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Göteborg, Sweden, November 2014.



To my family.

“All truths are easy to understand once they are discovered; the point is to
discover them.” -Galileo Galilei





Abstract

Spatial wireless channel prediction is important for future wireless networks, and
in particular for anticipatory networks to perform proactive resource allocation
at different layers of the protocol stack. In this thesis, we study location-aware
channel prediction with uncertainty in location information and understand its
utilization to enhance the communication capabilities in wireless networks.

Paper A discusses challenges of 5G networks, which include an increase in traffic
and number of devices, robustness for mission-critical services, and a reduction in
total energy consumption and latency. We then argue how location information
can be leveraged in addressing several of the key challenges in 5G with location-
aware channel prediction by maintaining a channel database. We use Gaussian
processes (GP) from machine learning in developing a framework for location-
aware channel prediction. We then give a broad overview of using location-aware
channel prediction in addressing the aforementioned challenges across different
layers of the protocol stack.

In Paper B, we investigate two frameworks, classical Gaussian processes (cGP)
and uncertain Gaussian processes (uGP), and analyze the impact of location un-
certainty during both training and testing. We have demonstrated that, when
heterogeneous location uncertainties are present, the cGP framework is unable
to (i) learn the underlying channel parameters properly; (ii) predict the expected
channel quality metric. By introducing a GP that operates directly on the location
distribution, we find uGP, which is able to both learn and predict in the presence
of location uncertainties.

Paper C studies the tradeoffs in utilizing location information in the robust
link scheduling problem (RLSP) at the medium access control layer. We compare
two approaches to RLSP, one using channel gain estimates and the other using
location information. Our comparison reveals that both approaches yield similar
performances, but with different overhead.

Keywords: Gaussian processes, location-aware channel prediction, location un-
certainty.
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Chapter 1

Introduction

1.1 Motivation

Location awareness has received intense interest from the research community,
in particular with respect to cognitive radio [1], where radio environment map
(REM) enabled databases are being used to exploit TV white spaces [2]. REM
provides various network and user related context information such as geo-location
data, propagation models, interference maps, spectral usage regulations, user and
service policies [3]. REM has been applied to various problems such as interfer-
ence management in two-tier cellular networks [3], coverage hole detection and
prediction [4], and compensating time-varying Doppler spread for railways [5].
However, recent studies have revealed that location information (part of context
information) can be harnessed not only cognitive networks, but also cellular and
ad-hoc networks [6]. In particular, location-aware resource allocation techniques
can reduce overheads and delays due to their ability to predict channel quality
beyond traditional time scales. In [7] it was demonstrated that a communication
system can benefit from location information if it can exploit not only short term
channel coherence, but also mid-term/long-term coherence of the users’ location
and movement: this is achieved by the mobile devices reporting back their current
location and their navigation routes and destinations to base stations. The con-
cept of location-aware communication is shown in Fig. 1.1, where a user provides
its up-to-date location information to the base station, which, based on a spatial
channel model, can allocate resources among users.

Future networks are expected to deal with an exponentially increasing number
of devices. This puts great stress on resource allocation methods, both in terms of
scalability and signaling overhead. Location-information can be the key to address
this challenge, and complement existing methods at time and space scales that are
currently not considered. We envision that context information in general, and lo-
cation information in particular can be utilized by these networks across all layers
of the communication protocol stack, since location and communication are tightly
coupled (see Fig. 1.2). This vision is based on two assumptions: (i) the availability

1



Chapter 1. Introduction

Figure 1.1: Location-aware communication: the main idea. The user has an expected
navigation path. The background shows the long term channel quality,
including base-station-specific path-loss, and a common spatial field for
shadowing. The base stations can adjust their transmission strategy (at
different levels of the protocol stack) if accurate and up-to-date location
information is available.

of accurate location information; (ii) the possibility for the network operator to
collect and store geo-tagged channel quality information. The first assumption is
met by the introduction of sophisticated network localization methods (see [8] and
references therein) and new localization technologies (such as Galileo [9]), which
enable sufficient resolution to capture path-loss and shadowing. The second as-
sumption is based on minimization of drive test (MDT) feature in 3GPPP Release
10 [10]. In MDT, users collect radio measurements and associated location infor-
mation in order to assess network performance. The geo-tagged channel quality
metrics (CQM) (received signal strength, RMS delay spread, interference levels
etc.) from users enable the construction of a dynamic database, and this allows
the prediction of CQM at arbitrary locations and future times. In order to predict
the CQM in locations where no previous CQM was available, a flexible location-
aware predictive engine is needed. The location-aware CQM predictions can be
utilized in several aspects such as in handling proactive caching strategies [11] and
in anticipatory networks for predictive resource allocation [12].

