped oscilla-
tor systems, we investigate how NLD affects the asymp-
totic state behavior of initially entangled states. For
the latter we choose two-mode squeezed vacuum states
[13, 14, 33, 34]. These states are entangled, Gaussian
states, which approach the maximally entangled EPR-
state by an increase of the squeezing parameter.

While NLD is usually accompanied by a conservative
nonlinearity, it was found in Ref. [32] that a weak con-
servative Duffing nonlinearity did not affect the asymp-
totic state behavior when only the lowest lying eigen-
states are occupied. Hence, we here limit the study to
purely harmonic oscillators, nonlinearly coupled to either
one common or two individual environments. This ap-
proach serves to isolate effect of the nonlinear relaxation
behavior on the entanglement and allows a more trans-
parent comparison with the linearly damped systems.

Compared to a linearly damped system we find that
the parity protection inherent to the two-phonon ex-
change between the system and the reservoirs, and
present in the nonlinearly damped systems, changes the
asymptotic behavior in several ways. Firstly, the asymp-
totic decay of entanglement is considerably slower for two
uncoupled oscillators. This is due to the necessity of
simultaneous excitation processes of the two oscillators
needed for thermal dephasing. Secondly, for individual
oscillators coupled to a common bath, we do not repro-
duce the sharp transition between steady state entangle-
ment and disentanglement in the infinite time limit, seen
in linearly damped systems. For the linearly damped
system, persistent entanglement is connected to the rela-
tive oscillator motion degree of freedom being decoupled
from the bath. For the nonlinearly damped system, no
such decoupling occurs. Finally, for weakly coupled os-
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cillators, parity protection in combination with coherent
oscillations in the oscillator populations due to the cou-
pling leads to disappearance and reappearance of entan-
glement reminiscent of ESDR behavior.

The organization of this paper is: First, in Sec. II,
we present the model Hamiltonians and derive quantum
master equations (QMEs) for two separate harmonic os-
cillators coupled to either individual baths or a common
bath. Then, in Sec. III, we present the asymptotic en-
tanglement behavior as function of temperature, initial
squeezing and dissipation rate. We compare our results
on nonlinearly damped systems to previous results on
linearly damped systems. In Sec. IV, we comment on
some features of the asymptotic entanglement behavior
of a coupled oscillator system.

II. QUANTUM MASTER EQUATIONS FOR
UNCOUPLED OSCILLATORS

First we consider two different scenarios where a sys-
tem of two independent harmonic oscillators with fre-
quencies ω0 are coupled quadratically in position to ei-
ther two individual, or one common reservoir of harmonic
oscillators. The situation with two weakly coupled oscil-
lators is discussed in section IV. For the uncoupled oscil-

lators the Hamiltonian is H = HS+HB+Hcb,ib
SB . Measur-

ing length, time and energy in units of
√
~/2mω0, ω−10

and ~ω0 respectively, we have

HS =
∑
j=1,2

(
1

2
p2j +

1

2
ω2
0q

2
j

)
, (1a)

HB =
∑
j

∑
k

ωjkb
†
jkbjk , (1b)

H ib
SB =

∑
j

q2j
∑
k

ηjk(b†jk + bjk) , (1c)

Hcb
SB =

∑
j

q2j
∑
k

ηk(b†k + bk) . (1d)

Here, pj = i
√
ω0/2(a†j − aj) and qj = (a†j + aj)/

√
(2ω0)

denote momentum and oscillation amplitude of oscillator

j, respectively, while aj (a†j) is the annihilation (creation)
operator of the j-th oscillator.

The system-bath coupling part of the total Hamilto-
nian is denoted by H ib

SB for two individual baths, and
Hcb

SB, for the common bath. For the individual bath

configuration the operator b†jk (bjk) creates (destroys) a
phonon in state k of reservoir j with the frequency ωjk.
The coupling strength of oscillator j to reservoir state k
is denoted by ηjk. Similarly, for the common bath, the

operator b†k (bk) creates (destroys) a phonon in state k of
the common reservoir with the frequency ωk. The cou-
pling strengths of both oscillators to the reservoir state
k are denoted by ηk.

