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Abstract

Surveys show that inhabitants of dwellings exposed to high noise levels benefit from having access

to a quiet side. However, current practice in noise prediction often underestimates the noise levels

at a shielded façade. Multiple reflections between façades in street canyons and inner yards are

commonly neglected and façades are approximated as perfectly flat surfaces yielding only specular

reflection. In addition, sources at distances much larger than normally taken into account in noise

maps might still contribute significantly. Since one of the main reasons for this is computational

burden, an efficient engineering model for the diffraction of the sound over the roof tops is proposed,

which considers multiple reflections, variation in building height, canyon width, façade roughness

and different roof shapes. The model is fitted on an extensive set of full-wave numerical calculations

of canyon-to-canyon sound propagation with configurations matching the distribution of streets and

building geometries in a typical historically grown European city. This model allows calculating the

background noise in the shielded areas of a city, which could then efficiently be used to improve

existing noise mapping calculations. The model was validated by comparison to long-term measure-

ments at 9 building façades whereof 3 were at inner yards in the city of Ghent, Belgium. At shielded

façades, a strong improvement in prediction accuracy is obtained.
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1 Introduction

Several researchers found that inhabitants of dwellings exposed to road traffic noise levels can benefit

from having access to a quiet side [1, 2, 3, 4]. The European Environmental Noise Directive (END)

specifies that a quiet side is present when the noise level at the shielded façade is at least 20 dBA

lower than the noise level at the most exposed façade of the dwelling (Directive 2002/49/EC).

However, there is still some debate about accurately defining a quiet side (e.g. [5]). In typical

European cities, many enclosed shielded courtyards and parks exist that can provide such quiet

areas. Notwithstanding the lack of a good definition, research on quiet sides and its implementation

in urban planning also suffers from a lack of accuracy in commonly used noise mapping when it

comes to predicting noise levels in urban shielded areas. The EU is currently renewing its guidelines

for methods to be used in noise mapping, yet the lack of accuracy of noise mapping in shielded

areas is mainly due to the choices made during implementation and application of the methods.

Typically, the underestimation of the noise level at such shielded places, is caused by limiting the

number of reflections in streets and yards and by neglecting contributions of distant sources that

could become dominant. To solve these problems, simplified theoretical models, such as the “flat

city model” and the “equivalent source model(ESM)”, were developed to predict the noise level

in shielded courtyards [6, 7]. However, these models need further improvement. For example,

the coupling between the sound field inside a street canyon and the propagation above the roofs

can depend on the difference in height of the buildings forming the street canyon. Moreover, the

ESM is computationally too costly to cover a whole city. In this paper, an efficient engineering

model for background noise mapping is proposed that is inspired by the concept of the “flat city

model” and a new approximation to more advanced diffraction formulas. The coefficients of the

proposed engineering model are fitted on an extensive set of 2D simulations of canyon-to-canyon

sound propagation, which are based on finite-difference-time-domain (FDTD) method [8, 9]. The

effect of multiple reflections, variation in building height, canyon width, building façade roughness,

finite impedance and roof shape is taken into account. The proposed engineering model is designed to

complement the noise map calculated by 2.5D methodologies in which the diffraction over buildings

due to reflections between canyons may not be sufficiently considered. The direct field, reflection in

the horizontal plane as well as diffraction around vertical edges is assumed to be accounted for by the

“parent” model (e.g. following the CNOSSOS-EU methodology. The proposed extension calculates

the contribution to the noise level caused by all sources that are shielded by at least one building in

the vertical plane. In this work, a building is a construction of at least 4 m high and at least 5 m
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wide; conventional noise barriers are expected to be correctly included in the “parent” model. The

resulting “background” noise level should be added to the level obtained using the “parent” model.

With this approach the national and international standard methods currently in use can still be

applied. For every contributing source the suggested procedure for calculating the “background”

noise level at the shielded location reads:

Lpb = 10 log10

(
100.1Lpdb + 100.1Lp,scatter

)
(1)

Lpdb = LW −Afree −Adiffr −Ainter (2)

Adiffr = −10 log10

(
10−0.1Abar + 10−0.1Acan

)
(3)

where,

• Lpb = the “background” sound level excluding the diffraction around the vertical edges and

excluding the diffraction over conventional noise barriers [dB].

• Lpdb = the contribution to the “background” level in still, homogeneous atmosphere [dB].

• LW = sound power level per octave band of a point source representing part of the traffic, no

directivity is taken into account since multiple sources will contribute to the shielded level as

well as multiple reflections from various directions [dB].

• Adiffr = the shielding limited by diffraction over the building roof [dB].

• Afree = 3D free field divergence [dB].

• Abar = the attenuation by the building(s) cutting the direct path between source and receiver

limited by diffraction over the building roof, including the effect of the ground. Only the direct

diffraction path without reflections in the canyon is considered in this term [dB].

• Acan = the attenuation of the sound following a path between source and receiver including

at least one reflection in the source and/or receiver canyon. If canyons are present, this term

quickly dominates Abar and thus determines Adiffr [dB].

• Ainter = additional attenuation caused by diffraction at intermediate canyons [dB].

• Lp,scatter = the contribution to the background sound level caused by scattering from atmo-

spheric turbulence [dB] [10].
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Atmospheric absorption is not included as a separate term in this model as it is implicit included

in the Acan term. One of the major assumptions for the model is that the sound propagation in

3D can be calculated by the summation of many 2D sections. This so called 2.5D approach is

quite common and forms e.g. the basis of the Harmonoise reference model [11] and the CNOSSOS-

EU methodology [12]. Also, the full wave numerical model used to extract the coefficients in the

proposed equations cannot be used for 3D simulations due to computational cost. Therefore, also

for the reference calculation, line sources are split into many emission points and all contributions

are summed. In this approach, facades are “twisted” so their faces become normal to the line

connecting source-receiver [13]. It can be shown from numerical simulations that the error caused by

using the twisted angle approach is reasonably small [14]. A correction for 3D free field spreading of

the contributions of reflections is taken into account. A second important assumption is that wind

and temperature gradients are not included in discussing the Abar and Acan terms. For the Ainter

term meteorological effects (except scattering) are considered implicitly(see further) since downwind

refraction over larger distances may have a noticeable effect.