1.2 Scope and Aim of the Thesis

The thesis aims in bridging the gap between the interaction of the research top-
ics (positioning and communication), and understand how and to what extent
location information with uncertainty may aid communication capabilities across
the different layers of the protocol stack in cooperative networks. In particular,
we analyze statistical channel models, which tie locations to channels and how

2



1.3. Organization of the Thesis
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h(φ(x,xs)) min
j

||xj − xd||

exp

(

− ||xi − xj ||

dc

) ||xi − xs|| < R

||xi − xj || > Rint

Figure 1.2: Communication systems are tied to location information in many ways, in-
cluding through distances, delays, velocities, angles, and predictable user
behavior. The notations are as follows (starting from the top left down-
ward): x is the user location, xs is the base station or sender location, η is
the path loss exponent; xi and xj are two user locations, dc is a correlation
distance; φ(.) is an angle of arrival between a user and a base station, h
is a MIMO channel, which includes path-loss, shadowing, and small-scale
fading; c is the speed of light, τ is the propagation delay; fD is a Doppler
shift, ẋ(t) is the user velocity, λ is the carrier wavelength; R is a communi-
cation range, Rint is an interference range; xd is a destination; p(x(t)) is a
distribution of a user location at a future time t.

to deal with uncertainties in location and channel measurements. Furthermore,
we develop a framework for spatial prediction of wireless channels with uncertain
location information.

1.3 Organization of the Thesis

In Sweden, the Licentiate degree is a pre-doctoral degree which is considered to be
equivalent to half way towards a doctoral degree. There are two choices to write
the thesis: one is monograph and the other is collection of papers. This thesis
is written as collection of papers and is divided in to two parts. Part I gives an
introduction and motivation to the topic and necessary background material to
understand the appended papers in part II of the thesis. Part I is structured as
follows: we start Chapter 2 with basics on wireless channel model and show its
dependency on location. Later, in Chapter 3, we introduce a spatial regression
tool, referred to as Gaussian processes from machine learning, and show its use

3



Chapter 1. Introduction

in predicting channel based on location information. In Chapter 4, we show the
exploitation of location information across the different layers of the protocol stack
in particular using such spatial regression. Finally, the contributions of this thesis
are summarized in Chapter 5.
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Chapter 2

Basics of Wireless Channels

2.1 Introduction

In this chapter, we review the basics of wireless propagation channels. The charac-
teristics of wireless radio channels have been studied quite extensively in the litera-
ture [13]. The wireless propagation channel is traditionally modeled as a stochastic
process with three major dynamics which occur at different length scales namely
path-loss, shadowing, and small scale fading. On a larger length scale, path-loss
captures power attenuation of the radio signal with distance, which decays linearly
with the logarithm of the distance from the transmitter. Shadowing captures the
medium length scale power variations of the signal around the path-loss, which oc-
cur due to obstacles in the propagation environment such as hills, buildings, trees,
etc. Path-loss and shadowing vary over longer distances and are hence called large
scale fading. Finally, small scale fading captures power fluctuations on a shorter
length scale due to multi-path propagation effects of the signal in the environment.

2.2 Statistical Model

Consider a geographical region A ⊂ R
2, where a transmitter is located at x ∈ R

2

and transmits a signal with power PTX to a receiver located at xi ∈ R
2 through a

wireless propagation channel. The received power PRX(xi, t) at receiver i can be
expressed as

PRX(xi, t) = PTX g0 ||x− xi||−η
ψ(xi, t) |h(xi, t)|2, (2.1)

where g0 is a constant that captures antenna and other propagation gains, η is
the path-loss exponent, ψ(xi, t) is the location-dependent shadowing and h(xi, t)
is the component from small scale fading.