To study the time evolution of the system we numer-
ically solve the QMEs for the reduced density matrix ρ

in the weak system-reservoir coupling limit. To obtain
analytical results we implement the rotating wave ap-
proximation (RWA). Below we summarize the QMEs for
both bath configurations with and without RWA.

A. QME for coupling to individual baths

Using the Born-Markov approximation in the interac-
tion picture with respect to HS, the general QME for the
individual bath configuration is given by [35]

∂

∂t
ρ(t) = −

∑
l,j

∞∫
0

dτ
[
Sl(t), Sj(t− τ)ρ(t)

]
Clj(τ)

−
[
Sl(t), ρ(t)Sj(t− τ)

]
Cjl(−τ) . (2)

The operators Sj(t) = eiHSt (a†j+aj)
2 e−iHSt and Bj(t) =∑

k ηjk

(
b†jke

iωjkt + bjke
−iωjkt

)
allow us to rewrite the

coupling Hamiltonian as H ib
SB(t) =

∑
j=1,2 Sj(t) ⊗ Bj(t)

in the interaction picture. Assuming initial thermal equi-
librium of the reservoirs, ρB = ρB,1 ⊗ ρB,2, their correla-
tion functions Cjl(τ) = TrB{Bj(t)Bl(t− τ)ρB} are

Cjl(τ) = δjl

∫
dω

2π
κj(ω)

[
N(ω)eiωτ

+(N(ω) + 1)e−iωτ
]
, (3)

where N(ω) = (eω/kBT −1)−1 is the Bose-Einstein distri-
bution and κj(ω) = 2π

∑
k |ηjk|2δ(ω−ωjk) are the spec-

tral densities. The specific form of κj depends on the mi-
croscopic details of the system-reservoir coupling. If κj is
sufficiently smooth around the frequencies of interest, the
exact frequency dependence is not crucial. To be specific,
we use an Ohmic spectral density, κj(ω) = Γjω/(2ω0),
where Γj is the non-linear dissipation strength of the j-th
bath.

Further, we define the one-sided Fourier transform of
the reservoir correlation function

1

2
γj(ω) + iσj(ω) =

∞∫
0

dτ eiωτCjj(τ). (4)

The rates γj determine the strength of dissipation, while
σj renormalize the system Hamiltonian. For simplicity
we from here on let ω0 denote the renormalized system
frequencies and neglect the corresponding small induced
conservative nonlinearity.

Using the expression of the bath correlation function
(3) one finds

γj(2ω0) = Γj [N(2ω0) + 1] , (5a)

γj(−2ω0) = ΓjN(2ω0) . (5b)

In the RWA, equation (2) simplifies to

ρ̇ = −1

2

∑
j=1,2

[
γj(2ω0)L1[a†2j ] + γj(−2ω0)L1[a2j ]

]
ρ,

(6)
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with

L1[Xj ]ρ = XjX
†
j ρ+ ρXjX

†
j − 2X†j ρXj . (7)

B. QME for coupling to a common bath

For the common reservoir configuration the summation
in (2) can be omitted and the general form of the common
bath QME is

∂

∂t
ρ(t) = −

∞∫
0

dτ
[
S(t), S(t− τ)ρ(t)

]
C(τ)

−
[
S(t), ρ(t)S(t− τ)

]
C(−τ), (8)

where the common system and bath operators in (8)

are S(t) =
∑
j=1,2(a†je

iω0t + aje
−iω0t)2 and B(t) =∑

k ηk

(
b†ke

iωkt + bke
−iωkt

)
. The correlation reservoir

function is then given by C(τ) = TrB{B(t)B(t− τ)ρB}.
In this case the interaction picture RWA QME is

ρ̇ = −1

2

∑
j=1,2

[
γj(2ω0)

(
L1[a†2j ] + L2[a†2j ]

)
+γj(−2ω0)

(
L1[a2j ] + L2[a2j ]

)]
ρ (9)

with

L2[Xj ]ρ = XjX
†
j−(−1)jρ+ ρXjX

†
j−(−1)j (10)

−2X†j−(−1)jρXj .