This paper is organized as follows. In section 2, the configurations and setups of the simulations

that are used for fitting coefficients in the engineering model are introduced. In section 3, the

attenuation terms (A-terms) are studied in detail. In section 4, the calculated background noise

levels are compared to long-term measurements at 9 locations in the city of Ghent, Belgium. The

latter comparison includes the contribution from turbulence scattering. The engineering model

developed for calculating this contribution can be found in a companion paper [10].

2 Simulation configurations and setups

The simulations cover different widths of source canyons, receiver canyons and intermediate buildings,

as well as different building heights. Distributions of these parameters for a typical historically grown

European city, are extracted from a GIS-building layer for the city of Ghent. The distribution of the

projected canyon and building widths along each source-receiver line is shown in figure 1. Note that

the width is defined along a line that is not necessarily orthogonal to the building façade, which is

compatible with the point-to-point model that is proposed. 72% of the projected buildings widths

and 78% of the canyons are less than 50 m wide. Besides, the most frequent projected widths of the

buildings and canyons are 24 m and 12 m, respectively. The full wave numerical simulations on which

the engineering model is based have been limited to canyon and building widths between 4.8 m and

42 m. The heights of the buildings are varied from 0 to 16 m. The building facades are modeled in
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Figure 1: Distribution(a) and cumulative probability(b) of the projected building and canyon width in
the city of Ghent, Belgium. In the simulations, the widths of buildings and canyons are limited to 42
m.

a realistic way by assigning different materials and making the façade surface irregular to allow for

the build-up of a diffuse sound field in the city canyons. The road surface is modelled as perfectly

reflecting both in source and receiver canyon. In these simulations, the normalized impedance of

windows and brick walls are taken as Zn = 77 and Zn = 10. Receivers are located along the façade

and across the canyons. A typical simulation configuration is shown in figure 2, where, Ws, Wi,

Wr are the width of the source canyon, intermediate building and receiver canyon respectively. Hi

is the height of the building in the direct sound path, and Hs, Hr are the heights of the buildings

flanking the source and receiver canyon respectively. Since the sound waves travel a longer distance

because of multiple reflections, the air will absorb more sound energy than during direct propagation

between source and receiver. The effect of the air absorption, with T = 10 ◦C and Humidity= 70%,

is added to the simulated impulse response using the approach proposed in references [15, 16].

The multiple reflection effect will change with the relative location of the source and receiver,

the height of the buildings and the width of the canyon and buildings. In total, 565 configurations

with combinations of these parameters were simulated.

The excess attenuation caused by screening and ground effects was proven not to be affected

too much by source type in the far field [17]. However, in the case of multiple reflections in a

street canyon, small differences might still occur. Therefore, the time-domain response is multiplied

by 1/
√
ct to approximately translate the line source propagation to point source propagation [18].

In our data post-processing, this technique is used to approximate point source propagation from

canyon to canyon.
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Figure 2: A typical simulation configurations, where Ws, Wi and Wr are the width of source canyon,
intermediate building and receiver canyon; Hs, Hi and Hr are the height of the left, intermediate and
right building; h1 and h2 are the distance from the source or receiver to the top of the building; φs and
φr are the angle between the building façade and the connecting line from the source or receiver to the
diffraction edge; βs and βr are the outside angle of the building which equals 3π/2 in this study.

3 Analysis of attenuation terms: Abar, Acan, and Ainter

The attenuation is resolved as separate parts Adiffr and Ainter, where Adiffr is calculated by the

sum Abar and Acan, as −10 log10

(
10−0.1Abar + 10−0.1Acan

)
. Abar and Acan will be formulated in

section 3.1 and section 3.2 respectively. Ainter will be introduced in section 3.3.

3.1 Abar

Abar is the attenuation of a thick barrier including the presence of the ground. In absence of canyons

and in case of a flat roof, it is the only remaining term. In this study Abar = Abar,flat, + Abar,roof ,

where, Abar,flat is the attenuation of a rigid barrier with flat roof; Abar,roof is the correction of the

roof shape in dB.

3.1.1 Abar,flat: rigid barrier with flat roof

In most noise mapping standards (including CNOSSOS-EU), the ISO9613-2 diffraction formula or

similar is used to calculate Abar,flat. By comparing with an in-situ long term measurements [19] and

FDTD simulations, it was found that using the ISO standard to calculate Abar underestimates the

attenuation considerably. Therefore, a more accurate but still computational efficient approximation

is needed. In a first step, ground reflection is ignored. According to the literature [20, 21, 22, 23],

Abar,flat,0 can be expressed with high accuracy by equation (4):

Abar,flat,0 = −10 log10

{(
R

L

)2 [
f2(X1) + g2(X1)

] [
f2(X2) + g2(X2)

]}
(4)
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where, X1 = Ys and X2 = B Yr when Ys > Yr; X1 = B Ys and X2 = Yr when Ys < Yr.

Ys and Yr are functions of geometrical positions and diffraction angles. Ys = γsMνs(βs − φs),

Yr = γrMνr(βr − φr), γs =
√

2rs(Wi + rr)/(λL), L =
√

(rs + rr +Wi)2 + (zs − zr)2, (zs = zr

in the two dimensional case considered here), R is the distance between source and receiver, B =√
Wi(Wi + rs + rr)/ [(Wi + rs)(Wi + rr)] and Mνs(θ) = cos(νπ)−cos(νθ)

ν sin(νπ) , νs = π/βs and νr = π/βr.