In this thesis, we assume measurements are averaged over small-scale fading,
either in time (measurements taken over a time window) or frequency (measure-
ments represent average power over a large frequency band). Therefore, the re-
sulting received signal power from the transmitter to receiver i can be expressed

5



Chapter 2. Basics of Wireless Channels
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Figure 2.1: A typical 2D channel realization with base station (BS) placed at the center.

in dB scale as

PRX(xi)[dBm] = L0 − 10 η log10(||x− xi||) + Ψ(xi), (2.2)

where L0 = PTX[dBm] +G0 with G0 = 10 log10(g0) and Ψ(xi) = 10 log10(ψ(xi)).
The log-normal distribution is a common choice for modeling shadowing in wire-
less systems in which it is assumed that the received power in dB is distributed as
Gaussian. Thus shadowing in log domain follows a zero mean Gaussian distribu-
tion with variance σ2

Ψ i.e., Ψ(xi) ∼ N (0, σ2
Ψ) .

Spatial correlations of shadowing are studied extensively and well-established
models exist in the literature [14]. The Gudmundson model [15] is a widely used
shadowing correlation model. According to the model, the spatial auto covariance
function of the shadowing between receivers at locations xi and xj follows an
exponential decay function as

C(xi,xj) = E[Ψ(xi),Ψ(xj)|xi,xj ] = σ
2
Ψ exp

(

−||xi − xj ||
dc

)

, (2.3)

where dc is the correlation distance.
A typical 2D radio environment map is depicted in Fig. 2.1. It can be observed

that received powers are spatially correlated. Thus, it is possible to predict the
slow component (path-loss and shadowing) of the wireless channel with location. In
Chapter 3, we show how this can be achieved using a spatial regression framework
provided perfect location information is available.

2.3 Challenges

Localization is subject to errors as the algorithms need to cope with harsh prop-
agation conditions, delays, receiver dynamics and is also highly dependent on the

6



2.3. Challenges

environment. The accuracies of various common localization technologies are as
follows: the global positioning system (GPS) is the most widely used localization
technology in outdoor scenarios, whose accuracy is around few meters [16]; ultra-
wide bandwidth (UWB) systems provide sub-meter accuracy and are mainly used
in indoor scenarios [17]; WiFi-based positioning gives accuracy on the order of
few meters [17]. Undoubtedly, there is a need for a framework to mathematically
characterize and understand the spatial predictability of wireless channels with
location uncertainty.

7



Chapter 2. Basics of Wireless Channels

8



Chapter 3

Gaussian Processes

In this chapter, we introduce Gaussian processes (GP), a tool for spatial regression
from the machine learning field. Spatial regression tools generally comprise a train-
ing/learning phase (in which the underlying parameters are estimated based on
the available training database) and a testing/prediction phase (in which predic-
tions are made at the test inputs using learned parameters and training database).
Among these tools, GP is a powerful and commonly used regression framework,
since it is generally considered to be flexible and provides prediction uncertainty
information [18]. First, we give a brief treatment on how to make predictions us-
ing GP, later we connect it to the location-aware channel prediction for the slowly
varying (combined path-loss and shadowing) component of the wireless channel.

3.1 Gaussian Processes Basics

Definition 1 A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution [18].

Let f(x) be a stochastic process, for x ∈ R
D with mean function µ(x) = E[f(x)]

and covariance function C(xi,xj) = E[(f(xi)− µ(xi)) (f(xj)− µ(xj))]. We write
a GP f(x) as

f(x) ∼ GP(µ(x), C(xi,xj)). (3.1)

There are many choices for covariance function of which squared exponential is
the most widely used in machine learning, and is written as [18]

C(xi,xj) = σ
2
f
exp

(

−‖xi − xj‖2
2 l2

)

, (3.2)

where l is the correlation length and σ2
f
is the variance of the process.

Let yi be the noisy observation of f(xi), which is written as yi = f(xi) + ni,

where ni is a zero mean additive white Gaussian noise with variance σ2
n
. We in-

troduce X = [xT
1 ,x

T
2 , . . . ,x

T
N
]T as the collection of N measurement inputs and

9



Chapter 3. Gaussian Processes

y = [y1, y2, . . . , yN ]T be the vector of noisy observations at those inputs. The
resulting training database is thus {X,y}. Due to the GP model, the joint distri-
bution of the N training observations exhibits a Gaussian distribution [18]

p(y|X,Θ)=N (µ(X),K), (3.3)

where µ(X) = [µ(x1), µ(x2), . . . , µ(xN )]T is the mean vector and K is the covari-
ance matrix given as

K =











C(x1,x1) + σ
2
n

C(x1,x2) · · · C(x1,xN )
C(x2,x1) C(x2,x2) + σ

2
n

· · · C(x2,xN )
...