The QME in (9) is similar to (6), but with additional
cross terms by which the two sub-systems are connected
via the bath.

As shown in Ref. [18], coherence and entanglement of a
squeezed state is better preserved in a symmetric system.
We therefore consider a setup in which the dissipation
rates for the two oscillators are set equal in all system-
bath configurations, Γj = Γ0. We also define γ(2ω0) =
γ2− and γ(−2ω0) = γ2+. Further, we define basis vectors
|n, i〉 = |n〉1⊗|i〉2, denoting eigenstates with n quanta in
oscillator 1 and i quanta in oscillator 2.

III. RESULTS FOR INDEPENDENT
OSCILLATORS

In order to compare the asymptotic entanglement of
nonlinearly damped independent oscillators to linearly
damped ones, we solve the QME (2) numerically. We use
the Wangsness-Bloch-Redfield approach in the eigenba-
sis of the system Hamiltonian [36–38] in a Hilbert space
truncated above M = 8 eigenstates for each oscillator.

To facilitate the comparison, the system is initialized
with the two-mode squeezed vacuum

ρ(0) = Ŝ12(ξ)|0, 0〉〈0, 0|Ŝ†12(ξ) , (11)
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FIG. 1: (Color online) Main figure: scaled disentanglement
time τdis = Γ0tdis (colorbar) of nonlinearly damped two-mode
squeezed vacuum states as function of temperature T and
squeezing parameter r, for two individual baths with simula-
tion time τsim = 50, damping rate Γ0 = 10−3ω0, and negativ-
ity cut-off ε = 10−3. Inset: disentanglement time τdis (inset
colorbar scale) of linearly damped two-mode squeezed vac-
uum states as function of T and r for two individual baths,
with simulation parameters as in the main figure. The dashed
lines are the contours of τdis =

[
1, 3

2
, 2
]

(right to left), as the-
oretically predicted in [14].

where the two-mode squeezing operator is Ŝ12(ξ) =

eξa
†
1a
†
2−ξ

∗a1a2 and ξ = reiθ. In the Fock basis, using
θ = π, equation (11) becomes [39]

ρ =
1

cosh2(r)

∞∑
n,m=0

(−1)(n−m)[tanh(r)]n+m|n, n〉〈m,m|.

(12)

To quantify the entanglement we use the measure of
negativity N = (||ρT1 ||1 − 1)/2, where ρT1 denotes the
partial transpose of the bipartite density matrix with re-
spect to oscillator one. The negativity corresponds to the
absolute value of the sum of negative eigenvalues of ρT1

and vanishes for separable states [40].

A. Asymptotic entanglement for coupling to
individual baths

For the individual bath configuration and a Markovian
model in the RWA, it was shown in Ref. [14] that for fi-
nite temperatures (T > 0) all linearly damped two-mode
squeezed vacuum states disentangle within a finite time,
and relax to the ground state. At T = 0 the relaxation
to the ground state occurs in the limit of infinite time.
These results were further probed with non-Markovian
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(b) 

FIG. 2: (a) Main figure: Time evolution of the negativity of a nonlinearly damped squeezed two-mode vacuum with
squeezing parameter r = 1/20, individual bath configuration, for temperatures 0 ≤ kBT/ω0 ≤ 3 and damping rates
Γ0 = 10−3ω0[1/10, 1/2, 1, 5, 10]. The graphs for the same T and different Γ0 overlap when plotted as function of τ = Γ0t.
Inset: Slope of the negativity, γN = |∂τ logN|, extracted from the second half of the points in the main figure, as function
of T for Γ0 = 10−3ω0[1/10, 1/2, 1, 5, 10] (color code). The dashed line is a slope fit of 2N(2ω0). (b) Slope of the negativity
γN = |∂τ logN| from the inset in (a) as function of 103Γ0/ω0.

models in Refs. [16, 17], lending support to the predic-
tions of Ref. [14]. Thus, concluding that the Markovian
and non-Markovian dynamics coincide for times larger
than reservoir correlation times.