Definitions of parameters are shown in figure 2. f(Y ) and g(Y ) are functions of Fresnel integrals C

and S [20]:

f(Y ) = [
1

2
− S(Y )] cos(

1

2
πY 2)− [

1

2
− C(Y )] sin(

1

2
πY 2) (5)

g(Y ) = [
1

2
− C(Y )] cos(

1

2
πY 2) + [

1

2
− S(Y )] sin(

1

2
πY 2) (6)

The combination f2 + g2 needed in equation (4) simplifies since the cosine and sine functions

cancel out, reducing the expression to:

f2(Y ) + g2(Y ) =
[
0.5− C(Y )

]2
+
[
0.5− S(Y )

]2
(7)

where Y is the input argument. For a noise mapping model, calculating the Fresnel integrals is

computationally too costly, so an approximation is needed.

For this, it is first observed that the distances involved in the formula for diffraction over building,

and in particular Wi, are generally large compared to the wavelength. Thus, γ will be large. If source

and receiver heights are much lower than the building height, β − φ will remain larger than π and

it can be verified that Mν is not smaller than one. For these cases, the input argument Y satisfies

Y � 0. For large arguments, the Fresnel integrals can be approximated by [24]:

C(Y ) ≈ 0.5 +
1

πY
sin
(π

2
Y 2
)

(8)

S(Y ) ≈ 0.5− 1

πY
cos
(π

2
Y 2
)

(9)

Inserting equation (8) and (9) into equation (7) results in a very simple form for f2 + g2:

f2(Y ) + g2(Y ) =
1

(πY )
2 (10)

However, when the source or observer are in the extension of the plane of the roof, the angle

difference β−φ approaches π and Mν approaches zero which makes S(Y ), C(Y ) and f2(Y ) + g2(Y )

7
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f2+g2=(0.37/(x+0.37))2

f2+g2=(1/(xπ))2

f2+g2=theory

Figure 3: Error estimation of f2+g2 compared with the theoretical values. In this case, Wi = 10λ, rs =
rr = 10λ, βs = βr = 3π

2 , φs = π
4 , φr increases from 0 to π/2

become singular. To avoid this strong singularity while keeping the error at larger x limited, a small

constant is added to the numerator and denominator. Based on analyzing typical urban situations,

that will be explicit below, the following approximation of equation (10) is proposed:

f2(Y ) + g2(Y ) =

(
0.37

Y + 0.37

)2

(11)

Thus, equation (4) is simplified to:

Abar,flat,0 ≈ −10 log10

[(
R

L

)2(
0.37

X1 + 0.37

)2(
0.37

X2 + 0.37

)2
]

(12)

When Ys > Yr, X1 =
√

6rs(Wi+rr)
λ(rs+Wi+rr)

∣∣−0.5 + cos(2
3φs)

∣∣, X2 =
√

6rrWi

λ(Wi+rr)

∣∣−0.5 + cos(2
3φr)

∣∣; when

Ys < Yr, X1 =
√

6rsWi

λ(rs+Wi)

∣∣−0.5 + cos( 2
3φs)

∣∣, X2 =
√

6rr(Wi+rs)
λ(rs+Wi+rr)

∣∣−0.5 + cos(2
3φr)

∣∣.
Figure 3 illustrates how, for a typical urban sound propagation case, the large argument approxi-

mation and the proposed approximation for the Fresnel integrals differ from the accurate calculation.

Although there is a small increase in inaccuracy for the proposed approximation when φr is very

small, a strong benefit can be observed for φr > π/3. Even when φr = π/2, there is still less than

3 dB deviation. Specifically, at X = 0 the approximate formula gives 1, however, knowing that C

and S become zero at X = 0, the actual value should be 0.5, which implies a 3 dB error. It should

however be kept in mind that this situation will only occur for very few of the source receiver paths
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Figure 4: Error estimation reference to the theoretical solution, where “
(

0.37
X+0.37

)2
” indicates the equa-

tion (11). Every line indicates 0.5 dB difference.

contributing to the overall noise level. To further illustrate the fitness of the proposed approximation

for diffraction over buildings, the distribution of the input X is extracted for the city of Ghent and

plotted together with error contours in figure 4. At the X1 and X2 combinations where the distri-

bution peaks, the error introduced by using equation (12) is particularly small and it stays below

1.5 dB for all combinations that have a significant probability of occurrence.

With this simplification, the Fresnel integrals in equation 7 are canceled out and only the ge-

ometrical parameters remains, which reduces computing time considerably and makes it easier to

implement. It is suggested to include contributions from the image sources due to ground reflections

explicitly as a rule. Since the source height for road traffic noise applications is usually very low,

the diffraction term does not differ significantly between the path from the original source and from

the image source and the calculation can be simplified by assuming that Abar,flat is the same as

Abar,flat,,0. The total Abar,flat can be obtained by summing up the contribution of paths “source→

receiver” Abar,flat,0, “image source→ receiver” Abar,flat,1, “source→ image receiver” Abar,flat,2 and

“image source → image receiver”

3.1.2 Abar,roof : correction of roof shape

In some European city centers, gabled roofs are very common. The sound waves propagating over

an idealized gabled roof may be diffracted once, twice or three times before reaching the observer.
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It should be noted that roofs may be more complicated and diffraction may result in a wide range

of significantly different sound attenuation [25]. The effect of roof shape depends on the source and

receiver position, the angle of the roof and the building height. According to the statistics for Ghent

(as a typical old European city), the most common width of canyons and buildings is 12 m and 24

m respectively, and the mean height of the buildings is 10.9 m. If the height of the roof is assumed

to be 4.5 m, then most of the sources and receivers bellow 4.5 m high would be located inside the

shadow region where the sound wave has to diffract three times to reach the receiver at the other

side of the building, as shown in figure 5.