...
. . .

...
C(xN ,x1) C(xN ,x2) · · · C(xN ,xN ) + σ

2
n











(3.4)

with entries [K]ij = C(xi,xj) + σ
2
n
δij , where δij = 1 for i = j and zero otherwise,

and Θ = [σn, σf , l] denote the model parameters.

3.1.1 Learning

The objective during learning is to infer the model parameters Θ from observa-
tions at known inputs. The model parameters can be learned through maximum
likelihood estimation, given the training database, by minimizing the negative
log-likelihood function with respect to Θ:

Θ̂ = argmin
Θ

{− log(p(y|X,Θ)} (3.5)

= argmin
Θ

{

N

2
log(2π) +

1

2
log |K|+ 1

2
(y − µ(X))T K−1 (y − µ(X))

}

The negative log-likelihood function is usually not convex and can contain multi-
ple local minima that might not explain the measurements properly. Once Θ is
estimated from {X,y}, the training process is complete.

3.1.2 Prediction

Once Θ̂ is obtained, we can determine the predictive distribution of f(x
∗
) at new

and arbitrary test input x
∗
, given the training database {X,y}. We first form the

joint distribution as [18]

[

y
f(x

∗
)

]

∼ N
([

µ(X)
µ(x

∗
)

]

,

[

K k
∗

kT
∗

k
∗∗

])

, (3.6)

where k
∗
is the N × 1 vector of cross-covariance C(x

∗
,xi) between x

∗
and the

training inputs xi, and k∗∗ is the prior variance, given by k
∗∗

= C(x
∗
,x

∗
) = σ

2
f
.

Conditioning on the observations y, we obtain the Gaussian posterior predic-
tive distribution p(f(x

∗
)|X,y, Θ̂,x

∗
) for the test input x

∗
. The mean (f̄(x

∗
)) and

10
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variance (f̃(x
∗
)) of this distribution turn out to be [18]

f̄(x
∗
) =µ(x

∗
) + kT

∗

K−1 (y − µ(X)) (3.7)

=µ(x
∗
) +

N
∑

i,j=1

[K−1]ij (yj − µ(xj))C(x∗
,xi)

=µ(x
∗
) +

N
∑

i=1

βiC(x∗
,xi).

f̃(x
∗
) =k

∗∗
− kT

∗

K−1 k
∗

(3.8)

=k
∗∗

−
N
∑

i,j=1

[K−1]ij C(x∗
,xi)C(x∗

,xj),

where βi =
∑

N

j=1[K
−1]ij (yj − µ(xj)).

Fig. 3.1 demonstrates an example of regression using a GP. Observe the de-
crease in predictive variance for test inputs which are closer to the training inputs.

input, x

o
u
tp
u
t,

f(
x
)

−6 −4 −2 0 2 4 6

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.1: Example of a GP regression: marked in (+) are 7 training inputs, solid
line depicts the predictive mean and shaded area represents the point wise
predictive mean plus and minus the predictive standard deviation for each
input value.

3.2 Location-aware Channel Prediction Using GP

As slowly varying component of the wireless channel is spatially correlated over
tens of meters, spatial regression tools such as GP can be utilized for its predic-
tion. The following steps show the use of GP as a tool for location-aware channel

11
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prediction. Let P̄RX(x∗
) denotes the mean and P̃RX(x∗

) denotes the variance of
the channel prediction at a location x

∗
.