For NLD, earlier studies of a single oscillator systems
undergoing NLD show that parity conservation brings
the system to a final non-classical steady state [23, 25].
For a bipartite system with no inter-mode coupling, it
follows that the same parity conservation will, at T = 0,
bring the system into a general steady state

ρ(∞) = P00|00〉〈00|+ P11|11〉〈11|+ ρ01,10|01〉〈10|

+ρ10,10|10〉〈10|+
[
ρ00,11|00〉〈11|+

ρ00,01|00〉〈01|+ ρ00,10|00〉〈10|+ ρ01,10|01〉〈10|

+ρ01,11|01〉〈11|+ ρ10,11|10〉〈11|+ H.c.
]
, (13)

with matrix elements ρni,mj determined by the initial
state. The particular initial state (12) leads to a steady
state of the form (13) where several elements are zero,
reducing it to

ρ(∞) = P00|00〉〈00|+ P11|11〉〈11|
+ (ρ00,11|00〉〈11|+ H.c) . (14)

The element ρ00,11 is important for the asymptotic neg-
ativity (entanglement). While initially there are multi-
ple off-diagonal elements contributing to the negativity
N (t = 0) = (e2|r| − 1)/2 [18], these quickly decohere,
leaving only the parity protected matrix elements in (14),
and the negativity saturates at N (∞) = |ρ00,11(∞)|T=0.

This can be verified through the characteristic equation
for ρT1 of the steady state (14). For a general M ×M
basis size the characteristic equation is given by

(−µ)M−4(P00−µ)(P11−µ)(µ2− |ρ00,11|2) = 0, (15)

with only one negative root µ = −|ρ00,11|.
Comparing the nonlinear and linear decays of squeezed

states at T = 0 one finds that the nonlinearly damped
states remain entangled with a saturating negativity,
whereas the linearly damped states asymptotically dis-
entangle in the limit of t → ∞. This can be seen in
Fig. 1 showing the scaled disentanglement time τdis (col-
orbar) of a nonlinearly damped (main figure) and linearly
damped (inset) two-mode squeezed vacuum as function
of T and r. The results are obtained from numerical sim-
ulations. The scaled disentanglement time is defined as
τdis = Γ0tdis, where tdis is the time at which N < ε,
and ε is the negativity cut-off. Temperature is mea-
sured in units of ~ω0/kB. The main figure and inset
have identical simulation parameters, but different disen-
tanglement time scales (main and inset colorbars). The
white, dashed lines in the inset are the theoretically pre-
dicted disentanglement times derived in Ref. [14].

The nonlinearly and the linearly damped systems for
T > 0 both display a finite disentanglement time for all
r. The main difference is the disentanglement time scale.
The nonlinearly damped states disentangle much slower
than the linearly damped states. During the chosen evo-
lution time all LD states disentangle, while a part of the
NLD states remain entangled (white region, main figure).
After a longer time evolution all NLD states will eventu-
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ally disentangle.
The time evolution of the negativity while relaxing to

the steady state is shown in Fig. 2 (a). Here we use a
constant value of r = 1/20 for several values of T and Γ0.
The graphs for the same T and different Γ0 overlap when
expressed in terms of scaled time units τ = Γ0t. Initially
the negativity has a rapid initial transient during which
the initial squeezed state reduces to a state of the form
given by Eq. (14). This is followed by a slow exponential
decay.