Abar,roof = q0Abar,flat − q1 (13)

Fitting on 1788 numerical calculations yields values of, q0 = 0.27 and q1 = 2.9, with a mean

squared error of the fit equal to 3.0 dB for equation (13). The fitting database covers building

heights from 6 m to 16 m, building widths from 10 m to 160 m and all roof heights are 4.5m. When

a source canyon or a receiver canyon is present, the image source or the image receiver would most

probably lie outside the three-diffraction region, which means that the effect of roof shape on the

multiple-reflection path would probably be much more important. The roof effect in such cases is

discussed in detail in section(3.2) as Acan,roof .

3.2 Acan

Acan is the attenuation of the sound following a path between source and receiver including at least

one reflection in the source and/or receiver canyon. Acan = Acan,flat + Acan,roof , where Acan,flat

is the extra attenuation in case of a flat roof on the intermediate building; Acan,roof is a correction

accounting for a different roof shape.

An analytic formulation for the additional effect of the canyons has to fulfill some requirements:

10



1) when the height of the outer buildings goes to zero, the term should vanish; 2) when the outer

buildings becoming much higher than the screening building, Acan should saturate when further

increasing the outer building height.

3.2.1 Contribution of multiple reflections

Multiple reflections, occurring at the facades of the outer buildings and intermediate building, in-

fluence the canyon-to-canyon propagation in a different way. When Hs or Hr increases, the effect

of multiple reflections increases monotonically at all frequencies. When Hi increases, the effect of

multiple reflections increases at one hand. At the other hand, the shielding of the middle building

also increases. Similar to Abar, Acan,flat is also frequency dependent. One should keep in mind that

Abar,roof is zero on condition that a canyon is present or the roof is flat.

3.2.2 Formulation of Acan,flat

In Appendix A, an analytic form for Acan,flat is derived based on image source theory. By adding

fitting coefficients F (0), F (1), F (2) and F (3) to different contributing parts, small approximation

errors as well as effects of non flat facades can be reduced. The proposed analytical form thus reads::

Acan,flat ≈ −F (0)10 log10

[
F (1)

C1sρ
2
sR

2

(C3s +Ws)
2 100.1Lhs + F (2)

C1rρ
2
rR

2

(C3r +Wr)
2 100.1Lhr

+ F (3)
ρ2sρ

2
rR

2

(3.31h1/
√
λ+ C)(3.31h2/

√
λ+ C)

100.1Lhs100.1Lhr

]
(14)

where C = 1.5Ws +Wi + 1.5Wr, other parameters can be found in the appendix.

The three terms in equation (14) describe the contribution from all image source to all image

receivers. The F (1) term can be interpreted as a reverberant source canyon field diffracted into the

receiver canyon. As such (C3s + Ws)
2 = 1/

(
3.31h1

√
Wi/λ+ 1.5Ws +Wi + rr

)2
expresses mainly

the amplification due to the source canyon reverberation. A similar interpretation can be given to

the F(2) and F(3) terms. When Wi becomes very large, the whole F (1), F (2) and F (3) term will

approach F (1)C1sρ
2
s100.1Lhs , F (2)C1rρ

2
r100.1Lhr and F (2)ρ2sρ

2
r100.1Lhs100.1Lhr , which implies that

the effect of the source and receiver canyon become independent and are then only related to the

receiver or source canyon dimension. This is also verified by numerical simulation as shown in [14].

When Ws becomes very big, the source canyon effect will vanish and similar situations can be found

for the receiver canyon when Wr becomes large. When h2 → 0, Lhr becomes meaningless because

of (Hr − hr)/(Hi − hr) tending to ∞. This condition implies that the receiver is at the same height
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as the top of the shielding building and the canyon effect can then be neglected. As a result, the

F (2) term becomes zero. Since the source position is almost close to the ground in most cases, h1 is

expected not to tend to zero.

Based on fitting to the database containing (20740 numerical results) using equation (14) with

ρs = ρr = 0.97, following coefficients were found: F (0) = 1.04, F (1) = 12.53, F (2) = 21.75 and

F (3) = 0.05. The standard deviation between Acan,flat and the simulated results is 2.7 dB. When

both Hs and Hr are very large, Acan,flat tends to a constant.

A comparison between the fitted equation and several common cases calculated by the FDTD

method are shown in figure 6. Several typical configurations are depicted, showing good agreement

between the fitted equation and the detailed simulations. The analytical approximation follows the

increasing or decreasing trends very well, but it cannot capture the increase when Hs > Hi.

3.2.3 Acan,roof

When canyons are present, the sound reflects in these canyons and the Acan,roof can be considered

as the extra attenuation of the sum of different Abar,flat terms with different powers and positions of

image sources and receivers. However, the image sources could reach the receivers or image receivers

by only one diffraction from the roof top which will significantly increase the sound power at the

receiver positions, as show in figure 5. Additionally, this effect depends strongly on the geometrical

configuration of the buildings and canyons which also differs significantly from one to another. In

this study, Acan,roof is quantified from the literature [25], where an extensive set of roof shapes was

numerically studied. The general contribution of a gabled roof was around -5 dB. In this study,

Acan,roof = −5 dB if both a source and a receiver canyons are present and Acan,roof increases to

-2.5 dB if only one canyon is present. Acan,roof is zero on condition that the roof shape is flat.