1. Model PRX(xi) as PRX(xi)∼ GP(µ(xi), C(xi,xj)) GP with input xi:

(a) µ(xi) = L0 − 10 η log10(||x− xi||)
(b) C(xi,xj) = E[Ψ(xi),Ψ(xj)|xi,xj ] = σ

2
Ψ exp

(

− ||xi−xj ||

dc

)

2. Data collection:

(a) yi = PRX(xi) + ni, ni ∼ N (0, σ2
n
)

(b) y = [y1, y2, . . . , yN ]T and X = [xT
1 ,x

T
2 , . . . ,x

T
N
]T

3. Training:

(a) Learn the channel parameters Θ = [σn, dc, L0, η, σΨ] for {X,y}

4. Prediction at new location x
∗
:

(a) P̄RX(x∗
) = µ(x

∗
) + kT

∗

K−1 (y − µ(X))

(b) P̃RX(x∗
) = k

∗∗
− kT

∗

K−1 k
∗

Fig. 3.2 demonstrates an example of radio channel prediction using a GP. A
base station is placed in the center and a 2D radio propagation field is simulated
with sampling points on a square grid of 200 m × 200 m and a resolution of 4 m.
Based on measurements at marked locations, the mean and standard deviation of
the prediction are obtained for any location. Observe the increased uncertainty in
Fig. 3.2 (c) in regions where few measurements are available.

It is clear that while GP are flexible, they are faced with challenges. The two
main limitations of GP are its computational complexity [19–22] and dealing with
uncertain inputs [23, 24].

• Complexity: The prediction step of GP requires inversion of the N × N

covariance matrix K, whose complexity scale as O(N3). To alleviate the
computational complexity, various sparse GP techniques have been proposed
in [19–21] while in [22] the connection between GP and Kalman filtering is
studied.

• Uncertainty in inputs: The impact of input uncertainty was studied in [23,
24], which showed that GP was adversely affected, both in training and
testing. The input uncertainty to GP in our case translates to location
uncertainty.

This thesis demonstrates that not considering location uncertainty in GP leads
to poor learning of the channel parameters and poor prediction of channel gain val-
ues at other locations. We then discuss how to integrate this location uncertainty
in to the GP channel prediction framework.
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Figure 3.2: Radio channel prediction in dB scale, with hyperparameters Θ = [σn =
0.1, dc = 70 m, L0 = 10 dB, η = 3, σΨ = 9 dB], N = 400 measurements (+
signs). The channel prediction is performed at a resolution of 4 m. Inset
(a) shows the true channel field, (b) the mean of the predicted channel field
P̄RX(x∗), and (c) the standard deviation (obtained from the square root of
(P̃RX(x∗)) of the predicted channel field.
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Chapter 4

Location-aware

Communication

In this chapter, we give a brief overview of possible usages of location information
in modern wireless networks, and provide insights on how this may aid communi-
cation capabilities at various layers of the protocol stack.

4.1 Introduction

Resource allocation in wireless networks happens at extreme time scales (see Fig.
4.1). On the one hand, there is the fast time scale of power and rate adaptation,
occurring at the millisecond level. This type of resource allocation requires a great
deal of signaling overhead, and tends not to scale well in dense ad-hoc settings.
On the other hand, there is network deployment and network planning at the
month or year level, relying on time-consuming computer simulations or drive
tests by network operators. In between these extreme time scales, there is room
for resource allocation based on predictions of user behavior, channel statistics,
and interference levels, at a time scale varying from seconds to hours and even
days. One way to achieve this is through location-awareness as we discussed in
Chapter 1. In the following, we present specific examples of location information
that are useful at each layer of the protocol stack.

4.2 Physical Layer

In the lowest layer of the protocol stack, location information can be harnessed
to reduce interference and signaling overhead, to avoid penalties due to feedback
delays. The best known application is spatial spectrum sensing for cognitive ra-
dio [25], where a GP allows the estimation of power emitted from primary users at
any location through collaboration among secondary users. The GP database also
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Figure 4.1: At very short time scales, resource allocation (especially in the lower lay-
ers) must rely on instantaneous channel state information (CSI). At longer
time scales, location information can be harnessed to complement CSI. UE
stands for user equipment.

provides useful information in any application that relies on a priori channel infor-
mation, such as slow adaptive modulation and coding or channel estimation [7]. It
is demonstrated that location-aware adaptive systems achieve large capacity gains
compared to state-of-the-art adaptive modulation schemes for medium to large
feedback delays. Locations can also be utilized in a different manner, by convert-
ing them not to channel gains, but to other physical quantities, such as Doppler
shifts (proportional to the user’s relative velocity), arrival angles (used in [26] for
location-based spatial division multiple access), or timing delays (which are related
to the distance between transmitter and receiver). As the above works indicate,
location information provides valuable side-information about the physical layer.