To quantify the asymptotic decay, the inset in Fig. 2(a)
shows the negativity slope γN = |∂τ logN|, extracted
from the second half of the data in the main panel of
Fig. 2(a), as function of T . The decay rate solely depends
on T , which is further corroborated in Fig. 2 (b), showing
the negativity slope γN from (a) as function of 103Γ0. As
shown in appendix A, in the limit of low temperatures,
within the RWA, the slope is given by the expression
N (τ) = (|ρ00,11(∞)|T=0)e−2N(2ω0)τ , shown as the dashed
line in the inset to Fig. 2(a).

The much slower decay of the negativity in the nonlin-
early damped case compared with the linearly damped
system can be understood as follows: For finite temper-
atures the disentanglement of the nonlinearly damped
squeezed vacuum states is related to the slow, thermal
dephasing of the parity protected matrix element ρ00,11.
However, thermal decoherence of this element requires a
simultaneous two-quanta excitation of both oscillators,
a process which is less probable compared to linear de-
coherence, where neither an individual nor simultaneous
excitation is needed to achieve a de-excitation.

B. Asymptotic entanglement for coupling to a
common bath

We now turn to the situation with the two independent
oscillators nonlinearly coupled to a common reservoir.
For a linearly damped system in this configuration, the
asymptotic steady states of an initial two mode squeezed
state (11) can be divided into entangled and separable
states [14, 18, 19]. To which category a state will belong,
depends on r and T . This result was obtained in Ref.
[14] using Markovian dynamics and RWA and is shown
in Fig. 3(inset). An interesting feature is that the system
never disentangles for T = 0. This entanglement preser-
vation can be explained in terms of normal modes, e.g.
center of mass and relative coordinates. As only the cen-
ter of mass motion is affected by the dissipation to the
bath, the relative motion of the oscillators evolves freely.
For nonlinear system reservoir coupling, there is no de-
coupling of the relative oscillator motion from the bath,
and we do not find any finite temperature steady state
entanglement.

As seen in the main figure 3, showing the scaled disen-
tanglement time (colorbar) of nonlinearly damped two-
mode squeezed vacuum states as function of T and r
for the common bath configuration, the asymptotic en-
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FIG. 3: Main figure: disentanglement time τdis = Γ0tdis
(colorbar) of nonlinearly damped two-mode squeezed vacuum
states as function of temperature T and squeezing parameter
r, common bath, with simulation time τsim = 50, damping
rate Γ0 = 10−3ω0, and the negativity cut-off ε = 10−3. Inset:
Entanglement borderline of the linearly damped two-mode
squeezed vacuum states, common bath, in the phase space of
r and T . The dashed line is the theoretical prediction in [14]
and the dots with errorbars are numerical data. The simula-
tion parameters are: τsim = 50, Γ0 = 10−3ω0 and ε = 10−3.

tanglement behavior is very similar to the nonlinearly
damped squeezed states in the individual bath configu-
ration. Again, the nonlinearly damped states disentangle
slower than the linearly damped states in the disentan-
gled region in the inset of Fig. 3. Like in the main panel
of Fig. 1, not all states have yet disentangled for the cho-
sen simulation time (white region), but will do so after a
longer evolution.

The similarity in the behaviors stem from a supression
of information exhange between the oscillators via the
bath in the steady state ρ(∞) for T ≈ 0. In the QME
(9) the term L1ρ quickly brings the initial state (11) to
the steady state (14), which cannot be further affected
by the term L2ρ, as L2ρ(∞) = 0. For higher tempera-
tures, the term L2ρ will contribute to some information
exchange, but not enough to significantly alter the in-
fluence of the L1ρ-term. The qualitative evolution of the
state is therefore as for the individual bath configuration.
This is supported by the results in Fig. 4, displaying the
slow temperature dependent negativity decay for various
T and Γ0 (main figure), and the temperature dependent
negativity decay-rates γN = |∂τ logN| = 2N(2ω0) (in-
set). The derivation of the exponent can be found in
appendix A and is equal to the thermal decay exponent
obtained for individual baths.
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Scaled time 𝜏 = Γ0𝑡 
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FIG. 4: (Color online) Time evolution of the negativity
of a nonlinearly damped squeezed two-mode vacuum with
squeezing parameter r = 1/20, common bath configura-
tion, for temperatures 0 ≤ kBT/ω0 ≤ 3 and damping rates
Γ0 = 10−3ω0[1/10, 1/2, 1, 5, 10]. The inset shows the slope
γN extracted from the second half of the points in the main
figure, as function of T for Γ0 = 10−3ω0[1/10, 1/2, 1, 5, 10]
(color code). The dashed line is the function 2N(2ω0).