3.3 Ainter

The presence of intermediate canyons could lead to additional attenuation of sound. Since Acan is

fitted based on thick barrier simulations only, an additional correction term, Ainter, is necessary. Ac-

cording to the FDTD simulations, Ainter will become smaller after propagating over more canyons as

shown in (figure 7). Similar findings were reported based on the measurement data from Södermalm

in Stockholm [26]. In realistic cases, the heights of the buildings in successive canyons differ from

each other, which could bring more variety than assuming the buildings have the same height. To

quantify this effect some cases were simulated, as show in (figure 8). In this figure, “H” indicates the
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(a) FDTD with Hi = Hr = Ws = Wr = 9.6 m,
Wi = 10 m

31.5 63 125 250 500 1000
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Frequency Hz

10
lo

g1
0(

10
−

0.
1A

ba
r +

10
−

0.
1A

ca
n )

 

 

H
s
=3.2m

H
s
=6.4m

H
s
=9.6m

H
s
=12.8m

H
s
=16.0m

(b) analytical approximation
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(c) FDTD with Hs = Hr = Ws = Wr = 9.6 m,
Wi = 10 m
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(d) analytical approximation

Figure 6: Comparison between FDTD simulations and the analytical approximation. Figure(b) con-
cerns the same configuration as (a); and (d) with (c). The dash lines are the corresponding −Abar,flat
which is used as a reference to show the effect of canyon reflections. In these comparisons, the source
is in the center of the canyon with height of 0.5 m. The receiver is 6.4 m away from the intermediate
building with height of 1.5 m.
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height of the intermediate building-block and equals 9.6 m; “L” is equal to 6.4 m; the combination

of “H” and “L” indicates the succession of the building-blocks. For example “HLLHLH” means that

the sound waves propagate over → a higher building → two lower buildings → a higher building →

a lower building → a higher building, and finally to the receiver. According to the simulations, the

attenuations become smaller when the heights of the intermediate buildings decrease on condition

that the height of the buildings adjacent to the source and receiver do not change (solid lines in

figure 8). However the situation becomes complicated when the heights of the buildings adjacent to

the source or receiver decrease(dashed lines in figure 8). The attenuation decreases at low frequencies

and increases at high frequencies. Both of these cases would average out in practice. The overall

numerical average over the range of frequencies considered, relative to the equal-building simulation

case “HHHHHH” is 1.1 dB. As a result, the effect caused by the height difference is neglected in this

model to avoid unnecessary complexity. According to the geometrical data of Ghent (Belgium) and

Södermalm (Sweden) [27], one canyon per 100 meters is the most common canyon density. Based on

the calculations shown in figure 7, an attenuation of 1dB/100m could be an efficient but still reason-

ably accurate approach for Ainter. According to simulations in non-refracting atmosphere, Ainter

could accumulated to 10 dB. As mentioned in the introduction, moderately downward refraction is

assumed. At longer propagation distances downward refraction corresponds to lowering intermediate

buildings and thus a reduced Ainter. In addition, the 10 dB upper limit does not account for possible

absorption at roof tops, e.g. due to the presence of green roofs that were shown to be an efficient

noise reducing measuring before inner city sound propagation [28]. For all of these reasons and for

canyon terrain in cities, the suggested broadband (and frequency independent) attenuation is 1 dB

per 100 m, up to a maximum 5 dB in this model.

4 Comparison with measurement

An inner city noise measurement network in Ghent (Belgium) with microphone nodes [29] placed at

both shielded and directly exposed locations is used as a first validation of the current engineering

model. At these locations, road traffic noise was the main source of environmental noise exposure.

The officially approved noise maps made for the agglomeration of Ghent in the framework of the END

were used as the parent noise map. The same traffic intensity and traffic composition database (i.e.

a combination of traffic counts and traffic flow modeling) as used for the END map was used for the

background noise mapping calculations. The building coordinates and the heights are extracted from

a GIS system. The mean height of the buildings in the calculation zone is 10.9 m with std= 4.50 m.
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Figure 7: Attenuation caused by multiple intermediate buildings of equal height, with Ws = Wr =
Wi = 10 m,Hs = Hi = Hr = 9.6 m.
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as the equal-building height reference
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Figure 9: Measurement positions of Ghent city, Belgium.

Measured data during 90 days lead to convergence of the energetically averaged Lday noise exposure

indicator at all locations considered. All traffic noise sources up to 1500 m from each receiver were

considered. Figure 9 shows 9 measurement positions used in the validation and their locations on

the map. The measurements, the END-reported noise levels and the predicted levels based on the

background noise mapping concept are shown in figure 10. Since the distance from the measurement

microphones to the wall is in most cases less than 20 cm, 3 dB is subtracted from the measurement

to account for the coherence between the direct and reflected waves near the façades for very low

frequencies(< 250 Hz). Position 6, 8, and 9 are inside an enclosed yard and other positions are

at a directly exposed façades. The sound spectrum at the totally shielded positions are shown in

figure (11, 12, 13). The results show that the noise levels of Lday calculated by the END noise

map are close to the measured levels in the directly exposed facades(except for position 4), but

clearly underestimate levels at the shielded façades. In position 9, this difference exceeds 14 dBA.

At shielded locations, the Acan term significantly improves the noise level spectrum predictions at

low frequencies but not at high frequencies. Adding a turbulent scattering contribution becomes

therefore essential and the engineering model as described in detail in [10] was used. Applying

the background noise mapping concept still leads to an underestimation at position 8, although

an important improvement is made compared to the END map. At this specific small enclosed

courtyard in the traffic free inner city, traffic noise hardly contributes to the observed noise level

during the day.
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At the most exposed façades, some difference between the measurements and the calculated levels

for the END map could be attributed to e.g. inaccuracies in traffic data. Also the measurement error

should be mentioned, which is expected to be below 2 dBA for road traffic dominated environmental

noise exposure [29].