4.3 Medium Access Control Layer

In the medium access control (MAC) layer, location information can be used to
define interference regions around devices. As an example, knowing that transmis-
sion from certain devices will not interfere due to their physical separation (e.g.,
distance among them) provides an input to scheduling of resources (time slots and
frequencies). In [27], location-based multicasting is considered, assuming a disk
model, and is shown to both reduce the number of contention phases and increase
the reliability of packet delivery, especially in dense networks. In [28], a decen-
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tralized location-based channel access protocol for inter-vehicle communication is
studied. Using a pre-stored cell-to-channel mapping, vehicles know when to trans-
mit on which channel, alleviating the need for a centralized coordinator for channel
allocation. Location information is also beneficial in reducing the overhead associ-
ated with node selection mechanisms (e.g., users, relays), by allowing base stations
to make decisions based solely on the users’ positions [6]. Finally, location infor-
mation is a crucial ingredient in predicting interference levels in small/macro cell
coexistence, in multi-cell scenarios, and in all cognitive radio primary/secondary
systems [6, 29].

4.4 Network and Transport Layer

At the network and transport layers, location information has been shown to
improve scalability and to reduce overhead and latency. A full-fledged location-
based network architecture is proposed in [1] for cognitive wireless networks, deal-
ing with dynamic spectrum management, network planning and expansion, and
in handover. In particular a location-aided handover mechanism significantly re-
duces the number of handovers compared with signal strength-based methods [30].
Most other works at the network layer have focused on the routing problem. A
well-known technique in this area is geographic routing (geo-routing) [31], which
takes advantage of geographic information of nodes to move data packets to grad-
ually approach and eventually reach their intended destination. Recently, it has
gained considerable attention, as it promises a scalable and efficient solution for
information delivery in emerging wireless ad-hoc networks.

4.5 Higher Layers

At the higher layers, location information will naturally be critical to provide navi-
gation and location-based services. First of all, we have classical context awareness,
which finds natural applications in location-aware information delivery [32] (e.g.,
location-aware advertising) and multimedia streaming [33]. For the latter applica-
tion, [33] tackles the problem of guaranteeing continuous streaming of multimedia
services while minimizing the overhead involved, by capturing correlated mobility
patterns, predicting future network planning events. A second class of applica-
tions is in the context of intelligent transportation systems [34]. Finally, location
information also has implications in the context of security and privacy [35].

In this thesis, we present how location information can improve scalability,
latency, and robustness across different layers of protocol stack for 5G networks.
Location awareness bears great promise to the 5G revolution, provided we can
understand the right tradeoffs for each of the possible use cases.
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Chapter 5

Contributions

Paper A

5G networks will be the first generation to benefit from location information that is
sufficiently precise to be leveraged in wireless network design and optimization. We
argue that location information can aid in addressing several of the key challenges
in 5G, complementary to existing and planned technological developments. These
challenges include an increase in traffic and number of devices, robustness for
mission-critical services, and a reduction in total energy consumption and latency.
This paper gives a broad overview of the growing research area of location-aware
communications across different layers of the protocol stack. We highlight several
promising trends, tradeoffs, and pitfalls.

Paper B

Spatial wireless channel prediction is important for future wireless networks, and
in particular for proactive resource allocation at different layers of the protocol
stack. Various sources of uncertainty must be accounted for during modeling and
to provide robust predictions. We investigate two frameworks, classical Gaussian
processes (cGP) and uncertain Gaussian processes (uGP), and analyze the impact
of location uncertainty during both training and testing. We observe that cGP
generally fails to learn the channel parameters and to predict the channel in new
locations with location uncertainties. In contrast, uGP considers the location
uncertainty and is able to learn and predict the wireless channel.

Paper C

In this paper, we analyze the tradeoffs in utilizing location information at the MAC
layer. We study the robust link scheduling problem (RLSP) based on a physical
interference model with errors in channel state information. The objective of
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RLSP is to find a robust minimum length schedule using spatial time division
multiple access. We compare two approaches to RLSP, one using channel gain
estimates and the other using location information. Our comparison reveals that
both approaches yield similar performances, but with different overhead.
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