IV. RESULTS FOR COUPLED OSCILLATORS

Finally, we consider two weakly coupled oscillators.
Based on the results of the preceding section, the main
qualitative difference between LD and NLD stems from
the parity conservation for the individual oscillators.
When the oscillators are coupled only the parity of the
entire system is conserved. In particular, the element
ρ00,11 which we found to give the asymptotic negativity,
is no longer protected and can decay via an intermediate
transition to the state ρ00,20.

Since the situation is close to the linear case, we restrict
the discussion to individual baths. The system Hamilto-
nian (1a) is adjusted to include an inter-mode coupling
term

HS =
∑
j=1,2

(
1

2
p2j +

1

2
ω2
j q

2
j

)
+
√
ω1ω2λq1q2 . (16)

The corresponding Hamiltonian in the RWA is

HS,RWA =
∑
j=1,2

ωja
†
jaj +

λ

2
a†jaj−(−1)j . (17)

By the same procedure as described in Sec. II, the RWA-
QME for a symmetric system, ωj = ω0, in the weak

intermode coupling limit, λ� ω0, obtains the form [32]

ρ̇ = −1

2

∑
j=1,2

[
γj(2ω0)L1[a†2j ] + (18)

γj(−2ω0)L1[a2j ]
]
ρ+D12(λ)ρ .

To the lowest order in λ the oscillators are individually
coupled to their respective reservoirs, and the superop-
erator D12(λ) becomes

D12(λ)ρ = Υ+L1[(n1 − n2)]ρ

− 1

2
Υ−

[
(n1 − n2)(a†1a2 − a

†
2a1)ρ

− (a†1a2 − a
†
2a1)ρ(n1 − n2)

+ ρ(a†1a2 − a
†
2a1)†(n1 − n2)

− (n1 − n2)ρ(a†1a2 − a
†
2a1)†

]
. (19)

Here Υ± = γ(λ)±γ(−λ) with γ(λ) = κ(λ)[N(λ)+1] and
γ(−λ) = κ(λ)N(λ).

The coupling λ plays a dual role of contributing to os-
cillator interaction via HS and to decoherence via D12.
For linearly damped oscillators the decoherence terms in
D12 would only arise if Γ1 6= Γ2 [41]. There is no such
restriction however for the nonlinearly damped system
where the superoperator D12 consists of two decoherence
terms, proportional to Υ+ and Υ− respectively. The tem-
perature dependencies of these terms differ from those
of γj . For temperatures exceeding the coupling energy,
λ � kBT , we have Υ+ > Υ−. In the low temperature
limit, λ � kBT , both terms approach equal magnitudes
Υ+ ≈ Υ−.

For weakly coupled oscillators, linearly coupled to in-
dividual baths, a phase diagram separating the entan-
gled steady states from non-entangled steady states ex-
ists (see for instance Ref. [20]). Whether or not the state
remains entangled depends on temperature and strength
of coupling. A more in depth study, using both Marko-
vian as well as non-Markovian evolution can be found
in Ref. [17]. As explained in Ref. [17], starting from an
initial two-mode squeezed state, an undamped coupled
oscillator system will display coherent oscillations during
its time evolution with corresponding oscillations in neg-
ativity. Adding finite linear damping, results in loss of
entanglement in the long time limit and suppression of
coherent oscillations in the negativity.