5 Conclusions

An engineering model for improving noise level predictions at shielded locations in an urban noise

map is presented, based on a large set of 2D full-wave numerical calculations of canyon to canyon

propagation. The engineering model of background noise mapping proposed here can be used to

correct existing noise maps with a poor prediction at shielded zones. In this model, different at-

tenuation terms, Abar, Acan, and Ainter are quantified separately, which opens possibilities to add

more correction terms, such as terms to explicitly account for refraction by wind and temperature

gradients. Another advantage is that the inputs of the model are only geometrical parameters of

the canyons, buildings, sources and receivers. Such parameters are easily derived from common

GIS systems. A comparison between predicted levels and long term measurements, shows that the

model performs well in predicting total Lday and the compatibility of the background noise mapping

concept with existing noise maps is illustrated. Especially at shielded building facades, predictions

are strongly improved.
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Appendix A: Analytic form for Acan,flat

To derive the general form of the analytic expression that will be fitted to the numerical results,

diffraction over the central building from multiple image sources in the source canyon to multiple

image receivers in the receiver canyon is studied. The total sound pressure at the receiver caused by

all of these propagation paths can be summed incoherently. The total contribution is:

∞∑
i=0

∞∑
j=0

|pi,j |2 = |p0, 0|2 +

∞∑
i=1

|pi,0|2 +

∞∑
j=1

|p0,j |2 +

∞∑
i=1

∞∑
j=1

|pi,j |2 (15)
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where the subscript indicates the position of the source, the receiver and the image sources and

image receivers, i.e. i = 0 indicates the source position and j = 0 indicates the receiver position;

the i = 1, 2, 3... indicates different image sources; similarly, j = 1, 2, 3... indicates different image

receivers. |p0, 0|2 contains the part of the squared sound pressure at the receiver, emitted by the

source and diffracted directly over the building. This term is included in Abar,flat.
∑∞
i=1 |pi, 0|2

indicates the total squared sound pressure at the receiver position, emitted by all the image sources.∑∞
j=1 |p0, j |

2
indicates the squared sound pressure emitted by the source and received by all the

image receivers (i.e. located at the image receiver positions).
∑∞
i=1

∑∞
j=1 |pi,j |

2
indicates the total

sound pressure square at all the image receiver positions, emitting by all the image sources. For each

of these three terms, an analytic expression is derived below.

A.1 Analytic solutions of
∑∞

i=1 |pi, 0|2 and
∑∞

j=1 |p0, j|
2

Image sources will occur in the direction away from the intermediate building and in the direction

of this building. Because the diffraction angle is much larger and the distance is comparable for the

latter set, it can easily be shown that these can be neglected. Thus the derivation can focus on the

image sources positioned away from the intermediate building. A few assumptions are listed before

hand. The first assumption is that the buildings are not very low. Accordingly, the decay caused

by the finite size of the reflecting surface that could be expressed as a decaying overlap between the

surface and the Fresnel zone can be ignored even after many reflections. This decay will be considered

in a fitting coefficient later. A second assumption is that the building height of the source canyon

and receiver canyon are the same. As a result, the image sources can reach the receiver or image

receivers by double diffraction. Afterwards, other conditions such as, Hs < Hi, Hr < Hi, Hs > Hi

and Hr > Hi will be studied. With the above assumptions and equation (4), the square of the sound

pressure generated by the ith image source is: |pi,0|2 =
(

0.37
Xi,0,1+0.37

)2 (
0.37

Xi,0,2+0.37

)2
|pat,Li |

2
. For

a point source, the sound pressure at distance Li is pat,Li =
ρisA
4πLi

e−jkLi , where A is the amplitude

and ρs is the reflection coefficient in the source canyon. Note that in accordance with the diffraction

theory Li is the shortest path between source and receiver around the diffracting elements. Then

the sum of pi,0 is:

∞∑
i=1

|pi,0|2 =

∞∑
i=1

∣∣∣∣ρisA4π

∣∣∣∣2 ∣∣∣∣ 1

Li,0

∣∣∣∣2( 0.37

X1,i,0 + 0.37

)2(
0.37

X2,i,0 + 0.37

)2

(16)

In a general case, Ys = Mνsγs =
√

2rs,i(rr+Wi)
rs,i+rr+Wi

√
3
(
cos 2

3φs,i − 0.5
)
. For φs,i in the range between
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0 and π/2, which is the shielded area, cos 2
3φs,i − 0.5 can be approximated by 0.5 cosφs,i which is

calculated as 0.5h1/rs,i. It can easily be verified that this approximation introduces a very small

error, std = 0.0056 in more than 1500 checking samples. As a result, Ys and Yr can be simplified as:

Ys,i ≈

√
2rs,i (rr +Wi)

rs,i + rr +Wi

√
3

2
cosφs,i =

√
2rs,i (rr +Wi)

rs,i + rr +Wi

√
3

2

h1
rs,i

; (17)

Yr,i ≈

√
2rr (rs,i +Wi)

rs,i + rr +Wi

√
3

2
cosφr,i =

√
2rr (rs,i +Wi)

rs,i + rr +Wi

√
3

2

h2
rr

; (18)

According to the diffraction theory, the factor B has to be multiplied with the smallest of the two

Y terms. Therefore we have a closer look at the ratio Ys,i/Yr,i which is h1

h2

√
rr(rr+Wi)
rs,i(rs,i+Wi)

. Considering

that the receiver is generally higher than the source and that all façades of buildings have the same

height, h1 > h2. In most cases it can be shown that this ratio is less than 1 after a few reflections,

since rs,i � rr is expected. For deducing an analytic form for Afcan, all Ys,i are supposed to be less

than Yr. As a result, X1,i,0 = Ys,iB and X2,i,0 = Yr.