For the case of nonlinear coupling to individual baths
we find results which are similar to those in Ref. [17], with
coherent oscillations reflected in the decay curve shown
in Fig. 5. As can be seen, with increasing temperature
the oscillations vanish but the initial rapid decay remains
unaltered. The coherent oscillations can be traced back
to the time evolution for T = 0 and λ > 0. In this case,
after the transient rapid decay, the negativity dynamics
is governed by the evolution of the ρ00,11 matrix element.
Since the two-mode squeezed vacuum only has even en-
tries, it suffices to analyze the matrix elements with total
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FIG. 5: Decay of the negativity N as function of scaled time
τ = Γ0t for an initial state with squeezing parameter r = 0.3
for different temperatures and λ = Γ0 = 10−3ω0. The cou-
pling is reflected in the coherent oscillations superposed on
the exponential decay towards the thermal equilibrium state.
The inset shows the time evolution of ρ00,11 of a nonlinearly
damped squeezed two-mode vacuum with squeezing param-
eter r = 1/20, individual bath configuration, for T = 0 and
damping rate λ = Γ0 = 10−3ω0.

amount of two quanta. The evolution of ρ00,11 is influ-
enced by the elements ρ00,02 and ρ00,20 which in the RWA
approximation contribute to decoherence and hence the
asymptotic negativity decays to zero. The detailed cal-
culation is given in Appendix A 3. The resulting time
evolution of ρ00,11 is shown in the inset of Fig. 5.

Numerically solving the full QME at T = 0, we see
a residual nonzero negativity. This is due to the RWA-

Hamiltonian (HS ∝ H0 + λ(a†1a2 + a†2a1)) not properly
reproducing the correct ground state of the coupled os-
cillator system since terms proportional to a2 (a†a†) are
neglected. Hence, the numerical results display a small
residual entanglement. In the inset of Fig. 5 the compar-
ison of the results of the numerical simulation and the
RWA shows a very good agreement.

V. CONCLUSIONS

We have studied the asymptotic behavior of entangle-
ment between two harmonic oscillators when they are
quadratically coupled to an environment. In particular,
we have investigated to what extent phenomena, known
from studying the decay of two-mode squeezed states in
the corresponding linearly damped systems, change when
damping is nonlinear. We find that the number par-

ity conservation associated with pure nonlinear damp-
ing causes significant reduction of the disentanglement
rate. Moreover, the equilibrium distribution is different
from the standard Bose-distribution. Further, in con-
trast to the linearly damped systems, we find no quali-
tative difference between oscillators coupled to common
baths and coupled to individual baths. We attribute the
latter effect to the lack of a conserved quantity (relative
oscillator energy) in the nonlinearly coupled system in
compination with a suppressed information exhange be-
tween the oscillators at low temperatures. For weakly
coupled oscillators, the number parity is no longer indi-
vidually conserved, hence, the system can relax to the
ground state.

The results here are obtained in the Markovian limit.
Extending the study to a non-Markovian dynamics could
alter the picture presented here. For instance, it is known
that for linearly damped oscillator systems studied with
non-Markovian dissipation models [17–19], a more de-
tailed and complex picture of the asymptotic behavior
emerges. Still, in those studies the overall characteristics
obtained in the Markovian limit, for instance the divi-
sion into entangled and separable steady states, remain
intact.

At present it is not known whether it is possible to real-
ize a system where the dominant dissipation mechanism
at low excitation levels is purely nonlinear. However, for
some dissipation mechanisms, see for instance Ref. [28],
symmetry can dictate that the lowest order coupling to
the environment must be quadratic in the coordinates.
Systems with such symmetries are thus strong candidates
for studying NLD in the quantum regime. Moreover, it
was suggested that engineering of NLD might be feasi-
ble [29–31]. Exploiting the reduced disentanglement in
systems with NLD is a promising path towards realizing
entanglement based technologies.
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Appendix A

1. Negativity exponent - individual baths.

Here it is shown that γN = 2N(2ω0). As argued in
Sec. III A, N (τ) of a nonlinearly damped squeezed state
asymptotically only depends on the density matrix ele-
ment ρ00,11. Equation (9) is used to obtain the respective
equation of motion, along with equations of motion for
elements X =

√
3(ρ02,13 + ρ20,31), which influence ρ00,11.

By assuming that the other elements have already de-
cayed, one obtains a set of two coupled, first order differ-
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ential equations

ρ̇00,11 = 2γ2−X − 8γ2+ρ00,11, (A1a)

Ẋ = 12γ2+ρ00,11 − 4aX, (A1b)

where a = (γ2− + 5γ2+) and γ2± is scaled by Γ0. For
solutions of the form of ρ00,11 ∼ Aer1τ +Ber2τ on finds,

r1,2 = −(16γ2++2)±2[(8γ2++1)2−2γ2+(21γ2++1)]
1
2 ,

(A2)

where γ2− = γ2+ + 1 was used. For low T , γ2+ =
N(2ω0) < 1, the square root in (A2) can be Taylor ex-
panded up to second order to yield

r1 ≈ −2N(2ω0), r2 ≈ −2(15N(2ω0) + 2), (A3)

and

ρ00,11(τ) = Ae−2N(2ω0)τ +Be−2(15N(2ω0)+2)τ , (A4)

where the first term denotes the slow thermal decay. The
second term describes a rapid initial decay of the matrix
element. The amplitudes are given by

A =
ρ00,11(0)(11N(2ω0) + 2)

14N(2ω0) + 2
, (A5a)

B = ρ00,11(0)
[
1− 11N(2ω0) + 2

14N(2ω0) + 2

]
, (A5b)

where ρ00,11(0) is given by (12). Also, A > 0 for all r > 0
and A� B for low T . Hence γN = 2N(2ω0)τ .

2. Negativity exponent - common bath.

Here we verify that the decay of entanglement, as gov-
erned by the matrix element ρ00,11, for the individual
bath case is γN = 2N(2ω0). With the same assump-
tions as for the individual baths, from equation (9) one
obtains the equations of motion for the matrix elements
responsible for the negativity in the common bath case

ρ̇00,11 = 2
√

3γ2−Z − 8γ2+ρ00,11, (A6a)

Ż = 8
√

3γ2+ρ00,11 − 8(γ2− + 3γ2+)Z, (A6b)

where Z = ρ02,13 + ρ02,31 + ρ20,13 + ρ20,31. In this case
we obtain the solution

ρ00,11 = Ce−2N(2ω0)τ +De−2(19N(2ω0)+4)τ , (A7)

with the amplitudes

C =
ρ00,11(0)(15N(2ω0) + 4)

18N(2ω0) + 4
(A8a)

D = ρ00,11(0)
[
1− 15N(2ω0) + 4

18N(2ω0) + 4

]
, (A8b)

where ρ00,11(τ = 0) is given in (12). Also, C > 0 for all
r > 0 and C � D for low T . Hence the decay rate is
again dominated by γN = 2N(2ω0).

3. Negativity evolution - individual bath, non-zero
inter-mode coupling.

For T = 0 and an inter-mode coupling λ > 0 the evolu-
tion of negativity is still governed by the ρ00,11 element.
For an initially two-mode squeezed state, the equations
of motion governing the evolution are

ρ̇00,11 =
iλ√

2
Y , (A9a)

Ẏ = (i
√

2λ− 2
√

2Υ)ρ00,11 − (γ2− + 2Υ)Y,
(A9b)

where Y = ρ00,02 + ρ00,20. For a solution of the form
ρ00,11 = A+e

r+τ +A−e
r−τ one finds

r± = −1

2
(Γ0 + 2Υ)± 1

2

√
(Γ0 + 2Υ)2 − 4(λ2 + i2λΥ),

(A10)

with amplitudes

A+ = −ρ00,11(0)r−
(r+ − r−)

, (A11a)

A− = ρ00,11(0)
[
1 +

r−
(r+ − r−)

]
. (A11b)
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