Let us now consider the second term in equation (16) which we call C1s for convenience:

C1s =

(
0.37

X2,i,0 + 0.37

)2

≈

 0.37√
2rr(Wi+rs,i)
λ(rs,i+Wi+rr)

√
3
2 cosφr + 0.37

2

≈

 0.37√
2rr
λ

√
3
2 cosφr + 0.37

2

(19)

which becomes independent of i when it can be assumed that Wi + rs,i � rr, which is the case for

higher order reflections at least. The remaining part of equation (16) can be rewritten as:

∣∣∣∣ 1

Li,0

∣∣∣∣2( 0.37

X1,i,0 + 0.37

)2

≈

 0.37√
2rs,iWi

λ(Wi+rs,i)

√
3
2 cos(φs,i)Li,0 + 0.37Li,0

2

=

 1√
2Wi(rs,i+Wi+rr)

λ(rs,i+Wi)

√
3

0.74h1

√
(rs,i+Wi+rr)

rs,i
+ (rs,i +Wi + rr)

2

(20)

Again assuming that rs,i+Wi � rr, the first square root term simplifies and becomes independent

of the reflection order i.
√

(rs,i+Wi+rr)
rs,i

is difficult to handle but fortunately assuming that it is close

to 1 introduces at most 3 dB of error for the rs,i and Wi that can be expected in an urban setting.

The reader should keep in mind that the purpose of this derivation is to extract an analytic form with
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coefficients that will be fitted on numerical simulation results. As a result of these approximations,

the total sum of equation (16) is reduced to:

∞∑
i=1

|pi,0|2 = C1s

∞∑
i=1

∣∣∣∣ρisA4π

∣∣∣∣2
 1√

2Wi

λ

√
3

0.74h1 + rs,i +Wi + rr

2

(21)

The first term in the denominator is independent of the image source index i. This implies that

the approximations made above boil down to assuming that the effect of increasing distance from

the image source to the diffraction edge is neatly compensated by the effect of changing diffraction

angle. To simplify the sum further it is now assumed that the source is positioned in the middle

of the canyon and that when rs,i becomes large compared to the height of the canyon above the

source h1, its value can approximated by rs,i ≈ Di, where Di = i ∗Ws + 0.5Ws is the horizontal

distance from the ith image source to the edge of the building façade. In this case, the sum is a

special function:
∞∑
i=1

|pi,0|2 = C1s

∣∣∣∣ A4π
∣∣∣∣2 ρ2s
W 2
s

Φ

(
ρ2s, 2,

C3s +Ws

Ws

)
(22)

where C3s =
√

2Wi

λ

√
3

0.74h1 + 0.5Ws + rr +Wi. Φ is the Hurwitz-Lerchi transcendent.

Until now it was assumed that the flanking building creating the source street canyon was very

high so that all reflections were possible. However, when Hs < Hi, the sound emitting from some of

the left image sources cannot contribute to the receiver and the contribution of the image sources

from the right side start becoming stronger. The sound will need to diffract three times to reach the

receiver and follows the route “image source→ 1→ 2→ 3→receiver” to reach the receiver position,

as shown in figure 14.

After one more diffraction, the sound power decreases significantly, which can be accordingly
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ignored. When Hs is not much smaller than Hi, the sound from the first few important images

sources can still reach the receiver position by double diffraction following the routine “image source

→ 2 → 3 →receiver”, as shown in figure 14. Under this condition and neglecting high order

diffraction, the total contribution of the image sources is approximated by:

N∑
i=1

|pi,0|2 =

∞∑
i=1

|pi,0|2 −
∞∑

i=N+1

|pi,0|2

= C1s

∣∣∣∣ A4π
∣∣∣∣2 ρ2s
W 2
s

Φ

(
ρ2s, 2,

C3s +Ws

Ws

)
− C1s

∣∣∣∣ A4π
∣∣∣∣2 ρ2(N+1)

s

W 2
s

Φ

(
ρ2s, 2, N + 1 +

C3s

Ws

)
(23)

where N is the number of images sources which can reach the receiver by only two diffraction. As

expected, the higher Hs is the larger N is. When Hs = Hi, N becomes infinite. The number of visible

image sources, N, is the most important parameter to determine the difference between the level

calculated using equation (23) and equation (22). Other parameters, such as Ws, Wi and λ can still

affect this level difference slightly. To avoid calculating N for every source position in the canyon,

N is proposed to use the assumption that the source is in the middle of the canyon and categorize

situations according to the ratio of (Hs − hs)/(Hi − hs). The relation can be written as: Hs − hs =

2N−1
2N+1 (Hi − hs) for a source in the middle of the source canyon. Specifically, when N = [1, 2, 3, · · · ]

corresponds to the ratio (Hs−hs)/(Hi−hs) ≤ [1/3, 3/5, 5/7 · · · ]. When (Hs−hs)/(Hi−hs) ≤ 1/3,

no image sources are available from the left side and the canyon effect can be neglected. Lhs is

set to −∞. When 1/3 < (Hs − hs)/(Hi − hs) ≤ 3/5, only the first image source from the left

side can contribute and
∑
|pi,0|2 = 10(−0.1Abar,flat) with the “source position” being at the first

image source; when 3/5 < (Hs − hs)/(Hi − hs), more than one image source from the left side

are available, an approximation of the level difference between equation (23) and equation (22) is:

Lhs = −6.17
(

1− Hs−hs
Hi−hs

) [
1− 1.37 log10

(√
λWs

Wi

)]
dB which is fitted on the condition of Ws ∈

[15, 100],Wi ∈ [20, 500], Hi = 18 m and Frequency ∈ [60, 8000]Hz. When Hs−hs
Hi−hs > 1, Lhs = 0.

When Hs > Hi, in most cases the important contribution comes from the sound from the image

sources diffracting twice over the middle building. In some extreme cases, when Hs is high, Hi is

low and Wi is narrow, sound could reach the receiver after only one reflection on the edge of the

building of height Hs. Since this condition is not common, its effect is ignored when extracting the

analytic form of the functions used for fitting. Without the numerical constant, the fitting formula
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for
∑∞
i=1 |pi,0|

2
is:

∞∑
i=1

|pi,0|2 ≈ F (1)

[
C1s

ρ2s
W 2
s

Φ

(
ρ2s, 2,

C3s +Ws

Ws

)
100.1Lhs

]
if

3

5
<
Hs − hs
Hi − hs

≤ 1 (24)

where F (1) is a fitting coefficient. Similarly, the
∑∞
j=1 |p0,j |

2
could also be obtained.

∞∑
j=1

|p0,j |2 ≈ F (2)

[
C1r

ρ2r
W 2
r

Φ

(
ρ2r, 2,

C3r +Wr

Wr

)
100.1Lhr

]
if

3

5
<
Hr − hr
Hi − hr

≤ 1 (25)

where F (2) is the fitting coefficient, ρr is the average reflection coefficient of the façade in the receiver

canyon and other parameters are as follows:

Lhr = −6.17

(
1− Hr − hr

Hi − hr

)[
1− 1.37 log10

(√
λWr

Wi

)]

C1r ≈

 0.37√
2rs
λ

√
3
2 cosφs + 0.37

2

C3r =

√
2Wi

λ

√
3

0.74
h2 + 0.5Wr + rs +Wi

Similarly, when Hr−hr
Hi−hr < 1/3, the canyon effect is neglected and Lhr is set to −∞; when 1/3 <

Hr−hr
Hi−hr < 3/5,

∑∞
j=1 |p0,j |2 = 10−0.1Abar,flat . In a special case when Hi = hr, the canyon effect is

neglected as well.

To quantify the effect of the finite size of an object on the amount of the reflected acoustic energy,

the envelope of the object and the Fresnel ellipsoid should be calculated. The source height of a

vehicle is often close to the ground which implies that half of the section of the ellipsoids is below the

building façade. If the reflections on the ground are considered, its contribution can be treated as

an image source. As a result, the Fresnel zone can only cause decay when the radius of the Fresnel

ellipsoids is greater than Hs or Hi. If the radius
√
λD/2 ≤ Hs, the sound energy will be totally

reflected, where D equals twice the distance of the image source which is D = 2(iWs + 0.5Ws). If

Hs = 12 m (corresponding to a 3-floors building), Ws = 15 m (appears frequently in Gent), the

Fresnel zone starts to cause decay after 10 and 112 reflection for λ = 3.4 m(corresponding to 100Hz)

and λ = 0.34 m(corresponding to 1000Hz) respectively. It can be concluded that the decay speed is

much less than the decay caused by the absorption of the façade. which decays by power function

and the absorption starts to decay from the first reflection.

For the receiver canyon, it is difficult to make accurate estimation considering the receiver height
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is often at 4 m. Suppose Hs = 10 m, Hi = 10 m, Ws = 12 m, The decay starts from 2 for 100Hz and

20 for 1000Hz. Although the decay due to the Fresnel ellipsoid depends differently on the reflection

area, it is decided to include its effect by increasing the average contribute of the façade.

A.2 Approximation of
∑∞

i=1

∑∞
j=1 |pi,j|

2

The double sum can be written as a sum of single sums for the source canyons for example. It is

already known that the sum over all image sources results in the Hurwitz-Lerchi transcendent, but

it is not possible to convert the sum over these special functions to a closed form. In the next step,

the Hurwitz-Lerchi transcendent Φ is approximated by G(ρs, x) = Kρ2s/x
2. In the region x ∈ (5, 20],

ρs ∈ [0.8, 1], this approximation with K = 1.59 results in a mean squared error of 0.0034, which is

acceptable. Because the solution of every sum
∑∞
i=j |pi,j |

2
is similar as equation (22), the double

sum can be generally written as:

∞∑
i=j

∞∑
i=1

|pi,j |2 = 10Lhs
∣∣∣∣ A4π

∣∣∣∣2 ∞∑
j=1

C1s,j
ρ2sρ

2j
r

W 2
s

Φ

(
ρ2s, 2,

C3s,j +Ws

Ws

)
(26)

where C3s,j =
√

2Wi

λ

√
3

0.74h1 + 0.5Ws + rr,j + Wi. It should be mentioned that while deriving this

equation, it was assumed that rs,i � rr,j which may not hold for high order receiver reflections.

According to the approximation mentioned in this section, equation (26) changes to:

∞∑
i=j

∞∑
i=1

|pi,j |2 = 1.59ρ2sLhs

∣∣∣∣ A4π
∣∣∣∣2 ∞∑
j=1

 0.37√
2rr,j
λ

√
3
2 cosφr,j + 0.37

2(
1

C3s,j +Ws

)2

(27)

For high order image receivers,

(
0.37√

2rr,j
λ

√
3

2 cosφr,j+0.37

)2

=

(
0.37

3.31h1/
√
λrr,j+0.37

)2

→ 1. As a result,

the above equation approximates to:

∞∑
i=j

∞∑
i=1

|pi,j |2 < 1.59ρ2s

∣∣∣∣ A4π
∣∣∣∣2 ∞∑
j=1

(
1

C3s,j +Ws

)2

=

∣∣∣∣ A4π
∣∣∣∣2 1.59ρ2s

ρ2r
W 2
r

Φ

(
ρ2r, 2,

3.31h1/
√
λ+ 1.5Ws +Wi + 1.5Wr

Wr

)

≈
∣∣∣∣ A4π

∣∣∣∣2( 1.59ρsρr

3.31h1/
√
λ+ 1.5Ws +Wi + 1.5Wr

)2

(28)

The asymmetry is caused by the above assumption. If we calculate the double sum from the receiver

canyon, a similar form could be achieved only replacing “h1” by “h2”. To moderate this error, the
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average of the two calculations is used to approximate the double sum by:

∞∑
i=j

∞∑
i=1

|pi,j |2 ≈
∣∣∣∣ A4π

∣∣∣∣2 (1.59ρsρr)
2

(3.31h1/
√
λ+ 1.5Ws +Wi + 1.5Wr)(3.31h2/

√
λ+ 1.5Ws +Wi + 1.5Wr)

(29)

References
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